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IMPAMBIE CTEIIEHU AJITEBPANYECKNX CUCTEM
1N YPABHEHUA HAJ1 HIMN

A. H. lllengakos

Hrnemumym mamemamuru um. C. JI. Coboaesa CO PAH, 2. Omck, Poccus
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Nzyuarorcst cucreMbl ypaBHeHUI HaJ| rpadaMu, MATPOUIAMU U YACTUIHO YIIOPSIOUCH-
HBIMU MHO>KECTBaMMH. ﬂOKaSaHbI KpUTepuun HETEPOBOCTHU IO YpaBHEHUAM HPAMBIX CTE-
IeHell aJiredpanvIecKux CUCTEM YKa3aHHBIX THIIOB. KpoMe Toro, jIoKa3aHo, 9TO MpsiMast
CTeleHb IIPOU3BOJIbHOM KOHEYHOI ajredpamdecKoil CUCTEMbI ABJISIETCS CJ1ab0 HETepo-
BOY 110 ypaBHEHUAM.

KitroueBbie ciioBa: 2pagdvl, Mampoudsl, KOHEUHBIE AA2EOPAUMECKUE CUCTEMDbL, NPAMBLE
CMeEneHU, HemMePOBOCMb MO YPAGHEHUAM.

1. Introduction

Let K be an arbitrary class of mathematical objects. One of the main problem of
mathematics is to describe “simple” and “hard” objects in K. One can do it in different
ways using various techniques of algebra, geometry, calculus, etc. In the paper, we make an
attempt to classify “simple” and “hard” algebraic structures by universal algebraic geometry
(UAG).

Following [1], UAG is a discipline of model theory, and it deals with equations over
arbitrary algebraic structures. There are many notions of UAG which allow us to separate
algebraic structures with “simple” and “hard” equational properties. The main feature here
is the equationally Noetherian property. Recall that an algebraic structure A is equationally
Noetherian if any system of equations S is equivalent over A to a finite subsystem.
Roughly speaking, if an algebraic structure A is equationally Noetherian, then its equational
properties are said to be “simple”. Otherwise, we assume that A has a complicated equational
theory.

!The author was supported by the RSF-grant no. 22-21-00745.
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Indeed, the Noetherian property is a central notion of UAG, and papers [1-3| contain
the series of results which establish nice properties of equationally Noetherian algebraic
structures. However, for finite algebraic structures the Noetherian property gives the
trivial partition into “simple” and “hard” classes, since all finite algebraic structures are
equationally Noetherian.

Thus, we have to propose an alternative approach in the division of finite algebraic
structures into the classes with “simple” and “hard” equational properties. Our approach
satisfies the following:

1) we deal with lattices of algebraic sets over a given algebraic structures (a set Y is
algebraic over an algebraic structure A if Y is the solution set of an appropriate
system of equations);

2) we use the common operations of UAG (direct products, substructures, ultra-
products etc.);

3) the partition into “simple” and “hard” algebraic structures is implemented by a list
of first-order formulas ® such that

A is “simple” < A satisfies ®.

In other words, the “simple” class is axiomatizable by the formulas ®.

Namely, we offer to consider infinite direct powers II.A of an algebraic structure A
and study the Diophantine equations over I1.A instead of Diophantine equations over A (an
equation F(X) is said to be Diophantine over an algebraic structure B if £(X) may contain
occurrences of any element from ). The decision rule in our approach is the following:

A is “simple” < all direct powers of A are equationally Noetherian ; (1)

otherwise, an algebraic structure A is said to be “hard”.

Some results of the type (1) were obtained in [4], where we describe all groups, rings and
monoids satisfying (1). For example, a group (ring) satisfies (1) iff it is abelian (respectively,
with zero multiplication).

The current paper continues the study [4], and in Sections 3-5 we consider equations
over the important classes of relational algebraic structures: graphs, partial orders and
matroids. For each of these classes we describe algebraic structures that satisfies (1).

