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Изучаются системы уравнений над графами, матроидами и частично упорядочен-
ными множествами. Доказаны критерии нетеровости по уравнениям прямых сте-
пеней алгебраических систем указанных типов. Кроме того, доказано, что прямая
степень произвольной конечной алгебраической системы является слабо нетеро-
вой по уравнениям.
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1. Introduction
Let K be an arbitrary class of mathematical objects. One of the main problem of

mathematics is to describe “simple” and “hard” objects in K. One can do it in different
ways using various techniques of algebra, geometry, calculus, etc. In the paper, we make an
attempt to classify “simple” and “hard” algebraic structures by universal algebraic geometry
(UAG).

Following [1], UAG is a discipline of model theory, and it deals with equations over
arbitrary algebraic structures. There are many notions of UAG which allow us to separate
algebraic structures with “simple” and “hard” equational properties. The main feature here
is the equationally Noetherian property. Recall that an algebraic structure A is equationally
Noetherian if any system of equations S is equivalent over A to a finite subsystem.
Roughly speaking, if an algebraic structureA is equationally Noetherian, then its equational
properties are said to be “simple”. Otherwise, we assume thatA has a complicated equational
theory.

1The author was supported by the RSF-grant no. 22-21-00745.
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Indeed, the Noetherian property is a central notion of UAG, and papers [1–3] contain
the series of results which establish nice properties of equationally Noetherian algebraic
structures. However, for finite algebraic structures the Noetherian property gives the
trivial partition into “simple” and “hard” classes, since all finite algebraic structures are
equationally Noetherian.

Thus, we have to propose an alternative approach in the division of finite algebraic
structures into the classes with “simple” and “hard” equational properties. Our approach
satisfies the following:

1) we deal with lattices of algebraic sets over a given algebraic structures (a set Y is
algebraic over an algebraic structure A if Y is the solution set of an appropriate
system of equations);

2) we use the common operations of UAG (direct products, substructures, ultra-
products etc.);

3) the partition into “simple” and “hard” algebraic structures is implemented by a list
of first-order formulas Φ such that

A is “simple” ⇔ A satisfies Φ.

In other words, the “simple” class is axiomatizable by the formulas Φ.
Namely, we offer to consider infinite direct powers ΠA of an algebraic structure A

and study the Diophantine equations over ΠA instead of Diophantine equations over A (an
equation E(X) is said to be Diophantine over an algebraic structure B if E(X) may contain
occurrences of any element from B). The decision rule in our approach is the following:

A is “simple” ⇔ all direct powers of A are equationally Noetherian ; (1)

otherwise, an algebraic structure A is said to be “hard”.
Some results of the type (1) were obtained in [4], where we describe all groups, rings and

monoids satisfying (1). For example, a group (ring) satisfies (1) iff it is abelian (respectively,
with zero multiplication).

The current paper continues the study [4], and in Sections 3–5 we consider equations
over the important classes of relational algebraic structures: graphs, partial orders and
matroids. For each of these classes we describe algebraic structures that satisfies (1).

However, the most complicated and nontrivial part of the paper is Section 6. It contains
the series of general results that hold for any direct power of any finite algebraic structure A.
In particular, we prove that any infinite system of equations S over ΠA is equivalent to a
finite system S′ (here we do not claim S′ ⊆ S). Thus, we prove that any direct power of a
finite algebraic structure is weakly equationally Noetherian.

2. Basic definitions
Following [1–3], we give the main definitions of universal algebraic geometry.
Let L be a countable language and A be an algebraic structure of the language L

(L-structure). We consider languages of the following types: Lg = {E(2)} (graph language),
Lp = {6(2)} (partial order language), Lm = {P (1)

1 , P
(2)
2 , . . .} (matroid language).

