

ТЕХНОЛОГИИ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ

Nº3 2023

ТЕХНОЛОГИИ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ

LIFE SAFETY / SECURITY TECHNOLOGIES

Научный журнал

2023 № 3

Свидетельство о регистрации ПИ № ФС 77-83494 от 24 июня 2022 г. выдано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций

Учредитель:

Национальный исследовательский Томский государственный университет

Professor

РЕДАКЦИОННЫЙ СОВЕТ ЖУРНАЛА «ТЕХНОЛОГИИ БЕЗОПАСНОСТИ

ЖИЗНЕДЕЯТЕЛЬНОСТИ»

Ю.М. Михайлов – председатель редакционного совета, д-р хим. наук, профессор, академик РАН, почетный доктор НИ ТГУ

Э.В. Галажинский – д-р психол. наук, профессор

И.М. Донник – д-р биол. наук, профессор, академик РАН

С.А. Караганов – д-р ист. наук, профессор

С.Д. Каракотов – д-р хим. наук, профессор, академик РАН

М.П. Кирпичников – д-р биол. наук, профессор, академик РАН

В.П. Чехонин – д-р мед. наук, профессор, академик

А.Б. Ворожцов — д-р физ.-мат. наук, профессор

EDITORIAL COUNCIL LIFE SAFETY/ SECURITY TECHNOLOGIES

Yuri M. Mikhailov – Chairman of Editorial Council. Dr.Sc. (Chemistry), Professor, Academician of the Russian Academy of Sciences, Honorary Doctor of TSU Eduard V. Galazhinskiy – Dr.Sc. (Psychology),

Irina M. Donnik – Dr.Sc. (Biology), Professor, Academician of the Russian Academy of Sciences Sergey A. Karaganov – Dr.Sc. (History), Professor Salis D. Karakotov – Dr.Sc. (Chemistry), Professor, Academician of the Russian Academy of Sciences Mikhail P. Kirpichnikov – Dr.Sc. (Biology), Professor, Academician of the Russian Academy of Sciences

Vladimir P. Chekhonin – Dr.Sc. (Medicine), Professor, Academician of the Russian Academy of Sciences

Alexander B. Vorozhtsov - Dr.Sc. (Physics and Mathematics), Professor

РЕДАКЦИОННАЯ КОЛЛЕГИЯ ЖУРНАЛА

А.Б. Ворожцов – главный редактор, д-р физ.-мат. наук, профессор

М.Г. Хмелева – ответственный секретарь, канд. физ.-мат. наук

Д.Ю. Баланев - канд. психол. наук С.М. Бобровников – д-р физ.-мат. наук

Н.А. Глущенко – канд. ист. наук

К.С. Голохваст – д-р биол. наук, профессор РАН, член-корреспондент РАО

В.М. Грузнов – д-р техн. наук

Е.А. Данилова – д-р полит. наук А.Н. Ищенко – д-р физ.-мат. наук

В.А. Кагадей – д-р физ.-мат. наук, профессор

Ю.В. Кистенев – д-р физ.-мат. наук, профессор М.И. Лернер – д-р техн. наук

Е.М. Максимов – д-р техн. наук А.С. Самойлов – д-р мед. наук, профессор РАН,

член-корреспондент РАН В.И. Сачков – д-р хим. наук, доцент

В.С. Смирнов – канд. хим. наук В.Г. Султанов – д-р физ.-мат. наук

Н.Н. Сысоев – д-р физ.-мат. наук, профессор

А. Тсатсакис – д-р биол. наук, иностранный член РАН

С.Э. Шипилов – д-р физ.-мат. наук

А.П. Шкуринов – д-р физ.-мат. наук, профессор, член-корреспондент РАН

EDITORIAL BOARD

Alexander B. Vorozhtsov - Editor-in-Chief, Dr.Sc. (Physics and Mathematics), Professor Marina G. Khmeleva – Executive Editor, Cand.Sc. (Physics and Mathematics)

Dmitry Yu. Balanev – Cand.Sc. (Psychology)

Sergei M. Bobrovnikov – Dr.Sc. (Physics and Mathematics)

Nikita A. Glushchenko – Cand.Sc. (History) Kirill S. Golokhvast - Dr.Sc. (Biology), Professor

of the Russian Academy of Sciences, corresponding member

of the Russian Academy of Education

Vladimir M. Gruznov – Dr.Sc. (Engineering)

Elena A. Danilova - Dr.Sc. (Politics)

Alexander N. Ishchenko – Dr.Sc. (Physics and Mathematics) Valery A. Kagadey – Dr.Sc. (Physics and Mathematics), Professor Yury V. Kistenev – Dr.Sc. (Physics and Mathematics), Professor

Marat I. Lerner – Dr.Sc. (Engineering) Evgeniv M. Maksimov – Dr.Sc. (Engineering)

Alexander S. Samoilov - Dr.Sc. (Medicine), Professor

of the Russian Academy of Sciences, corresponding member of the Russian Academy of Sciences

Victor I. Sachkov – Dr.Sc. (Chemistry), Associate professor

Vladimir S. Smirnov – Cand.Sc. (Chemistry)

Valery G. Sultanov – Dr. Sc. (Physics and Mathematics)

Nikolay N. Sysoev – Dr.Sc. (Physics and Mathematics), Professor Aristidis Tsatsakis - Dr.Sc. (Biology), Foreign Member of the

Russian Academy of Sciences

Sergey E. Shipilov – Dr.Sc. (Physics and Mathematics) Alexander P. Shkurinov – Dr.Sc. (Physics and Mathematics), Professor, Corresponding member of the Russian Academy of Sciences

Адрес редакции и издателя: 634050, г. Томск, пр. Ленина, 36, Национальный исследовательский Томский государственный университет.

СОДЕРЖАНИЕ

Михайлов Ю.М., Даровских А.В., Романова Л.Б., Рахимова М.А., Климанова Е.Н.,	
Файнгольд И.И. О комплексах включения на основе нитратов циклодекстринов и возможности использования их в качестве новых носителей лекарственных препаратов	5
Азаев М.Ш., Дадаева А.А., Косогова Т.А., Агафонов А.П., Кирпичников М.П., Нетёсов С.В.	. 3
Обновленные начала биологической безопасности в пост-ковидную эру	15
Чехонин В.П., Гурина В.И. Эпидемиологическая безопасность и ментальное здоровье в условиях пандемии коронавирусной инфекции	27
Прокопчук А.О., Бакина О.В., Лернер М.И., Пикущак Е.В., Алексеев А.Ю., Скорупо А.С., Евплонова Е.С., Яковлев Н.В., Ворожцов А.Б. Исследование антибактериальных свойств лакокрасочных защитных покрытий, содержащих биоцидные наночастицы неспецифического действия против высокопатогенных штаммов бактерий	. 35
Донник И.М., Рущицкая О.А. Продовольственная безопасность России в условиях новых вызовов и санкционного давления	42
Кириченко К.Ю., Волкова В.Н., Чайка В.В., Голохваст К.С. Гранулометрический состав микроразмерных частиц комплексного состава, образующихся при техногенном воздействии на морскую среду	. 49
Воробьев Д.С., Франк Ю.А., Блохин А.Н., Сусляев В.В., Родиков Ф.Н., Денисенко М.С. Разработка проекта норматива допустимого остаточного содержания нефтепродуктов в донных отложениях после восстановительных работ на водных объектах Красноярского края	56
Моргалёв Ю.Н., Моргалёв С.Ю., Кондратова О.В., Моргалёва Т.Г. Диапазон резистентности водных организмов к контаминации среды искусственными наночастицами	67
Буреев А.Ш., Жданов Д.С., Костелей Я.В., Голобокова Е.В. Спасательные роботы: краткий обзор технических решений	78

CONTENTS

Mikhailov Yu.M., Darovskikh A.V., Romanova L.B., Rakhimova M.A., Klimanova E.N., Faingold I.I. Inclusion complexes based on cyclodextrin nitrates and the possibility of using them as new drug carriers	5
Azaev M.Sh., Dadaeva A.A., Kosogova T.A., Agafonov A.P., Kirpichnikov M.P., Netesov S.V. Revised biosafety recommendations and guidelines in the post-COVID era	15
Chekhonin V.P., Gurina V.I. Epidemiological safety and mental health during the coronavirus pandemic	27
Prokopchuk A.O., Bakina O.V., Lerner M.I., Pikushchak E.V., Alekseev A.Yu., Skorupo A.S., Evplonova E.S., Yakovlev N.V., Vorozhtsov A.B. The study of the antibacterial properties of protective paint coatings based on the biocide nanoparticles with non-specific effect on highly pathogenic bacterial strains	35
Donnik I.M., Ruschitskaya O.A. Russia's food security in the face of new challenges and sanctions pressure	42
Kirichenko K.Yu., Volkova V.N., Chaika V.V., Golokhvast K.S. Granulometric composition of suspended particles formed during anthropogenic impact on the marine environment	49
Vorobiev D.S., Frank Yu.A., Blokhin A.N., Suslyaev V.V., Rodikov F.N., Denisenko M.S. Development of a draft standard for the permissible residual content of petroleum hydrocarbons in bottom sediments after restoration work on water bodies of the Krasnoyarsk Krai	56
Morgalev Yu.N., Morgalev S.Yu., Kondratova O.V., Morgaleva T.G. The range of resistance of hydrobionts to medium contamination with manufactured nanoparticles	67
Bureev A.Sh., Zhdanov D.S., Kosteley Ya.V., Golobokova E.V. Rescue robots: a brief overview of technical solutions	78

Научная статья УДК 547.458.68:547-316+615.032 doi: 10.17223/7783494/3/1

О комплексах включения на основе нитратов циклодекстринов и возможности использования их в качестве новых носителей лекарственных препаратов

Юрий Михайлович Михайлов¹, Анна Владимировна Даровских², Людмила Борисовна Романова³, Мария Аркадьевна Рахимова⁴, Елена Николаевна Климанова⁵, Ирина Игоревна Файнгольд⁶

1, 2, 3, 4, 5, 6 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр проблем химической физики и медицинской химии РАН, Черноголовка, Россия

¹yumm@icp.ac.ru
² avd@icp.ac.ru
³ lbr@icp.ac.ru
⁴ nma@icp.ac.ru
⁵enklimanova@mail.ru
⁶ ifaingold@mail.ru

Аннотация. Оценена возможность использования нитратов циклодекстринов как носителей лекарственных препаратов на примере никорандила и изосорбид мононитрата. Показано, что нитраты γ -циклодекстринов в случае замещения 8-10% ОН-групп на ONO₂-группы характеризуются приемлемой растворимостью воде и относятся в соответствии с ГОСТ 12.1.007-76 к умеренно токсичным веществам. Установлено, что комплексы включения на основе водорастворимых нитратов γ -циклодекстринов проявляют синергию антиоксидантной активности, которая у них выше, чем у нитрата γ -циклодекстрина, никорандила, их механических смесей, а также выше, чем у комплекса включения никорандила с γ - циклодестрином.

Ключевые слова: нитраты циклодекстринов, комплексы включения, токсичность, антиоксидантная активность

Благодарности: работа выполнена в рамках государственных заданий ФИЦ ПХФ и МХ РАН договора АААА-А19-119071890015-6 и АААА-А19-119101690058-9 с использованием оборудования Аналитического центра коллективного пользования ФИЦ ПХФ и МХ РАН.

Для цитирования: Михайлов Ю.М., Даровских А.В., Романова Л.Б., Рахимова М.А., Климанова Е.Н., Файнгольд И.И. О комплексах включения на основе нитратов циклодекстринов и возможности использования их в качестве новых носителей лекарственных препаратов // Технологии безопасности жизнедеятельности. 2023. № 3. С. 5–14. doi: 10.17223/7783494/3/1

Original article doi: 10.17223/7783494/3/1

Inclusion complexes based on cyclodextrin nitrates and the possibility of using them as new drug carriers

Yury M. Mikhailov¹, Anna V. Darovskikh², Lyudmila B. Romanova³, Maria A. Rakhimova⁴, Elena N. Klimanova⁵, Irina I. Faingold⁶

1, 2, 3, 4, 5, 6 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka, Russian Federation

1 yumm@icp.ac.ru
2 avd@icp.ac.ru

³ lbr@icp.ac.ru

⁴ nma@icp.ac.ru

⁵ enklimanova@mail.ru

⁶ ifaingold@mail.ru

Abstract. The possibility of using of nitrates of cyclodextrins as carriers of drugs has been evaluated on the example of nicorandil and isosorbide mononitrate. It is shown that nitrates of γ -cyclodextrins, in case of substitution of 8-10% OH-groups for ONO₂-groups, are characterized by acceptable solubility in water and belong to moderately toxic substances according to GOST

12.1.007-76. It was found that inclusion complexes based on water-soluble nitrates of γ -cyclodextrins show synergy of antioxidant activity, which is higher than that of γ -cyclodextrin nitrate, nicorandil, their mechanical mixtures, as well as higher than that of the inclusion complex of nicorandil with γ -cyclodextrin.

Keywords: cyclodextrin nitrates, inclusion complexes, toxicity, antioxidant activity

Acknowledgements: The work was performed within the framework of state assignments of FRC PCP MC RAS contracts AAAA-A19-119071890015-6 and AAAA-A19-119101690058-9 using the equipment of the Analytical Center of Collective Use of FRC PCP MC RAS.

For citation: Mikhailov, Yu.M., Darovskikh, A.V., Romanova, L.B., Rakhimova, M.A., Klimanova, E.N. & Faingold, I.I. Inclusion complexes based on cyclodextrin nitrates and the possibility of using them as new drug carriers. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 5–14. doi: 10.17223/7783494/3/1 (In Russian).

Введение

Одной из проблем при создании и применении лекарственных препаратов является разработка безопасных и эффективных технологий доставки действующих веществ (ДВ), обеспечивающих их биодоступность. В этой связи в последние годы отмечается повышенный интерес к синтетическим и природным полимерным соединениям, которые могут образовывать комплексы и ассоциаты с ДВ и благодаря этому использоваться в качестве носителей в системах доставки лекарственных средств. Яркими представителями таких соединений являются циклодекстрины, которые представляют собой циклические производные крахмала, имеющие

форму полого усечённого конуса, напоминающего тор. Они безопасны и биоразлагаемы. Отметим, что Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США (US-FDA) [1] циклодекстринам присвоен статус общепризнанных безопасных (GRAS) соединений.

Циклодекстрины и их применение в лекарственных препаратах

На сегодняшний день наибольшее распространение находят α -ЦД, β -ЦД и γ -ЦД, которые состоят из шести, семи и восьми глюкопиранозных фрагментов соответственно.

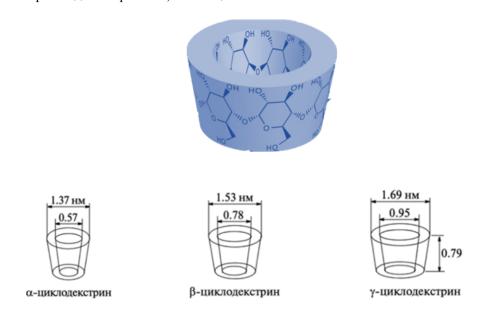


Рис. 1. Строение молекул циклодекстринов

Fig. 1. Structure of cyclodextrin molecules

Наличие в молекулах ЦД полости (рис. 1) обусловливает их способность образовывать клатраты, или «комплексы включения» (КВ), [2–5] по типу «хозяин–гость» за счет межмолекулярных взаимодействий. Таким образом происходит инкапсуляция веществ на молекулярном уровне, что позволяет увеличить растворимость гидрофобных реагентов в водных растворах, повысить их химическую и

биологическую стабильность, а также изменить реакционную способность [6–10]. Например, гидрофильные производные, такие как гидроксипропил-β-циклодекстрин или сульфобутиловый эфир β-циклодекстрина, полезны для улучшения растворимости и скорости растворения плохо растворимых в воде лекарств [11], а гидрофобные производные, в частности ацилированные или этилированные, могут

действовать как носители лекарств для замедления их биологического периода полураспада [12]. Описаны, разрабатываются и используются КВ лекарственных препаратов разнообразного действия и способов применения на основе ибупрофена [13], преднизолона [14], кетопрофена [15], беклометазона дипропионата [16], спиролактона[17] и ряда иных действующих веществ с ЦД и их производными: метил-β-ЦД, диметил-β-ЦД, гидроксипропил-β-ЦД, сульфобутиловым эфиром β-ЦД [13–17].

Таким образом, благодаря КВ ЦД и их производным появляется возможность регулирования скорости выделения действующих веществ (ДВ) и повышения их стабильности, например, если они неустойчивы к свету. Вследствие перечисленных причин к ЦД и их производным в последние годы существенно возрос интерес в фармакологии [18–20].

Нитраты циклодекстринов и комплексы на их основе

О разработке и тем более применении нитратов циклодекстринов (НЦД) для получения КВ с лекарственными препаратами до последнего времени не было известно, что обусловлено, по-видимому, недостаточным объемом знаний о НЦД, систематические исследования которых начаты сравнительно недавно авторами настоящей публикации [21, 22]. Более того, до этого времени можно было отметить единичные

упоминания о НЦД в патентах и тезисах докладов с давностью от 70 до 30 лет с описанием попыток применения их как энергетических веществ, которые фактически не были реализованы на практике [23–25]. Отметим вместе с тем, что в последние годы вслед за [21, 22] по обсуждаемой проблематике вышло в свет еще несколько публикаций [26–29].

О комплексах с НЦД [23, 27] упоминалось скорее по аналогии с ЦД, но какими-либо достоверными инструментальными методами их образование не было подтверждено. Ранее нами была показана возможность получения нитратов α -, β - и γ -ЦД (НЦД) [21, 22] без разрушения их циклической структуры молекул и способности НЦД образовывать КВ.

Перспектива использования НЦД для получения КВ с лекарственными препаратами была впервые оценена на примере антиангинальных лекарственных препаратов 2-[(3-пиридинилкарбонил)-амино]этилнитрата, известного как никорандил (НК), и 1,4:3,6-диангидро-D-глюцита 5-нитрат, известного как изосорбид мононитрат (ИСН) в работах [29–31].

Важным условием для образования КВ является соответствие геометрических размеров встраиваемых молекул «гостя» и внутренней полости НЦД. Очевидно, что основным требованием является не превышение размера молекулы «гостя» над размером полости соответствующей молекулы «хозяина». Сравнительные данные о строении ЦД, ИСН и НК приведены в таблице.

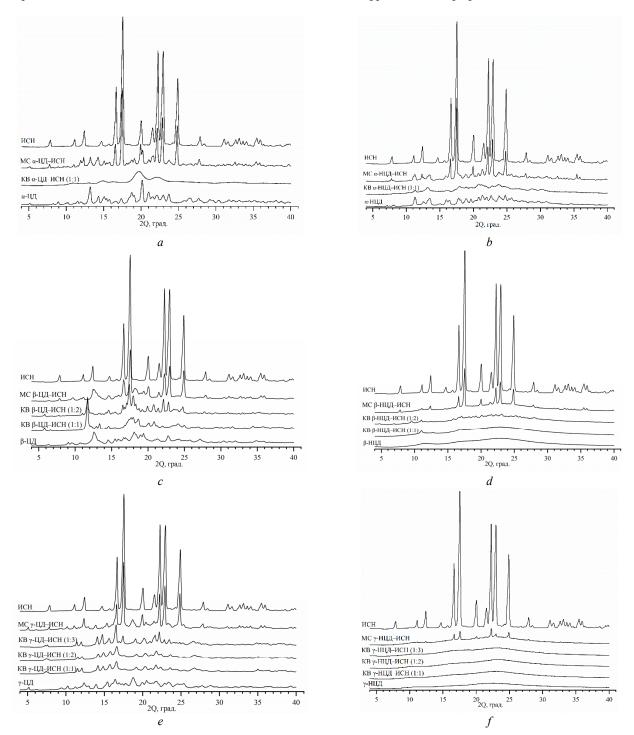
Данные о строении исходных циклодекстринов, изосорбид мононитрата и никорандила

Свойство	α-ЦД	β-ЦД	ү-ЦД	ИСН	НК
Эмпирическая формула	$C_{36}H_{60}O_{30}$	$C_{42}H_{70}O_{35}$	$C_{48}H_{80}O_{40}$	C ₆ H ₉ NO ₆	C ₈ H ₉ N ₃ O ₄
Молекулярная масса, а.е.м.	972,85	1134,99	1297,14	191,139	211,175
Объём внутренней полости, Å ³	174	262	472		
Объем молекулы, Å ³				192	238

Геометрическое соответствие или несоответствие, конечно же, не является единственным фактором стабильности комплексов. При образовании КВ также имеют значение асимметрия «гостя» и уровень термодинамического сродства компонентов. Среди прочего, важную роль может играть полярность отдельных участков молекул при образовании КВ, их асимметрия, оптические свойства и др.

Механизм формирования КВ с НЦД, вероятнее всего, аналогичен механизму образования КВ с ЦД [2, 5]: сначала происходит сближение молекул «гостя» и НЦД, при этом часть растворителя удаляется из полости. После этого молекула «гостя» проникает внутрь полости и удерживается в ней за счет сил межмолекулярного взаимодействия.

На рис. 2 приведены дифрактограммы исходных компонентов (α -, β -, γ -ЦД, α -, β -, γ -НЦД и ИСН), их


комплексов включения α -, β -, γ -ЦД – ИСН, α -, β -, γ - НЦД – ИСН и механических смесей (МС).

Из рис. 2 видно, что дифрактограммы комплексов включения ЦД и НЦД с ИСН отличаются от дифрактограмм исходных ЦД и НЦД, что является подтверждением образования КВ как ЦД, так и НЦД. Если же комплекс не образуется, то на дифрактограмме наблюдаются рефлексы кристаллической фазы молекулы «гостя». α -, β -, γ -ЦД и ИСН являются кристаллическими фазами. β -, γ -НЦД — рентгеноаморфные вещества, т.е. могут содержать как наноразмерные кристаллиты, так и аморфные фазы, в которых присутствует, лишь ближний порядок молекулярной структуры.

На дифрактограммах, относящихся к механическим смесям (МС) ЦД и НЦД, сохраняется кристаллическая структура ИСН, однако происходит

перераспределение интенсивностей его линий, что может быть связано с текстурой, изменением симметрии решетки или заселенностью позиций атомов.

В МС сохраняется кристаллическая структура α -, β -, γ -ЦД и α -НЦД. Таким образом, в МС наблюдаются все дифракционные рефлексы исходных веществ.

Рис. 2. Дифрактограммы α -, β -, γ -ЦД, α -, β -, γ -НЦД, ИСН, их механических смесей и комплексов включения

Fig. 2. Diffractograms of α -, β -, γ -CD, α -, β -, γ -NCD, ISN, their mechanical mixtures and inclusion complexes

На дифрактограммах КВ можно заметить, что образующиеся комплексы β - и γ -НЦД с ИСН аморфизируются, в то же время комплексы α -НЦД преимущественно сохраняют кристаллическую фазу. В случае с

ЦД, наоборот, КВ α -ЦД аморфизируются, а КВ β - и γ - ЦД с ИСН имеют кристаллическую структуру.

На дифрактограммах, относящихся к комплексам НЦД, подобно комплексам ЦД, видно, что

дифракционные рефлексы ИСН не обнаруживаются, а сами дифрактограммы идентичны исходному НЦД, что позволяет предположить образование КВ НЦД с ИСН.

Таким образом, данные РФА доказывают, что НЦД способны образовывать КВ по типу «хозяин – гость», а значит, как и в ЦД, имеют полость, которая не разрушается в применяемых условиях нитрования.

Учитывая, что соответствие геометрических размеров является наиболее важным фактором образования КВ, следует ожидать, что α -ЦД сможет образовать КВ только с 1 молекулой ИСН, β -ЦД — также с 1 молекулой ИСН, а γ -ЦД — с 2 молекулами ИСН. Количество молекул ИСН, образующих КВ с ЦД, коррелирует с теоретически рассчитанным из геометрических размеров молекулы «гостя» и полости ЦД.

Согласно результатам, представленным на рис. 2, НЦД способны образовывать КВ с большим числом молекул ИСН, β -НЦД – с двумя вместо одной для β -ЦД, а γ -НЦД – с тремя вместо двух для γ -ЦД. Вместе с тем очевидно, что для оценки реального соотношения компонентов необходимо использовать данные таких методов, как, например, ЯМР и элементный анализ.

Стоит отметить, что при исследовании свойств НЦД [22] установлено, что в случае замещения до двух гидроксильных групп на нитратные они имеют приемлемую растворимость для формирования водорастворимых лекарственных препаратов. В частности, в случае γ-НЦД при степени замещения 8%, она составляет 16 г/л при нормальной температуре.

С целью ответа на поставленный вопрос о перспективе использования комплексов НЦД в качестве лекарственных препаратов в первую очередь была оценена *in vivo* токсичность использованного γ -НЦД, в котором были замещены две гидроксильные группы. В результате исследования острой токсичности по методу Беренса [32] найдено, что γ -НЦД характеризуется ЛД $_{50}$ =1060±29 мг/кг, т.е. имеет достаточно низкий класс токсичности, соответствующий по ГОСТ 12.1.007-76 умеренно токсичным веществам [33].

Таким образом, полученные данные, с учетом сведений о растворимости γ-НЦД и его токсичности, позволяют сделать предварительный вывод о возможности его использования в качестве носителя для формирования КВ с фармакологически активными соединениями.

Помимо токсичности, внимание было уделено оценке антиоксидантных свойств исследуемых соединений и КВ, сведения о которых весьма актуальны в медицинской химии. Это обусловлено тем, что окислительный стресс и накопление продуктов спонтанного перекисного окисления липидов (сПОЛ) являются значимыми в патогенезе ряда заболеваний, включая ишемическую болезнь сердца, сахарный диабет и др. [34].

В этой связи на основе никорондила и γ-НЦД со степенью замещения 8% по методике, описанной в [31], был получен продукт, идентифицированный при помощи рентгенофазового анализа и дифференциальной сканирующей спектроскопии как КВ (рис. 3).

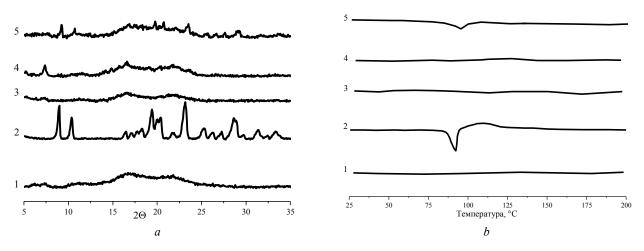


Рис. 3. Дифрактограммы (*a*) и термограммы (*b*) индивидуальных γ-НЦД (1), НК (2), а также систем, полученных через водные растворы (3, 4) и посредством механического смешения (5)

Fig. 3. Diffractograms (a) and thermograms (b) of individual γ-NCD (1), NC (2), and systems obtained via aqueous solutions (3, 4) and by mechanical mixing (5)

Из представленных данных (см. рис. 3, *a*) видно, что дифрактограммы предполагаемых КВ (а3, а4) аналогичны дифрактограмме исходного γ-НЦД (а1). При этом на них отсутствуют дифракционные максимумы, характерные для кристаллического НК (а2), которые достаточно хорошо идентифицируются на дифрактограмме механической смеси (а5). Это указывает на образование КВ γ-НЦД с соединениями, выбранными в качестве физиологически активных.

Данные ДСК (см. рис. 3, b) свидетельствуют о том, что НК характеризуется температурой плавления 94 °С, в то время как γ -НЦД не имеет тепловых эффектов в температурном диапазоне от 25 до 150 °С. На термограммах, систем, полученных через совместные растворы исходных компонентов (63, 64), в отличие от механической смеси (65), отсутствуют пики плавления ДВ. Это может служить дополнительным подтверждением образования КВ.

Было оценено влияние исходных соединений и КВ на их основе на сПОЛ (рис. 4), которое определяли по образованию диеновых альдегидов, в частности малонового диальдегида (МДА), реагирующих с тиобарбитуровой кислотой (ТБКрв) [35]. Исследования были выполнены на гомогенате мозга мышей при концентрации исследуемых растворов 10мМ и времени инкубации 30 мин. Результаты были оценены методом дисперсионного анализа ANOVA с апостериорным множественным парным сравнением по критерию Даннетта (для серии с НК р≤0.05).

Используемые в исследовании манипуляции с животными были одобрены на заседании биоэтической комиссии ФИЦ ПХФ и МХ РАН (протокол заседания от 31.03.2023 № 71). Все применимые международные, национальные и/или институциональные принципы ухода и использования животных были соблюдены.