However, the most complicated and nontrivial part of the paper is Section 6. It contains
the series of general results that hold for any direct power of any finite algebraic structure A.
In particular, we prove that any infinite system of equations S over IIA is equivalent to a
finite system S’ (here we do not claim S’ C S). Thus, we prove that any direct power of a
finite algebraic structure is weakly equationally Noetherian.

2. Basic definitions

Following [1-3], we give the main definitions of universal algebraic geometry.

Let £ be a countable language and A be an algebraic structure of the language L
(L-structure). We consider languages of the following types: £, = {E®®} (graph language),
L, = {<P} (partial order language), L, = {Pl(l),PQ(Q), ...} (matroid language).
An equation in L (L-equation) is an atomic formula over £. The examples of equations
in various languages are the following: E(x,y), E(x,z) (language Ly); z < y, ¢ < «
(language L,); Pi(z), Py(x,y) (language L,,). Notice that the expression x = y is an
equation in any language L.
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A system of L-equations (L-system for shortness) is an arbitrary set of L-equations.
Notice that we consider only systems in a finite set of variables X = {x,29,...,2,}. The
set of all solutions of S in an L-structure A is denoted by V4(S) C A" A set Y C A" is
said to be algebraic over A if there exists an L-system S with Y = V 4(S). If the solution
set of an L-system S is empty, S is said to be inconsistent. Two L-systems S, S, are called
equivalent over an L-structure A if V 4(S1) = V_4(S2). This equivalence relation is denoted
by Sl ~ SQ‘

An L-structure A is L-equationally Noetherian if any infinite £-system S is equivalent
over A to a finite subsystem S’ C S. The class of equationally Noetherian L-structures is
denoted by N.

It is easy to prove that an L-structure A is equationally Noetherian iff for any £-system S
there exists a number m such that the set of the first m equations of S is equivalent to S
(here we essentially use the countability of the language L).

Generalizations of the Noether property have been introduced in [3]. An L-structure A
is weakly L-equationally Noetherian if any infinite L-system S is equivalent over A to a
finite system S’ (here we do not claim S C S). The class of weakly equationally Noetherian
L-structures is denoted by N’. Obviously, N C N'.

Let A be an L-structure. By £(.A) we denote the language LU {a : a € A} extended by
new constant symbols which correspond to elements of A. The language extension allows
us to use constants in equations. The examples of equations in extended languages are the
following (below G, M are graph and matroid respectively): E(x,a) (language £,(G) and
a € G); Pya,z), Ps(x,b,¢), Py(a,x,y,b) (language L,,(M) and a,b,c € M). Obviously,
the class of £(A)-equations is wider than the class of L-equations, so an L-equationally
Noetherian L-algebra may lose this property in the language £(.A).

Let A be an L-structure. An element of a direct power II.A = [].A is denoted by
i€l

a sequence in square brackets [a; | ¢ € I]. Functions and relations over IIA have the

coordinate-wise definition. For example, any relation R™ € L is defined on II.A as follows:

1 Y z ) Y 1

R([ag”|¢ef],[a§2>|¢ef],...,[a§m>|¢ez])<:>}z( 0@ . a<m>) for each i € I.

The map 7y, : IIA — A is called a projection onto the k-th coordinate if my([a; | i € I]) = ay.
Let F(X) be an L( H.A )-equation over a direct power II.LA. We may rewrite £(X) in the

form F(X, C), where C is an array of constants occurring in the equation £(X). One can
introduce the pm]ectwn of an equation onto the i-th coordinate as follows:

m(B(X)) = m(E(X, C)) = B(X, m(C)),

where wz(é) is an array of the i-th coordinates of the elements from 8 For example, an
L,(IIG)-equation E(x, a1, az,as,...]) has the following projections:

E(x,ay),

E(z,as),
E(z,a3),
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Similarly, a matroid equation Py(z,[a1, as,as,...],y, [b1,ba, b, ...]) has the projections