An equation in L (L-equation) is an atomic formula over L. The examples of equations
in various languages are the following: E(x, y), E(x, x) (language Lg); x 6 y, x 6 x
(language Lp); P1(x), P2(x, y) (language Lm). Notice that the expression x = y is an
equation in any language L.
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A system of L-equations (L-system for shortness) is an arbitrary set of L-equations.
Notice that we consider only systems in a finite set of variables X = {x1, x2, . . . , xn}. The
set of all solutions of S in an L-structure A is denoted by VA(S) ⊆ An. A set Y ⊆ An is
said to be algebraic over A if there exists an L-system S with Y = VA(S). If the solution
set of an L-system S is empty, S is said to be inconsistent. Two L-systems S1,S2 are called
equivalent over an L-structure A if VA(S1) = VA(S2). This equivalence relation is denoted
by S1 ∼ S2.

An L-structure A is L-equationally Noetherian if any infinite L-system S is equivalent
over A to a finite subsystem S′ ⊆ S. The class of equationally Noetherian L-structures is
denoted by N.

It is easy to prove that an L-structureA is equationally Noetherian iff for any L-system S
there exists a number m such that the set of the first m equations of S is equivalent to S
(here we essentially use the countability of the language L).

Generalizations of the Noether property have been introduced in [3]. An L-structure A
is weakly L-equationally Noetherian if any infinite L-system S is equivalent over A to a
finite system S′ (here we do not claim S′ ⊆ S). The class of weakly equationally Noetherian
L-structures is denoted by N′. Obviously, N ⊆ N′.

Let A be an L-structure. By L(A) we denote the language L∪{a : a ∈ A} extended by
new constant symbols which correspond to elements of A. The language extension allows
us to use constants in equations. The examples of equations in extended languages are the
following (below G,M are graph and matroid respectively): E(x, a) (language Lg(G) and
a ∈ G); P2(a, x), P3(x, b, c), P4(a, x, y, b) (language Lm(M) and a, b, c ∈ M). Obviously,
the class of L(A)-equations is wider than the class of L-equations, so an L-equationally
Noetherian L-algebra may lose this property in the language L(A).

Let A be an L-structure. An element of a direct power ΠA =
∏
i∈I
A is denoted by

a sequence in square brackets [ai | i ∈ I]. Functions and relations over ΠA have the
coordinate-wise definition. For example, any relation Rm ∈ L is defined on ΠA as follows:

R
(

[a
(1)
i | i ∈ I], [a

(2)
i | i ∈ I], . . . , [a

(m)
i | i ∈ I]

)
⇔ R

(
a

(1)
i , a

(2)
i , . . . , a

(m)
i

)
for each i ∈ I.

The map πk : ΠA → A is called a projection onto the k-th coordinate if πk([ai | i ∈ I]) = ak.
Let E(X) be an L(ΠA)-equation over a direct power ΠA. We may rewrite E(X) in the

form E(X,
−→
C), where

−→
C is an array of constants occurring in the equation E(X). One can

introduce the projection of an equation onto the i-th coordinate as follows:

πi(E(X)) = πi(E(X,
−→
C)) = E(X, πi(

−→
C)),

where πi(
−→
C) is an array of the i-th coordinates of the elements from

−→
C . For example, an

Lg(ΠG)-equation E(x, [a1, a2, a3, . . .]) has the following projections:

E(x, a1),

E(x, a2),

E(x, a3),

. . .
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Similarly, a matroid equation P4(x, [a1, a2, a3, . . .], y, [b1, b2, b3, . . .]) has the projections

P4(x, a1, y, b1),

P4(x, a2, y, b2),

P4(x, a3, y, b3),

. . .

Let us take an L(ΠA)-system S = {Ej(X) : j ∈ J}. The i-th projection of S is the
L(A)-system πi(S) = {πi(Ej(X)) : j ∈ J}. The projections of an L(ΠA)-system S allow to
describe the solution set of S by

VΠA(S) = {[Pi | i ∈ I] : Pi ∈ VA(πi(S))} . (2)

Lemma 1. Let S = {Ej(X) : j ∈ J} be an L(ΠA)-system over ΠA. The system S is
consistent iff so are all projections πi(S). Moreover, if A is L(A)-equationally Noetherian,
then an inconsistent L(ΠA)-system S is equivalent to a finite subsystem.