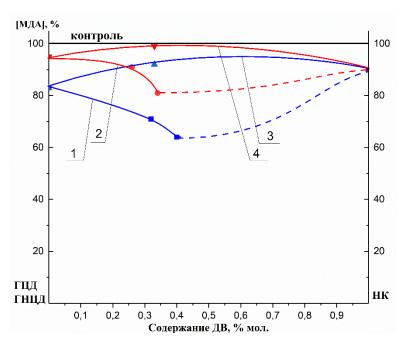


Рис. 4. Влияние НК γ-НЦД, γ-ЦД, систем на их основе, полученных через водные растворы для γ-НЦД (1) и γ-ЦД (2), и композиций, полученных посредством механического смешения для γ-НЦД (3) и γ-ЦД (4), на сПОЛ (контроль – проба без добавления исследуемых соединений)

Fig. 4. Effect on sPOL of NC, γ -NCD, γ -CD, and systems based on them, obtained through aqueous solutions for γ -NCD (1) and γ -CD (2) and compositions obtained through mechanical mixing for γ -NCD (3) and γ -CD (4) (Control - sample without addition of the compounds under study)

Как видно из рис. 4, в концентрации 10мМ НК, γ-НЦД и γ-НЦД:НК достоверно подавляют сПОЛ в гомогенате мозга мышей. При этом если НК и γ-НЦД ингибируют процесс сПОЛ на 10% и 17% лучше контроля, то полученные КВ γ-НЦД с НК на 29% и 36% лучше контроля, соответственно, для мольных соотношений 1:0,48 и 1:0,67, т.е. проявляют более высокую антиоксидантную активность. В то время, как механические смеси γ-НЦД и НК фактически

проявили снижение активности. Также показано, что его КВ γ -ЦД, полученные аналогично КВ γ -НЦД (кривая 2), проявили себя как антиоксиданты существенно менее эффективно.

Полученные результаты свидетельствуют также, что КВ γ -НЦД проявляют синергию антиоксидантной активности, которая оказалась для них выше, чем для исходных соединений, образовавших комплексы, их механических смесей, а также, что представляется

важным, выше, чем у аналогичных КВ у-ЦД [31]. На основании представленных данных можно сделать предварительный вывод о потенциальной возможности использования КВ у-НЦД с фармакологически активными соединениями в качестве лекарственных препаратов.

В заключение можно отметить, что нитраты циклодекстринов, что показано на примере γ -НЦД, при степени нитрации до 8% замещения ОН- групп на ONO2-группы характеризуется растворимостью в воде $\sim 16~\text{г/л}$ при нормальных условиях и обладают низкой острой токсичностью, что позволяет применять их для проведения биологических исследований в целях использования в лекарственных препаратах.

Установлена возможность получения комплексов включения частично замещенного нитрата у-циклодекстрина с антиангинальным лекарствен-

ными препаратами, такими как никорандил и изосорбид мононитрат, формирование которых подтверждено с помощью методов РФА, ДСК и ЯМР. Для комплексов включения γ -НЦД с никорандилом установлена достоверная синергия антиоксидантной активности, проявляющаяся в эффективном подавлении сПОЛ, в то время как индивидуальные γ -НЦД и НК такой активностью не обладают. Показано также, что антиоксидантная активность КВ на основе γ -НЦД заметно выше, чем для аналогичных КВ с γ -циклодестрином.

Полученные результаты позволяют сделать предварительный вывод о перспективности исследований возможности использования γ-НЦД не просто как носителей действующих веществ, но и обеспечивающих дополнительный вклад в физиологическую активность в составе комплексов включения с ними.

Список источников

- 1. Karthic A., Roy A., Lakkakula J., Alghamdi S., Shakoori A., Babalghith A., Emran T., Sharma R., Lima C., Kim B., Park M., Safi S., de Almeida R., Coutinho H. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review // Frontiers in Cell and Developmental Biology. 2022. Vol. 10. Art. no. 984311. P. 1–26. doi: 10.3389/fcell.2022.984311
 - 2. Crini G. Review: A History of Cyclodextrins // Chemical Reviews. 2014. Vol. 114 (21). P. 10940–10975. doi: 10.1021/cr500081p
- 3. Manoj M.N., Dinesh M.S., Parag V.J. et. al. The Cyclodextrins: A Review // Journal of current pharmaceutical research. 2012. Vol. 10 (1). P. 1–6.
- 4. Morin-Crini N., Fourmentin S., Fenyvesi E., Lichtfouse E., Torri G. et al. 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review // Environmental Chemistry Letters. 2021. Vol. 19. P. 2581–2617. doi: 10.1007/s10311-020-01156-w
- 5. Szejtli J. Past, present and futute of cyclodextrin research // Pure and Applied Chemistry. 2004. Vol. 76 (10). P. 1825–1845. doi: 10.1351/Pac200476101825
- 6. Капустин М.А., Чубарова А.С., Головач Т.Н., Цыганков В.Г., Бондарук А.М., Курченко В.П. Методы получения нанокомплексов биологически активных веществ с циклическими олигосахаридами, анализ их физико-химических свойств и использование в пищевом производстве // Труды БГУ. 2016. Т. 11, ч. 1. С. 73–100.
- 7. Paczkowska M., Szymanowska-Powałowska D., Mizera M., Siakowska D., Blasczcak W., Piotrowska-Kempisty H., Cielecka-Piontek J. Cyclodextrins as multifunctional excipients: Influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil // PloS ONE. 2019. Vol. 14 (1). P. 1–22. doi: 10.1371/journal.pone.0210694
- 8. Fenyvesi F., Phuong Nguyen T.L., Haimhoffer A. Rusznyák A., Vasvári G., Bácskay I., Vecsernyés M., Ignat S-R., Dinescu S., Costache M., CiceuA., Hermenean A., Váradi J. Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin // Materials. 2020. Vol. 13 (6). P. 3618–3630. doi: 10.3390/ma13163618
- 9. *Popielec A., Loftsson T.* Effects of cyclodextrins on the chemical stability of drugs // International Journal of Pharmaceutics. 2017. Vol. 531 (2). P. 532–542. doi: 10.1016/j.ijpharm.2017.06.009
- 10. Loftsson T., Duchêne D. Cyclodextins and their pharmaceutical applications: historical perspectives // International Journal of Pharmaceutics. 2007. Vol. 329 (1-2). P. 1–11. doi: 10.1016/j.ijpharm.2006.10.044
- 11. Ventura C., Puglisi G., Zappala'M., Mazzone G. A physico-chemical study on the interaction between papaverine and natural and modified b-cyclodextrins // International journal of pharmaceutics. 1998. Vol. 160 (2). P. 163–172. doi: 10.1016/S0378-5173(97)00317-7
- 12. *Ikeda Y., Kimura K., Hirayama F., Arima H., Uekama K.* Controlled release of a water-soluble drug, captopril, by a combination of hydrophilic and hydrophobic cyclodextrin derivatives // Journal of controlled release. 2000. Vol. 66 (2-3). P. 271–280. doi: 10.1016/S0168-3659(99)00286-2
- 13. Hussein K., Turk M., Wahl M.A. Comparative evaluation of Ibuprofen/β-Cyclodextrin complexes obtained by supercritical Carbon Dioxide and other conventional methods // Pharmaceutical Research. 2007. Vol. 24. P. 585–592. doi: 10.1007/s11095-006-9177-0
- 14. Yano H., Hirayama F., Kamada M., Arima H., Uekamk K. Colon-specific delivery of prednisolone-appended α -cyclodextrin conjugate: alleviation of systemic side effect after oral administration // Journal of controlled Release. 2002. Vol. 79 (1-3). P. 103–112. doi: 10.1016/S0168-3659(01)00532-6
- 15. Bounaceur A., Rodier E. Study of the maturation of aketoprofen/b-cyclodextrin complex // Journal of Pharmaceutical Science and Technology. 2012. Vol. 2 (3). P. 171–183.
- 16. Malaekeh-Nikouei B., Tabassi S.A.S., Gerayeli G., Salmani M.A., Gholamzadeh A. The effect of cyclodextrin mixture on aqueous solubility of beclomethasone dipropionate // Journal of Inclusion Phenomena and Macrocyclic Chemistry. 2012. Vol. 72. P. 383–387. doi: 10.1007/s10847-011-9992-8
- 17. Vila-Jato T., Blanco J. Spirolactone/b-cyclodextrine complex: oral bioavailability in humans // Acta Pharmaceutical Technology. 1998. Vol. 32. P. 82–85.
- 18. *Tiwari G, Tiwari R, Rai A.K.* Cyclodextrins in delivery systems: Applications // Journal of pharmacy and bioallied sciences. 2010. Vol. 2 (2). P. 72–79. doi: 10.4103/0975-7406.67003.

- 19. Loftsson T., Duchêne D. Cyclodextins and their pharmaceutical applications: historical perspectives // International journal of pharmaceutics. 2007. Vol. 329 (1-2). P. 1–11. doi: 10.1016/j.ijpharm.2006.10.044
- 20. Morina D., Sessevmeza M., Sinanib G., Mülazımoğluc L., Cevhera E. Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability // Journal of drug delivery science and technology. 2020. Vol. 57. Art. no. 101742. P. 1–11. DOI: 10.1016/J.Jddst.2020.101742
- 21. Романова Л.Б., Баринова Л.С., Лагодзинская Г.В., Казаков А.И., Михайлов Ю.М. Получение и анализ методом ЯМР нитратов бета-циклодекстрина // Журнал прикладной химии. 2014. Т. 87, № 12. С. 1809—1815. doi: 10.1134/S1070427214120155
- 22. *Михайлов Ю.М., Романова Л.Б., Тарасов А.Е., Рахимова М.А., Даровских А.В., Баринова Л.С.* Исследование процесса получения нитратов циклодекстринов // Журнал прикладной химии. 2018. Т. 91, № 7. С. 1049–1054. doi: 10.1134/S1070427218070224
- 23. Gruenhut N.S., Cushing M.L., Caesta G.V. Alpha and Beta Schardinger Dextrin Nitrates // Journal of the American Chemical Society.1948. Vol. 70 (1). P. 424–425. doi: 10.1021/ja01181a517
- 24. US Pat. 5114506 (publ. 19.05.1992). Consaga J.P., Collignon S.L. Energetic composites of cyclodextrin nitrate esters and nitrate ester plasticizers.
- 25. Consaga J.P., Gill R.C., Synthesis and use of Cyclodextrin nitrate in Energetic Materials. Production, Processing and Characterization // 29th Int. Annual Conf. of ICT, Karlsruhe (Germany), 1998, June 30–July 3. P. V5-1–V5-6.
- 26. Михайлов Ю.М., Романова Л.Б., Рахимова М.А., Даровских А.В., Тарасов А.Е., Ковалев Д.Ю., Сиротина А.П. Исследование структуры нитратов циклодекстринов методом рентгеновской дифракции // Журнал прикладной химии. 2022. Т. 95, № 1. С. 18–23. doi: 10.1134/S1070427222010049
- 27. Maksimowski P., Grzegorczyk A., Cieslak K., Golofit T. et al. γ-Cyclodextrin nitrate/CL-20 complex: preparation and properties // Propellants, Explosives, Pyrotechnics. 2019. Vol. 44 (2). P. 207–216. doi: 10.1002/prep.201800301
- 28. Maksimowski P., Rumianowski T. Properties of the Gamma-Cyclodextrin/CL-20 System // Central European Journal of Energetic Materials. 2016. Vol. 13 (1). P. 217–229.
- 29. Михайлов Ю.М., Рахимова М.А., Романова Л.Б., Даровских А.В. О получении и свойствах нитратов циклодестринов, сверхразветвленных полиглицидолов и некоторых других гидроксилсодержащих соединений // Сборник трудов Всероссийской конференции «Химия нитросоединений и родственных азот-кислородных систем» (АКС-2019). М., 2019. С. 15–18.
- 30. Михайлов Ю.М., Романова Л.Б., Рахимова М.А., Даровских А.В., Тарасов А.Е., Баринова Л.С. Ковалев Д.Ю. О нитратах циклодекстринов и комплексов включения на их основе // Боеприпасы и высокоэнергетические конденсированные системы. 2023. № 2. С. 4–10.
- 31. Михайлов Ю.М., Даровских А.В., Романова Л.Б., Рахимова Л.А., Климанова Е.Н., Файнгольд И.И. Комплексы включения как нитратов циклодекстринов как потенциальные носители лекарственных препаратов // Доклады академии наук (в печати).
 - 32. Беленький М.Л. Элементы количественной оценки фармакологического эффекта. Л.: Медицина, 1963. 262 с.
- 33. ГОСТ 12.1.007-76. Межгосударственный стандарт. Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности.
- 34. *Halliwell B*. Free radical sand antioxidants: updating a personal view // Nutrition Reviews. 2012. Vol. 70 (5). P. 257–265. doi: 10.1111/j.1753-4887.2012.00476.x
- 35. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction // Analytical biochemistry. 1979. Vol. 95 (2). P. 351–358.

References

- 1. Karthic, A., Roy, A., Lakkakula, J., Alghamdi, S., Shakoori, A., Babalghith, A., Emran, T., Sharma, R., Lima, C., Kim, B., Park, M., Safi, S., de Almeida, R. & Coutinho, H. (2022) Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. *Frontiers in Cell and Developmental Biology.* 10. Art. no. 984311. pp. 1–26. doi: 10.3389/fcell.2022.984311
 - 2. Crini, G. (2014) Review: A History of Cyclodextrins. Chemical Reviews. 114 (21). pp. 10940–10975. doi: 10.1021/cr500081p
- 3. Manoj, M.N., Dinesh, M.S., Parag, V.J., et. al. (2012) The Cyclodextrins: A Review. *Journal of Current Pharmaceutical Research*. 10 (1), pp. 1–6.
- 4. Morin-Crini, N., Fourmentin, S., Fenyvesi, E., Lichtfouse, E., Torri, G., et al. (2021) 130 years of cyclodextrin discovery for health, food, agriculture, and the industry: a review. *Environmental Chemistry Letters*. 19, pp. 2581–2617. doi: 0.1007/s10311-020-01156-w
- 5. Szejtli, J. (2004) Past, present and future of cyclodextrin research. Pure and Applied Chemistry. 76 (10). pp. 1825–1845. doi: 10.1351/Pac200476101825
- 6. Kapustin, M.A., Chubarova, A.S., Golovach, T.N., Tsygankov, V.G., Bondaruk, A.M. & Kurchenko, V.P. (2016) Methods of active compounds with cyclic oligosaccharides nanocomplexes obtaining, analysis of it physical and chemical properties and use in food production. *Proceedings of the Belarusian State University*. 11, part 1. pp. 73–100. (In Russian).
- 7. Paczkowska, M., Szymanowska-Powałowska, D., Mizera, M., Siakowska, D., Blasczcak, W., Piotrowska-Kempisty, H. & Cielecka-Piontek, J. (2019) Cyclodextrins as multifunctional excipients: Influence of inclusion into β-cyclodextrin on physicochemical and biological properties of tebipenem pivoxil. *PloS ONE.* 14 (1). pp. 1–22. doi: 10.1371/journal.pone.0210694
- 8. Fenyvesi, F., Phuong Nguyen, T.L., Haimhoffer, A. Rusznyák, A., Vasvári, G., Bácskay, I., Vecsernyés, M., Ignat, S-R., Dinescu, S., Costache, M., Ciceu, A., Hermenean, A. & Váradi, J. (2020) Cyclodextrin Complexation Improves the Solubility and Caco-2 Permeability of Chrysin. *Materials*. 13 (6). pp. 3618–3630. doi: 10.3390/ma13163618
- 9. Popielec, A. & Loftsson, T. (2017) Effects of cyclodextrins on the chemical stability of drugs. *International Journal of Pharmaceutics*. 531 (2). pp. 532–542. doi: 10.1016/j.ijpharm.2017.06.009
- 10. Loftsson, T. & Duchêne, D. (2007) Cyclodextins and their pharmaceutical applications: historical perspectives. *International Journal of Pharmaceutics*. 329 (1-2). pp. 1–11. doi: 10.1016/j.ijpharm.2006.10.044
- 11. Ventura, C., Puglisi, G., Zappala, M. & Mazzone, G. (1998) A physico-chemical study on the interaction between papaverine and natural and modified b-cyclodextrins. *International journal of pharmaceutics*. 160 (2), pp. 163–172. doi: 10.1016/S0378-5173(97)00317-7

- 12. Ikeda, Y., Kimura, K., Hirayama, F., Arima, H. & Uekama, K. (2000) Controlled release of a water-soluble drug, captopril, by a combination of hydrophilic and hydrophobic cyclodextrin derivatives. *Journal of Controlled Release*. 66 (2-3). pp. 271–280. doi: 10.1016/S0168-3659(99)00286-2
- 13. Hussein, K., Turk, M. & Wahl, M.A. (2007) Comparative evaluation of Ibuprofen/β-Cyclodextrin complexes obtained by supercritical Carbon Dioxide and other conventional methods. *Pharmaceutical Research*. 24. pp. 585–592. doi: 10.1007/s11095-006-9177-0
- 14. Yano, H., Hirayama, F., Kamada, M., Arima, H. & Uekamk, K. (2002) Colon-specific delivery of prednisolone-appended α-cyclodextrin conjugate: alleviation of systemic side effect after oral administration. *Journal of Controlled Release*. 79 (1-3). pp. 103–112. doi: 10.1016/S0168-3659(01)00532-6
- 15. Bounaceur, A. & Rodier, E. (2012) Study of the maturation of aketoprofen/b-cyclodextrin complex. *Journal of Pharmaceutical Science and Technology*. 2 (3). pp. 171–183.
- 16. Malaekeh-Nikouei, B., Tabassi, S.A.S., Gerayeli, G., Salmani, M.A. & Gholamzadeh, A. (2012) The effect of cyclodextrin mixture on aqueous solubility of beclomethasone dipropionate. *Journal of Inclusion Phenomena and Macrocyclic Chemistry*. 72. pp. 383–387. doi: 10.1007/s10847-011-9992-8
- 17. Vila-Jato, T. & Blanco, J. (1998) Spirolactone/b-cyclodextrine complex: oral bioavailability in humans. *Acta Pharmaceutical Technology*. 32. pp. 82–85.
- 18. Tiwari, G., Tiwari, R. & Rai, A.K. (2010) Cyclodextrins in delivery systems: Applications. *Journal of Pharmacy and Bioallied Sciences*. 2(2). pp. 72–79. doi: 10.4103/0975-7406.67003.
- 19. Loftsson, T. & Duchêne, D. (2007) Cyclodextins and their pharmaceutical applications: historical perspectives. *International Journal of Pharmaceutics*. 329 (1-2). pp. 1–11. doi: 10.1016/j.ijpharm.2006.10.044
- 20. Morina, D., Sessevmeza, M., Sinanib, G., Mülazımoğluc, L. & Cevhera, E. (2020) Oral tablet formulations containing cyclodextrin complexes of poorly water soluble cefdinir to enhance its bioavailability. *Journal of Drug Delivery Science and Technology*. 57. Art. No. 101742. pp. 1–11. doi: 10.1016/J.Jddst.2020.101742
- 21. Romanova, L.B., Barinova, L.S., Lagodzinskaya, G.V., Kazakov, A.I. & Mikhailov, Y.M. (2014) Preparation and analysis by NMR of nitrates of beta-cyclodextrin. *Journal of Applied Chemistry*. 87 (12). pp. 1809–1815. doi: 10.1134/S1070427214120155
- 22. Mikhailov, Y.M., Romanova, L.B., Tarasov, A.E., Rakhimova, M.A., Darovskikh, A.V. & Barinova, L.S. (2018) Study of the process of obtaining cyclodextrin nitrates. *Journal of Applied Chemistry*. 91 (7). pp. 1049–1054. doi: 10.1134/S1070427218070224
- 23. Gruenhut, N.S., Cushing, M.L. & Caesta, G.V. (1948) Alpha and Beta Schardinger Dextrin Nitrates. *Journal of the American Chemical Society*. 70 (1). pp. 424–425. doi: 10.1021/ja01181a517
- 24. Consaga, J.P. & Collignon, S.L. Energetic composites of cyclodextrin nitrate esters and nitrate ester plasticizers (US Pat. 5114506 (publ. 19.05.1992)).
- 25. Consaga, J.P. & Gill, R.C. (1998) Synthesis and use of Cyclodextrin nitrate in Energetic Materials. Production, Processing and Characterization. In: 29th Int. Annual Conf. of ICT, Karlsruhe (Germany), 1998, June 30–July 3. pp. V5-1–V5-6.
- 26. Mikhailov, Y.M., Romanova, L.B., Rakhimova, M.A., Darovskikh, A.V., Tarasov, A.E., Kovalev, D.Yu. & Sirotina, A.P. (2022) Study of the structure of cyclodextrin nitrates by X-ray diffraction. *Journal of Applied Chemistry*. 95 (1). pp. 18–23. doi: 10.1134/S1070427222010049
- 27. Maksimowski, P., Grzegorczyk, A., Cieslak, K., Gołofit, T., et al. (2019) γ-Cyclodextrin nitrate/CL-20 complex: preparation and properties. *Propellants, Explosives, Pyrotechnics*. 44 (2). pp. 207–216. doi: 10.1002/prep.201800301
- 28. Maksimowski, P. & Rumianowski, T. (2016) Properties of the Gamma-Cyclodextrin/CL-20 System. *Central European Journal of Energetic Materials*. 13(1). pp. 217–229.
- 29. Mikhailov, Y.M., Rakhimova, M.A., Romanova, L.B. & Darovskikh, A.V. (2019) The preparation and properties of nitrates of cyclodestrins, hyperbranched polyglycidols and some other hydroxyl-containing compounds. In: *Chemistry of nitro compounds and related nitrogen-oxygen systems: Proceedings of conference.* Moscow: MAKS Press. pp. 15–18. (In Russian)
- 30. Mikhailov, Y.M., Romanova, L.B., Rakhimova, M.A., Darovskikh, A.V., Tarasov, A.E., Barinova, L.S. & Kovalev, D.Y. (2023) About nitrates of cyclodextrins and inclusion complexes on their basis. *Boepripasy i vysokojenergeticheskie kondensirovannye sistemy—Munitions and High-Energy Condensed Systems.* 2. pp. 4–10. (In Russian).
- 31. Mikhailov, Y.M., Darovskikh, A.V., Romanova, L.B., Rakhimova, L.A., Klimanova, E.N. & Feingold, I.I. Inclusion complexes as nitrates of cyclodextrins as potential carriers of drugs. *Doklady of the Academy of Sciences*. In press
- 32. Belenkiy, M.L. (1963) *Elementy Kolichestvennoi Otsenki Farmakologicheskogo Effekta* [Elements of Quantitative Estimation of Pharmacological Effect]. Leningrad: Medina.
- 33. GOST 12.1.007-76. Mezhgosudarstvennyi standart. Sistema standartov bezopasnosti truda. Vrednye veshchestva. Klassifikatsiia i obshchie trebovaniia bezopasnosti [GOST 12.1.007-76. Interstate standard. System of labor safety standards. Harmful substances. Classification and general safety requirements].
- 34. Halliwell, B. (2012) Free radical sand antioxidants: updating a personal view. *Nutrition Reviews*. 70 (5). pp. 257–265. doi: 10.1111/j.1753-4887.2012.00476.x
- 35. Ohkawa, H., Ohishi, N. & Yagi, K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. *Analytical Biochemistry*. 95 (2). pp. 351–358.

Информация об авторах:

Михайлов Юрий Михайлович – доктор химических наук, академик РАН, главный научный сотрудник лаборатории энергетических полимерных систем Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: yumm@icp.ac.ru

Даровских Анна Владимировна — кандидат химических наук, научный сотрудник лаборатории энергетических полимерных систем Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: avd@icp.ac.ru

Романова Людмила Борисовна – кандидат химических наук, старший научный сотрудник лаборатории энергетических полимерных систем Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: lbr@icp.ac.ru

Рахимова Мария Аркадьевна — кандидат химических наук, научный сотрудник лаборатории энергетических полимерных систем Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: nma@icp.ac.ru

Климанова Елена Николаевна — младший научный сотрудник группы экспериментальной химиотерапии опухолей Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: enklimanova@mail.ru

Файнгольд Ирина Игоревна - кандидат биологических наук заведующий лабораторией физико-химической биологии физиологически активных соединений Федерального исследовательского центра проблем химической физики и медицинской химии Российской академии наук (Черноголовка, Россия). E-mail: ifaingold@mail.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Mikhailov Yuri M., Dr. Sc. (Chemistry), Academician of the Russian Academy of Sciences, chief researcher of the laboratory of energetic polymer systems, Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian Federation). E-mail: yumm@icp.ac.ru

Darovskikh Anna V., Cand. Sc. (Chemistry), researcher of the laboratory of energetic polymeric systems, Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian Federation). E-mail: avd@icp.ac.ru

Romanova Lyudmila B., Cand. Sc. (Chemistry), senior researcher of the laboratory of energetic polymer systems, Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian Federation). E-mail: lbr@icp.ac.ru

Rakhimova Maria A., Cand. Sc. (Chemistry), researcher of the laboratory of energetic polymer systems, Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian Federation). E-mail: nma@icp.ac.ru

Klimanova Elena N., junior researcher of the experimental tumor chemotherapy group, Federal Research Center for Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian Federation). E-mail: enklimanova@mail.ru Faingold Irina I., Cand. Sc. (Biology), head of the laboratory of physico-chemical biology of physiologically active compounds, Federal Research Center for Problems of Chemical Physics and Medical Chemistry of the Russian Academy of Sciences (Chernogolovka, Russian

Federation). E-mail: ifaingold@mail.ru

The authors declares no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 541.1+614.87+57.08 doi: 10.17223/7783494/3/2

Обновленные начала биологической безопасности в пост-ковидную эру

Мамедьяр Шакирович Азаев¹, Александра Анатольевна Дадаева², Татьяна Алексеевна Косогова³, Александр Петрович Агафонов⁴, Михаил Петрович Кирпичников⁵, Сергей Викторович Нетёсов⁶

1,2,3,4 ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора, р.п. Кольцово, Новосибирская область, Россия
1,6 Новосибирский государственный университет, Новосибирск, Россия
5 Московский государственный университет им. М.В. Ломоносова, Москва, Россия
1 azaev_msh@vector.nsc.ru
2 netesov.s@nsu.ru
3 Kirpichnikov@inbox.ru

Аннотация. Распространение вируса SARS-CoV-2 по всем странам и континентам земного шара с трансформацией эпидемического поначалу характера этой коронавирусной инфекции в пандемический процесс и эволюционный переход данного патогена из возникающих инфекций в число сезонных ОРВИ заставило практически все страны мирового сообщества обновить свои санитарные правила и нормы. Это было сделано с целью усиления эффективности противоэпидемических мер и их реализации соответствующими учреждениями, которые непосредственно занимаются здоровьем населения, а также учреждениями, которые изучают свойства патогенных микроорганизмов и разрабатывают лечебные и профилактические средства для борьбы с инфекционными заболеваниями. В настоящей статье рассматриваются различные аспекты этих обновлений и делается вывод, что санитарные правила Российской Федерации являются оптимально обновленным документом по работе с опасными патогенами, содержащим весь необходимый перечень мер и правил в различных сферах лабораторной практики при работе с патогенами.

Ключевые слова: биобезопасность, патогенный микроорганизм, санитарные правила, эпидемия, пандемия

Для цитирования: Азаев М.Ш., Дадаева А.А., Косогова Т.А., Агафонов А.П., Кирпичников М.П., Нетёсов С.В. Обновленные начала биологической безопасности в пост-ковидную эру // Технологии безопасности жизнедеятельности. 2023. № 3. С. 15–26. doi: 10.17223/7783494/3/2

Original article

doi: 10.17223/7783494/3/2

Revised biosafety recommendations and guidelines in the post-COVID era

Mamedyar Sh. Azaev¹, Alexandra A. Dadaeva², Tatiana A. Kosogova³, Alexander P. Agafonov⁴, Mikhail P. Kirpichnikov⁵, Sergey V. Netesov⁶

1, 2, 3, 4 State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, Russian Federation

1, 6 Novosibirsk State University, Novosibirsk, Russian Federation

5 Lomonosov Moscow State University, Moscow, Russian Federation

1 azaev_msh@vector.nsc.ru

2 netesov.s@nsu.ru

3 Kirpichnikov@inbox.ru

Abstract. Problems connected with the spread of SARS-CoV-2 virus through the continents and countries (fast transformation of epidemic character of COVID-19 into pandemic process and evolution of the SARS-CoV-2 coronavirus into common ARV pathogen) forced many countries to revise their sanitary rules and requirements (biosafety bases). That was done in order to strengthen the effectiveness of anti-epidemic measures and their implementation by the institutions responsible for public health and by the ones which investigate properties of pathogenic microorganisms and develop remedies and prophylactic means to fight against infectious diseases. In this article different aspects of biosafety recommendations' updates are discussed and the conclusion is done that the *Sanitary Rules* of the Russian Federation is one of the best national recommendations to work with dangerous pathogens because of maximally wide use of rules in different spheres of laboratory practice. Also, the formulation of biosafety bases is modernized in order to accent the attention on the main points: biological danger and its sources, infectious agents and their classification, levels of biosafety work with infectious materials, risks of working with pathogens. The authors show based on the gathered scientific and practical knowledge in many countries all over the world the big number of revised definitions and paragraphs of the biosafety rules are used in working with microorganisms, and in spite of the absence of fully agreed upon common

algorithm for displaying biosafety positions the revised national biosafety manuals are the bastions for prevention of the spread of dangerous infection, for perfectioning of the ways of physical and technical defense of potentially dangerous objects, for increasing of responsibility of civil society in the battle with the environment destruction.