P4([L', ai,y, bl)a
P4<.T, az,Y, b2)7
P4($7 as,y, b3)7

Let us take an L(ILA)-system S = {E;(X) : j € J}. The i-th projection of S is the
L(A)-system 7;(S) = {m;(E;(X)) : j € J}. The projections of an L(II.A)-system S allow to
describe the solution set of S by

Via(S) = {[P i e l]: b e Va(m(S))}. (2)

Lemma 1. Let S = {E;(X):j € J} be an L(II.A)-system over IL.A. The system S is
consistent iff so are all projections m;(S). Moreover, if A is L(A)-equationally Noetherian,
then an inconsistent L(I1.A)-system S is equivalent to a finite subsystem.

Proof. The first assertion follows directly from (2). Suppose A is L-equationally
Noetherian and ;(S) is inconsistent. Hence, m;(S) is equivalent to its finite inconsistent
subsystem {m;(E;(X)) :j € J'}, |J'| < oo, and the subsystem S’ = {E;(X):j e J'} CS
is also inconsistent. m

3. Graphs

Recall that a graph is an algebraic structure of the language £, = {E®} satisfying the
following axioms:

Vz =E(z,z) (no loops),
VaVy E(x,y) = E(y,x) (symmetry).
Theorem 1. An infinite direct power IIG = [[ G of a graph G is £,(I1G)-equationally

i€l
Noetherian iff G satisfies the quasi-identity

YV VaoVasVaes (E(xy, x2) A E(xg,x3) A E(x3,24) — E(x4,11)) . (3)

Proof. Let us prove the “if” part of the statement.
Let S be an £, (I1G)-system in variables X = {z1,...,2,}. One can rewrite S as a finite
union of systems

S=US;USo,
=1

where S; = {E(z;,¢;) : k € K;} and Sy is the system of equations of the following types:
E(x;,x;), v; = xj, v; = ¢;. Obviously, the system S, is equivalent to a finite subsystem.
Hence, it is sufficient to prove that each system S; in one variable x; is equivalent to a finite
subsystem.

Let us write the coordinate-wise versions of the system S;:

mi(S;) = {E(xj,mi(ck)) - k€ K;}, i€,

where ;(cy) is the i-th coordinate of an element c.
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If for each i the equations {E(z;,m;(ck)) : k € K;} have the same solution sets, then
S; is equivalent to a single equation E(z;,ci) € S; for arbitrary k € K. Otherwise, there
exists an index 4 such that

Y1 = Vg(E(zj,mi(cr,))) # Vo(E(x;, milcr,))) =Yz

for some kq, ke € Kj.

If Y1 NY, = @, then S; is inconsistent and obviously equivalent to the subsystem
{E(xj,ck, ), E(z;,ck,)}. Below we may assume Y; ¢ Y5 and one can take elements by, by € G
such that by € Y1\ Y, by € Y1 N Y5, ie., E(by, mi(ck,)), E(be, mi(cy,)) and E(be, mi(ck,))-

Since the quasi-identity (3) is true in IIG, we have E(by, m;(cy,)), which contradicts the
choice of the element b;.

Let us prove the “only if” part of the statement. Assume the quasi-identity (3) does
not hold in G, i.e., there exist elements ay,as,as,ays with E(aq,as), E(az,as), E(as,a4),
—E(ay,a1). Consider the L£,(I1G)-system S of the following equations:

E(z,|as,as,as...]),
E(z,[a4,az2,as...]),

E(z,[a4,a4,0az...]),

Let S,, be the subsystem of S formed by the first n equations of S.
The point a = [ag, as, . .., a3, a1, aq, .. .| satisfies S,, but a does not satisfy the (n+ 1)-th
n—1 times
equation of S. Thus, S,, is not equivalent to S for any n, and I1G is not £,(I1G)-equationally
Noetherian. m

Corollary 1. If a graph G contains a triangle (i.e., there exist vertices x1,xs, 3 € G
with E(x1, z2), E(xg,x3), E(x3,21)), then I1G is not £L,(I1G)-equationally Noetherian.