Proof. The first assertion follows directly from (2). Suppose A is L-equationally
Noetherian and πi(S) is inconsistent. Hence, πi(S) is equivalent to its finite inconsistent
subsystem {πi(Ej(X)) : j ∈ J ′}, |J ′| < ∞, and the subsystem S′ = {Ej(X) : j ∈ J ′} ⊆ S
is also inconsistent.

3. Graphs
Recall that a graph is an algebraic structure of the language Lg = {E(2)} satisfying the

following axioms:

∀x ¬E(x, x) (no loops),
∀x∀y E(x, y)→ E(y, x) (symmetry).

Theorem 1. An infinite direct power ΠG =
∏
i∈I
G of a graph G is Lg(ΠG)-equationally

Noetherian iff G satisfies the quasi-identity

∀x1∀x2∀x3∀x3 (E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x4)→ E(x4, x1)) . (3)

Proof. Let us prove the “if” part of the statement.
Let S be an Lg(ΠG)-system in variables X = {x1, . . . , xn}. One can rewrite S as a finite

union of systems

S =
n⋃
j=1

Sj
⋃
S0,

where Sj = {E(xj, ck) : k ∈ Kj} and S0 is the system of equations of the following types:
E(xi, xj), xi = xj, xi = cj. Obviously, the system S0 is equivalent to a finite subsystem.
Hence, it is sufficient to prove that each system Sj in one variable xj is equivalent to a finite
subsystem.

Let us write the coordinate-wise versions of the system Sj:

πi(Sj) = {E(xj, πi(ck)) : k ∈ Kj}, i ∈ I,

where πi(ck) is the i-th coordinate of an element ck.
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If for each i the equations {E(xj, πi(ck)) : k ∈ Kj} have the same solution sets, then
Sj is equivalent to a single equation E(xj, ck) ∈ Sj for arbitrary k ∈ Kj. Otherwise, there
exists an index i such that

Y1 = VG(E(xj, πi(ck1))) 6= VG(E(xj, πi(ck2))) = Y2

for some k1, k2 ∈ Kj.
If Y1 ∩ Y2 = ∅, then Sj is inconsistent and obviously equivalent to the subsystem

{E(xj, ck1), E(xj, ck2)}. Below we may assume Y1 * Y2 and one can take elements b1, b2 ∈ G
such that b1 ∈ Y1 \ Y2, b2 ∈ Y1 ∩ Y2, i.e., E(b1, πi(ck1)), E(b2, πi(ck1)) and E(b2, πi(ck2)).

Since the quasi-identity (3) is true in ΠG, we have E(b1, πi(ck2)), which contradicts the
choice of the element b1.

Let us prove the “only if” part of the statement. Assume the quasi-identity (3) does
not hold in G, i.e., there exist elements a1, a2, a3, a4 with E(a1, a2), E(a2, a3), E(a3, a4),
¬E(a4, a1). Consider the Lg(ΠG)-system S of the following equations:

E(x, [a2, a2, a2 . . .]),

E(x, [a4, a2, a2 . . .]),

E(x, [a4, a4, a2 . . .]),

. . .

Let Sn be the subsystem of S formed by the first n equations of S.
The point a = [a3, a3, . . . , a3︸ ︷︷ ︸

n−1 times

, a1, a1, . . .] satisfies Sn but a does not satisfy the (n+ 1)-th

equation of S. Thus, Sn is not equivalent to S for any n, and ΠG is not Lg(ΠG)-equationally
Noetherian.

Corollary 1. If a graph G contains a triangle (i.e., there exist vertices x1, x2, x3 ∈ G
with E(x1, x2), E(x2, x3), E(x3, x1)), then ΠG is not Lg(ΠG)-equationally Noetherian.

Proof. Obviously, the condition of Theorem 1 fails for such graphs, since there are no
loops in G.

Let K = {G : ΠG ∈ N} be the set of all graphs with equationally Noetherian direct
powers. Theorem 1 gives that the class K is axiomatizable. The class K may be also
described by forbidden graphs and distance functions.