Keywords: biosafety, pathogen, sanitary rules, epidemic, pandemic

For citation: Azaev, M.Sh., Dadaeva, A.A., Kosogova, T.A., Agafonov, A.P., Kirpichnikov, M.P. & Netesov, S.V. (2023) Revised biosafety recommendations and guidelines in the post-COVID era. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 15–26. doi: 10.17223/7783494/3/2 (In Russian).

Введение

В современном мире продолжается возникновение новых, развитие или разрастание уже существующих природных угроз здоровью человечества. В частности, пандемия COVID-19 до сих пор даёт о себе знать вспышками в той или иной стране мира. Всё это связано со многими причинами, но в первую очередь с продолжающейся экспансией самого человека в окружающую среду в виде роста численности и плотности населения, расширения регионов проживания человека, стремительно растущих международного туризма и торговли, а также загрязнения окружающей среды продуктами жизнедеятельности человека и отходами производства, не говоря уже о других техногенных факторах. К сожалению, продолжается и глобальное потепление, что медленно, но верно ведет к большему территориальному распространению тропических и субтропических животных и членистоногих, а вместе с ними и к более широкому распространению патогенов, что, в свою очередь, ведет ко всё большему распространению вызываемых ими инфекционных заболеваний и развитию эпидемий и, иногда, пандемий.

Всё вышесказанное вынуждает расширять мониторинг, разработку и внедрение в практику новых методов диагностики и профилактики инфекций. А для этого приходится развивать сеть научно-исследовательских институтов, санитарно-эпидемиологических и лечебных учреждений, биомедицинских производственных компаний и т.д., которые проводят работы с патогенами и их компонентами, при этом объем и интенсивность работы в них постепенно возрастают. Биологическая безопасность и противоэпидемический режим, необходимые для выполнения работ в микробиологических лабораториях, профилированных на изучение микроорганизмов I-IV групп патогенности, в современных условиях насущно необходимы для защиты лабораторного персонала, живущих рядом с этими учреждениями жителей и, конечно, для защиты окружающей среды. И в мире, и в Российской Федерации в настоящее время накоплены обширные научные знания в сфере биобезопасности, разработаны и внедрены в практику многочисленные правила и инструкции, регламентирующие работу с микроорганизмами с учетом богатого международного опыта. Тем не менее многие вопросы и проблемы биобезопасности еще не полностью нашли отражение в доступной литературе.

На основании результатов собственных исследований и анализа материалов многочисленных научных публикаций частью авторов этой статьи подготовлено учебно-методическое пособие по основам биологической безопасности [1], предназначенное для широкой аудитории специалистов: врачей, микробиологов, вирусологов, эпидемиологов, заинтересованных в получении знаний по биологической безопасности при организации и проведении работ с микроорганизмами I—IV групп патогенности (опасности).

Основная задача этого учебно-практического пособия — познакомить читателей с отечественными и международными требованиями и рекомендациями по обеспечению биологической безопасности и выработать у них компетентный подход к изучаемой проблеме. Предлагаемая книга станет достойным вкладом в имеющийся интеллектуальный фонд изданий, описывающих безопасные принципы, подходы к изучению и методы предотвращения распространения обычных и особо опасных инфекций и обеспечения безопасности природы и человека при работе с патогенными микроорганизмами.

А настоящая статья призвана предоставить введение в основы современной биологической безопасности и показать основные источники самой современной информации в этой области.

Необходимость в обновлении санитарных правил

Острое респираторное инфекционное заболевание COVID-19, которое начало свое распространение по странам мира в 2019–2020 гг., по-прежнему представляет существенную опасность для здравоохранения во всём мире. Биологический агент, вызывающий COVID-19, коронавирус SARS-CoV-2, является одним из наиболее опасных патогенов для человеческой популяции.

Проблемы, связанные с распространением вируса SARS-CoV-2 по континентам земного шара (трансформация эпидемического характера инфекции COVID-19 в пандемический процесс и ее эволюция в закрепившийся в популяции ОРВИ-патоген), заставили многие страны мирового сообщества обновить свои санитарные правила и требования (основы биобезопасности) с целью усиления эффективности их

реализации соответствующими учреждениями, которые непосредственно занимаются здоровьем населения, а также учреждениями, которые изучают свойства патогенных микроорганизмов и разрабатывают лечебные и профилактические средства для борьбы с инфекционными заболеваниями.

Обновленное и существенно переработанное «Руководство ВОЗ по лабораторной биобезопасности» (Laboratory biosafety manual: Fourth edition, WHO, 2020) [2] серьезно отличается от своей предыдущей версии по базовым принципам обеспечения биобезопасности во время проведения работ с патогенными микроорганизмами. В новой редакции используется подход к биобезопасности, полностью основанный на оценке риска и фактических данных. Особое внимание уделяется важности «культуры безопасности», которая включает прежде всего оценку рисков и надлежащую микробиологическую практику. Расширены разделы, связанные с подготовкой и переподготовкой персонала и быстрыми ответными действиями на аварии с последующим соответствующим расследованием и корректирующими действиями. Упор делается на обязательной регистрации инцидентов и соответствующей коррекции методов работы и подбора надежного оборудования, обеспечивающего безопасное проведение работ с патогенными микроорганизмами, для своевременного реагирования с целью недопущения ситуаций, которые могут привести к авариям.

Раздел «Перевозка и перенос инфекционного материала» существенно расширен, в этом разделе появились фрагменты по переносу материала внутри лаборатории и вне ее. Эти фрагменты очень похожи на разделы из российского документа 1.2.036-95 «Порядок учета, хранения, передачи и транспортирования микроорганизмов I-IV групп патогенности» (утв. постановлением Госкомсанэпиднадзора РФ от 28 августа 1995 г. № 14) [3]. Это свидетельствует о высококачественном подходе российских служб биобезопасности к подаче соответствующего материала.

Российские обновленные санитарные правила и нормы (СанПиН) 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней» (Россия, 2021) [4] были разработаны с целью совершенствования методов предупреждения возникновения и распространения инфекционных болезней среди населения Российской Федерации (РФ). СанПиН 3.3686-21 представляют собой уникальный документ, объединяющий в единую логическую линию переработанные санитарно-эпидемиологические правила 1.3.2322-08 «Безопасность работы с микроорганизмами III—IV групп патогенности (опасности) и возбудителями паразитарных болезней» [5]; 1.3.3118-13 «Безопасность работы с микроорганизмами I—II групп патогенности (опасности)» [6];

санитарные правила 1.2.036-95 «Порядок учета, хранения, передачи и транспортирования микроорганизмов I–IV групп патогенности» [3], а также ряд специализированных инструкций по профилактике конкретных инфекционных болезней, начиная с чумы, холеры, гриппа и заканчивая паразитарными инфекциями, внутрибольничными инфекциями (порядка сотни различных инфекций). В СанПиН 3.3686-21 отражены аспекты иммунопрофилактических мероприятий, санитарной охраны территорий, организации дезинфекционной, дератизационной и дезинсекционной деятельности.

СанПиН 3.3686-21 имеют 40 практических приложений, содержащих подробную информацию по использованию защитной одежды при работе с патогенными микроорганизмами, классификатор патогенных микроорганизмов, правила обеззараживания при осуществлении работ с патогенными микроорганизмами, перечень основных дезинфицирующих средств, контроль стерилизующих мероприятий, основные документы по учету и транспортировке патогенных микроорганизмов и многие другие пункты поддержания профилактики инфекционных заболеваний на высоком уровне ответственности и безопасности.

Китайская Народная Республика также выпустила несколько обновленных документов по биобезопасности, в частности, «Стандарт по оценке дезинфекции на местах в период эпидемии COVID-19» [7] и «Государственный стандарт безопасности пищевой продукции. Санитарные нормы к холодильной логистике пищевых продуктов» [8]. Документы содержат актуальную информацию по дезинфекции различных поверхностей и по правилам хранения пищевых продуктов. Аналогичные модернизации правил произвели США, Канада, большинство стран Европейского союза и ряд других стран.

Таким образом, обновление санитарных правил работы с инфекционным материалом, предпринятое ВОЗ и целым рядом стран, способствует в настоящее время усилению и укреплению биобезопасности в мире, что особо актуально в связи с увеличивающимся объемом международного научного сотрудничества в рамках национальных и совместных международных программ.

Понятие патогенного микроорганизма

В настоящее время классификация всех живых организмов устроена следующим образом: надцарство, или домен, — это таксон или иерархическая ступень самого высокого уровня научной классификации биологических видов, следующая ступень — царство. Сейчас число доменов принято считать равным четырем: вирусы, бактерии, археи и эукариоты. В свою

очередь, домены разбиты на царства, и на данный момент различают восемь царств живых организмов: животные, растения, хромисты, протисты, грибы, археи, бактерии и вирусы. К домену «Бактерии» относят царство «Бактерии», к домену «Археи» – царство «Археи», к домену «Вирусы» – царство «Вирусы», а к домену «Эукариоты» – все остальные царства (рис. 1).

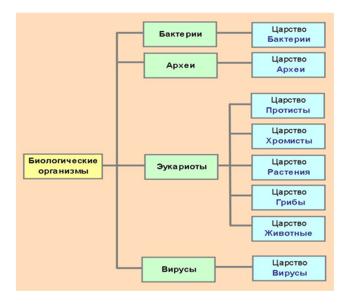


Рис. 1. Классификация биологических организмов

Fig. 1. Classification of biological organisms

Таксономией вирусов занимается Международный комитет по таксономии вирусов (International Committee for Taxonomy of Viruses), который всю информацию о нынешней классификации и о предложениях по ее модификации размещает на сайте https://ictv.global [9]. Наиболее значительные изменения в классификацию были внесены этим комитетом в 2018 г., когда на основе 9 отрядов и 131 семейства вирусов согласно модифицированным определениям критериев классификации, были сформированы 1 тип, 2 субтипа, 6 классов, 14 отрядов и 143 семейства. В таксономической версии 2022 г. 10 434 вида вирусов были разбиты на 6 реалмов (Realm), 10 царств (Kingdom), 17 типов (Phyla), 39 классов (Class), 65 отрядов (Order), 233 семейства (Family) и 2 606 родов (Genera). Таксономический комитет при этом пояснил, что использование таксономических единиц выше семейства (Family) является опциональным (https://ictv.global/taxonomy) [10].

В течение жизни высшие организмы постоянно контактируют с представителями микроорганизмов, к которым относятся представители царств «Бактерии», «Вирусы», «Археи», и некоторых видов эукариот: ряд видов грибов и простейших. Однако вызывать патогенный инфекционный процесс у высших организмов может лишь весьма небольшая часть этих микроорганизмов – около 1/30 000 – представителей микробного сообщества планеты, а со

многими из них человеческий организм живет в симбиозе

Патогенность возбудителей инфекционных болезней — отличительный признак, который во многих случаях генетически закреплен и является фенотипическим признаком, позволяющим подразделять микроорганизмы на патогенные, условно-патогенные и сапрофиты.

Патогенные микроорганизмы вызывают у человека инфекционные заболевания разной степени тяжести, вплоть до летального исхода.

Условно-патогенные микроорганизмы могут вызывать заболевания у людей с дефектами иммунной системы или с пониженными функциями этой системы. Эти микроорганизмы нередко входят в состав естественной микрофлоры организма человека и животных, реже обитают в окружающей среде. Они могут экспрессировать некоторые факторы патогенности, обладать способностью к колонизации (заселению) различных органов организма, выраженной гетерогенностью и изменчивостью популяции, определяющей быстрое приобретение устойчивости к неблагоприятным факторам, в том числе к антимикробным препаратам.

Сапрофиты, или симбиотические микроорганизмы, осуществляют свою жизнедеятельность в пределах организма человека, не нанося ему вреда. Большинство бактерий кишечного тракта человека

являются сапрофитами. Число бактерий-симбионтов в кишечнике взрослого человека может достигать 10^{15} .

Классификация патогенных микроорганизмов

В основе понятия биологической опасности инфекций лежит классификация микроорганизмов — возбудителей инфекционных заболеваний человека (вирусов, бактерий, грибов, простейших, гельминтов) и ядов биологического происхождения по группам патогенности. Основными международными документами в плане определения групп патогенности в этом отношении являются «Практическое руководство по биологической безопасности в лабораторных условиях» (четвертое издание), изданное ВОЗ в 2020 г. [2], а также предшествующая версия этого документа — «Практическое руководство по биологической безопасности в лабораторных условиях» (третье издание), вышедшее в 2004 г. [11].

Как уже было сказано, в РФ в 2021 г. на базе предыдущих российских санитарных правил и с учетом практических руководств по биологической безопасности в лабораторных условиях, изданных ВОЗ, были разработаны и утверждены СанПиН, устанавливающие требования к организационным, санитарнопротивоэпидемическим (профилактическим) мероприятиям, направленным на обеспечение личной и

общественной безопасности, защиту окружающей среды при работе с патогенными биологическими агентами (ПБА), – СанПиН 3.3686-21 «Санитарноэпидемиологические требования по профилактике инфекционных болезней» [4].

В российскую классификацию патогенности микроорганизмов — возбудителей инфекционных заболеваний человека, представленную в СанПиН 3.3686-21 (в разделе «Приложения»), входят бактерии, риккетсии, анаплазмы, вирусы, хламидии, грибы, простейшие, гельминты, членистоногие, яды биологического происхождения.

В отличие от действующих российских СанПиН 3.3686-21 в вышеуказанной брошюре «Практическое руководство по биологической безопасности в лабораторных условиях» (четвертое издание) и во всех предыдущих его изданиях не предложен конкретный перечень микроорганизмов по группам патогенности. Вместо этого дан набор критериев для определения такого перечня с учетом региональной специфики стран. Классификация патогенов, принятая в США, Канаде, Японии, Европе и подавляющем большинстве других стран мира, а также используемая ВОЗ, отличается от существующей в РФ обратным порядком: микроорганизмы наиболее высокой степени патогенности в мировой классификации отнесены к IV группе (таблица), а не к I, как это принято в РФ.

Критерии классификации микроорганизмов по группам патогенности согласно ВОЗ

Группа риска	Название группы риска	Оценка риска
I (IV по классифи- катору РФ)	Отсутствие или низкая индивидуальная и общественная опасность	Микроорганизм, потенциально не являющийся возбудителем заболеваний человека или животных
II (III по классифи- катору РФ)	Умеренная индивидуальная опасность, низкая общественная опасность	Патогенный микроорганизм, который может вызвать заболевание, но не представляет серьезного риска для персонала, населения, домашнего скота или окружающей среды. Неосторожность в лаборатории может вызвать инфекцию, однако существуют доступные лечебные и профилактические меры. Риск распространения ограничен
III (II по классифи- катору РФ)	Высокий индивидуальный и низкий общественный риск	Патогенный агент, который обычно вызывает серьезное заболевание человека или животных, но, как правило, не распространяется от больного к здоровому. Существуют эффективные лечебно-профилактические процедуры
IV (I по классифи- катору РФ)	Высокий индивидуальный и общественный риск	Патогенный агент, обычно вызывает серьезное заболевание у человека или животных и легко распространяется от больного к здоровому или опосредованно. Эффективных мер борьбы с патогенным агентом в большинстве случаев не существует (вакцин и средств лечения)

Понятия биологической опасности и безопасности

В условиях возросших миграционных и туристических потоков в мире существуют реальные угрозы трансграничного переноса между странами различных видов возбудителей инфекций, а также ранее неизвестных, лекарственно-устойчивых или с измененными патогенными свойствами биологических

агентов, т.е. микроорганизмы являются объективной угрозой здоровью и жизни людей мирового сообщества. Отсюда вполне обоснованно выдвигается в качестве самостоятельной проблема микробиологической опасности, которую часто отождествляют с биологической опасностью.

Опасность – возможность возникновения обстоятельств, при которых материя, поле, энергия, информация или их сочетание могут так повлиять на

сложную систему, что это приведет к ухудшению или невозможности ее функционирования или развития. Для живых организмов опасность реализуется в виде травмы, заболевания, смерти [12].

Согласно ГОСТ 12.0.003-2015 «Система стандартов безопасности труда. Опасные и вредные производственные факторы» [13], производственные факторы, воздействующие на исполнителя на рабочем месте, подразделяются по природе действия на следующие группы: физические, химические, биологические, психофизиологические.

Биологическую опасность можно охарактеризовать следующим образом: нанесение ущерба здоровью или угроза жизни отдельному лицу, группе лиц или всему населению путем естественного, ненамеренного или преднамеренного использования в качестве поражающей силы биологических агентов – бактерий, вирусов, грибов, простейших или токсинов. В качестве этих опасных биологических факторов могут выступать живые микроорганизмы, продукты их жизнедеятельности и генетические материалы.

К биологической опасности относят как риск непосредственного заражения, так и опосредованный риск, возникающий в результате нанесения ущерба окружающей среде.

Биологическая безопасность (биобезопасность) — система медико-биологических, организационных и инженерно-технических мероприятий и средств, направленных на защиту работающего персонала, населения и окружающей среды от воздействия ПБА. В концепции биологической безопасности сформулированы общие положения, принципы, задачи и приоритетные направления, имеющие основополагающее значение для обеспечения биологической безопасности государства.

По оценкам ВОЗ, во всем мире инфекционными болезнями ежегодно заболевают более 750 млн человек, умирают только непосредственно от них около 12 млн человек (численность населения на земле в конце 2022 г. достигла 8 млрд человек). В РФ ежегодно официально регистрируется от 30 до 40 млн случаев инфекционных заболеваний.

В РФ принят Федеральный закон от 30.12.2020 № 492-ФЗ «О биологической безопасности в Российской Федерации» [14], который устанавливает основы государственного регулирования в области обеспечения биологической безопасности в стране и определяет комплекс мер, направленных на защиту населения и охрану окружающей среды от воздействия опасных биологических факторов, на предотвращение биологических угроз (опасностей), создание и развитие системы мониторинга биологических рисков.

Закон определяет:

- биологическую безопасность как состояние защищенности населения и окружающей среды от воздействия опасных биологических факторов, при котором обеспечивается допустимый уровень биологического риска;
- биологический риск как вероятность причинения вреда (с учетом его тяжести) здоровью человека, животным, растениям и (или) окружающей среде в результате воздействия опасных биологических факторов;
- биологическую угрозу (опасность) как наличие потенциально опасных биологических объектов, а также наличие внутренних (находящихся на территории Российской Федерации) и внешних (находящихся за пределами территории Российской Федерации) опасных биологических факторов, способных привести к возникновению и (или) распространению заболеваний с развитием эпидемий, эпизоотий, эпифитотий, массовых отравлений, превышению допустимого уровня биологического риска;
- биологическую защиту как комплекс мер по обеспечению биологической безопасности, осуществляемых в целях предотвращения или ослабления неблагоприятного воздействия опасных биологических факторов на человека, животных и растения.

К сожалению, некоторые определения и положения данного Закона не совсем соответствуют международным рекомендациям и определениям, и поэтому данный Закон в будущем необходимо будет модернизировать и совершенствовать.

Основные источники биологической опасности

Основными источниками биологической опасности являются:

- пандемии, эпидемии и вспышки инфекционных заболеваний;
- естественные резервуары патогенных микроорганизмов;
 - лабораторные аварии;
 - аварии на биологически опасных объектах;
 - биологический терроризм;
 - применение биологического оружия.

Все программы по обеспечению биологической безопасности состоят из рекомендаций по лабораторной практике и составлению стандартных операционных процедур, дизайну лабораторий, обучению и тренингам персонала, вакцинации персонала биолабораторий и населения, использованию средств индивидуальной защиты и безопасного оборудования. Соблюдение рекомендаций по биологической безопасности позволяет уменьшить риск и последствия развития лабораторных инфекций.

Закон РФ «О биологической безопасности» в статье «Основные биологические угрозы (опасности)» приводит более развернутый список.

К основным биологическим угрозам (опасностям) относятся:

- 1) изменение генома с изменением свойств и форм патогенов, а также свойств и мест обитания их природных хозяев и переносчиков;
- 2) возможность преодоления патогенами межвидовых барьеров в сочетании с возникающими под воздействием окружающей среды изменениями генотипа и фенотипа;
- 3) возникновение и распространение новых инфекций, занос и распространение редких и (или) ранее не встречавшихся на территории РФ инфекционных и паразитарных болезней, возникновение и распространение природно-очаговых, возвращающихся и спонтанных инфекций;
- 4) проектирование и создание патогенов с помощью технологий синтетической биологии даже в целях всего лишь имитации их природной эволюции (gain-of-function или GoF);
- 5) нарушение нормальной микробиоты человека, сельскохозяйственных животных и растений, приводящее к возникновению и распространению связанных с этим заболеваний;
- 6) распространение инфекций, являющихся основной причиной смертности от инфекционных заболеваний, а также распространение инфекций животных и растений, причиняющих ущерб сельскому хозяйству и вред окружающей среде;
- 7) распространение инфекций, связанных с оказанием медицинской помощи, и инфекций, связанных с осуществлением ветеринарной деятельности, а также возможность возникновения профессиональных заболеваний вследствие выполнения работ с использованием патогенов;
- 8) возникновение аварий на объектах, на которых работают с патогенами;
- 9) проведение террористических актов и (или) диверсий на объектах, где находятся источники биологической угрозы (опасности) и (или) проводятся работы с использованием патогенов;
 - 10) распространение резистентности;
- 11) распространение иммунодефицитных состояний организма человека, животного и связанных с этим инфекций (инфекционных болезней), в том числе повышение частоты и тяжести инфекционных болезней, вызываемых условно-патогенными микроорганизмами;
- 12) осуществление террористических актов и (или) диверсий с использованием патогенов, применение биологических технологий и иных смежных технологий для разработки, производства и

использования патогенов в качестве биологического оружия, а также бесконтрольное осуществление опасной техногенной деятельности, в том числе с использованием генно-инженерных технологий.

Уровни биологической безопасности

Понятие уровней биологической безопасности (УББ или BSL – от англ. Biosafety level) с 1-го по 4-й было концептуально разработано и установлено центрами по контролю над заболеваниями и национальными институтами здравоохранения США на основании «Лабораторной практики, используемых методик и оборудования для обеспечения безопасной работы с патогенами» (1974). Данные уровни обозначают набор инженерных и других мер биологической безопасности в зависимости от патогенности и инфекционности используемых в работе агентов и масштабов деятельности лаборатории.

BSL описываются сводом правил в зависимости от степени патогенности лабораторных инфекций. Описание включает оборудование для безопасного хранения биологического материала и необходимые мероприятия, которые должен выполнять персонал лабораторий.

BSL-1: минимальный уровень микробиологической безопасности — полностью соответствует стандартным правилам работы в биологически безопасной лаборатории. Рекомендован для работы с микроорганизмами, которые не вызывают развитие инфекций у здоровых взрослых, такими как, например, *Bacillus subtilis*.

BSL-2: используется для обеспечения биобезопасности при работе с патогенами человека, вызывающими развитие инфекций различной степени тяжести (Salmonella spp.). При выполнении стандартных микробиологических процедур с этими возбудителями можно работать на открытых лабораторных столах, если используются первичные защитные барьеры, такие как защитная маска, халат и перчатки. Желательно использование боксов микробиологической безопасности (БМБ).

BSL-3: используется для обеспечения безопасной работы с опасными микроорганизмами, обычно передающимися аэрогенным путем, такими как *Mycobacterium tuberculosis* и *Coxiella burnetii*. Предполагает строгое выполнение рекомендаций и наличие БМБ II класса.

BSL-4: используется для работы с микроорганизмами, которые вызывают угрожающие жизни или неподдающиеся лечению инфекции, передающиеся преимущественно аэрогенным путем (например, вирусы геморрагических лихорадок, *Yersinia pestis* и т.д.). Работа с этими микроорганизмами проводится в

БМБ III класса или персоналом, одетым в защитные костюмы, полностью закрывающие тело, с автономной подачей кислорода и положительным давлением воздуха. Производственные помещения и оборудование должны быть изолированы от других лабораторий и оснащены специальными системами вентиляции и уничтожения отходов.

В СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней» [4] предусмотрена следующая классификация лабораторий (подразделений) по УББ (с учетом российской классификации патогенов):

- базовые **УББ 1** (осуществление всех видов работ с апатогенными или патогенными биологическими агентами IV группы);
- базовые **УББ 2** (осуществление всех видов работ с ПБА III–IV группы, а также проведение работ с ПБА II группы, не сопровождающихся накоплением (культивированием или концентрированием) жизнеспособного патогена);
- изолированные **УББ 3** (осуществление всех видов работ с ПБА I (возбудитель чумы) и ПБА II группы, а также проведение работ с вирусами I группы, не сопровождающихся накоплением (культивированием или концентрированием) жизнеспособного патогена);
- максимально изолированные **УББ 4** (все виды работ с вирусами I группы патогенности, микроорганизмами, ассоциированные с клиническими проявлениями, характерными для ПБА I–II групп, таксономическое положение которых не определено, а степень опасности не изучена, экспериментальные исследования бактериальных штаммов со множественной устойчивостью к антибиотикам и химиопрепаратам; аэробиологические исследования с ПБА I–II групп).

Принципы создания микробиологических лабораторий, организации и проведения безопасной работы с ПБА

К принципам создания микробиологических лабораторий, организации и проведения безопасной работы с ПБА относятся следующие позиции:

- дифференциация микроорганизмов, с которыми проводят работы в микробиологических лабораториях, по степени патогенности (опасности) для персонала;
- организация движения воздушных и материальных потоков в микробиологических лабораториях «от менее грязного» в сторону «более грязного», исключение пересечения при этом «чистых» и «грязных» потоков;
 - зонирование помещений;
 - боксирование операций и процессов;

- герметизация наиболее опасного в смысле потенциального распространения биоматериалов оборудования;
- инактивация материалов и их потоков на границах зон;
- герметичные ограждающие строительные конструкции;
- средства и системы очистки вентиляционного и технологического воздуха (в частности, использование НЕРА фильтров высокоэффективных фильтров очистки воздуха от микрочастиц и HVAC systems системы обогрева, вентиляции и кондиционирования воздуха);
 - средства и системы обработки жидких отходов;
- биоохрана (biosecurity) комплекс мер по обеспечению сохранности инфекционных патогенов в лаборатории и недопущения их несанкционированного выноса;
- биоизоляция (biocontainment) комплекс мер по минимизации высвобождения инфекционных патогенов в окружающую среду или в другие помещения лаборатории, для этого первоначально не предназначенные;
- ССТV замкнутая система видеонаблюдения ограниченного доступа;
- СММЅ компьютерная система управления инженерным оборудованием.

Риски работы с патогенами

Каждый из вышеперечисленных пунктов создания микробиологических производств может являться источником риска инфицирования персонала и внешней среды. Вероятность риска инфицирования персонала обусловлена различными факторами — видами микроорганизмов и их опасностью для человека, характером проводимых с микроорганизмами манипуляций (культивирование, центрифугирование, аэрозолирование, заражение животных и др.), надежностью функционирования инженерных систем безопасности, соблюдением сотрудниками правил противоэпидемического режима и др. Одной из основ обеспечения биобезопасности является оценка рисков, в том числе вероятность риска инфицирования персонала, окружающей среды и т.д.

Риск — сочетание вероятности и последствий наступления событий. Риск всегда обозначает вероятностный характер исхода, при этом в основном под риском чаще всего понимают вероятность получения неблагоприятного результата (потерь), хотя его можно описать и как вероятность получить результат, отличный от ожидаемого.

Вероятность — численная мера возможности наступления некоторого события. С практической

точки зрения, это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений.

Применительно к вопросу биологической безопасности риск включает в себя **три элемента риска**:

- источник опасности;
- частота, с которой эта опасность может быть реализована (вероятность события);
- последствия, которые могут быть в результате такой реализации.