Proof. Obviously, the condition of Theorem 1 fails for such graphs, since there are no
loopsin G. m

Let K = {G : [IG € N} be the set of all graphs with equationally Noetherian direct
powers. Theorem 1 gives that the class K is axiomatizable. The class K may be also
described by forbidden graphs and distance functions.

Let us give the explicit examples of graphs G € K.

One can directly prove that the disjoint union G = G,L1G, has an equationally Noetherian
direct power I1G if both graphs satisfy the quasi-identity (3). Thus, there arises a question:
is there a connected graph G with n vertices such that any direct power IIG is £,(I1G)-
equationally Noetherian?

The answer is positive. Let us define the following graph ¢ with the vertex set
{zo,21,...,Zn, Tny1} and edges {E(xg,x;), B(xi, Tpny1) : 1 < i < n}. The direct check
gives that G satisfies (3), contains n + 2 vertices, and G is connected.

4. Partial orders

A partial order P is an algebraic structure of the language £, = {<@} such that P
satisfies the following axioms:
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A partial order P is said to be non-trivial if there exists a pair a,b € P such that a < b
(i.e., a < band a #b).

Theorem 2. Let P be a non-trivial partial order and ITP be an infinite direct power
of P. Then IIP is not L,(IIP)-equationally Noetherian.

Proof. Since P is non-trivial, there exist a,b € P with a < b. It is sufficient to show that
an infinite direct power II€ C ITP of the partial order £ = {a, b} is not £, (II€)-equationally
Noetherian.

Indeed, one should consider the following infinite £,(I1€)-system S:

x < [b,b,b,...]
x < la,b,b,. ..
r <

[a,a,b,...,]

Obviously, the unique solution of S is [a, a, a, ... ,]. However, the solution set of any finite
subsystem of S contains a point [a,a,a,...,a,b,b,b,...| for sufficiently large n. Thus, S is

n times

not equivalent to any finite subsystem. m

5. Matroids

One can consider a matroid M as an algebraic structure of an infinite language £, =
= {Pl(l), PQ(Q), P;g), ...}, where each predicate symbol P, has the following interpretation:

P,(x1,...,2,) < the set {z1,...,x,} is independent in M.

Moreover, any matroid satisfies the following axioms:

V...V, (\/(ml =) = 2D, (z1,. .. ,xn)> :

i#]

V...V, (Pn(xl,...,xn)% /\Pn_l(.rl’...,xi_17xi+1,...,xn)) (n>1),

=1
n+1
V.. Vo, Yy ... VY (Pn(xl, o Tp) A Pos1(yty ooy Yns1) =V Poga(z, - ,xn,yi)> ,
i=1
Vi .. Vo, (Po(®r,. .., %) = Po(Ze), - - - Tom)) for any permutation o.

Notice that a direct power IIM of a matroid M is not necessarily a monoid itself.
However, here we study direct powers of matroids, since the algebraic geometry over IIM
may clarify algebraic and geometric properties of the original matroid M.

Lemma 2. Let M be a matroid with Ps(a, b, ¢) for some a, b, c € M. Then any infinite
direct power IIM is not L,,(ILM)-equationally Noetherian.

Proof. Let us consider a system S of L, (ITM)-equations
Py(x,|a,a,a,...]),

Py(z,[b,a,a,...]),
Py(x,[b,b,a,...]),
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Denote by S,, the first n equations of S. Clearly, S,, is satisfied by the point

C,CyunyC b D,

n times

However, this point does not belong to the solution set of S, since the predicate

Py(le,c,...,e,b b, .. ], [b,b, ... ba,a,...])

n times n+1 times

is not true for the (n + 1)-th coordinate. m

According to Lemma 2, any matroid M with IIM-equationally Noetherian direct
power IIM may be represented by a graph G(M) such that

1) the vertex set of G(M) coincides with the set M;

2) Py(a,b) < E(a,b).