Let us give the explicit examples of graphs G ∈ K.
One can directly prove that the disjoint union G = G1tG2 has an equationally Noetherian

direct power ΠG if both graphs satisfy the quasi-identity (3). Thus, there arises a question:
is there a connected graph G with n vertices such that any direct power ΠG is Lg(ΠG)-
equationally Noetherian?

The answer is positive. Let us define the following graph G with the vertex set
{x0, x1, . . . , xn, xn+1} and edges {E(x0, xi), E(xi, xn+1) : 1 6 i 6 n}. The direct check
gives that G satisfies (3), contains n+ 2 vertices, and G is connected.

4. Partial orders
A partial order P is an algebraic structure of the language Lp = {6(2)} such that P

satisfies the following axioms:

∀x (x 6 x),

∀x∀y (x 6 y) ∧ (y 6 x)→ (x = y),

∀x∀y (x 6 y) ∧ (y 6 z)→ (x 6 z).
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A partial order P is said to be non-trivial if there exists a pair a, b ∈ P such that a < b
(i.e., a 6 b and a 6= b).

Theorem 2. Let P be a non-trivial partial order and ΠP be an infinite direct power
of P . Then ΠP is not Lp(ΠP)-equationally Noetherian.

Proof. Since P is non-trivial, there exist a, b ∈ P with a < b. It is sufficient to show that
an infinite direct power ΠE ⊆ ΠP of the partial order E = {a, b} is not Lp(ΠE)-equationally
Noetherian.

Indeed, one should consider the following infinite Lp(ΠE)-system S:

x 6 [b, b, b, . . . , ]

x 6 [a, b, b, . . . , ]

x 6 [a, a, b, . . . , ]

. . .

Obviously, the unique solution of S is [a, a, a, . . . , ]. However, the solution set of any finite
subsystem of S contains a point [a, a, a, . . . , a︸ ︷︷ ︸

n times

, b, b, b, . . .] for sufficiently large n. Thus, S is

not equivalent to any finite subsystem.

5. Matroids
One can consider a matroidM as an algebraic structure of an infinite language Lm =

= {P (1)
1 , P

(2)
2 , P

(3)
3 , . . .}, where each predicate symbol Pn has the following interpretation:

Pn(x1, . . . , xn)⇔ the set {x1, . . . , xn} is independent inM.

Moreover, any matroid satisfies the following axioms:

∀x1 . . . ∀xn
(∨
i 6=j

(xi = xj)→ ¬Pn(x1, . . . , xn)

)
,

∀x1 . . . ∀xn
(
Pn(x1, . . . , xn)→

n∧
i=1

Pn−1(x1, . . . , xi−1, xi+1, . . . , xn)

)
(n > 1),

∀x1 . . . ∀xn,∀y1 . . . ∀yn+1

(
Pn(x1, . . . , xn) ∧ Pn+1(y1, . . . , yn+1)→

n+1∨
i=1

Pn+1(x1, . . . , xn, yi)

)
,

∀x1 . . . ∀xn (Pn(x1, . . . , xn)→ Pn(xσ(1), . . . , xσ(n))) for any permutation σ.

Notice that a direct power ΠM of a matroid M is not necessarily a monoid itself.
However, here we study direct powers of matroids, since the algebraic geometry over ΠM
may clarify algebraic and geometric properties of the original matroidM.

Lemma 2. LetM be a matroid with P3(a, b, c) for some a, b, c ∈M. Then any infinite
direct power ΠM is not Lm(ΠM)-equationally Noetherian.

Proof. Let us consider a system S of Lm(ΠM)-equations

P2(x, [a, a, a, . . .]),

P2(x, [b, a, a, . . .]),

P2(x, [b, b, a, . . .]),

. . .



Direct powers of algebraic structures and equations 37

Denote by Sn the first n equations of S. Clearly, Sn is satisfied by the point

[c, c, . . . , c︸ ︷︷ ︸
n times

, b, b, . . .].