В случае, когда источником опасности является биологический агент, говорится о биологическом риске (биориск). Источники биологической опасности:

- 1) патогенные микроорганизмы, прионы, возбудители паразитарных заболеваний (опасные и особо опасные инфекции, в том числе природно-очаговые, спонтанные и «возвращающиеся»);
- 2) «новые» патогены, возникающие из непатогенных и патогенных штаммов микроорганизмов в результате мутагенеза под влиянием природных и антропогенных факторов;
- 3) продукты жизнедеятельности микроорганизмов (токсины, ферменты, биорегуляторы белковой природы, суперантигены, мини-антитела), технофильные микроорганизмы и др.;
- 4) генетически измененные организмы и генетические конструкции (вирусные векторы; вирусные ДНК, РНК положительной полярности; двуспиральные РНК; онкогены; гены, кодирующие белки-токсины);
- 5) патогены, устойчивые к используемым антимикробным препаратам;
- 6) экопатогены, повреждающие физические объекты окружающей среды.

Пространство, в котором возможно воздействие биологического агента, называется опасной зоной. Воздействие биологического агента в опасной зоне может быть пассивным или активным.

Пассивные воздействия ПБА возникают в результате контакта человека или животных с естественными источниками (природные очаги возбудителей инфекций, больной человек и т.п.) или искусственными источниками (биологические объекты) биологических опасностей.

Активные воздействия ПБА, или угрозы, возникают в результате действий человека/людей, имеющих намерение и/или способность причинить вред другим людям, животным или учреждению путем применения ПБА против них. Последствиями пребывания человека (животного, растения) в пределах опасной зоны могут явиться заболевания или смерть последних. Оценка риска — это процесс, который позволяет выбрать подходящие микробиологические практические методики, средства индивидуальной защиты (СИЗ), иммунопрофилактические мероприятия, защитное оборудование и защиту помещений, которые способны снизить вероятность (сделав риск приемлемым) или практически полностью предотвратить распространение лабораторных инфекций.

Заключение

Обеспечение биологической безопасности и строгое соблюдение требований противоэпидемического режима являются необходимыми условиями для выполнения работ с микроорганизмами I–IV групп патогенности в микробиологических лабораториях и во многом определяют успехи в области охраны здоровья населения.

На основе уже накопленных научно-практических знаний повсеместно в мире разработаны и внедрены в практику определения терминов и понятий, правила и инструкции, регламентирующие работу с микроорганизмами. Несмотря на отсутствие, к сожалению, полностью гармонизированных единых подходов (алгоритмов) к освещению вопросов биологической безопасности, национальные руководства по биобезопасности являются оплотом по предотвращению распространения опасных инфекций, совершенствованию мер физической и технической защиты потенциально опасных биологических объектов, обучению персонала и населения, повышению ответственности гражданского общества в борьбе с загрязнением окружающей среды.

Знание основ обеспечения биологической безопасности, подробное знание возможных источников заражения, знания о свойствах используемых биологических агентов, принципах функционирования защитных устройств и приспособлений, причинах возникновения аварий, а также владение навыками предупреждения и устранения таких ситуаций позволяют свести к минимуму значение «человеческого фактора» в возникновении лабораторных заражений. Это особо актуально в отношении работ с SARS-CoV-2, который проявил себя как агент, обладающий высоким репродуктивным числом (до 12) и, вследствие этого, высокой способностью к внутрибольничному и общественному распространению и выраженной контагиозностью.

Стоит подчеркнуть, что СанПин РФ являются одними из лучших рекомендаций по работе с опасными патогенами, учитывающими максимально полный перечень правил в различных сферах лабораторной практики. Поэтому при работе с SARS-CoV-2, который отличает очень высокие

контагиозность и инфекционность, следование рекомендациям СанПиН РФ, а также всем рекомендациям по противоэпидемическому режиму, представленным на сайте Роспотребнадзора [15], будет являться гарантом выполнения норм биологической

безопасности. При этом стоит не забывать и о рекомендациях ВОЗ по биологической безопасности, ссылка [2] на которые нами здесь приведена, хотя и носящих более общий характер в сравнении с российскими СанПиН.

Список источников

- 1. Основы биологической безопасности: учеб.-практ. пособие / М.Ш. Азаев, Т.А. Косогова, А.П. Агафонов, С.В. Нетёсов. 3-е изд., перераб. и доп. М.: ИНФРА, 2024. 149 с. (Высшее образование). DOI: 10.12737/2001724 (в печати).
- Laboratory biosafety manual. 4th ed. / World Health Organization. Geneva, 2020. 124 p. URL: https://www.who.int/publications/i/item/9789240011311 (дата обращения: 27.09.2023).
- 3. СП 1.2.036-95. 1.2. Эпидемиология. Порядок учета, хранения, передачи и транспортирования микроорганизмов I–IV групп патогенности. Санитарные правила (утв. постановлением Госкомсанэпиднадзора РФ от 28.08.1995 № 14) (вместе с «Положением о порядке контроля за экспортом из Российской Федерации возбудителей заболеваний (патогенов) человека, животных и растений, их генетически измененных форм, фрагментов генетического материала и оборудования, которые могут быть применены при создании бактериологического (биологического) и токсинного оружия»). URL: https://docs.cntd.ru/document/901799960?ysclid=ln2kpfft51249588110 (дата обращения: 27.09.2023).
- 4. Постановление Главного государственного санитарного врача РФ от 28.01.2021 № 4 (ред. от 25.05.2022) «Об утверждении санитарных правил и норм СанПиН 3.3686-21 "Санитарно-эпидемиологические требования по профилактике инфекционных болезней" (вместе с "СанПиН 3.3686-21. Санитарные правила и нормы...")» (Зарегистрировано в Минюсте России 15.02.2021 № 62500). URL: https://docs.cntd.ru/document/573660140?ysclid=ln2l0e4ztn621476733 (дата обращения: 27.09.2023).
- 5. Постановление Главного государственного санитарного врача РФ от 28.01.2008 № 4 (ред. от 29.06.2011) «Об утверждении санитарно-эпидемиологических правил СП 1.3.2322-08» (вместе с «СП 1.3.2322-08. Безопасность работы с микроорганизмами III—IV групп патогенности (опасности) и возбудителями паразитарных болезней. Санитарно-эпидемиологические правила») (Зарегистрировано в Минюсте РФ 21.02.2008 № 11197). URL: https://docs.cntd.ru/document/902091086?ysclid=ln213t1deu921305899 (дата обращения: 27.09.2023).
- 6. Постановление Главного государственного санитарного врача РФ от 28.11.2013 № 64 «Об утверждении санитарно-эпидемиологических правил СП 1.3.3118-13 "Безопасность работы с микроорганизмами І–ІІ групп патогенности (опасности)" (вместе с "СП 1.3.3118-13. Санитарно-эпидемиологические правила...")» (Зарегистрировано в Минюсте России 19.05.2014 № 32325). URL: https://docs.cntd.ru/document/499061798 (дата обращения: 27.09.2023).
- 7. Стандарт по оценке дезинфекции на местах в период эпидемии COVID-19. Стандарты Китайской Народной Республики в санитарной области WS/T 774-2021 (дата публикации: 20 февраля 2021 г., дата вступления в действие: 20 февраля 2021 г.). URL: https://online.zakon.kz/Document/?doc_id=33504056 (дата обращения: 27.09.2023).
- 8. Государственный стандарт безопасности пищевой продукции. Санитарные нормы к холодильной логистике пищевых продуктов. Государственный стандарт Китайской Народной Республики GB 31605 2020 (дата публикации: 11.09.2020, дата введения: 11.03.2021). URL: https://old.fsvps.gov.ru/fsvps-docs/ru/importExport/china/files/GB31605_2020.pdf (дата обращения: 27.09.2023).
- 9. International Committee on Taxonomy of Viruses: ICTV. Official Taxonomic Resources. URL: https://ictv.global/.
- 10. Current ICTV Taxonomy Release. Taxonomy Browser. URL: https://ictv.global/taxonomy.
- 11. Laboratory biosafety manual / 3-d Edition. World Health Organization. Geneva, 2004. 181 p. URL: https://www.who.int/publications/i/item/9241546506 (дата обращения: 27.09.2023).
- 12. Раздорожный А.А. Охрана труда и производственная безопасность: учеб.-метод. пособие. М.: Экзамен, 2005. 512 с.
- 13. ГОСТ 12.0.003-2015. Межгосударственный стандарт. Система стандартов безопасности труда. Опасные и вредные производственные факторы. Классификация (введен в действие приказом Росстандарта от 09.06.2016 № 602-ст). URL: https://marsbbz.ru/wp-content/uploads/2021/05/gost-12.0.003-2015-sistema-standartov-bezopasnosti-truda-ssbt.-opasnye-i-vrednye-proizvodstvennye... tekst.pdf?ysclid=ln2juge029388191934 (дата обращения: 27.09.2023).
- 14. Федеральный закон от 30.12.2020 № 492-ФЗ «О биологической безопасности в Российской Федерации». URL: http://www.kremlin.ru/acts/bank/46353 (дата обращения: 27.09.2023).
- 15. Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека : официальный сайт. URL: https://www.rospotrebnadzor.ru/.

References

- 1. Azaev, M.Sh., Kosogova, T.A., Agafonov, A.P. & Netyesov, S.V. (2024) Osnovy biologicheskoj bezopasnosti: uchebno-prakticheskoe posobie [Basics of biological safety: educational and practical guide]. 3rd ed. Moskow: INFRA. DOI: 10.12737/2001724 (in press).
- 2. World Health Organization (2020) *Laboratory biosafety manual. 4th ed.* Geneva. [Online]. Available from: https://www.who.int/publications/i/item/9789240011311 (Accessed: 27.09.2023).
- 3. SP 1.2.036-95. 1.2. Epidemiologija. Porjadok ucheta, hranenija, peredachi i transportirovanija mikroorganizmov I IV grupp patogennosti. Sanitarnye pravila (utv. Postanovleniem Goskomsanjepidnadzora RF ot 28.08.1995 N 14) (vmeste s "Polozheniem o porjadke kontrolja za eksportom iz Rossijskoj Federacii vozbuditelej zabolevanij (patogenov) cheloveka, zhivotnyh i rastenij, ih geneticheski izmenennyh form, fragmentov geneticheskogo materiala i oborudovanija, kotorye mogut byt' primeneny pri sozdanii bakteriologicheskogo (biologicheskogo) i toksinnogo oruzhija") [SP 1.2.036-95. 1.2. Epidemiology. The procedure for recording, storing, transferring and transporting microorganisms of I IV pathogenicity groups. Sanitary rules (approved by Resolution of the State Committee for Sanitary and Epidemiological Supervision of the Russian Federation dated August 28, 1995 N 14) (together with the

- "Regulations on the procedure for controlling the export from the Russian Federation of pathogens of humans, animals and plants, their genetically modified forms, fragments of genetic material and equipment, which can be used in the creation of bacteriological (biological) and toxin weapons")]. [Online]. Available from: https://docs.cntd.ru/document/901799960?ysclid=ln2kpfft5l249588110 (Accessed: 27.09.2023).
- 4. Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 28.01.2021 N 4 (red. ot 25.05.2022) "Ob utverzhdenii sanitarnyh pravil i norm SanPiN 3.3686-21 "Sanitarno-epidemiologicheskie trebovanija po profilaktike infekcionnyh boleznej" (vmeste s 'SanPiN 3.3686-21. Sanitarnye pravila i normy...") (Zaregistrirovano v Minjuste Rossii 15.02.2021 N 62500) [Resolution of the Chief State Sanitary Doctor of the Russian Federation dated January 28, 2021 N 4 (as amended on May 25, 2022) "On approval of sanitary rules and norms SanPiN 3.3686-21 "Sanitary and epidemiological requirements for the prevention of infectious diseases" (together with "SanPiN 3.3686-21. Sanitary rules and regulations...") (Registered with the Ministry of Justice of the Russian Federa-15, 62500).]. [Online]. Available https://docs.cntd.ru/docution February 2021 from: ment/573660140?ysclid=ln2l0e4ztn621476733 (Accessed: 27.09.2023).
- 5. Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 28.01.2008 N 4 (red. ot 29.06.2011) "Ob utverzhdenii sanitarno-epidemiologicheskih pravil SP 1.3.2322-08" (vmeste s "SP 1.3.2322-08. Bezopasnost' raboty s mikroorganizmami III-IV grupp patogennosti (opasnosti) i vozbuditeljami parazitarnyh boleznej. Sanitarno-epidemiologicheskie pravila") (Zaregistrirovano v Minjuste RF 21.02.2008 N 11197) [Resolution of the Chief State Sanitary Doctor of the Russian Federation dated January 28, 2008 N 4 (as amended on June 29, 2011) "On approval of sanitary and epidemiological rules SP 1.3.2322-08" (together with "SP 1.3.2322-08. Safety of working with microorganisms III IV groups of pathogenicity (danger) and pathogens of parasitic diseases. Sanitary and epidemiological rules") (Registered with the Ministry of Justice of the Russian Federation on February 21, 2008 N 11197)]. [Online]. Available from: https://docs.cntd.ru/document/902091086?ysclid=ln213t1deu921305899 (Accessed: 27.09.2023).
- 6. Postanovlenie Glavnogo gosudarstvennogo sanitarnogo vracha RF ot 28.11.2013 N 64 "Ob utverzhdenii sanitarno-epidemiologicheskih pravil SP 1.3.3118-13 "Bezopasnost' raboty s mikroorganizmami I II grupp patogennosti (opasnosti)" (vmeste s "SP 1.3.3118-13. Sanitarno-epidemiologicheskie pravila...") (Zaregistrirovano v Minjuste Rossii 19.05.2014 N 32325) [Resolution of the Chief State Sanitary Doctor of the Russian Federation dated November 28, 2013 N 64 "On approval of sanitary and epidemiological rules SP 1.3.3118-13 "Safety of working with microorganisms of I II pathogenicity (hazard) groups" (together with "SP 1.3.3118-13. Sanitary and epidemiological rules...") (Registered with the Ministry of Justice of the Russian Federation on May 19, 2014 N 32325)]. [Online]. Available from: https://docs.cntd.ru/document/499061798 (Accessed: 27.09.2023).
- 7. Standart po ocenke dezinfekcii na mestah v period epidemii COVID-19. Standarty Kitajskoj Narodnoj Respubliki v sanitarnoj oblasti WS/T 774-2021 (data publikacii: 20 fevralja 2021 g., data vstuplenija v dejstvie: 20 fevralja 2021 g.) [Standard for assessing on-site disinfection during the COVID-19 epidemic. People's Republic of China Sanitary Standards WS/T 774-2021 (Publication Date: February 20, 2021, Effective Date: February 20, 2021)]. [Online]. Available from: https://online.zakon.kz/Document/?doc_id=33504056 (Accessed: 27.09.2023).
- 8. Gosudarstvennyj standart bezopasnosti pishchevoj produkcii. Sanitarnye normy k holodil'noj logistike pishhevyh produktov. Gosudarstvennyj standart Kitajskoj Narodnoj Respubliki GB 31605 2020 (data publikacii: 11.09.2020, data vvedenija: 11.03.2021) [State food safety standard. Sanitary standards for refrigerated food logistics. State standard of the People's Republic of China GB 31605 2020 (publication date: 11.09.2020, introduction date: 11.03.2021)]. [Online]. URL: https://old.fsvps.gov.ru/fsvps-docs/ru/importExport/china/files/GB31605 2020.pdf (Accessed: 27.09.2023).
- 9. ICTV (n.d.) International Committee on Taxonomy of Viruses: ICTV. Official Taxonomic Resources [Online]. Available from: https://ictv.global/
- 10. ICTV (n.d.) Current ICTV Taxonomy Release. Taxonomy Browser. [Online]. Available from: https://ictv.global/taxonomy
- 11. World Health Organization. (2004) *Laboratory biosafety manual*. 3rd ed. Geneva. [Online]. Available from: https://www.who.int/publications/i/item/9241546506 (Accessed: 27.09.2023).
- 12. Razdorozhnyj, A.A. (2005) Ohrana truda i proizvodstvennaja bezopasnost': uchebno-metodicheskoe posobie [Labor protection and industrial safety: educational and methodological manual]. Moscow: Ekzamen.
- 13. GOST 12.0.003-2015. Mezhgosudarstvennyj standart. Sistema standartov bezopasnosti truda. Opasnye i vrednye proizvodstvennye faktory. Klassifikacija (vveden v dejstvie Prikazom Rosstandarta ot 09.06.2016 N 602-st) [GOST 12.0.003-2015. Interstate standard. System of labor safety standards. Dangerous and harmful production factors. Classification (put into effect by Order of Rosstandart dated 09.06.2016 N 602-st)]. [Online]. Available from: https://marsbbz.ru/wp-content/uploads/2021/05/gost-12.0.003-2015-sistema-standartov-bezopasnosti-truda-ssbt.-opasnye-i-vrednye-proizvodstvennye..._tekst.pdf?ysclid=ln2juge029388191934 (Accessed: 27.09.2023).
- 14. President of Russia (2020) Federal'nyj zakon ot 30.12.2020 N 492-FZ "O biologicheskoj bezopasnosti v Rossijskoj Federacii" [Federal Law of December 30, 2020 N 492-FZ "On biological safety in the Russian Federation"] [Online]. Available from: http://www.kremlin.ru/acts/bank/46353 (Accessed: 27.09.2023).
- 15. Rospotrebnadzor (n.d.) Federal'naja sluzhba po nadzoru v sfere zashhity prav potrebitelej i blagopoluchija cheloveka. Oficial'nyj sajt [Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing. Official Website] [Online]. Available from: https://www.rospotrebnadzor.ru/

Информация об авторах:

Азаев Мамедьяр Шакирович – доктор биологических наук, доцент ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (р.п. Кольцово, Новосибирская область, Россия). E-mail: azaev msh@vector.nsc.ru

Дадаева Александра Анатольевна – кандидат биологических наук, старший научный сотрудник ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (р.п. Кольцово, Новосибирская область, Россия). E-mail: dadaeva_aa@vector.nsc.ru

Косогова Татьяна Алексеевна – кандидат биологических наук, старший научный сотрудник ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (р.п. Кольцово, Новосибирская область, Россия). E-mail: kosogova@vector.nsc.ru

Агафонов Александр Петрович — доктор биологических наук, генеральный директор ФБУН ГНЦ ВБ «Вектор» Роспотребнадзора (р.п. Кольцово, Новосибирская область, Россия). E-mail: agafonov@vector.nsc.ru

Кирпичников Михаил Петрович — доктор биологических наук, профессор Московского государственного университета (Москва, Россия), академик РАН. E-mail: Kirpichnikov@inbox.ru

Нетёсов Сергей Викторович – доктор биологических наук, профессор Новосибирского государственного университета (Новосибирск, Россия), академик РАН. E-mail: svn15@hotmail.com / netesov.s@nsu.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Azaev Mamedyar Sh., Dr. Sc. (Biology), associate professor, State Research Center of Virology and Biotechnology "Vector" (Koltsovo, Novosibirsk region, Russian Federation). E-mail: azaev msh@vector.nsc.ru

Dadaeva Alexandra A., Cand. Sc. (Biology), senior researcher, State Research Center of Virology and Biotechnology "Vector" (Koltsovo, Novosibirsk region, Russian Federation). E-mail: dadaeva aa@vector.nsc.ru

Kosogova Tatiana A., Cand. Sc. (Biology), senior researcher, State Research Center of Virology and Biotechnology "Vector" (Koltsovo, Novosibirsk region, Russian Federation). E-mail: kosogova@vector.nsc.ru

Agafonov Alexander A., Dr. Sc. (Biology), General Director, State Research Center of Virology and Biotechnology "Vector" (Koltsovo, Novosibirsk region, Russian Federation). E-mail: agafonov@vector.nsc.ru

Kirpichnikov Mikhail P., Dr. Sc. (Biology), Academician of the Russian Academy of Sciences, professor, Lomonosov Moscow State University (Moscow, Russian Federation). E-mail: Kirpichnikov@inbox.ru

Netyesov Sergey V., Dr. Sc. (Biology), Academician of the Russian Academy of Sciences, professor, Novosibirsk State University (Novosibirsk, Russian Federation). E-mail: svn15@hotmail.com/netesov.s@nsu.ru

The authors declares no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 57.08

doi: 10.17223/7783494/3/3

Эпидемиологическая безопасность и ментальное здоровье в условиях пандемии коронавирусной инфекции

Владимир Павлович Чехонин¹, Вера Ивановна Гурина²

¹ Национальный медицинский исследовательский центр психиатрии и наркологии им. В.П. Сербского Минздрава России, Москва, Россия

² Национальный медицинский исследовательский центр хирургии имени А.В. Вишневского Минздрава России, Москва, Россия

¹ chekhoninnew@yandex.ru

² vera.gurina_msk@mail.ru

Аннотация. Внезапная вспышка заболевания с быстрым темпом роста заболеваемости и обширной географией распространения носит название пандемии. Последняя пандемия в современной истории объявлена Всемирной организацией здравоохранения 11 марта 2020 г. и была вызвана новым коронавирусом SARS-CoV-2. Течение заболевания COVID-19, в первую очередь, характеризуется поражением дыхательной системы и развитием острого респираторного синдрома. При этом появление неврологической симптоматики наблюдается более чем в 30% случаев заражения, что свидетельствует о нейротропности вируса. Помимо иммунологических механизмов, воздействие вируса на нервную систему опосредовано рядом стрессогенных факторов, которые сопровождают течение COVID-19.

Ключевые слова: вирусная инфекция, COVID-19, SARS-CoV-2, психическое здоровье, посттравматическое стрессовое расстройство

Для цитирования: Чехонин В.П., Гурина В.И. Эпидемиологическая безопасность и ментальное здоровье в условиях пандемии коронавирусной инфекции // Технологии безопасности жизнедеятельности. 2023. № 3. С. 27–34. doi: 10.17223/7783494/3/3

Original article doi: 10.17223/7783494/3/3

Epidemiological safety and mental health during the coronavirus pandemic

Vladimir P. Chekhonin¹, Vera I. Gurina²

Federal Medical Research Center for Psychiatry and Narcology named after V.P. Serbsky of the Ministry of Health of the Russian Federation, Moscow, Russian Federation
 National Medical Research Center of Surgery named after A.V. Vishnevsky of the Ministry of Health of the Russian Federation, Moscow, Russian Federation

 chekhoninnew@yandex.ru
 vera.gurina_msk@mail.ru

Abstract. A sudden eruption of a disease with a rapid growth rate of incidence and a wide geographic spread is called a pandemic. The last pandemic in modern history was declared by the World Health Organization on March 11, 2020, and was caused by the new coronavirus SARS-CoV-2. The course of the COVID-19 disease is primarily characterized by damage to the respiratory system and the development of acute respiratory syndrome. Moreover, the appearance of neurological symptoms is observed in more than 30% of cases of infection, which indicates the neurotropism of the virus. In addition to immunological mechanisms, the effect of the virus on the nervous system is mediated by a number of stress factors that accompany the course of the COVID-19 disease.

Keywords: virus infection, COVID-19, SARS-CoV-2, mental health, posttraumatic stress disorder

For citation: Chekhonin, V.P. & Gurina, V.I. (2023) Epidemiological safety and mental health during the coronavirus pandemic. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 27–34. doi: 10.17223/7783494/3/3 (In Russian).

Введение

В декабре 2019 г. серия заражений пневмонией неясной этиологии возникла в г. Ухань Китайской Народной Республики. Клиническое течение заболевания имело отчетливое сходство с вирусными пневмониями. По итогу ряда проведенных исследований было заявлено об открытии нового коронавируса SARS-CoV-2, который и явился причиной внезапной вспышки заболевания COVID-19 (Coronavirus disease 2019) [1].

Случаи тяжелого острого респираторного синдрома (ТОРС), вызванного коронавирусом, были зафиксированы еще в 2002 и 2003 гг., а в 2012 г. регистрировались первые случаи ближневосточного респираторного синдрома (БВРС), которые также были обусловлены коронавирусной инфекцией [2, 3].

Течение COVID-19 также сопровождается преимущественным поражением дыхательной системы, однако более чем у трети пациентов наблюдалось развитие неврологической симптоматики [4].

Страх болезни и смерти, страх неизвестности являлись основными стрессовыми факторами, которые сопровождали течение пандемии COVID-19. Угрозу для психического состояния также представляла социальная изоляция, возникшая на фоне отсутствия трудовой и учебной деятельности.

Развитие иммунной реакции организма в ответ на инвазию вируса SARS-CoV-2 в совокупности с социальными факторами стресса является основой формирования психических нарушений [5].

В обзоре освещены особенности строения вируса SARS-CoV-2 и основы патогенеза вирусной инфекции, представлены наиболее типичные клинические проявления заболевания, а также рассмотрены наиболее распространенные нейропсихические нарушения, обусловленные как непосредственным воздействием вируса на нервную систему, так и сопутствующими социально-экономическими явлениями.

Структура вируса SARS-CoV-2

Коронавирусы принадлежат отряду Nidovirales семейства согопаviridae, к двум подсемействам которого относятся *Coronavirinae* и *Torovirinae*. В свою очередь, подсемейство *Coronavirinae* подразделяется на четыре рода: альфа-, бета-, гамма- и дельта-коронавирусы [6].

Структура генома SARS-CoV-2 сходна с SARS-CoV приблизительно на 79% [7]. SARS-CoV-2 в соответствии со своей структурой относится к роду бетакоронавирусов. Как и другие коронавирусы, SARS-CoV-2 состоит из положительно-полярной одноцепочечной нити РНК (рибонуклеиновая кислота)

[(+) ssRNA]. Геномная РНК имеет кэп-структуру на 5'-конце (5'-сар), нетранслируемую область на 3'-конце (3'UTR), за которым следует поли-(A)-хвост. Размер генома SARS-CoV-2 менее 30 кб содержит 14 открытых рамок считывания (ORF) и кодирует неструктурные протеины (NSP), необходимые для репликации вируса, структурные протеины, включая спайковый белок (S), белок оболочки (E), мембранный белок (М), нуклеокапсидный белок (N), а также вспомогательные белки. Первые две ORF содержат до 65% вирусного генома и кодируют неструктурные полипротеины pp1a и pp1ab. Остальные ORF кодируют структурные протеины и вспомогательные белки.

Наиболее важную роль играет трансмембранный белок S, детерминируя связывание вирусной оболочки с рецепторами ангиотензинпревращающего фермента 2 (АСЕ2), которые экспрессируются на поверхности клеток-мишеней. Спайковый белок представлен двумя функциональными единицами: рецептор-связывающей субъединицей S1, которая включает рецептор-связывающий домен (RBD), и субъединицей S2, которая отвечает за слияние мембран вируса и клетки-хозяина [8].

Рецепторы АСЕ2 экспрессируются на поверхности эпителиальных клеток дыхательных путей, а также в других тканях организма, включая почки, желудочно-кишечный тракт, сердце, печень, кровеносные сосуды [9].

В головном мозге рецепторы АСЕ2 присутствуют непосредственно на нейронах, а также на глиальных клетках [10].

Патогенез вирусной инфекции SARS-CoV-2

Клетками-мишенями для SARS-CoV-2 являются эпителиальные клетки верхних дыхательных путей, имеющие рецепторы ACE2.

Спайковый белок распознает тропные клетки хозина и связывается с рецептором на поверхности клетки. После связывания субъединицы S1-RBD с АСЕ2 рецептором начинается процесс слияния вирусной оболочки с мембраной клетки. Происходит праймирование S-белка под воздействием трансмембранной сериновой протеазы (TMPRSS2) клетки-мишени с последующим расщеплением субъединиц S1 и S2, что необходимо для проникновения вируса внутрь клетки и инфицирования [11].

После высвобождения вирусного генома происходит трансляция репликазы коронавируса из геномной РНК с образованием полипротеинов ppla и pplab, которые затем расщепляются протеазами на 16 неструктурных белков. Один из белков, известный как РНК-зависимая РНК-полимераза (RdRp), в совокупности с

другими неструктурными белками составляют комплекс репликации и транскрипции. Шаблоном для новой геномной РНК служит «минус»-цепь РНК. Все структурные и вспомогательные белки транслируются из субгеномной РНК. Трансляция структурных белков S, E, М происходит в эндоплазматическом ретикулуме, а вирусная геномная РНК и структурный протеин N формируют нуклеокапсид в цитоплазме. Дальнейшее формирование новых вирусных частиц происходит в структурах аппарата Гольджи. Далее вирусные частицы, заключенные в везикулы, высвобождаются во внеклеточное пространство путем экзоцитоза [7, 12].

Клиническая картина COVID-19

Продолжительность инкубационного периода вирусной инфекции SARS-CoV-2 составляет до 2 недель. К наиболее распространенным симптомам относятся лихорадка, кашель, миалгия и патологическая утомляемость. Более чем у половины пациентов наблюдается развитие одышки, в случае тяжелого течения заболевания возможно развитие острого респираторного дистресс-синдрома (ОРДС). К другим менее распространенным симптомам относятся продуктивный кашель, головная боль, кровохарканье [1].