Hence, such matroids may be classified by the analogue of Theorem 2.

Theorem 3. A direct power IIM of a matroid M is L,,(M)-equationally Noetherian
iff M satisfies the following axioms:

VaVyVz = Ps(z,y, 2),
V$1V$2V$3V[L’4 (PQ([El, 1‘2) AN PQ(I'Q, Zlfg) A\ Pg(l‘g, 1’4) — P2(334, (El)) .

Proof. The proof immediately follows from Lemma 2, Theorem 2 and the
correspondence M < G(M). m

6. Direct powers of finite structures

Let us prove a general fact about direct powers of arbitrary finite algebraic structures.
The proof of the following theorem is rather complicated, so its main steps are explained
in Example 1.

Theorem 4. Let A be a finite L-structure. Then any direct power I1A = [[ A is
weakly L£(TI.A)-equationally Noetherian. “

Proof. Let S = {E;(X, (—JZ) : j € J} be an infinite L£(ILA)-system over II.A and
mi(S) = {E;(X, m(a:)) 7 € J} (1 € I) be the projections of S onto all coordinates of I1.A.
Notice that any system 7;(S) is a system of £L(A)-equations over A.

Since A is finite, there exists a finite number of equations M = {E;(X, Wz(a)) 2 (4,7) €
€ K} (JK| < oo) such that any E;(X, m((_:j)) € U m(S) is equivalent over A to an

i€l

appropriate equation from M. Hence, each m;(S) is equivalent to a subsystem S; C M
over A. The idea of the further proof is the following: we try to wrap all systems S/ into a
finite number of equations S’ over I1A.

Let us define an L£(ILA)-system S’ by the following procedure.

Step 0. Put

o= U E(x.C)cs
(i,)eK

(ISo|] < |K|) and S" = Sy. The main property of Sy is the following: each equation from M
occurs in some projection of an equation from Sy. Let us arbitrarily enumerate equations
in the set M, i.e., each equation from M has the number s € [1, | K]].
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Step s (1 <s<|K]|). Let us take the s-th equation E;(X, Wz(a)) from M and define

%
the following sets of indexes: Iy ={l € I : E;(X,m;(C;j)) € S;}, I1 = I\ 1. In other words,
I is the set of all indexes [ such that the given equation from M occurs in the system S;.
Define a set My = {D;(X) : l € I'} of L(.A)-equations as follows:

B (X,m(Cy), ifle I,
(X m(ag

Di(X) = { ), ifle .

%
The sense of the set M, is the following. If a system S contains E;(X, 7;(C;)) € M, then
we take this equation as the k—tgprojection in M. Otherwise, the [-th projection in M, is
taken from the equation E;(X, C;) € Sy.
%

The E(_1>4)—equations M may be wrapped into the L(IL.A)-equation Dy(X, Dg) such that
7"-l(l)s(‘X’7Ds)) :DZ<X) —

We put S’ := S"U Dy(X, Dg) and go to the following step (s + 1).

By the definition of the system S’, the i-th projection 7;(S’) contain all equations from
S, ~ m;(S). Hence, m;(S") ~ m;(S) over A, and finally S’ ~ S over [IA. m

The following example explains the technique and denotations of Theorem 4.