However, this point does not belong to the solution set of S, since the predicate

P2([c, c, . . . , c︸ ︷︷ ︸
n times

, b, b, . . .], [b, b, . . . , b︸ ︷︷ ︸
n+1 times

, a, a, . . .])

is not true for the (n+ 1)-th coordinate.

According to Lemma 2, any matroid M with ΠM-equationally Noetherian direct
power ΠM may be represented by a graph G(M) such that

1) the vertex set of G(M) coincides with the setM;
2) P2(a, b)⇔ E(a, b).
Hence, such matroids may be classified by the analogue of Theorem 2.
Theorem 3. A direct power ΠM of a matroidM is Lm(M)-equationally Noetherian

iffM satisfies the following axioms:

∀x∀y∀z ¬P3(x, y, z),

∀x1∀x2∀x3∀x4 (P2(x1, x2) ∧ P2(x2, x3) ∧ P2(x3, x4)→ P2(x4, x1)) .

Proof. The proof immediately follows from Lemma 2, Theorem 2 and the
correspondenceM↔ G(M).

6. Direct powers of finite structures
Let us prove a general fact about direct powers of arbitrary finite algebraic structures.

The proof of the following theorem is rather complicated, so its main steps are explained
in Example 1.

Theorem 4. Let A be a finite L-structure. Then any direct power ΠA =
∏
i∈I
A is

weakly L(ΠA)-equationally Noetherian.

Proof. Let S = {Ej(X,
−→
Cj) : j ∈ J} be an infinite L(ΠA)-system over ΠA and

πi(S) = {Ej(X, πi(
−→
Cj)) : j ∈ J} (i ∈ I) be the projections of S onto all coordinates of ΠA.

Notice that any system πi(S) is a system of L(A)-equations over A.
Since A is finite, there exists a finite number of equations M = {Ej(X, πi(

−→
Cj)) : (i, j) ∈

∈ K} (|K| < ∞) such that any Ej(X, πi(
−→
Cj)) ∈

⋃
i∈I
πi(S) is equivalent over A to an

appropriate equation from M . Hence, each πi(S) is equivalent to a subsystem S′i ⊆ M
over A. The idea of the further proof is the following: we try to wrap all systems S′i into a
finite number of equations S′ over ΠA.

Let us define an L(ΠA)-system S′ by the following procedure.
S t e p 0 . Put

S0 =
⋃

(i,j)∈K
Ej(X,

−→
Cj) ⊆ S

(|S0| 6 |K|) and S′ = S0. The main property of S0 is the following: each equation from M
occurs in some projection of an equation from S0. Let us arbitrarily enumerate equations
in the set M , i.e., each equation from M has the number s ∈ [1, |K|].
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S t e p s (1 6 s 6 |K|). Let us take the s-th equation Ej(X, πi(
−→
Cj)) fromM and define

the following sets of indexes: I0 = {l ∈ I : Ej(X, πi(
−→
Cj)) ∈ S′l}, I1 = I \ I0. In other words,

I0 is the set of all indexes l such that the given equation from M occurs in the system S′l.
Define a set Ms = {Dl(X) : l ∈ I} of L(A)-equations as follows:

Dl(X) =

{
Ej(X, πi(

−→
Cj)), if l ∈ I0,

Ej(X, πl(
−→
Cj)), if l ∈ I1.

The sense of the set Ms is the following. If a system S′l contains Ej(X, πi(
−→
Cj)) ∈ M , then

we take this equation as the k-th projection in Ms. Otherwise, the l-th projection in Ms is
taken from the equation Ej(X,

−→
Cj) ∈ S0.

The L(A)-equationsMs may be wrapped into the L(ΠA)-equation Ds(X,
−→
Ds) such that

πl(Ds(X,
−→
Ds)) = Dl(X).

We put S′ := S′ ∪Ds(X,
−→
Ds) and go to the following step (s+ 1).