Частота желудочно-кишечных проявлений доходит до 40%, основными являются тошнота и рвота, диарея, плохой аппетит, боли в животе [13].

Также течение COVID-19 ассоциировано с гиперкоагуляционными нарушениями и повышенным риском тромбообразования [14].

Наиболее распространенными симптомами, указывающими на вовлечение нервной системы, являются головная боль, тошнота и рвота, миалгия, головокружение, расстройство вкуса, а также ослабленное обоняние [4].

При осложненном течении заболевания могут развиваться более тяжелые неврологические проявления, такие как острое нарушение мозгового кровообращения, нарушение сознания, атаксия, судороги [15].

Диагностика COVID-19

Полимеразная цепная реакция (ПЦР) с обратной транскрипцией является основным диагностическим методом COVID-19, который основан на выявлении вирусных нуклеиновых кислот. Специфичность теста достигает 100%, демонстрируя при этом высокую чувствительность и диагностическую точность [16].

Компьютерная томография (КТ) грудной клетки является наиболее распространенным методом лучевой диагностики COVID-19 ассоциированной пневмонии.

Типичными рентгенологическими признаками COVID-19 являются множественные периферически расположенные участки «матового стекла» с уплотнением легочной ткани или без него, в случае тяжелого течения визуализируются очаговые тени. К другим рентгенологическим симптомам относятся тракционные бронхоэктазы, утолщение стенки бронхов, ретикулярные изменения, расширение сосудов [17].

Рентгенологическая картина при исследовании легких может различаться в зависимости от тяжести течения заболевания и его продолжительности. Поэтому компьютерную томографию (КТ) легких допустимо использовать для оценки эффективности лечения или прогрессирования заболевания [18].

КТ легких имеет высокую чувствительность, приблизительно 95%, однако средняя специфичность при этом составляет около 84% [16].

В исследовании Xie et al. у 5 пациентов (приблизительно 3%) с отрицательным результатом ПЦР были выявлены признаки заболевания по данным КТ легких при первичной диагностике. Тем не менее, при повторном проведении анализа методом ПЦР, у всех пациентов диагноз был подтвержден, что говорит о высокой диагностической точности метода [17].

Влияние COVID-19 на психическое здоровье

Респираторные вирусные заболевания, в частности, вызванные коронавирусом, ассоциированы как с острым, так и с отсроченным воздействием на центральную нервную систему пациентов [19, 20].

Изучение влияния коронавирусной инфекции на нервную систему, а также возможных последствий началось во время вспышек САРС и БВРС. Нейропсихическая симптоматика, обусловленная COVID-19, в значительной степени совпадает с другими коронавирусными заболеваниями. У пациентов с COVID-19 в острой стадии часто наблюдались делирий и ажитация. Другими распространенными симптомами, сопровождающими течение заболевания, являются депрессия, тревожность, бессонница, патологическая утомляемость [21].

Нарушение функции центральной нервной системы (ЦНС) опосредовано как прямым воздействием вирусной инфекции, так и за счет иммунного ответа. Обладая нейротропностью, коронавирус проникает в нервную систему и напрямую может вызывать повреждения нейронов. Иммунный ответ в свою очередь активирует локальную и системную продукцию цитокинов, хемокинов и других медиаторов воспаления. Развитие нейровоспаления в случае «цитокинового шторма» при иммунном ответе также может являться причиной возникновения психиатрической симптоматики [22].

Группой исследователей Mazza et al. был выполнен психиатрический скрининг пациентов, перенесших COVID-19, спустя месяц после выздоровления, а также проведена корреляция с уровнем маркеров воспалительного ответа - С-реактивным белком, индексом соотношения нейтрофилов и лимфоцитов, индексом соотношения лимфоцитов и моноцитов, индексом системного иммунного воспаления. Для психопатологической оценки были использованы индивидуальные опросники. Более половины участников исследования отмечали хотя бы одно психическое расстройство, среди которых были посттравматическое расстройство, депрессия, тревожность, бессонница, обсессивно-компульсивная симптоматика. При этом не было выявлено корреляции между уровнем воспалительных маркеров и проявлением психических нарушений, за исключением индекса системного иммунного воспаления (SII), который был ассоциирован с проявлениями депрессии и тревожностью. Несмотря на более низкий исходный уровень воспалительных маркеров, женщины были более подвержены тревожности и депрессии. Пациенты с ранее диагностированными ментальными нарушениями имели более тяжелые проявления психопатологических симптомов при аналогичном уровне воспалительных маркеров. У пациентов молодого возраста чаще встречались нарушения сна и депрессии. Таким образом, отсроченные психические последствия могут быть вызваны не только иммунным ответом на вирусную инфекцию, но и сопутствующими факторами стресса, включая изоляцию, переживания о смертельной опасности вируса, страх заразить окружающих [23].

У ряда пациентов, перенесших COVID-19, при более длительном наблюдении сохранялись специфические симптомы, в частности, изменение общего физического состояния, психологические нарушения, снижение когнитивной функции [24].

Учитывая широкое распространение, отсроченные нейропсихические проявления COVID-19 на сегодняшний день признаны основными симптомами постковидного синдрома, и включают в себя посттравматическое стрессовое расстройство (ПТСР), депрессию, тревожность, а также когнитивные нарушения [25–27].

В продолжение своего первого исследования, группой авторов Mazza et al. был проведен повторный психиатрический скрининг пациентов, перенесших COVID-19. Спустя 6 и 12 месяцев после выздоровления 44 и 45% пациентов соответственно отметили у себя хотя бы одно психопатологическое проявление. Наиболее распространенным была названа патологическая усталость. Как и в предыдущем исследовании, женщины и пациенты с анамнезом психиатрических заболеваний имели более высокие

баллы по всем оцениваемым психическим проявлениям. Среди участников исследования 10% обращались к специалистам по психическим заболеваниям, при этом 28% получали психофармакологическую терапию [28].

Массовые вспышки заболеваний требуют изучения не только с точки зрения их влияния на физическое здоровье пациентов, но также для оценки вероятных последствий для психического здоровья отдельно взятого индивидуума и социальной среды в целом, потому как течение пандемии ассоциировано с высоким уровнем стресса и множеством психотравмирующих факторов. Врачи должны быть осведомлены о возникающих ментальных нарушениях, их проявлениях, предрасполагающих факторах для оказания своевременной помощи и эффективной профилактики [29].

Наиболее типичными проявлениями ментальных нарушений являются появление тревожности, нарушений сна, развитие депрессии, развитие посттравматического стрессового расстройства (ПТСР) [30].

Последствия COVID-19 для психического здоровья варьируют в различных слоях населения. Влияние пандемии и ее последствий особенно остро выражены в уязвимых социальных группах, в частности, у людей с ранее диагностированными психическими расстройствами [31].

Введенные ограничения на передвижение, социальная изоляция, а также повышенная нагрузка на медицинские службы могут служить препятствиями для обеспечения необходимой психиатрической помощи и снижать приверженность пациентов к терапии [32].

В исследовании Pan et al. оценивалось субъективное ощущение пациентов о влиянии пандемии COVID-19 на их психическое здоровье, а также проведена оценка депрессивных симптомов, тревожности, чувств одиночества и беспокойства по шкалам с использованием опросников. В исследование были включены пациенты с диагностированными ранее нарушениями, включая депрессию, тревожность, обсессивно-компульсивное расстройство (ОКР), а также участники без ментальных нарушений. Среди пациентов с ранее выявленными нарушениями преобладали женщины, люди молодого возраста, люди с более низким уровнем образования, живущие одни, а также нуждающиеся в психиатрическом лечении или получающие его. Результаты показали, что пациенты с большим количеством диагностированных и хронических расстройств субъективно ощущали более значительное влияние пандемии на психическое здоровье, испытывали чувство страха и трудности борьбы со стрессом. Как до, так и во время пандемии COVID-19 у пациентов с депрессией, тревожностью и ОКР наблюдались более выраженные показатели симптомов в соответствии со шкалами. Однако у этих пациентов не выявлено ухудшений во время пандемии, в то время как у участников исследования без диагностированных ранее ментальных нарушений наблюдалось усиление симптоматики [33].

Пациенты, страдающие биполярным расстройством (БАР), представляли особо уязвимую группу среди пациентов с психическими расстройствами, так как травмирующие события оказывают выраженное отрицательное влияние на течение заболевания [34].

Исследование Carmassi et al. было направлено на оценку симптомов депрессии и тревожности у пациентов с диагностированным БАР во время пандемии. В группе с наиболее острыми проявлениями преобладали женщины, пациенты, столкнувшиеся с финансовыми и профессиональными трудностями, а также пациенты с депрессивными эпизодами в анамнезе. Пациенты, родственники которых были подвержены риску осложнений от COVID-19, были отнесены в группу с нарастающей симптоматикой за время наблюдения. В эту группу также были отнесены пациенты с низким уровнем занятости, пациенты, которые имели эпизоды мании в анамнезе и уже проходили лечение в психиатрическом стационаре [35].

Следует также обратить внимание, что течение заболевания находится в тесной зависимости от суточных биоритмов и режима сна, которые зачастую нарушаются в условиях социальной изоляции или при дистанционной работе [36].

Таким образом, даже не испытывая прямого воздействия вирусной инфекции, пациенты склонны к развитию острых психопатологических реакций на фоне косвенных последствий пандемии, таких как страх заражения, социальная изоляция, финансовые трудности, внезапное изменение каждодневной активности [35].

Развитие ментальных нарушений зачастую было обусловлено вынужденной социальной изоляцией даже в отсутствие вирусной инфекции.

Обзорное исследование Camargo et al. было направлено на оценку симптомов депрессии в условиях изоляции. В подавляющем большинстве исследований авторами было отмечено возникновение или обострение депрессивной симптоматики, хотя в ряде случаев это наблюдалось только в начале периода изоляции. Симптоматика развивалась чаще и протекала тяжелее у пациентов с депрессивными расстройствами в анамнезе, тем не менее практически четверть пациентов без отягощенного анамнеза заявили о развитии симптомов депрессии. Наиболее распространенными симптомами являлись тревога, чувство одиночества, озабоченность благополучием близких родственников. Среди пациентов молодого возраста

наибольшую обеспокоенность вызывало ухудшение памяти и когнитивных функций. Пациенты с депрессией отмечали увеличение длительности сна и нахождения в кровати, они потребляли большее количество сладостей, алкоголя, наркотических препаратов, а также проводили больше времени за просмотром телевизора, социальных сетей и компьютерными играми.

Большинство исследований отметили женский пол в качестве фактора риска развития депрессивных симптомов независимо от наличия ранее выявленных психических расстройств. Практически половина исследований, включенных в обзор, также отметили молодой возраст в качестве фактора риска. Наиболее эффективными защитными факторами являлись совместное проживание хотя бы с одним человеком, а также наличие физической активности в период локдауна [37].

Заключение

Пандемия COVID-19 является наиболее глобальным событием в современной истории, критические последствия которой нашли отражение во всех сферах жизни [38].

Пандемия была сопряжена с множеством стрессовых факторов и травмирующих событий: болезнь, потеря близких, социальная изоляция, экономические трудности.

Неблагоприятное влияние пандемии отразилось на психическом здоровье всех групп населения, включая людей без установленных ранее психиатрических диагнозов. Некоторыми факторами, предрасполагающими к возникновению депрессии, являлись низкий уровень образования, низкий доход, проживание в одиночестве, нетрудоустроенность в период пандемии. Эти факторы демонстрируют, что в условиях социально-экономической нестабильности на фоне пандемии определенные слои населения более предрасположены к развитию ментальных нарушений.

Оценка актуальных данных необходима для дальнейшего создания профилактических мер, направленных на закрытие специфических потребностей уязвимых групп населения. Следует отметить, что большой вклад в улучшение психического состояния в период изоляции вносило поддержание социальных связей, а также наличие социальной поддержки.

Своевременная диагностика и, при необходимости, медикаментозное лечение также требуются пациентам, входящим в группы риска. Особое внимание следует уделить скринингу психического состояния в отсроченном периоде после перенесенного COVID-19.

Список источников

- 1. Huang C, Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan // China Lancet. 2020. Vol. 395. P. 497–506. doi: 10.1016/S0140-6736(20)30183-5
- 2. Ksiazek T.G., Erdman D., Goldsmith C.S. et al. A novel coronavirus associated with severe acute respiratory syndrome // The New England Journal of Medicine. 2003. Vol. 348. P. 1953–1966. doi: 10.1056/NEJMoa030781
- 3. De Groot R.J., Baker S.C., Baric R.S. et al. Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group // Journal of Virology. 2013. Vol. 87 (14). P. 7790–7792. doi: 10.1128/JVI.01244-13
- 4. Montalvan V., Lee J., Bueso T. et al. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review // Clinical neurology and neurosurgery. 2020. Vol. 194. Art. no. 105921. P. 1–7. doi: 10.1016/j.clineuro.2020.105921
- 5. Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms // Brain, Behavior, and Immunity. 2020. Vol. 87. P. 34–39. doi: 10.1016/j.bbi.2020.04.027
- 6. Phan M.V.T., Ngo Tri T., Hong Anh P. et al. Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains // Virus Evolution. 2018. Vol. 4 (2). Art. no. vey035. P. 1–12. doi: 10.1093/ve/vey035
- 7. *Хайтович А.Б.* Коронавирусы (структура генома, репликация) // Крымский журнал экспериментальной и клинической медицины. 2020. Т. 10 (4). С. 78–95.
- 8. Abduljali J, Abduljali B. Epidemiology, genome and clinical features of the pandemic SARS-CoV-2: a recent view // New Microbes and New Infections. 2020. Vol. 35. Art. no. 100672. P. 1–8. doi: 10.1016/j.nmni.2020.100672
- 9. Devaux C.A., Rolain J.M., Raoult D. ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multiorgan failure, and COVID-19 disease outcome // Journal of Microbiology, Immunology and Infection. 2020. Vol. 53. P. 425–435. doi: 10.1016/j.jmii.2020.04.015
- 10. Mahalakshmi A.M., Ray B., Tuladhar S. et al. Does COVID-19 contribute to development of neurological disease? // Immunity, inflammation and disease. 2021. Vol. 9 (1). P. 48–58. doi: 10.1002/iid3.387
- 11. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor // Cell. 2020. Vol. 181 (2). P. 271–280. doi: 10.1016/j.cell.2020.02.052
- 12. Haixia Su, Yechun Xu, Hualiang Jiang. Drug discovery and development targeting the life cycle of SARS-CoV-2 // Fundamental Research. 2021. Vol. 1. P 1–54. doi: 10.1016/j.fmre.2021.013
- 13. J-J Z., Dong X., Cao Y.Y. et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China // Allergy. 2020. Vol. 75. P. 1730–1741. doi: 10.1111/all.14238
- 14. Danzi G.B., Loffi M., Galeazzi G. et al. Acute pulmonary embolism and COVID-19 pneumonia: a random association? // European Heart Journal. 2020. Vol. 41 (19). P. 1858–1858. doi: 10.1093/eurheartj/ehaa254
- 15. Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China // JAMA neurology. 2020. Vol. 77. P. 683–690. doi: 10.1001/jamaneurol.2020.1127
- 16. Filchakova O., Dossym D., Ilyas A. et al. Review of COVID-19 testing and diagnostic methods. // Talanta. 2022. Vol. 244. Art. no. 123409. P. 1–32. doi:10.1016/j.talanta.2022.123409
- 17. Xie X., Zhong Z., Zhao W. et al. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing // Radiology. 2020. Vol. 296. P. E41–E45. doi: 10.1148/radiol.2020200343
- 18. Pan F., Ye T., Sun P. et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia // Radiology. 2020. Vol. 295. P. 715–721. doi: 10.1148/radiol.2020200370
- 19. Bohmwald K., Galvez N.M.S., Ríos M., Kalergis A.M. Neurologic alterations due to respiratory virus infections // Frontiers in Cellular Neuroscience. 2018. Vol. 12. Art. no. 386. P. 1–15. doi: 10.3389/fncel.2018.00386
- 20. Olgun Yıldızeli S., Kocakaya D., Saylan Y.H. et al. Anxiety, Depression, and Sleep Disorders After COVID-19 Infection // Cureus. 2023. Vol. 15 (7). Art. no. e42637. P. 1–11. doi: 10.7759/cureus.42637
- 21. Rogers J.P., Chesney E., Oliver D. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic // Lancet Psychiatry. 2020. Vol. 7 (7). P. 611–627. doi: 10.1016/S2215-0366(20)30203-0
- 22. Wu Y., Xu X., Chen Z. Nervous system involvement after infection with COVID-19 and other coronaviruses // Brain, behavior, and immunity. 2020. Vol. 87. P. 18–22. doi: 10.1016/j.bbi.2020.03.031
- 23. Mazza M.G., De Lorenzo R., Conte C. et al. COVID-19 BioB Outpatient Clinic Study group; Benedetti F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors // Brain, behavior, and immunity. 2020. Vol. 89. P. 594–600. doi: 10.1016/j.bbi.2020.07.037
- 24. *Huang C., Huang L., Wang Y. et al.* 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study // Lancet. 2021. Vol. 397 (10270). P. 220–232. doi: 10.1016/S0140-6736(20)32656-8
- 25. Nalbandian A., Sehgal K., Gupta A. et al. Post-acute COVID-19 syndrome // Nature Medicine. 2021. Vol. 27. P. 601–615. doi: 10.1038/s41591-021-01283-z
- 26. Saucier J., Comeau D., Robichaud G.A. et al. Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome // Frontiers in Neurology. 2023. Vol. 14. Art. no. 1221266. P. 1–11. doi: 10.3389/fneur.2023.1221266
- 27. García-Sánchez C., Calabria M., Grunden N. et al. Neuropsychological deficits in patients with cognitive complaints after COVID-19 // Brain and Behavior. 2022. Vol. 12 (3). Art. no. e2508. P. 1–11. doi: 10.1002/brb3.2508
- 28. Mazza M.G., Palladini M., De Lorenzo R. et al. COVID-19 One-year mental health outcomes in a cohort of COVID-19 survivors // Journal of psychiatric research. 2021. Vol. 145. P. 118–124. doi: 10.1016/j.jpsychires.2021.11.031
- 29. Rajkumar R.P. COVID-19 and mental health: A review of the existing literature // Asian journal of psychiatry. 2020. Vol. 52. Art. no. 102066. P. 1–5. doi: 10.1016/j.ajp.2020.102066

- 30. Vindegaard N., Benros M.E. COVID-19 pandemic and mental health consequences: Systematic review of the current evidence // Brain, behavior, and immunity. 2020. Vol. 89. P. 531–542. doi: 10.1016/j.bbi.2020.05.048
- 31. Yao H., Chen J.H., Xu Y.F. Patients with mental health disorders in the COVID-19 epidemic // Lancet Psychiatry. 2020. Vol. 7. Art. no. e21. P. 1. doi: 10.1016/S2215-0366(20)30090-0
- 32. Bojdani E., Rajagopalan A., Chen A. et al. COVID-19 pandemic: impact on psychiatric care in the United States // Psychiatry research. 2020. Vol. 289. P. 1–6. doi: 10.1016/j.psychres.2020.113069
- 33. Pan K.Y., Kok A.A.L., Eikelenboom M. et al. The mental health impact of the COVID-19 pandemic on people with and without depressive, anxiety, or obsessive-compulsive disorders: a longitudinal study of three Dutch case-control cohorts // Lancet Psychiatry. 2021. Vol. 8 (2). P. 121–129. doi: 10.1016/S2215-0366(20)30491-0
- 34. *Aldinger F., Schulze T.G.* Environmental factors, life events, and trauma in the course of bipolar disorder // Psychiatry and clinical neurosciences. 2017. Vol. 71 (1). P. 6–17. doi: 10.1111/pcn.12433
- 35. Carmassi C., Cordone A., Bertelloni C.A. et al. A longitudinal study of post-traumatic stress, depressive, and anxiety symptoms trajectories in subjects with bipolar disorder during the COVID-19 pandemic // European Psychiatry. 2022. Vol. 65 (1). Art. no. e8. P. 1–10. doi: 10.1192/j.eurpsy.2021.2247
- 36. Carta M.G., Ouali U., Perra A. et al. Living with bipolar disorder in the time of Covid-19: biorhythms during the severe lockdown in Cagliari, Italy, and the moderate lockdown in Tunis, Tunisia // Frontiers in Psychiatry. 2021. Vol. 12. Art. no. 634765. P. 1–9. doi: 10.3389/fpsyt.2021.634765
- 37. Camargo D., Navarro-Tapia E., Pérez-Tur J. et al. Relationship between COVID-19 Pandemic Confinement and Worsening or Onset of Depressive Disorders // Brain Sciences. 2023. Vol. 13 (6). Art. no. 899. P. 1–19. doi: 10.3390/brainsci13060899
- 38. Gerotziafas G.T., Catalano M., Theodorou Y. et al. Scientific Reviewer Committee. The COVID-19 Pandemic and the Need for an Integrated and Equitable Approach: An International Expert Consensus Paper // Thrombosis and Haemostasis. 2021. Vol. 121 (8). P. 992-1007. doi: 10.1055/a-1535-8807

References

- 1. Huang, C, Wang, Y, Li, X, et al. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan. *China Lancet*. 395. pp. 497–506. doi: 10.1016/S0140-6736(20)30183-5.
- 2. Ksiazek, T.G., Erdman, D., Goldsmith, C.S., et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. *The New England Journal of Medicine*. 348. pp. 1953–1966. doi: 10.1056/NEJMoa030781.
- 3. De Groot, R.J., Baker, S.C., Baric, R.S., et al. (2013) Commentary: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. *Journal of Virology*. 87(14). pp. 7790–7792. doi: 10.1128/JVI.01244-13.
- 4. Montalvan, V., Lee, J., Bueso, T., et al. (2020) Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. *Clinical Neurology and Neurosurgery*. 194. Art. No. 105921. pp. 1–7. doi: 10.1016/j.clineuro.2020.105921
- 5. Troyer, E.A., Kohn, J.N. & Hong, S. (2020) Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. *Brain, Behavior, and Immunity*. 87. pp. 34–39. doi: 10.1016/j.bbi.2020.04.027
- 6. Phan, M.V.T., Ngo Tri, T., Hong Anh, P., et al. (2018) Identification and characterization of Coronaviridae genomes from Vietnamese bats and rats based on conserved protein domains. *Virus Evolution*. 4(2). Art. No. vey035. pp. 1–12. doi: 10.1093/ve/vey035
- 7. Khaitovich, A.B. (2020) Coronavirus (genome structure, replication). *Crimea Journal of Experimental and Clinical Medicine*. 10(4), pp. 78–95.
- 8. Abduljali, J. & Abduljali, B. (2020) Epidemiology, genome and clinical features of the pandemic SARS-CoV-2: a recent view. *New Microbes and New Infections*. 35. Art. No. 100672. pp. 1–8. doi: 10.1016/j.nmni.2020.100672
- 9. Devaux, C.A., Rolain, J.M. & Raoult, D. (2020) ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multiorgan failure, and COVID-19 disease outcome. *Journal of Microbiology, Immunology and Infection*. 53. pp. 425–435. doi: 10.1016/j.jmii.2020.04.015
- 10. Mahalakshmi, A.M., Ray, B., Tuladhar, S. et al. (2021) Does COVID-19 contribute to development of neurological disease? *Immunity, inflammation and disease*. 9(1). pp. 48–58. doi: 10.1002/iid3.387
- 11. Hoffmann, M., Kleine-Weber, H., Schroeder, S., et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell.* 181(2). pp. 271–280. doi: 10.1016/j.cell.2020.02.052
- 12. Haixia, S., Yechun, X. & Hualiang, J. (2021) Drug discovery and development targeting the life cycle of SARS-CoV-2. Fundamental Research. 1. pp. 1–54. doi: 10.1016/j.fmre.2021.01.013
- 13. J-J, Z., Dong, X., Cao, Y.Y., et al. (2020) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Allergy*. 75. pp. 1730–1741. doi: 10.1111/all.14238
- 14. Danzi, G.B., Loffi, M., Galeazzi, G., et al. (2020) Acute pulmonary embolism and COVID-19 pneumonia: a random association? *European Heart Journal*. 41(19). pp. 1858–1858. doi: 10.1093/eurheartj/ehaa254
- 15. Mao, L., Jin, H., Wang, M., et al. (2020) Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. *JAMA Neurology*. 77. pp. 683–690. doi: 10.1001/jamaneurol.2020.1127
- 16. Filchakova, O., Dossym, D., Ilyas, A., et al. (2022) Review of COVID-19 testing and diagnostic methods. *Talanta*. 244. Art. No. 123409. pp. 1–32. doi: 10.1016/j.talanta.2022.123409
- 17. Xie, X., Zhong, Z., Zhao, W., et al. (2020) Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. *Radiology*. 296. pp. E41–E45. doi: 10.1148/radiol.2020200343
- 18. Pan, F., Ye, T., Sun, P., et al. (2020) Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. *Radiology*. 295. pp. 715–721. doi: 10.1148/radiol.2020200370
- 19. Bohmwald, K., Galvez, N.M.S., Ríos, M. & Kalergis, A.M. (2018) Neurologic alterations due to respiratory virus infections. *Frontiers in Cellular Neuroscience*. 12. Art. No. 386. pp. 1–15. doi: 10.3389/fncel.2018.00386

- 20. Olgun Yıldızeli, S., Kocakaya, D., Saylan, Y.H., et al. (2023) Anxiety, Depression, and Sleep Disorders After COVID-19 Infection. *Cureus*. 15(7). Art. No. e42637. pp. 1–11. doi: 10.7759/cureus.42637
- 21. Rogers, J.P., Chesney, E. & Oliver, D. (2020) Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. *Lancet Psychiatry*. 7(7). pp. 611–627. doi: 10.1016/S2215-0366(20)30203-0
- 22. Wu, Y., Xu, X. & Chen, Z. (2020) Nervous system involvement after infection with COVID-19 and other coronaviruses. *Brain, Behavior, and Immunity*. 87. pp. 18–22. doi: 10.1016/j.bbi.2020.03.031
- 23. Mazza, M.G., De Lorenzo, R., Conte, C., et al. (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. *Brain, Behavior, and Immunity.* 89. pp. 594–600. doi: 10.1016/j.bbi.2020.07.037
- 24. Huang, C., Huang, L., Wang, Y., et al. (2021) 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. *Lancet*, 397(10270), pp. 220–232. doi: 10.1016/S0140-6736(20)32656-8
- 25. Nalbandian, A., Sehgal, K., Gupta, A., et al. (2021) Post-acute COVID-19 syndrome. *Nature Medicine*. 27. pp. 601–615. doi: 10.1038/s41591-021-01283-z
- 26. Saucier, J., Comeau, D., Robichaud, G.A., et al. (2023) Reactive gliosis and neuroinflammation: prime suspects in the pathophysiology of post-acute neuroCOVID-19 syndrome. *Frontiers in Neurology.* 14. Art. No. 1221266. pp. 1–11. doi: 10.3389/fneur.2023.1221266
- 27. García-Sánchez, C., Calabria, M., Grunden, N., et al. (2022) Neuropsychological deficits in patients with cognitive complaints after COVID-19. *Brain and Behavior*. 12(3). Art. No. e2508. pp. 1–11. doi: 10.1002/brb3.2508
- 28. Mazza, M.G., Palladini, M, De Lorenzo, R., et al. (2021) COVID-19 One-year mental health outcomes in a cohort of COVID-19 survivors. *Journal of Psychiatric Research*. 145. pp. 118–124. doi: 10.1016/j.jpsychires.2021.11.031
- 29. Rajkumar, R.P. (2020) COVID-19 and mental health: A review of the existing literature. *Asian Journal of Psychiatry*. 52. Art. No. 102066. pp. 1–5. doi: 10.1016/j.ajp.2020.102066
- 30. Vindegaard, N. & Benros, M.E. (2020) COVID-19 pandemic and mental health consequences: Systematic review of the current evidence. *Brain, Behavior, and Immunity*. 89. pp. 531–542. doi: 10.1016/j.bbi.2020.05.048
- 31. Yao, H, Chen, J.H. & Xu, Y.F. (2020) Patients with mental health disorders in the COVID-19 epidemic. *Lancet Psychiatry*. 7. Art. No. e21. doi: 10.1016/S2215-0366(20)30090-0
- 32. Bojdani, E., Rajagopalan, A., Chen, A., et al. (2020) COVID-19 pandemic: impact on psychiatric care in the United States. *Psychiatry Research*. 289. pp. 1–6. doi: 10.1016/j.psychres.2020.113069
- 33. Pan, K.Y., Kok, A.A.L., Eikelenboom, M., et al. (2021) The mental health impact of the COVID-19 pandemic on people with and without depressive, anxiety, or obsessive-compulsive disorders: a longitudinal study of three Dutch case-control cohorts. *Lancet Psychiatry*. 8(2). pp. 121–129. doi: 10.1016/S2215-0366(20)30491-0
- 34. Aldinger, F. & Schulze, T.G. (2017) Environmental factors, life events, and trauma in the course of bipolar disorder. *Psychiatry and Clinical Neurosciences*. 71(1). pp. 6–17. doi: 10.1111/pcn.12433
- 35. Carmassi, C., Cordone, A., Bertelloni, C.A., et al. (2022) A longitudinal study of post-traumatic stress, depressive, and anxiety symptoms trajectories in subjects with bipolar disorder during the COVID-19 pandemic. *European Psychiatry*. 65(1). Art. No. e8. pp. 1–10. doi: 10.1192/j.eurpsy.2021.2247
- 36. Carta, M.G., Ouali, U., Perra, A. et al. (2021) Living with bipolar disorder in the time of Covid-19: biorhythms during the severe lockdown in Cagliari, Italy, and the moderate lockdown in Tunis, Tunisia. *Frontiers in Psychiatry*. 12. Art. No. 634765. pp. 1–9. doi: 10.3389/fpsyt.2021.634765
- 37. Camargo, D., Navarro-Tapia, E., Pérez-Tur, J., et al. (2023) Relationship between COVID-19 Pandemic Confinement and Worsening or Onset of Depressive Disorders. *Brain Sciences*. 13(6). Art. No. 899. pp. 1–19. doi: 10.3390/brainsci13060899
- 38. Gerotziafas, G.T., Catalano, M., Theodorou, Y. et al. (2021) Scientific Reviewer Committee. The COVID-19 Pandemic and the Need for an Integrated and Equitable Approach: An International Expert Consensus Paper. *Thrombosis and Haemostasis*. 121(8). pp. 992–1007. doi: 10.1055/a-1535-8807