Example 1. Let G be the graph with vertices {a,b,c} and edges E(a,b), E(b,c),
E(c,a) (i.e., G is a complete graph). Let us consider an infinite £(I1G)-system S of equations:

( la,a,a,a,a,a,...]),

The projections 7;(S) are the following (we omit in the projections equations which occur
earlier):

m1(8) = {E(z,a), E(z,b)},
m(8S) ={E(z,a), E(z, c)},
73(S) = {E(z,a), E(z,b)},
m4(8) = {E(z,a), E(z,c)},

The set M consists of the equations E(z, a), E(x,b), E(x,c) (any equation from |J m;(S)
i=1
is equivalent to one of the given equations). Since the third equation of S contains all
equations from M as projections, we may put So = {E(x, [b,¢,a,a,a,a,...])} (the set K
here is {(1, 3), (2, 3),(3,3)}). For the projections m;(S) we have

7T2k+1<S) ~ {E($7&)>E($7b)}: /2k+17
WQk(S) ~ {E(x’a)7E(x’C)}:S/2k

Now we construct the final system S" with |Sg| 4+ |M| = 1 + 3 = 4 equations. First, we
put S’ = Sy and make the following three steps:



Direct powers of algebraic structures and equations 39

1) We take E(z,a) € M. Since this equation occurs in any system S; (I =N, [} = &),
we add to S’ the equation F(z,[a,a,a,a,a,...]).

2) Take E(x,b) € M. Since E(x,b) occurs in the systems S; with odd i (I = {1, 3,...},
I ={2,4,...}), we should add to S" an equation of the form E(x, [b, *,b, %, b, %, .. .]).
The elements for even positions are taken from the equation from Sy, and we obtain
the equation E(z,[b,c,b,a,b,a,...]). The last equation is added to S'.

3) For the equation E(z,c¢) € M we make dual operations. Since F(z,c) occurs in
the systems S; with even i (Iy = {2,4,...}, I = {1,3,...}), we should add to S’
an equation of the form E(x, [*, ¢, *, ¢, *,¢,...]). The elements for odd positions are
taken from the equation from Sy, and we obtain the equation E(x, [b, ¢, a, ¢, a,c,...]).
Also, we add the last equation to S'.

Thus, the final system S’ consists of the following equations:

E(z,

E(z,[a,a,a,a,a,a,...]),
E(z,[b,c,b,a,b,a,...]),
E(z,[b,c,a,c,a,c,...]).

b,c,a,a,a,a,...]),

It is easy to see that all projections m;(S’) are equivalent over G to the systems S. Thus,
S’ is equivalent to S.

The ideas of Theorem 4 allow us to estimate uniformly the minimal number of equations
in the finite system S'.

Corollary 2. Let S be a system of L(ILA)-equations in n variables over a direct
power I1A of a finite L-structure A, |A| = k. Then S is equivalent to a system S’ with
at most 2F" ! equations.

Proof. Since we deal with equations in n variables, all algebraic sets over A are the
subsets of the affine space A", | A"| = k™. Hence, there exists at most 2¥" different algebraic
sets over A. Since the set M in Theorem 4 consists of pairwise non-equivalent equations,
we have |[M| < 2%,

The final system S’ consists of at most |M| + |M| = 2|M| equations (|So| = |M]|,
and |M| iterations of the procedure add to S’ exactly |M| equations). Thus, we obtain
S| < 228" = 2"+ m

REFERENCES

1. Daniyarova E. Yu., Muyasnikov A. G., and Remeslennikov V. N. Unification theorems in
algebraic geometry. Algebra Discr. Math., 2008, vol. 1, pp. 80-112.

2. Daniyarova E. Yu., Myasnikov A. G., and Remeslennikov V. N. Algebraic geometry over
algebraic structures, II: Foundations. J. Math. Sci., 2012, vol. 183, pp. 389-416.

3. Daniyarova E. Yu., Myasnikov A. G., and Remeslennikov V. N. Algebraic geometry over
algebraic structures, III: Equationally noetherian property and compactness. Southern Asian
Bull. Math., 2011, vol. 35, no. 1, pp. 35—68.

4. Shevlyakov A. N. and Shahryari M. Direct products, varieties, and compactness conditions.
Groups Complexity Cryptology, 2017, vol. 9, no. 2, pp. 159-166.