By the definition of the system S′, the i-th projection πi(S′) contain all equations from
S′i ∼ πi(S). Hence, πi(S′) ∼ πi(S) over A, and finally S′ ∼ S over ΠA.

The following example explains the technique and denotations of Theorem 4.
Example 1. Let G be the graph with vertices {a, b, c} and edges E(a, b), E(b, c),

E(c, a) (i.e., G is a complete graph). Let us consider an infinite L(ΠG)-system S of equations:

E(x, [a, a, a, a, a, a, . . .]),

E(x, [b, a, a, a, a, a, . . .]),

E(x, [b, c, a, a, a, a, . . .]),

E(x, [b, c, b, a, a, a, . . .]),

E(x, [b, c, b, c, a, a, . . .]),

. . .

The projections πi(S) are the following (we omit in the projections equations which occur
earlier):

π1(S) = {E(x, a), E(x, b)},
π2(S) = {E(x, a), E(x, c)},
π3(S) = {E(x, a), E(x, b)},
π4(S) = {E(x, a), E(x, c)},

. . .

The setM consists of the equations E(x, a), E(x, b), E(x, c) (any equation from
n⋃
i=1

πi(S)

is equivalent to one of the given equations). Since the third equation of S contains all
equations from M as projections, we may put S0 = {E(x, [b, c, a, a, a, a, . . .])} (the set K
here is {(1, 3), (2, 3), (3, 3)}). For the projections πi(S) we have

π2k+1(S) ∼ {E(x, a), E(x, b)} = S′2k+1,

π2k(S) ∼ {E(x, a), E(x, c)} = S′2k.

Now we construct the final system S′ with |S0| + |M | = 1 + 3 = 4 equations. First, we
put S′ = S0 and make the following three steps:
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1) We take E(x, a) ∈M . Since this equation occurs in any system S′i (I0 = N, I1 = ∅),
we add to S′ the equation E(x, [a, a, a, a, a, . . .]).

2) Take E(x, b) ∈M . Since E(x, b) occurs in the systems Si with odd i (I0 = {1, 3, . . .},
I1 = {2, 4, . . .}), we should add to S′ an equation of the form E(x, [b, ∗, b, ∗, b, ∗, . . .]).
The elements for even positions are taken from the equation from S0, and we obtain
the equation E(x, [b, c, b, a, b, a, . . .]). The last equation is added to S′.

3) For the equation E(x, c) ∈ M we make dual operations. Since E(x, c) occurs in
the systems Si with even i (I0 = {2, 4, . . .}, I1 = {1, 3, . . .}), we should add to S′

an equation of the form E(x, [∗, c, ∗, c, ∗, c, . . .]). The elements for odd positions are
taken from the equation from S0, and we obtain the equation E(x, [b, c, a, c, a, c, . . .]).
Also, we add the last equation to S′.

Thus, the final system S′ consists of the following equations:

E(x, [b, c, a, a, a, a, . . .]),

E(x, [a, a, a, a, a, a, . . .]),

E(x, [b, c, b, a, b, a, . . .]),

E(x, [b, c, a, c, a, c, . . .]).

It is easy to see that all projections πi(S′) are equivalent over G to the systems S′i. Thus,
S′ is equivalent to S.

The ideas of Theorem 4 allow us to estimate uniformly the minimal number of equations
in the finite system S′.

Corollary 2. Let S be a system of L(ΠA)-equations in n variables over a direct
power ΠA of a finite L-structure A, |A| = k. Then S is equivalent to a system S′ with
at most 2k

n+1 equations.
Proof. Since we deal with equations in n variables, all algebraic sets over A are the

subsets of the affine space An, |An| = kn. Hence, there exists at most 2k
n different algebraic

sets over A. Since the set M in Theorem 4 consists of pairwise non-equivalent equations,
we have |M | 6 2k

n .
The final system S′ consists of at most |M | + |M | = 2|M | equations (|S0| = |M |,

and |M | iterations of the procedure add to S′ exactly |M | equations). Thus, we obtain
|S′| 6 2 · 2kn = 2k

n+1.
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