Информация об авторах:

Чехонин Владимир Павлович — доктор медицинских наук, профессор, академик РАН, руководитель Отдела фундаментальной и прикладной нейробиологии Национального медицинского исследовательского центра психиатрии и наркологии им. В.П. Сербского Минздрава России (Москва, Россия). E-mail: chekhoninnew@yandex.ru

Гурина Вера Ивановна — кандидат медицинских наук, младший научный сотрудник отдела лучевой диагностики Национального медицинского исследовательского центра хирургии имени А.В. Вишневского Минздрава России (Москва, Россия). E-mail: vera.gurina msk@mail.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Chekhonin Vladimir P., Dr. Sc. (Medicine), professor, Academician of the Russian Academy of Sciences, head of the Department of Fundamental and Applied Neurobiology, Federal Medical Research Center for Psychiatry and Narcology named after V.P. Serbsky of the Ministry of Health of the Russian Federation (Moscow, Russian Federation). E-mail: chekhoninnew@yandex.ru

Gurina Vera I., Cand. Sc. (Medicine), junior research fellow, X-ray diagnostics department, National Medical Research Center of Surgery named after A. Vishnevsky of the Ministry of Health of the Russian Federation (Moscow, Russian Federation). E-mail: vera.gurina msk@mail.ru

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 678.026.3: 667.6 doi: 10.17223/7783494/3/4

Исследование антибактериальных свойств лакокрасочных защитных покрытий, содержащих биоцидные наночастицы неспецифического действия против высокопатогенных штаммов бактерий

Анна Олеговна Прокопчук ¹, Ольга Владимировна Бакина², Марат Израильевич Лернер³, Елизавета Владимировна Пикущак⁴, Александр Юрьевич Алексеев⁵, Анна Сергеевна Скорупо⁶, Елена Сергеевна Евплонова⁷, Николай Васильевич Яковлев⁸, Александр Борисович Ворожцов⁹

```
^{1,2,3,4,9} Национальный исследовательский Томский государственный университет, Томск, Россия ^{5,6} Федеральный исследовательский центр фундаментальной и трансляционной медицины, Новосибирск, Россия ^{7,8} AO «Объединение "Ярославствие краски"» ^{1} bio_1979@mail.ru ^{2} ayalekseev@frcftm.ru ^{3} ntc2@yarkraski.ru
```

Аннотация. Нанотехнологии все чаще привлекаются в качестве современных методов борьбы с патогенными угрозами в сфере здравоохранения. Наночастицы оксидов некоторых металлов способны оказывать антибактериальное действие, в то же время оставаясь безопасными для клеток и тканей организма человека. В данной работе проводили исследование антибактериальных свойств лакокрасочных защитных покрытий, содержащих бикомпонентные наночастицы ZnO-Ag, относительно высокопатогенных штаммов бактерий. В результате проведенных испытаний на поверхности лакокрасочного материала и лакокрасочного состава, включающих наночастицы ZnO-Ag, наблюдалась полная инактивация высокопатогенных штаммов бактерий. Таким образом, исследуемые покрытия обладают антибактериальными свойствами согласно Р 4.2.3.676-20 и могут быть использованы как средства неспецифической защиты от угрозы распространения патогенных организмов.

Ключевые слова: наночастицы ZnO-Ag, антибактериальные покрытия, лакокрасочные материалы и составы, антибактериальная активность, биологическая безопасность

Благодарности: исследования поддержаны Министерством науки и высшего образования $P\Phi$, соглашение № 075-11-2021-036 от 25.06.2021.

Для цитирования: Прокопчук А.О., Бакина О.В., Лернер М.И., Пикущак Е.В., Алексеев А.Ю., Скорупо А.С., Евплонова Е.С., Яковлев Н.В., Ворожцов А.Б. Исследование антибактериальных свойств лакокрасочных защитных покрытий, содержащих биоцидные наночастицы неспецифического действия против высокопатогенных штаммов бактерий // Технологии безопасности жизнедеятельности. 2023. № 3. С. 35–41. doi: 10.17223/7783494/3/4

Original article doi: 10.17223/7783494/3/4

The study of the antibacterial properties of protective paint coatings based on the biocide nanoparticles with non-specific effect on highly pathogenic bacterial strains

Anna O. Prokopchuk¹, Olga V. Bakina², Marat I. Lerner³, Elizaveta V. Pikushchak⁴, Alexander Yu. Alekseev⁵, Anna S. Skorupo⁶, Elena S. Evplonova⁷, Nikolai V. Yakovlev⁸, Alexander B. Vorozhtsov⁹

```
1, 2, 3, 4, 9 National Research Tomsk State University, Tomsk, Russian Federation
5, 6 Federal Research Center for Basic and Translational Medicine, Novosibirsk, Russian Federation

7, 8 JSC "Association "Yaroslavskie kraski", Yaroslavl, Russian Federation

1 bio_1979@mail.ru

2 ayalekseev@frcftm.ru

3 ntc2@yarkraski.ru
```

Abstract. Nanotechnologies are increasingly being used as modern methods of combating pathogenic microorganisms in the healthcare sector. Nanoparticles of some metal oxides can have an antibacterial effect, while at the same time remaining safe for cells and tissues of the human body. In this work, we conducted a study of the antibacterial properties of paint and varnish protective coatings created on the basis of a concentrate of ZnO-Ag nanoparticles of relatively highly pathogenic strains of bacteria. As a

result, complete inactivation of highly pathogenic strains of bacteria was observed on the surface of the paint and varnish material and paint and varnish composition, including a concentrate of ZnO-Ag nanoparticles. Thus, the coatings under study have antibacterial properties in accordance with R 4.2.3.676-20 and can be used as a means of non-specific protection against the threat of the spread of pathogenic organisms.

Keywords: ZnO-Ag nanoparticles, antibacterial coatings, paintwork materials and compositions, antibacterial activity, biosafety

Acknowledgments: This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation under agreement No 075-11-2021-036 of June 25, 2021.

For citation: Prokopchuk, A.O., Bakina, O.V., Lerner, M.I., Pikushchak, E.V., Alekseev, A.Yu., Skorupo, A.S., Evplonova, E.S., Yakovlev, N.V. & Vorozhtsov, A.B. (2023) The study of the antibacterial properties of protective paint coatings based on the biocide nanoparticles with non-specific effect on highly pathogenic bacterial strains. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 35–41. doi: 10.17223/7783494/3/4 (In Russian).

Введение

Устойчивость к противомикробным препаратам официально признана серьезной проблемой Всемирной организацией здравоохранения (ВОЗ), которая так же призывает к принятию серьезных мер по обеспечению сохранности существующих антибактериальных средств, разработке новых антибактериальных средств и снижению заболеваемости инфекциями [1]. Разработка новых антибиотиков развивается по стратегии более узкой специализации к таргетному патогенному организму. Однако зачастую такие антибиотики за короткое время становятся неэффективными, а патогенные организмы, против которых они созданы, еще более неуязвимыми за счет способности к изменению метаболизма [2-5]. Кроме того, разработка новых антибиотиков – длительный и дорогостоящий процесс. За последние 30 лет было разработано лишь несколько новых классов антибиотиков, и вероятность появления нового класса в ближайшее время невелика [6]. Следовательно, кроме антибиотиков в классическом понимании следует использовать и другие меры борьбы, такие как предотвращение контаминации и распространения устойчивых бактерий в окружающей среде, а поиск антибактериальных средств представляет чрезвычайную важность не только с фундаментальной, но и с практической точки зрения.

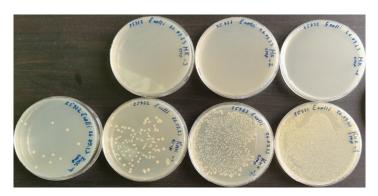
Использование неспецифических средств для борьбы с распространением патогенных организмов является эффективным методом сдерживания распространения инфекций, так как не вызывает устойчивости в силу более грубого механизма воздействия на клетки бактерий. К таким относятся дезинфицирующие средства, поверхности и покрытия с антибактериальными свойствами. Большой недостаток средств дезинфекции состоит в их токсическом действии основных реагентов на организм человека. Развитие нанотехнологий позволило получить новые материалы с новыми свойствами, например, в процессе изучения наночастиц (НЧ) металлов и оксидов металлов

были открыты их антибактериальные свойства наравне с отсутствием токсичности в определенных концентрациях. Уникальные свойства НЧ обусловлены их высоким отношением поверхности к объему, малыми размерами и возможностью модификации, что позволяет использовать нанокомпозиты в различных отраслях. Оксиды металлов Cu, Fe, Al, Ті являются перспективными в отношении разработок противомикробных средств как обладающие неспецифическими биоцидными свойствами [7–12], которые обеспечиваются в основном за счет способности к образованию активных форм кислорода (АФК), что приводит к повреждению оболочек бактерий [7, 13]. Наиболее активным генератором АФК является оксид цинка ZnO – полупроводник *n*-типа, химически стабилен, обладает улучшенными фотоэлектронными свойствами, биоцидностью, низкой токсичностью и невысокой стоимостью [14]. Модификация ZnO наночастицами серебра (НЧ Ag) усиливает антибактериальный эффект за счет биоцидных свойств самого Ад [15-17]. Создание материалов на основе биоцидных НЧ ZnO-Ag позволяет получать новые материалы с антибактериальными свойствами. Данная работа посвящена исследованию антибактериальных свойств лакокрасочных защитных покрытий на основе биоцидных наночастиц ZnO-Ag.

Материалы и методы

Создание и изучение покрытий. Синтез НЧ ZnO-Ag осуществляли совместным электрическим взрывом двух свитых проволок серебра и цинка. Метод одноступенчатый, экологически безопасный, с производительностью около 200 г НЧ в час. На основе полученных НЧ подготавливали водный концентрат, содержащий 30% масс. НЧ, как описано в патенте (патент № 2763930). Далее концентрат вводили в основу для лакокрасочного материала (ЛКМ) и лакокрасочного состава (ЛКС). Массовая доля НЧ в единице объема ЛКМ/ЛКС составляла 0,5%. Размер и форму НЧ проводили методом просвечивающей

электронной микроскопии с помощью электронного микроскопа JEM 100 CX II (JEOL, Япония). Фазовый состав изучали на рентгеновском дифрактометре XRD-6000 (Shimadzu, Япония) на СиКα-излучении с использованием базы данных Crystal Impact. Размер агломератов НЧ определяли методом седиментации частиц под действием центробежных сил на дисковой центрифуге CPS DC 24000 (США).


Определение антибактериальных свойств покрытий. Для нанесения на испытываемую поверхность использовали свежие суточные культуры патогенных бактерий (Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028, Pseudomonas aeruginosa ATCC 27853, Haemophilus influenzae ATCC 10211, Klebsiella pneumoniae ATCC 13883, Acinetobacter baumannii), выращенных в жидких рекомендованных питательных средах (мясопептонный бульон (МПБ) и

мясопептонный агар (МПА); шоколадный бульон и шоколадный агар) при рекомендованной температуре. Инокулюм (содержание клеток 9,0-9,3 lg наносили на поверхность покрытий КОЕ/мл) ЛКМ/ЛКС, подсушивали в течение 20 мин, чашки накрывали и инкубировали еще 40 мин. Затем экстрагировали нанесенные ранее бактерии в 1 мл физраствора 30 с. Отбирали с поверхности дозатором и переносили в пробирку объемом 1,5 мл, сухим стерильным ватным тампоном с наконечником собирали остатки жидкости, наконечник тампона помещали в те же пробирки, палочку аппликатора отрывали. 10-кратные разведения жидкости наносили на плотную рекомендованную питательную среду для определения количества (титра) микроорганизмов. Пример результата выросших колоний представлен на рис. 1, 2.

Рис. 1. Видимые колонии бактерий штамма *Acinetobacter baumannii* в эксперименте. HK – ЛКМ с HЧ ZnO-Ag; КНК – контроль ЛКМ без HЧ; -1, -2, -3, -4 – степень десятикратного разведения

Fig. 1. Visible colonies of bacteria of the *Acinetobacter baumannii* strain in the experiment. HK – paintwork materials with ZnO-Ag NPs. KHK – control of paintwork materials without NPs; -1, -2, -3, -4 – degree of tenfold dilution

Рис. 2. Видимые колонии бактерий штамма *Escherichia coli* ATCC 25922 в эксперименте. НК – ЛКМ с НЧ ZnO-Ag; КНК – контроль ЛКМ без НЧ; -1, -2, -3, -4 – степень десятикратного разведения

Fig. 2. Visible colonies of bacteria the *Escherichia coli* strain ATCC 25922 in the experiment. HK – paintwork materials with ZnO-Ag NPs. KHK – control of paintwork materials without NPs; -1, -2, -3, -4 – degree of tenfold dilution

Через сутки подсчитывали число колоний, полученные данные обрабатывались методами вариационной статистики [18].

Результаты и обсуждение

Ранее с помощью электронной микроскопии был исследован концентрат биоцидных НЧ. По данным

ПЭМ, НЧ ZnO-Ag в составе концентрата имеют преимущественно ограненную форму размером до 100 нм и морфологию «янус»-наночастиц (двухкомпонентных) с чёткой границей раздела фаз внутри частицы. Темные мелкие округлые участки представлены Ag, светлые, более крупные фрагменты угловатой формы — ZnO. По данным ренгенофазового анализа в НЧ, содержащих 12 ат.% и более Ag присутствуют только фазы ZnO (JCPDS № 96-900-4179) и Ag (JCPDS № 65-2871), прочие примеси отсутствовали (рис. 3) [19]. Для совмещения НЧ и акриловой основы и устранения пыления порошковых НЧ был подготовлен водный концентрат, содержащий 30%

масс НЧ. Далее полученные НЧ в виде концентрата были введены в основы для ЛКМ и ЛКС при высокоскоростном перемешивании при помощи дисольвера. Содержание НЧ в образцах составило 0,5% масс.

После введения концентрата НЧ в основы ЛКМ и ЛКС подвергли электронно-микроскопическому исследованию в масштабе сотни микрометров, что позволило установить в образцах покрытий относительно однородное распределение наночастиц (рис. 4, A). Следует отметить, что определение элементов Zn и Ag практически соответствует их введенному содержанию (рис. 4, E).

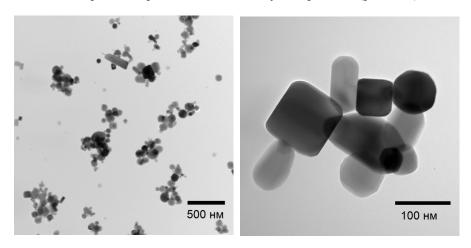
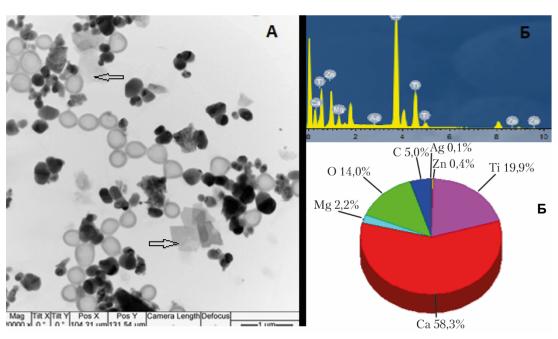



Рис. 3. ПЭМ-изображения частиц ZnO-Ag при различном увеличении

Fig. 3. PEM-images of ZnO-Ag particles at different magnifications

Рис. 4. ПЭМ-изображения образца ЛКМ. Стрелками отмечены НЧ (A), спектр и количественный элементный анализ (вес.%) слоя ЛКМ

Fig. 4. PEM-images of a paintwork material sample, arrows indicate NP (*A*), spectrum and quantitative elemental analysis (wt.%) of the paintwork layer

Исследование антибактериальных свойств покрытий ЛКМ и ЛКС проводилось в соответствии с Р 4.2.3.676-20 «Методы лабораторных исследований и испытаний дезинфекционных средств для оценки их эффективности и безопасности» на наиболее распространенных штаммах бактерий разных групп патогенности. В группу исследования входили: кишечная палочка Escherichia coli ATCC 25922, сальмонелла (вызывают расстройство ЖКТ) Salmonella typhimurium ATCC 14028, синегнойная палочка (расвнутрибольничная пространенная инфекция) Pseudomonas aeruginosa ATCC 27853, золотистый стафилококк (вызывает широкий спектр заболеваний от кожных поражений до пневмонии) Staphylococcus aureus ATCC 25923, гемофильная палочка (возбудитель бактериальной пневмонии) Haemophilus influenzae ATCC 10211, клебсиелла пневмония (является частой причиной внутрибольничных инфекций) Klebsiella pneumoniae ATCC 13883, ацинетобактер (вызывает внебольничный бронхиолит и трахеобронхит) Acinetobacter baumannii. Сравнение образцов ЛКМ и ЛКС с контрольными образцами (основа без введения концентрата ZnO-Ag) показало значительные отличия. После экспозиции 1 ч количество бактерий в образцах ЛКМ и ЛКС варьировало от 4,09 lg

КОЕ/мл до 5,89 lg КОЕ/мл, тогда как образцы ЛКМ и ЛКС показали 100% антибактериальную активность.

Антибактериальные свойства серебра известны еще с древних времён. Современные исследования доказывают, что Ag в виде ионов или HЧ усиливает активность уже известных антимикробных препаратов, а также веществ с уже установленными антимикробными свойствами [20]. НЧ Ag в составе исследуемых нами покрытий аналогично усиливает действие HЧ ZnO, что было доказано в исследованиях полученных ранее HЧ ZnO-Ag [19]. В частности, О. Бакиной и др. (2022), было показано, что присутствие НЧ Ag положительно влияет на фотокаталитическую активность и антибактериальные и еще ряд свойств ZnO-Ag.

Таким образом, в нашем исследовании лакокрасочных защитных покрытий на основе биоцидных НЧ установлено, что введение НЧ ZnO-Ag в состав ЛКМ и ЛКС придаёт им антибактериальные свойства. Наблюдается полное отсутствие роста патогенных микроорганизмов, в том числе при нанесении максимально возможной концентрации патогенных бактерий при экспозиции в 1 ч. Тогда как на поверхности контрольных образцов ЛКМ и ЛКС без НЧ сохраняются жизнеспособные патогенные бактерии в высоких концентрациях.

Список источников

- World Health Organization, Global Action Plan on Antimicrobial Resistance. 2015. URL: https://www.who.int/antimicrobial-resistance/global-action-plan/en/
- 2. Andersson D.I., Balaban N.Q., Baquero F., Courvalin P. et al. Antibiotic resistance: turning evolutionary principles into clinical reality // FEMS Microbiology Reviews. 2020. Vol. 44 (2). P. 171–188. doi: 10. 1093/femsre/fuaa001
- 3. *Qian M., Xu D., Wang J., Zaeim D., Han J., Qu D.* Isolation, antimicrobial resistance and virulence characterization of Salmonella spp. from fresh foods in retail markets in Hangzhou, China // PLoS One. 2023. Vol. 18 (10). Art. № e0292621. doi: 10.1371/journal.pone.0292621
- 4. *Park J.-H., Kim Y.-J., Binn K., Seo K.-H.* Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant // Ecotoxicology and Environmental Safety. 2018. Vol. 149. P. 36–42. doi: 10.1016/j.ecoenv.2017.10.071
- 5. *Christaki E., Marcou M., Tofarides A.* Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence // Journal of molecular evolution. 2020. Vol. 88 (1). P. 26–40. doi: 10.1007/s00239-019-09914-3
- Coates A.R.M., Halls G., Hu Y.M. Novel classes of antibiotics or more of the same? // British Journal Pharmacology. 2011. Vol. 163. P. 184–194. doi: 10.1111/j.1476-5381.2011.01250.x
- 7. Dutta R.K., Nenavathu B.P., Gangishetty M.K., Reddy A.V. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation // Colloids Surfaces B: Biointerfaces. 2012. Vol. 94 (1). P. 143–150. doi: 10.1016/j.colsurfb.2012.01.046
- Sadiq I.M., Chandrasekaran N., Mukherjee A. Studies of effect of TiO₂ nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis // Current Nanosciense. 2010. Vol. 6. P. 381–387. doi: 10.2174/157341310791658973
- 9. Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A. Cellular response to metal oxide nanoparticles in bacteria // Journal of Biomedical Nanotechnology. 2011. Vol. 7. P. 102–103. doi:10.1166/jbn.2011.1222
- Kumar A., Pandey A.K., Singh S.S., Shanker R., Dhawan A. Engineered ZnO and TiO₂ nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli // Free Radical Biology and Medicine. 2011. Vol. 51. P. 1872–1881. doi: 10.1016/j.freeradbiomed.2011.08.025
- 11. Ansari M.A., Khan H.M., Khan A.A., Cameotra S.S., Saquib Q., Musarrat J. Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules // Journal of Applied Microbiology. 2014. Vol. 116. P. 772–783. doi: 10.1111/jam.12423
- 12. Agarwala M., Choudhury B., Yadav R.N.S. Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens // Indian Journal of Microbiology. 2014. Vol. 54. P. 365–368. doi: 10.1007/s12088-014-0462-z
- 13. Xie Y., He Y., Irwin P.L., Jin T., Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni // Applied and Environmental Microbiology. 2011. Vol. 77 (7). P. 2325–2331. doi: 10.1128/AEM.02149-10
- 14. Ali A., Phull A.R., Zia M. Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns // Nanotechnology Reviews. 2018. Vol. 5 (7). P. 413–441. doi: 10.1515/ntrev-2018-0067

- 15. Sondi I., Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria // Journal of Colloid and Interface Science. 2004. Vol. 275. P. 177–182.
- 16. Morones J.R., Elechiguerra J.L., Camacho A., Holt K. et al. The bactericidal effect of silver nanoparticles // Nanotechnology. 2005. Vol. 16 (10). P. 2346–2353. doi: 10.1088/0957-4484/16/10/059
- 17. Jung W.K., Koo H.C., Kim K.W., Shin S. et al. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli // Applied and environmental microbiology. 2008. Vol. 74 (7). P. 2171–2178. doi: 10.1128/AEM.02001-07
- 18. *Закс Л.* Статистическое оценивание. М.: Статистика, 1976. 598 с.
- Бакина О.В., Чжоу В.Р., Иванова Л.Ю., Казанцев С.О. Влияние содержания металлического серебра в наночастицах ZnO-Ag на их фотохимическую и антибактериальную активность // Журнал неорганической химии. 2023. Т. 68, № 3. С. 401–410. doi: 10.31857/S0044457X22601249
- 20. Dove A.S., Dzurny D.I., Dees W.R., Qin N. et al. Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria // Frontiers in Microbiology. 2023. Vol. 13. Art. № 1064095. doi: 10.3389/fmicb.2022.1064095

References

- 1. World Health Organization. (2015) Global Action Plan on Antimicrobial Resistance. [Online]. Available from: https://www.who.int/antimicrobial-resistance/global-action-plan/en/
- 2. Andersson, D.I., Balaban, N.Q., Baquero, F., Courvalin, P., et al. (2020) Antibiotic resistance: turning evolutionary principles into clinical reality. *FEMS Microbiology Reviews*. 44(2). pp. 171–188. doi: 10. 1093/femsre/fuaa001
- 3. Qian, M., Xu, D., Wang, J., Zaeim, D., Han, J. & Qu, D. (2023) Isolation, antimicrobial resistance and virulence characterization of Salmonella spp. from fresh foods in retail markets in Hangzhou, China. *PLoS One.* 18(10). Art. № e0292621. doi: 10.1371/journal.pone.0292621
- 4. Park, J-H., Kim, Y-J., Binn, K. & Seo, K-H. (2018) Spread of multidrug-resistant Escherichia coli harboring integron via swine farm waste water treatment plant. *Ecotoxicology and Environmental Safety*. 149. pp. 36–42. doi: 10.1016/j.ecoenv.2017.10.071
- 5. Christaki, E., Marcou, M. & Tofarides, A. (2020) Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. *Journal of Molecular Evolution*. 88(1), pp. 26–40. doi: 10.1007/s00239-019-09914-3
- 6. Coates, A.R.M., Halls, G., Hu, Y.M. (2011) Novel classes of antibiotics or more of the same? *British Journal Pharmacology*. 163. pp. 184–194. doi: 10.1111/j.1476-5381.2011.01250.x
- 7. Dutta, R.K., Nenavathu, B.P., Gangishetty, M.K. & Reddy, A.V. (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. *Colloids Surfaces B: Biointerfaces.* 94(1). pp. 143–150. doi: 10.1016/j.colsurfb.2012.01.046
- Sadiq, I.M., Chandrasekaran, N. & Mukherjee, A. (2010) Studies of effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. *Current Nanosciense*. 6. pp. 381–387. doi: 10.2174/157341310791658973
- 9. Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R. & Dhawan, A. (2011) Cellular response to metal oxide nanoparticles in bacteria. *Journal of Biomedical Nanotechnology.* 7. pp. 102–103. doi: 10.1166/jbn.2011.1222
- Kumar, A., Pandey, A.K., Singh, S.S., Shanker, R & Dhawan, A. (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radical Biology and Medicine. 51. pp. 1872–1881. doi: 10.1016/j.freeradbiomed.2011.08.025
- 11. Ansari, M.A., Khan, H.M., Khan, A.A., Cameotra, S.S., Saquib, Q. & Musarrat, J. (2014) Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. *Journal of Applied Microbiology*. 116. pp. 772–783. doi: 10.1111/jam.12423
- 12. Agarwala, M., Choudhury, B. & Yadav, R.N.S. (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. *Indian Journal of Microbiology.* 54. pp. 365–368. doi: 10.1007/s12088-014-0462-z
- 13. Xie, Y., He, Y., Irwin, P.L., Jin, T. & Shi, X. (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. *Applied and Environmental Microbiology*. 77(7). pp. 2325–2331. doi: 10.1128/AEM.02149-10
- Ali, A., Phull, A.R. & Zia, M. (2018) Elemental zinc to zinc nanoparticles: is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. *Nanotechnology Reviews*. 5(7). pp. 413–441. doi: 10.1515/ntrev-2018-0067
- 15. Sondi, I. & Salopek-Sondi, B. (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. *Journal of Colloid and Interface Science*. 275. pp. 177–182.
- Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., et al. (2005) The bactericidal effect of silver nanoparticles. *Nanotechnology*. 16(10). pp. 2346–2353. doi: 10.1088/0957-4484/16/10/059
- 17. Jung, W.K., Koo, H.C., Kim, K.W., Shin, S., et al. (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. *Applied and environmental microbiology*. 74(7). pp. 2171–2178. doi: 10.1128/AEM.02001-07
- 18. Zaks, L. (1976) Statisticheskoe ocenivanie [Statistical estimation]. Moscow: Statistika.
- 19. Bakina, O.V., Chzhou, V.R., Ivanova, L.Yu. & Kazantsev, S.O. (2023) Vliyanie soderzhaniya metallicheskogo serebra v nanochastitcah ZnO–Ag na ih photohimicheskuyu i antibkterialinuyu aktivnost' [Effect of metallic silver content in ZnO–Ag nanoparticles on their photochemical and antibacterial activity]. Zhurnal neorganicheskoy khimii Journal of Inorganic Chemistry. 68(3). pp. 401–410. doi: 10.31857/S0044457X22601249.
- 20. Dove, A.S., Dzurny, D.I., Dees, W.R., Qin, N., et al. (2023) Silver nanoparticles enhance the efficacy of aminoglycosides against antibiotic-resistant bacteria. *Frontiers in Microbiology*. 13. Art. № 1064095. doi: 10.3389/fmicb.2022.1064095.

Информация об авторах:

Прокопчук Анна Олеговна – кандидат биологических наук, старший научный сотрудник Томского государственного университета (Томск, Россия). E-mail: bio 1979@mail.ru

Бакина Ольга Владимировна – доктор технических наук, старший научный сотрудник Томского государственного университета (Томск, Россия). E-mail: ovbakina@ispms.ru

Лернер Марат Израильевич – доктор технических наук, главный научный сотрудник Томского государственного университета (Томск, Россия). E-mail: lerner@ispms.ru

Пикущак Елизавета Владимировна – кандидат физико-математичеких наук, старший научный сотрудник Томского государственного университета (Томск, Россия). E-mail: pikushchak@gmail.com

Алексеев Александр Юрьевич – кандидат биологических наук, руководитель лаборатории экспериментальной биологии патогенных микроорганизмов НИИ вирусологии ФИЦ ФТМ (Новосибирск, Россия). E-mail: ayalekseev@frcftm.ru

Скорупо Анна Сергеевна – лаборант НИИ вирусологии ФИЦ ФТМ (Новосибирск, Россия). E-mail: skorupo.anna@yandex.ru Евплонова Елена Сергеевна – начальник Научно-технического центра АО «Объединение "Ярославские краски"» (Ярославль, Россия). E-mail: ntc2@yarkraski.ru

Яковлев Николай Васильевич – генеральный директор АО «Объединение "Ярославские краски"» E-mail: yakovlev@yarkraski.ru

Ворожцов Александр Борисович – доктор физико-математических наук, профессор, заведующий лабораторией Томского государственного университета (Томск, Россия). E-mail: abv1953@mail.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Prokopchuk Anna O., Cand. Sc. (Biology), senior researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: bio 1979@mail.ru

Bakina Olga V., Dr. Sc. (Engineering), senior researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: ovbakina@ispms.ru

Lerner Marat I., Dr. Sc. (Engineering), chief researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: lerner@ispms.ru

Pikushchak Elizaveta V., Cand. Sc. (Physics and Mathematics), senior researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: pikushchak@gmail.com

Alekseev Alexander Yu., Cand. Sc. (Biology), Head of the Laboratory of Experimental Biology of Pathogenic Microorganisms, Research Institute of Virology, Federal Research Center for Medical and Technical Medicine (Novosibirsk, Russian Federation). E-mail: avalekseev@frcftm.ru

Skorupo Anna S., laboratory assistant, Research Institute of Virology, Federal Research Center for Medical and Technical Medicine (Novosibirsk, Russian Federation). E-mail: skorupo.anna@yandex.ru

Evplonova Elena S., Head of the Scientific and Technical Center, JSC "Association "Yaroslavskie kraski" (Yaroslavl, Russian Federation). E-mail: ntc2@yarkraski.ru

Yakovlev Nikolai V., general director, JSC "Association "Yaroslavskie kraski" (Yaroslavl, Russian Federation). E-mail: yakovlev@yarkraski.ru

Vorozhtsov Alexander B., Dr. Sc. (Physics and Mathematics), professor, head of laboratory, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: abv1953@mail.ru

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 338.439.02/6 doi: 10.17223/7783494/3/5

Продовольственная безопасность России в условиях новых вызовов и санкционного давления

Ирина Михайловна Донник¹, Ольга Александровна Рущицкая²

¹ Национальный исследовательский центр «Курчатовский институт», Москва, Россия ^{1,2} Уральский государственный аграрный университет, Екатеринбург, Россия ¹ ktqrjp7@yandex.ru ² olgaru-arbitr@mail.ru

Аннотация. В статье приводится анализ состояния системы продовольственной безопасности Российской Федерации с учетом пороговых значений, обозначенных в стратегическом документе, определяющем отечественную агропродовольственную политику, — Доктрине продовольственной безопасности. Очерчен круг проблем, связанных с влиянием экономических санкций на действующий организационно-экономический механизм агропромышленного комплекса страны. Выявлены изменения расходов на питание по десяти децильным группам населения. При проведении аналитической экспертизы установлено, что у беднейших групп домохозяйств расходы на питание сократились в сравнении с более обеспеченными слоями населения в 1,2 раза по отношению к анализируемому периоду. Предложены приоритетные научно обоснованные меры, направленные на совершенствование проводимой агропродовольственной политики в нашей стране.

Ключевые слова: продовольственная безопасность, санкции, доктрина, агропродовольственная политика, агропромышленный комплекс, продовольствие, домохозяйства, меры, механизмы

Для цитирования: Донник И.М., Рущицкая О.А. Продовольственная безопасность России в условиях новых вызовов и санкционного давления // Технологии безопасности жизнедеятельности. 2023. № 3. С. 42–48. doi: 10.17223/7783494/3/5

Original article doi: 10.17223/7783494/3/5

Russia's food security in the face of new challenges and sanctions pressure

Irina M. Donnik¹, Olga A. Ruschitskaya²

¹ Kurchatov Institute, Moscow, Russian Federation
^{1,2} Ural State Agrarian University, Ekaterinburg, Russian Federation
¹ ktqrjp7@yandex.ru
² olgaru-arbitr@mail.ru

Abstract. The article provides an analysis of the state of the Russian Federation food security system, taking into account the threshold values indicated in the strategic document defining the domestic agro-food policy - the Food Security Doctrine. The range of problems associated with the impact of economic sanctions on the current organizational and economic mechanism of the country's agro-industrial complex is outlined. Changes in food expenditures for ten decile groups of the population were revealed. When conducting an analytical examination, it was found that the poorest groups of households reduced their food expenses by 1.2 times in comparison with the more affluent segments of the population compared to the analyzed period. Priority scientifically substantiated measures aimed at improving the ongoing agro-food policy in Russia are proposed.

Keywords: food security, sanctions, doctrine, agro-food policy, agro-industrial complex, food, households, measures, mechanisms

For citation: Donnik, I.M. & Ruschitskaya, O.A. (2023) Russia's food security in the face of new challenges and sanctions pressure. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 42–48. doi: 10.17223/7783494/3/5 (In Russian).

Цель исследования — выявить основные факторы (в том числе санкционного характера), влияющие на систему обеспечения продовольственной безопасности, и предложить конкретные меры по устранению их дестабилизирующего воздействия.

Материалы и методы исследования. Проводились анализ и синтез статистических материалов, связанных с продовольственным обеспечением населения Российской Федерации, размещенных в открытом доступе, а также применялись монографический,

абстрактно-логический, экономико-статистический и системно-аналитический методы исследования.

Научная новизна заключается в обосновании новых положений обеспечения продовольственной безопасности России в условиях новых вызовов и санкционного давления.

Введение

Научные исследования в сфере обеспечения продовольственной безопасности ведутся в 187 странах мира. Продовольственная безопасность в них в основном рассматривается с позиций влияния на экологию и вооружённое насилие [2].

Продовольственная безопасность является фундаментом обеспечения государственной безопасности, так как её обеспечение предполагает не только удовлетворение базовых потребностей в пище населения, обеспечение процесса здоровьесбережения, но и формирует значительный сектор экономики страны, имеет высокое значение в сфере обеспечения занятости населения [16].

Обеспечение продовольственной безопасности предполагает учёт влияния многих факторов, основными из которых являются демографические, социальные, производственные, экономические, техникотехнологические, инфраструктурные и др. [1, 15].

Сегодня в российском аграрном секторе экономики существуют проблемы, усиливающие влияние внешнеэкономических санкций: низкое качество отечественного продовольствия, высокая доля расходов на продовольственные товары в структуре расходов населения, существенная нехватка инвестиций в модернизацию сельскохозяйственного производства, низкая эффективность использования земельных сельскохозяйственных ресурсов, отсутствие отечественного высокопроизводительного специализированного оборудования [4], а также проблемы цифровой трансформации экономического взаимодействия, приведшие к реализации его новой формы [13].

В развитие теоретических и методологических основ продовольственной безопасности государства внесли заметный вклад современные ученые-исследователи академики РАН И.Г. Ушачев, С.Ю. Глазьев, А.В. Петриков и др.

Так, С.Ю. Глазьев, развивая и дополняя теорию технологических укладов, пришел к выводу о том, что в развитии системы продовольственного обеспечения населения можно выделить четыре основные модели: автаркическая, характерная для феодального способа производства; имперская, характерная для первого—третьего глобальных технологических укладов (1770—1930 гг.); динамическая, развивающаяся в системе четвертого—пятого глобального техноло-

гического уклада (1930–2010 гг.); инновационная модель с развивающимися биотехнологиями и искусственным интеллектом, призванная обеспечить значительное количество экологически безопасного продовольствия к концу 2030 – 2035 г., относящаяся к шестому глобальному технологическому укладу.

Такой историко-генетический подход, безусловно, расширяет границы для стратегического планирования, оценки промахов и просчетов, допущенных в различные временные периоды формирования системы продовольственной безопасности государства.

Академик И.Г. Ушачев с сотрудниками ВНИИЭСХ, разрабатывая прогнозные сценарии, с помощью решения экономико-математической модели развития сельского хозяйства (на 2030 г.) как основы (базиса) системы продовольственной безопасности населения Российской Федерации приходит к выводу о том, что в рамках целевого сценария средний прирост продукции сельского хозяйства на период 2019–2030 гг. составит 2,6% (в ценах 2019 г.). Научно обоснованно прогнозируя рост производства продукции отечественного животноводства, указывает на возможное некоторое ограничение экспорта зерна в долгосрочном периоде.

Академик А.В. Петриков возглавляет исследования, связанные с локальной сельской экономикой, акцентируя внимание на ресурсной и производственной базе АПК и сельских территорий. В частности, констатируется, что остро стоит проблема обеспечения технологического суверенитета в АПК России. Основные проблемные направления в аспекте обеспечения технологического суверенитета сельского хозяйства России представлены на рис. 1.

Следует отметить, что с 2022 г. уровень обеспеченности семенами отечественного производства по основным видам сельскохозяйственных культур является показателем Доктрины продовольственной безопасности страны. В настоящее время отечественными семенами основных сельскохозяйственных культур аграрии обеспечены на 65%. В ветеринарной медицине только 30% приходится на российские препараты, лишь 10% от необходимого объема кормовых добавок для производства комбикормов отечественного производства.

Результаты

Современные глобальные отношения внесли в практику экономического взаимодействия реализацию иррациональных конъюнктурных решений, наносящих значительный вред экономике страны, принявшей такое решение. В аспекте функционирования агропродовольственных рынков иррациональные решения выражаются в реализации внешнеэкономических санкций со стороны недружественных государств.

Рис. 1. Доля отечественных средств производства и ресурсов для сельского хозяйства РФ (2021 г.), %. Источник: составлено по данным [12, с. 125; 3]

Fig. 1. The proportion of domestic means of production and resources for agriculture in the Russian Federation (2021), %

Введённые санкции предполагают дестабилизацию политической системы управления на основе комплексности их воздействия [8].

Следует подчеркнуть, что в перечне недружественных государств находятся страны — лидеры в структуре глобального экспорта аграрной продукции: США, Нидерланды, в целом страны Евросоюза, Канада и др. Рассматривая сложившуюся ситуацию с геополитической точки зрения, можно констатировать ведение глобальной экономической войны против экспорта российской продукции, в частности, аграрной. Данный тезис подтверждает и неисполнение обязательств со стороны участников «зерновой сделки» в отношении аграрной продукции России.

Действия недружественных стран в отношении экономики России, её экспортёров и

соответствующих инфраструктурных организаций привели к существенным структурным сдвигам как в производстве аграрной продукции, так и в логистических моделях её движения в планетарном масштабе.

Санкционное давление, безусловно, повлияло на ассортимент продовольственных товаров, представленных на прилавках отечественных магазинов. Об этом свидетельствует сопоставление доли расходов на питание в структуре потребительских расходов домашних хозяйств, по децильным группам (таблица).

Представленные в таблице данные показывают, что у беднейших групп домохозяйств расходы на питание сократились. При этом среднее значение по всем домохозяйствам в I квартале 2023 г. составила 44,58%, что на 0,6 п.п. выше показателя аналогичного периода 2022 г.

Изменение доли расходов на питание в структуре потребительских расходов домохозяйств по децильным группам в I квартале 2023 г. по отношению к тому же периоду 2022 г., %

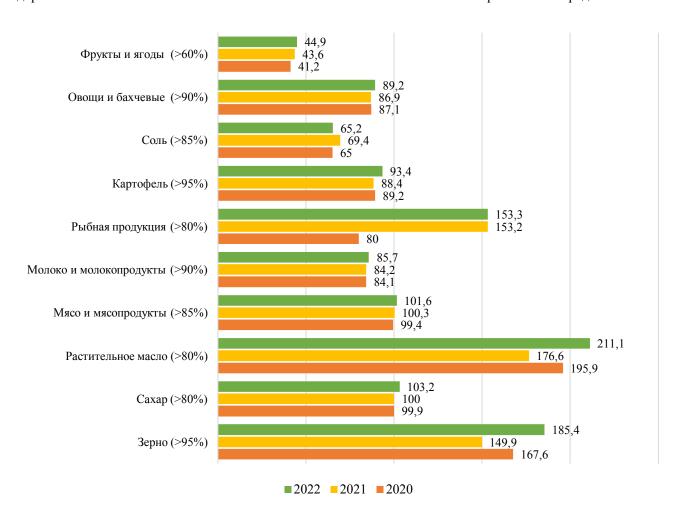
	Децильная группа									
Первая	Вторая	Третья	Четвертая	Пятая	Шестая	Седьмая	Восьмая	Девятая	Десятая	
-1,53	-0,17	-0,22	-0,49	1,37	1,95	0,53	-0,31	1,77	3,08	

Источник: рассчитано по [7].

Анализ изменения расходов на питание децильных групп населения показывает, что негативный эффект увеличения рассматриваемых расходов в среднем по совокупности домохозяйств был компенсирован их сокращением у четырёх беднейших групп населения.

Это имеет более яркий социальный и эмоциональный эффект в сопоставлении с реакцией более обеспеченных слоёв населения.

Увеличение расходов на питание обеспеченных слоёв населения связано с потреблением продовольствия премиум-класса, а также приобретением заграничного продовольствия из недружественных стран по схеме параллельного импорта.


С позиций обеспечения экономической доступности продовольствия для населения представленные в таблице данные свидетельствуют о стабильности ситуации, так как размах изменений составляет около 3%.

Рассмотрение второго ключевого показателя обеспечения продовольственной безопасности страны — физической доступности продовольствия — целесообразно проводить на основе исследования показателей, установленных Доктриной продовольственной безопасности [6; 16] (рис. 2).

Анализ данных рис. 2 показывает, что российский АПК адаптировался к внешнеэкономическому давлению со стороны недружественных государств.

Испытав институциональный шок в 2014 г., аграрный сектор экономики России адаптировался в двухлетний период, нивелировав негативное влияние введённых санкций, использовав потенциал политики импортозамещения.

Попытка недружественных стран вывести Россию из числа ключевых экспортёров продовольствия, в том числе за счёт затруднения осуществления глобальных расчётов, привела к структурным изменениям в сфере глобальной логистики российского продовольствия.

Рис. 2. Динамика показателей обеспечения продовольственной независимости России в период 2020–2022 гг., %. *Источник*: составлено по данным [9–11]

Fig. 2. The dynamics of indicators for ensuring food independence in Russia in 2020-2022, %

Снижение товарооборота, включая экспорт аграрной продукции с недружественными странами, компенсировалось существенным ростом агроэкспорта в КНР, страны Юго-Восточной Азии и другие регионы мира.

Заключение

Следует констатировать устойчивость действующей организационно-экономической модели

функционирования российского АПК, пережившего санкции и коронакризис.

Действующий организационно-экономический механизм функционирования АПК успешен в вопросах противостояния условиям неопределённости, агрессивному недобросовестному поведению участников глобальных экономических отношений и другим факторам, потому что конкурентоспособность российского продовольствия обеспечивается за счёт

совершенствующегося гибкого государственного регулирования [14].

Следует иметь в виду, что сегодня для развития промышленности, включая АПК, сложились удачные условия, как и во время работы правительства Е.М. Примакова (1998–1999 гг.), когда промышленность росла темпами 2% в месяц [5, с. 26]. Это открывает и перспективы для агропродовольственного сектора экономики как России, так и стран ЕАЭС, что связано и с усилением политики импортозамещения, и с уходом с рынка иностранных производителей. Следует иметь в виду ограниченность как ресурсной

базы, так и объёмов производства в агропродовольственном секторе экономики [17, с. 75].

Применительно к новым условиям потребуется существенная корректировка Концепции социально-экономического развития страны, предстоит актуализировать Стратегию развития агропромышленного и рыбохозяйственного комплексов и Доктрину продовольственной безопасности. Поскольку страна сильна, в первую очередь, наличием отечественного продовольствия, то и долгосрочную стратегию развития государства следует выстраивать в этом ключе.

Список источников

- 1. Алтухов А.И. Приоритеты формирования национальной аграрной политики требуют уточнения // Конкурентоспособность и эффективность АПК в контексте оптимизации материально-технического и финансового обеспечения : материалы XV Международной научно-практической конференции (Минск, 13–14 октября 2022 г.). Минск : РНУП «Институт системных исследований в АПК Национальной академии наук Беларуси», 2023. С. 17–22.
- 2. *Бартенев В*. Влияние санкционного давления на продовольственную безопасность: традиционные и новые измерения // Пути к миру и безопасности. 2022. № 2 (63). С. 11–37.
- Веденевва И. Ученые борются за независимость России от зарубежных семян: большая проблема // Московский комсомолец. 2022. 06 апр. URL: https://www.mk.ru/economics/2022/04/06/ran-boretsya-za-nezavisimost-rossii-ot-zarubezhnykh-semyan-bolshaya-problema.html
- Горбунова А.О., Щеглов В.Ю. Влияние санкций на продовольственную безопасность России // Экономические отношения. 2018. Т. 8, № 3. С. 381–388.
- Глазьев С.Ю. Регулирование инновационных процессов в новом технологическом и мирохозяйственном укладах // Экономическое возрождение России. 2022. № 2 (72). С. 24–27.
- Доктрина продовольственной безопасности России [Утверждена Указом Президента Российской Федерации № 20 от 21.01.2020 г.].
- 7. Доходы, расходы и потребление домашних хозяйств в I квартале 2023 года: по итогам Выборочного обследования бюджетов домашних хозяйств / Росстат. М.: Росстат, 2023. URL: https://rosstat.gov.ru/compendium/document/13271 (дата обращения: 02.08.2023).
- 8. *Клинова М., Сидорова Е.* Экономические санкции и их влияние на хозяйственные связи России с Европейским союзом // Вопросы экономики. 2014. № 12. С. 67–79.
- 9. Национальный доклад о ходе и результатах реализации в 2020 году Государственной программы развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия [Утверждён Распоряжением Правительства Российской Федерации от 19.06.2021 г. № 1671-р].
- 10. Национальный доклад о ходе и результатах реализации в 2021 году Государственной программы развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия [Утверждён Распоряжением Правительства Российской Федерации от 30.06.2022 г. № 1751-р].
- 11. Национальный доклад о ходе и результатах реализации в 2022 году Государственной программы развития сельского хозяйства и регулирования рынков сельскохозяйственной продукции, сырья и продовольствия [Утверждён Распоряжением Правительства Российской Федерации от 06.07.2023 г. № 1810-р].
- 12. Петриков А.В. Стратегические направления совершенствования аграрной политики России в условиях санкционного давления // Научные труды Вольного экономического общества. 2022. Т. 235, № 3. С. 122–133.
- 13. Родионова О.А. [и др.] Цифровые и проектные ориентиры трансформации экономического взаимодействия хозяйствующих субъектов аграрной сферы / под науч. ред. О.А. Родионовой. М.: Сам Полиграфист, 2021. 180 с.
- 14. Сёмин А.Н., Бухтиярова Т.И., Михайлок О.Н., Батурина И.Н. Методические подходы к формированию системы управления доходностью агроэкосистем и сельских территорий // Экономика сельскохозяйственных и перерабатывающих предприятий. 2023. № 2. С. 2–7.
- 15. Сёмин А.Н. Продовольственная безопасность как фактор обеспечения российского народосбережения // Агропродовольственная политика России. 2022. № 2-3. С. 39–41.
- 16. Сёмин А.Н. Уточнение и развитие отдельных положений Доктрины продовольственной безопасности Российской Федерации // Вестник Керченского государственного морского технологического университета. 2022. № 3. С. 323–333.
- 17. *Ушачев И.Г., Харина М.В., Чекалин В.С.* Долгосрочный прогноз развития сельскохозяйственного хозяйства России на базе экономико-математической модели // Проблемы прогнозирования. 2022. № 3. С. 64–77.

References

1. Altukhov, A.I. (2023) Prioritety formirovaniia natsional'noi agramoi politiki trebuiut utochneniia [Priorities for the formation of National Agricultural Policy require clarification]. In: *Konkurentosposobnost' i effektivnost' APK v kontekste optimizatsii material'notekhnicheskogo i finansovogo obespecheniia: materialy XV Mezhdunarodnoi nauchno-prakticheskoi konferentsii (Minsk, 13-14 oktiabria 2022 g.)* [Competitiveness and efficiency of the agro-industrial complex in the context of optimizing material, technical

- and financial support: Proceedings of the XV International Scientific and Practical Conference (Minsk, October 13-14, 2022)]. Minsk: RNUP «Institut sistemnykh issledovaniia v APK Natsional'noi akademii nauk Belarusi. pp. 17–22.
- 2. Barteney, V. (2022) Vliianie sanktsionnogo davleniia na prodovol'stvennuiu bezopasnost': traditsionnye i novye izmereniia [The impact of sanctions pressure on food security: traditional and new dimensions]. *Puti k miru i bezopasnosti*. 2(63). pp. 11–37.
- Vedeneeva, I. (2022) Uchenye boriutsia za nezavisimost' Rossii ot zarubezhnykh semian: bol'shaia problema [Scientists are fighting
 for Russia's independence from foreign seeds: a big problem]. Moskovskii komsomolets. April 6. [Online]. Available from:
 https://www.mk.ru/economics/2022/04/06/ran-boretsya-za-nezavisimost-rossii-ot-zarubezhnykh-semyan-bolshaya-problema.html
- 4. Gorbunova, A.O. & Shcheglov V.Yu. (2018) Vliianie sanktsii na prodovol'stvennuiu bezopasnost' Rossii [The impact of sanctions on Russia's food security]. *Ekonomicheskie otnosheniia*. 8(3), pp. 381–388.
- 5. Glazyev, S.Yu. (2022) Regulirovanie innovatsionnykh protsessov v novom tekhnologicheskom i mirokhoziaistvennom ukladakh [Regulation of innovation processes in the new technological and world economic order]. *Ekonomicheskoe vozrozhdenie Rossii*. 2(72). pp. 24–27.
- 6. n.a. (2020) Doktrina prodovol'stvennoi bezopasnosti Rossii (Utverzhdena Ukazom Prezidenta Rossiiskoi Federatsii № 20 ot 21.01.2020 g.) [Doctrine of Food Security of the Russian Federation (Approved by Decree of the President of the Russian Federation No. 20 of January 21, 2020)].
- 7. Rosstat. (2023) Dokhody, raskhody i potreblenie domashnikh khoziaistv v 1 kvartale 2023 goda: po itogam Vyborochnogo obsledovaniia biudzhetov domashnikh khoziaistv [Income, expenses and consumption of households in the 1st quarter of 2023: based on the results of the Sample Survey of Household Budgets]. Moscow. [Online]. Available from: https://rosstat.gov.ru/compendium/document/13271 (Accessed: 02.08.2023).
- 8. Klinova, M. & Sidorova, E. (2014) Ekonomicheskie sanktsii i ikh vliianie na khoziaistvennye sviazi Rossii s Evropeiskim soiuzom [Economic sanctions and their impact on economic relations between Russia and the European Union]. *Voprosy ekonomiki*. 12. pp. 67–79.
- 9. n.a. (2021) Natsional'nyi doklad o khode i rezul'tatakh realizatsii v 2020 godu Gosudarstvennoi programmy razvitiia sel'skogo khoziaistva i regulirovaniia rynkov sel'skokhoziaistvennoi produktsii, syr'ia i prodovol'stviia (Utverzhden Rasporiazheniem Pravitel'stva Rossiiskoi Federatsii ot 19.06.2021 g. № 1671-r) [National report on the progress and results of the implementation of the State Program for the Development of Agriculture and Regulation of Markets for Agricultural Products, Raw Materials and Food in 2020 (Approved by Order of the Government of the Russian Federation dated June 19, 2021 No. 1671-r)].
- 10. n.a. (2022) Natsional'nyi doklad o khode i rezul'tatakh realizatsii v 2021 godu Gosudarstvennoi programmy razvitiia sel'skogo khoziaistva i regulirovaniia rynkov sel'skokhoziaistvennoi produktsii, syr'ia i prodovol'stviia (Utverzhden Rasporiazheniem Pravitel'stva Rossiiskoi Federatsii ot 30.06.2022 g. № 1751-r) [National report on the progress and results of the implementation of the State Program for the Development of Agriculture and Regulation of Markets for Agricultural Products, Raw Materials and Food in 2021 (Approved by Order of the Government of the Russian Federation dated June 30, 2022 No. 1751-r)].
- 11. n.a. (2023) Natsional'nyi doklad o khode i rezul'tatakh realizatsii v 2022 godu Gosudarstvennoi programmy razvitiia sel'skogo khoziaistva i regulirovaniia rynkov sel'skokhoziaistvennoi produktsii, syr'ia i prodovol'stviia (Utverzhden Rasporiazheniem Pravitel'stva Rossiiskoi Federatsii ot 06.07.2023 g. № 1810-r) [National report on the progress and results of the implementation of the State Program for the Development of Agriculture and Regulation of Markets for Agricultural Products, Raw Materials and Food in 2022 (Approved by Order of the Government of the Russian Federation dated July 06, 2023 No. 1810-r)].
- 12. Petrikov, A.V. (2022) Strategicheskie napravleniia sovershenstvovaniia agrarnoi politiki Rossii v usloviiakh sanktsionnogo davleniia [Strategic directions for improving Russia's agricultural policy under sanctions pressure]. *Nauchnye trudy Vol'nogo ekonomicheskogo obshchestva*. 235(3). pp. 122–133.
- 13. Rodionova, O.A., et al. (2021) *Tsifrovye i proektnye orientiry transformatsii ekonomicheskogo vzaimodeistviia khoziaistvuiushchikh sub"ektov agrarnoi sfery* [Digital and design guidelines for the transformation of economic interaction between economic entities in the agricultural sector]. Moscow: OOO "Sam Poligrafist".
- 14. Semin, A.N., Bukhtiiarova, T.I., Mikhailiuk, O.N. & Baturina, I.N. (2023) Metodicheskie podkhody k formirovaniiu sistemy upravleniia dokhodnost'iu agroekosistem i sel'skikh territorii [Methodological approaches to the formation of a system for managing the profitability of agroecosystems and rural areas]. *Ekonomika sel'skokhoziaistvennykh i pererabatyvaiushchikh predpriiatii.* 2. pp. 2–7.
- 15. Semin, A.N. (2022) Prodovol'stvennaia bezopasnost' kak faktor obespecheniia rossiiskogo narodosberezheniia [Food security as a factor in ensuring Russian national preservation]. *Agroprodovol'stvennaia politika Rossii*. 2-3. pp. 39–41.
- 16. Semin, A.N. (2022) Utochnenie i razvitie otdel'nykh polozhenii Doktriny prodovol'stvennoi bezopasnosti Rossiiskoi Federatsii [Clarification and development of certain provisions of the Doctrine of Food Security of the Russian Federation]. Vestnik Kerchenskogo gosudarstvennogo morskogo tekhnologicheskogo universiteta. 3. pp. 323–333.
- 17. Ushachev, I.G., Kharina, M.V. & Chekalin, V.S. (2022) Dolgosrochnyi prognoz razvitiia sel'skokhoziaistvennogo khoziaistva Rossii na baze ekonomiko-matematicheskoi modeli [Long-term forecast for the development of Russian agriculture based on an economic and mathematical model]. *Problemy prognozirovaniia*. 3. pp. 64–77.

Информация об авторах:

Донник Ирина Михайловна — академик РАН, доктор биологических наук, профессор, помощник президента Национального исследовательского центра «Курчатовский институт» (Москва, Россия); заведующая кафедрой инфекционной и незаразной патологии Уральского государственного аграрного университета (Екатеринбург, Россия). ORCID 0000-0001-8349-3004. AuthorID 313786. E-mail: ktqrjp7@yandex.ru

Рущицкая Ольга Александровна – доктор экономических наук, профессор, директор института экономики, финансов и менеджмента Уральского государственного аграрного университета (Екатеринбург, Россия). ORCID 0000-0002-6854-5723. AuthorID 518696. E-mail: olgaru-arbitr@mail.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Donnik Irina M., Dr. Sc. (Biology), Academician of the Russian Academy of Sciences, assistant to the president of the Kurchatov Institute (Moscow, Russian Federation); head of the Department of Infectious and Non-Infectious Pathology, Ural State Agrarian University (Ekaterinburg, Russian Federation). E-mail: ktqrjp7@yandex.ru. ORCID: 0000-0001-8349-3004. AuthorID: 313786

Ruschitskaya Olga A., Dr. Sc. (Economics), director of the Institute of Economics, Finance and Management, Ural State Agrarian University (Ekaterinburg, Russian Federation). E-mail: olgaru-arbitr@mail.ru. ORCID: 0000-0002-6854-5723. AuthorID: 518696

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 504.75; 504.3.054 doi: 10.17223/7783494/3/6

Гранулометрический состав микроразмерных частиц комплексного состава, образующихся при техногенном воздействии на морскую среду

Константин Юрьевич Кириченко¹, Владислава Николаевна Волкова², Владимир Викторович Чайка³, Кирилл Сергеевич Голохваст⁴

 1,3,4 Сибирский федеральный научный центр агробиотехнологий РАН, р.п. Краснообск, Россия 2,4 Дальневосточный федеральный университет, Владивосток, Россия 1 kirichenko2012@gmail.com 2 vladavibi@bk.ru

Аннотация. Данная работа посвящена исследованию комплексного состава взвешенных микроразмерных частиц, образующихся в результате конденсации паров расплавленного металла, шлака и покрытия электродов при техногенном воздействии на морскую среду, сформированных при подводной сварке и подводной резке, а также получению сравнительных комплексных характеристик при фоновом содержании микроразмерных частиц в морской среде. В работе приводятся первые результаты исследования размерного состава частиц, возникающих в процессе сварки и резки с помощью метода лазерной гранулометрии. Показано наличие микроразмерных частиц, которые крайне опасны для здоровья человека и животных. По результатам исследования показано, что при подводной сварке в долях от 60 до 70% встречаются частицы с диаметром менее 10 мкм. При подводной резке в долях от 70 до 80% встречаются частицы с диаметром менее 10 мкм. Наблюдается присутствие частиц размером от 100 до 400 мкм в морской воде от техногенного воздействия в долях 90%. Этот уровень загрязнения способен оказывать негативное токсикологическое воздействие на представителей гидробионтов морских экосистем.

Ключевые слова: гранулометрический анализ, экология, подводная сварка, резка металла, микрочастицы

Благодарности: работа выполнена при финансовой поддержке РНФ в рамках научного проекта № 22-24-01169.

Для цитирования: Кириченко К.Ю., Волкова В.Н., Чайка В.В., Голохваст К.С. Гранулометрический состав микроразмерных частиц комплексного состава, образующихся при техногенном воздействии на морскую среду // Технологии безопасности жизнедеятельности. 2023. № 3. С. 49–55. doi: 10.17223/7783494/3/6

Original article

doi: 10.17223/7783494/3/6

Granulometric composition of suspended particles formed during anthropogenic impact on the marine environment

Konstantin Yu. Kirichenko¹, Vladislava N. Volkova², Vladimir V. Chaika³, Kirill S. Golokhvast⁴

1,3,4 Siberian Federal Research Centre of Agrobiotechnologies of the Russian Academy of Sciences,
Krasnoobsk, Russian Federation

2,4 Far Eastern Federal University, Vladivostok, Russian Federation

kirichenko2012@gmail.com

vladavibi@bk.ru

Abstract. This article is devoted to the study of the complex composition of suspended particles of micro-sizes formed as a result of condensation of vapors of molten metal, slag and electrode coatings under man-made effects on the marine environment, formed during underwater welding and underwater cutting; it also shows comparative complex characteristics with the background content of microparticles in the marine environment. The article presents the first results of the study of the granulometric composition of particles formed during welding and cutting by laser granulometry. The presence of micro-sized particles, which are extremely dangerous for human and animal health, is shown. The results of the study show that during underwater welding, particles with a diameter of less than 10 microns occur in fractions from 60 to 70%. When underwater cutting, particles with a diameter of less than 10 microns occur in fractions from 70 to 80%. The presence of particles ranging in size from 100 to 400 microns in seawater is observed as a result of anthropogenic impact in fractions of 90%. Such a level of pollution can have a negative toxicological effect on species of aquatic organisms of marine ecosystems.

Keywords: granulometry, ecology, underwater welding, metal cutting, microparticles

Acknowledgments: The work was carried out with the financial support of the Russian Academy of Sciences in the framework of the scientific project No. 22-24-01169.

For citation: Kirichenko, K.Yu., Volkova, V.N., Chaika, V.V. & Golokhvast, K.S. (2023) Granulometric composition of suspended particles formed during anthropogenic impact on the marine environment. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 49–55. doi: 10.17223/7783494/3/6 (In Russian).

Введение

Данная статья посвящена изучению микроразмерного загрязнения морской воды от подводных техногенных работ при подводной сварке и продолжает цикл наших работ по изучению негативного воздействия на окружающую среду, в том числе и в акватории Японского моря в Приморском крае [1]. При проведении техногенных подводных работ выделяется большое количество вредных веществ [2–3]. Микроразмерные частицы после подводной сварки и резки представляют собой совокупность частиц, образовавшихся в результате конденсации паров расплавленного металла, шлака и покрытия электродов [4]. Данные частицы являются неотъемлемым атрибутом при производстве работ под водой по обработке металлов (сварка, резка и т.д.).

Проблема образования мелкодисперсных взвесей изучается учеными многих стран мира. Широкое развитие инфраструктуры городов и промышленных предприятий подтверждает активное освоение Мирового океана и прибрежного шельфа, в частности, добычу углеводородов с морского дна и создание трубопроводных сетей для их транспортировки. Для выполнения этих работ используются различные методы подводной сварки и резки металла [5], которые зачастую более экономически выгодны и способны быть альтернативой строительства «сухих» доков и технологических операций по подъему на сушу различных металлических конструкций.

В связи с этим очевиден растущий спрос на операции подводной сварки, связанные с техническим обслуживанием и своевременным ремонтом инфраструктуры подводных газопроводов. Однако непременной характеристикой подводной сварки и резки является образование микроразмерных частиц [6]. Необходимо всесторонне изучить характеристики твердых частиц, образующихся при подводной сварке, чтобы можно было своевременно проанализировать их антропогенную нагрузку на морские экосистемы [7]. Новые возможности получения информации о гранулометрическом составе микроразмерных частиц позволит в дальнейшем оперативно оценивать генезис частиц и судить о закономерностях их распределения в водной толще и более тщательно произвести оценку токсикологического воздействия на гидробионты.

Цель работы: с помощью лазерной гранулометрии и авторской методики отбора проб произвести анализ

размерности частиц от техногенного воздействия при работе с металлом под морской водой.

Материалы и методы

Для этого эксперимента отобрано 20 проб воды из поверхностного слоя в 30 м от берега из бухты Аякс Японского моря. Пробы доставлены в лабораторию, в которой расположена экспериментальная установка с использованием пробоотборников емкостью 2,7 л., которые предварительно были промыты дистиллированной водой. В качестве сварочного аппарата использовался сварочный выпрямитель VD-309P. Отбор проб из экспериментальной установки проводился в морской воде при двух технологических операциях: подводная сварка и резка, где взяты по образцы частиц в 5 повторностях для гранулометрического исследования на лазерном анализаторе частиц Analysette 22 NanoTec plus (Fritsch). Повторности отображаются в таблицах и на графиках цифрами от 1 до 5.

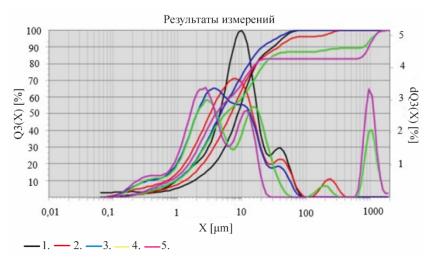
Данный лазерный прибор является универсальным для измерения частиц вплоть до нанодиапазона, подходящего для любых стандартных измерительных задач в диапазоне 0,01-2 000 мкм. Для исследования частиц в анализаторе используется принцип дифракции полупроводникового лазерного излучения на дисперсных образцах с излучением зеленого цвета (532 нм, 7 мВт): при попадании на частицу порошка лазерный луч отклоняется на некоторый угол, зависящий от размера частицы. Далее рассеянный луч попадает на детектор. Измерение интенсивности излучения, попавшего на каждый элемент детектора, и последующая математическая обработка сигнала позволяют определить размер частиц образца и оценить их форму. Интенсивность поглощенного детектором излучения измеряется, и результаты измерения математически обрабатываются. Математическая обработка проводится по модели Ми, которая предполагает, что излучение может проходить через частицу [8]. Расчет по этой модели дает более точные результаты.

В данной работе использовалась сварочная ванна размером $0.82 \times 0.46 \times 0.38$ м, изготовленная из органического стекла с толщиной стенок 1 см. Объем заполнения морской водой составляет 60 л. В качестве сварочного материала использовалась стальная пластина.

В зависимости от свариваемого металла и его толщины в качестве защитных газов используются инертные или активные газы или их смеси. Благодаря

физическим характеристикам стабильность сварки и ее технологические свойства выше при использовании постоянного тока с обратной полярностью. При использовании постоянного тока с прямой полярностью количество расплавленного электродного металла увеличивается на 30%, но стабильность сварки значительно снижается и увеличиваются потери металла на разбрызгивание. Образцы для гранулометрического анализа отмывали от морской воды путем последовательного центрифугирования, добавления дистиллированной воды и повторного суспендирования. Процесс повторился 20 раз. Полученный осадок промывали один раз 1%-ным раствором этанола, а затем снова дистиллятом. Для изучения выделенных частиц их суспензии объемом 10 мкл наносили на медную сетку, покрытую пленкой Formvar, и затем сушили при комнатной температуре. Спектры собирались в течение 300 с.

Результаты и обсуждение


Исследования проводились с использованием оборудования ЦКП «Межведомственный центр аналитического контроля состояния окружающей среды» ДВФУ.

В табл. 1 приведены результаты определения комплексного состава фракции взвешенных частиц после подводной сварки на анализаторе Analysette 22 NanoTec, где в преобладающей доле микрочастиц 70% состав фракций составляет более 12 мкм, а в преобладающей доле микрочастиц в 60% обнаружены частицы менее 10 мкм (РМ₁₀), которые являются опасными для окружающей среды. По данным гранулометрического состава взвешенных частиц после подводной сварки можно сделать вывод об ухудшении экологической ситуации в морской среде.

Таблица 1 Гранулометрический состав взвешенных частиц после подводной сварки

Преобладающая доля	Фракция	Сумма	Гранулометрический состав проб, %							
микрочастиц (Q3(x)), %	(x), μm	фракций, %	1*	2	3	4	5			
10	1,2	31,8	1,8	1,3	0,9	1,0	0,8			
20	2,3	35,8	3,7	2,5	1,8	1,8	1,5			
30	3,3	36,9	5,5	3,7	2,6	2,6	2,1			
40	4,4	34,2	7,1	5,1	3,5	3,7	2,8			
50	5,9	28,2	8,7	6,8	4,7	5,6	4,0			
60	8,6	20,3	10,6	8,9	6,4	10,3	6,7			
70	12,0	17,5	13,0	11,8	9,1	15,3	10,8			
80	17,2	18,3	17,0	17,0	12,9	22,7	16,4			
90	363,9	113,5	30,6	37,1	20,8	781,0	950,0			

^{*} Здесь и далее цифрами от 1 до 5 отображаются повторности отбора проб.

Рис. 1. Кумулятивная кривая гранулометрического состава взвешенных частиц после подводной сварки. * Цифрами от 1 до 5 отображаются повторности отбора проб

Fig. 1. Cumulative curve of the particle size distribution of suspended particles after underwater welding. Numbers from 1 to 5 indicate the sampling repetitions

На рис. 1 представлена кумулятивная кривая гранулометрического состава взвешенных частиц после подводной сварки, которая представляет визуализацию математической модели результатов измерения в программе Analysette 22 NanoTec plus (Fritsch). По кумулятивной кривой наблюдаются пиковые значения микрочастиц размером 10 мкм во всех пробах при преобладающей доле частиц 70%.

В табл. 2 приведены результаты определения комплексного состава фракции взвешенных частиц после подводной резки на анализаторе Analysette 22 NanoTec, где наблюдаются в преобладающей доле частиц 70%, состав фракций 10,2 мкм. По данным гранулометрического состава взвешенных частиц после подводной резки (см. табл. 2) и по данным из гранулометрического состава взвешенных частиц после подводной сварки (см. табл. 1) можно сделать вывод, что при подводной резке встречается больше частиц с фракцией 10,2 мкм, значит, данный технологический процесс опаснее, но уже при преобладающей доле частиц свыше 20% с размером фракций менее 10 мкм является опасным для окружающей среды, можно сделать вывод об ухудшении экологической ситуации в морской среде при техногенном воздействии от двух процессов.

Гранулометрический состав взвешенных частиц после подводной резки

Таблица 2

Преобладающая доля	Фракция	Сумма		Гранулог	метрический с	остав проб, %	
микрочастиц (Q3(x)), %	(x), μm	фракций, %	1	2	3	4	5
10	1,0	27,3	1,5	1,2	1,0	0,8	0,7
20	1,9	26,9	2,8	2,1	1,7	1,5	1,3
30	2,7	26,6	4,0	3,0	2,4	2,2	2,0
40	3,8	25,5	5,4	4,2	3,4	3,1	2,8
50	5,1	23,7	7,1	5,7	4,6	4,1	3,8
60	6,9	21,7	9,3	8,0	6,5	5,8	5,1
70	10,2	19,7	13,0	11,8	9,7	9,5	7,1
80	16,6	18,7	20,3	17,9	15,2	18,5	11,3
90	211,4	174,4	30,7	26,3	24,2	27,2	948,7

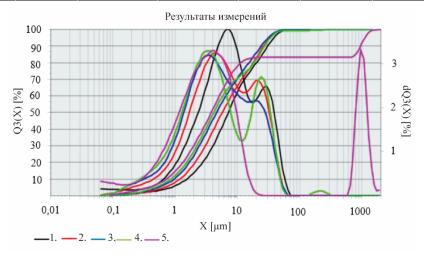


Рис. 2. Кумулятивная кривая гранулометрического состава взвешенных частиц после подводной резки

Fig. 2. Cumulative curve of the granulometric composition of suspended particles after underwater cutting

На рис. 2 представлена кумулятивная кривая гранулометрического состава взвешенных частиц после подводной сварки, которая представляет визуализацию математической модели результатов измерения в программе Analysette 22 NanoTec plus (Fritsch). По кумулятивной кривой наблюдаются пиковые значения микрочастиц размером 10 мкм во всех пробах при преобладающей доле частиц 70%.

В табл. 3 приведены результаты определения состава фракции взвешенных частиц в морской воде без техногенного воздействия (фоновые значения) на анализаторе Analysette 22 NanoTec, где наблюдаются существенные различия между результатами комплексного гранулометрического состава при техногенном воздействии (см. табл. 1, 2), где без техногенного воздействия в преобладающей доле частиц 20% состав фракций более 13,1 мкм (табл. 3).

Таблица 3 Гранулометрический состав взвешенных частиц в морской воде без техногенного воздействия

Преобладающая доля	Фракция	Сумма		Гранулог	метрический с	остав проб, %	
микрочастиц (Q3(x)), %	(x), μm	фракций, %	1	2	3	4	5
10	8,4	27,5	12,4	9,1	7,9	6,7	5,8
20	13,1	25,7	19,3	13,7	11,9	10,0	10,6
30	18,3	28,0	27,3	19,0	18,5	12,6	14,0
40	53,7	108,1	36,6	28,3	169,0	16,2	18,6
50	184,2	56,2	54,6	211,5	364,7	131,5	158,6
60	341,7	19,7	341,9	361,6	456,3	267,0	281,5
70	438,6	11,5	434,6	446,0	529,1	384,8	398,4
80	533,3	6,7	518,2	524,7	604,2	512,7	506,7
90	665,0	7,1	618,3	620,5	702,7	738,0	645,5

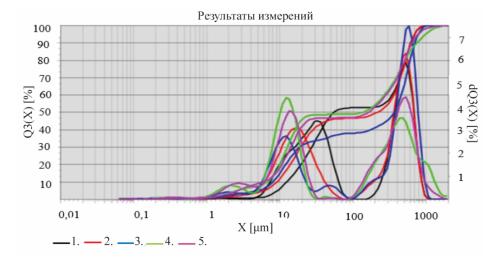


Рис. 3. Кумулятивная кривая фоновых измерений гранулометрического состава взвешенных частиц

Fig. 3. Cumulative curve of background measurements of the particle size distribution of suspended particles

Доля преобладающих частиц 20% не является опасной для окружающей среды, данные отражены на рис. 3. По кумулятивной кривой наблюдаются пиковые значения микрочастиц размером 10 мкм во всех пробах при преобладающей доле частиц в основном 10%.

Сравнительная таблица результатов измерений гранулометрического состава взвешенных частиц на рис. 4 показывает, что при техногенном воздействии преимущественно выделяются опасные вещества размером 10 мкм, когда при фоновых показателях присутствие таких частиц значительно ниже.

Видно, что при подводной сварке электродами наблюдается выделение преобладающей доли наночастиц (60–70%) до 10 мкм (PM_{10}). При подводной резке выделение преобладающей доли наночастиц (70–80%) до 10 мкм (PM_{10}). Наблюдается присутствие частиц размером от 100 до 400 мкм в морской воде от техногенного воздействия в долях 90% в

пробах от подводной резки. Встречаются крупногабаритные частицы до 230 мкм, которые скорее являются скоплением первичных частиц с более мелкой фракцией. Так, при фоновом содержании в РФ и многих других странах приняты нормативы и средства защиты для сварщиков, которые регулируют выбросы в атмосферный воздух [9]. Нормативы по сбросам частиц в морскую среду от данных технологических процессов не разработаны. Как мы видим по нашим результатам (см. рис. 1-4, табл. 1-3), техногенные виды работ, такие как подводная резка и сварка, являются источником наночастиц, которые крайне опасны для здоровья человека и окружающей среды. Для разработки нормативной базы, регулирующей выбросы, требуется наработка данных, которая позволит выработать пороговые концентрации и значения на основании оценки токсикологического воздействия техногенных частиц подводной сварки на представителей морских гидробионтов.

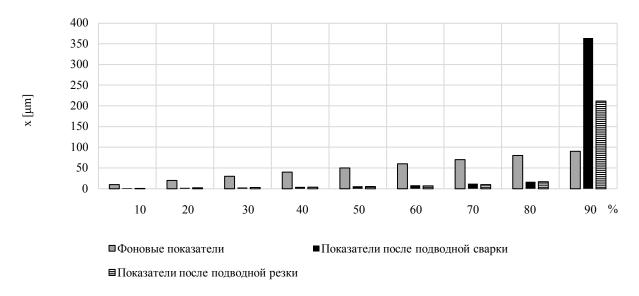


Рис. 4. Сравнительная таблица результатов измерений гранулометрического состава взвешенных частиц

Fig. 4. Comparative table of measurement results of the particle size distribution of suspended particles

На основе полученных нами данных определенно можно говорить о том, что техногенные виды работ, такие как подводная сварка и резка, будучи поставщиком в воздушный бассейн г. Владивостока фракции РМ10, являются фактором, ухудшающим качество жизни его жителей. В связи с реализацией госпрограммы «Энергоэффективность, развитие газоснабжения и энергетики в Приморском крае» на 2020–2027 гг. количество выбрасываемой в атмосферу мелкодисперсной пыли будет только увеличиваться и экологическая ситуация в этом населенном пункте, соответственно, может только ухудшаться.

Заключение

По результатам исследования показано, что при подводной сварке в долях от 60 до 70% встречаются частицы с диаметром менее 10 мкм. При подводной резке в долях от 70 до 80% встречаются частицы с диаметром менее 10 мкм. Наблюдается присутствие частиц размером от 100 до 400 мкм в морской воде от

техногенного воздействия в долях 90%. Выявлено наличие мельчайших частиц при производстве работ по подводной сварке и резке металлов, в том числе и частиц мельчайшей фракции PM_1 – PM_{10} .

Этот уровень загрязнения способен оказывать негативное токсикологическое воздействие на представителей морских гидробионтов и повлиять на устойчивость морских экосистем. Отметим также, что исследование гранулометрического состава в морской воде после подводной сварки и подводной резки выполнено впервые, что позволит в дальнейшем проводить моделирование биогеохимических процессов для оперативного мониторинга при техногенном воздействии на морскую среду. На основании полученных данных в будущем станет возможна разработка компенсационных мероприятий и рекомендаций, направленных на поддержание балансовой устойчивости морских экосистем в условиях возрастающей антропогенной нагрузки, связанной с освоением морских шельфов и прокладкой инфраструктурных коммуникаций для транспортировки углеводородов.

Список источников

- 1. *Холодов А.С., Кириченко К.Ю., Захаренко А.М., Вахнюк И.А., Волкова В.Н., Голохваст К.С.* Анализ атмосферной взвеси рабочего поселка Ванино (Хабаровский край) // Вестник Дальневосточного отделения Российской академии наук. 2023. № 4. С. 145–160. doi: 10.37102/0869-7698 2023 230 04 10
- 2. Lehnert M., Pesch B., Lotz A. Exposure to inhalable, respirable, and ultrafine particles in welding fume // Annals of Occupational Hygiene. 2012. Vol. 56 (5). P. 557–567.
- 3. *Ананьев В.Ю., Жигаев Д.С., Кислицина Л.В., Кику П.Ф.* Оценка влияния атмосферного воздуха на здоровье населения Владивостока и ее особенности // Здоровье. Медицинская экология. Наука. 2012. № 3-4 (49-50). С. 71–74.
- 4. *Полякова Е.М., Сюрин С. А.* Профессиональные риски здоровью сварщиков при сочетанном влиянии сварочного аэрозоля и охлаждающего микроклимата // 3HuCO. 2021. № 9. С. 69–77. doi: 10.35627/2219-5238/2021-29-9-69-77
- 5. Madatov N.M. Welding and Cutting of Metals under Water. Moscow // International Journal of Machine Engineering. 1975. P. 4-9.

- 6. Kirichenko K.Y., Pikula K.S., Zakharenko A. M., Gridasov A.V., Parshin S.G, Medvedev S.A., Vakhniuk I.A., Golokhvast K.S. Ecotoxicological assessment of underwater welding impact during the construction of marine pipelines // Advances in raw material industries for sustainable development goals. Taylor & Francis Group, 2021. P. 222–230.
- 7. *Лохов А.С., Кравчишина М.Д., Клювиткин А.А., Коченкова А.И.* Измерение характеристик взвешенных частиц Баренцева моря IN SITU с помощью лазерного дифрактометра LISST-deep // Океанология. 2020. № 60 (5). С. 747–761. doi: 10.31857/S0030157420050159
- 8. Никифоров П.А. Методические указания к лабораторным гранулометрического состава дисперсных образцов на лазерном анализаторе частиц Analysette-22 NanoTec (Fritsch). Владивосток: Издательский дом Дальневост. федерал. ун-та, 2013. 27 с. URL: http://www.dvfu.ru/web/is/metodiceskie-rekomendacii
- 9. *Кусраева* 3.С. Оценка профессионального риска при современных методах электродуговой сварки и резки металлов : дис. ... канд. мед. наук. СПб., 2011, 164 с.

References

- Kholodov, A.S., Kirichenko, K.Yu., Zakharenko, A.M., Vakhnyuk, I.A., Volkova, V.N. & Golokhvast K.S. (2023) The analysis of particulate matter in Vanino settlement (Khabarovsk Territory, Russia). Vestnik of the FEB RAS. 4. pp. 145-160. (In Russian) doi: 10.37102/0869-7698 2023 230 04 10
- 2. Lehnert, M., Pesch, B. & Lotz, A. (2012) Exposure to inhalable, respirable, and ultrafine particles in welding fume. *Annals of Occupational Hygiene*. 56 (5). pp. 557–567.
- 3. Ananyev, V.Yu., Zhigaev, D.S., Kislitsina, L.V. & Kiku, P.F. (2012) Assessment of the influence of atmospheric air on the health of the population of Vladivostok and its features. *Zdorov'e. Meditsinskaya ekologiya. Nauka Health. Medical ecology. The science.* 3-4 (49-50). pp. 71-74. (In Russian).
- 4. Polyakova, E.M. & Syurin, S.A. (2021) Occupational health risks from combined exposure to welding fumes and cold environment for welders. *Zdorov'e Naseleniya i Sreda Obitaniya*. 9. pp. 69-77. (In Russian). doi: 10.35627/2219-5238/2021-29-9-69-77
- Madatov, N.M. (2020) Welding and Cutting of Metals under Water. Moscow. International Journal of Machine Engineering. p. 4–9, 19756
- Kirichenko, K.Y., Pikula, K.S., Zakharenko, A.M., Gridasov, A.V., Parshin, S.G., Medvedev, S.A., Vakhniuk, I.A. & Golokhvast, K.S. (2021) Ecotoxicological assessment of underwater welding impact during the construction of marine pipelines. In: *Advances in raw material industries for sustainable development goals*. Taylor & Francis Group. pp. 222–230.
- 7. Lokhov, A.S., Kravchishina, M.D., Klyuvitkin, A.A. & Kochenkova, A.I. (2020) In situ Measurement of the Characteristics of Suspended Particles in the Barents Sea by the LISST-Deep Laser Diffractometer. *Okeanologiya Oceanology*. 60(5). pp. 747-761. (In Russian). doi: 10.31857/S0030157420050159
- 8. Nikiforov, P.A. (2013) *Metodicheskie ukazaniya k laboratornym granulometricheskogo sostava dispersnykh obraztsov na lazernom analizatore chastits Analysette-22 NanoTec (Fritsch)* [Methodological guidelines for laboratory granulometric composition of dispersed samples on a laser particle analyzer Analysette-22 NanoTec (Fritsch)]. Vladivostok: Publishing House of the Far Eastern Federal University. [Online] Available from: http://www.dvfu.ru/web/is/metodiceskie-rekomendacii
- 9. Kusraeva, Z.S. (2011) Assessment of occupational risk in modern methods of electric arc welding and metal cutting. Medical Sciences Cand. Diss. St. Petersburg.

Информация об авторах:

Кириченко Константин Юрьевич — кандидат биологических наук, ведущий научный сотрудник Сибирского федерального научного центра агробиотехнологий РАН (р.п. Краснообск, Россия). E-mail: kirichenko@sfsca.ru

Волкова Владислава Николаевна – кандидат технических наук, старший преподаватель Дальневосточного федерального университета (Владивосток, Россия). E-mail: vladavibi@bk.ru

Чайка Владимир Викторович – доктор биологических наук, ведущий научный сотрудник Сибирского федерального научного центра агробиотехнологий РАН (р.п. Краснообск, Россия). E-mail: chayka@sfsca.ru

Голохваст Кирилл Сергеевич – доктор биологических наук, профессор РАН, член-корреспондент РАО, главный научный сотрудник Сибирского федерального научного центра агробиотехнологий РАН (р.п. Краснообск, Россия). E-mail: droopy@mail.ru

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Kirichenko Konstantin Yu., Cand. Sc. (Biology), senior researcher, Siberian Federal Research Centre for Agrobiotechnologies of the Russian Academy of Sciences (Krasnoobsk, Russian Federation). E-mail: kirichenko@sfsca.ru

Volkova Vladislava N., Cand. Sc. (Engineering), senior lecturer, Far Eastern Federal University (Vladivostok, Russian Federation). Email: vladavibi@bk.ru

Chaika Vladimir V., Dr. Sc. (Biology), senior researcher, Siberian Federal Research Centre for Agrobiotechnologies of the Russian Academy of Sciences (Krasnoobsk, Russian Federation). E-mail: chayka@sfsca.ru

Golokhvast Kirill S., Dr. Sc. (Biology), professor of the Russian Academy of Sciences, corresponding member of the Russian Academy of Education, chief researcher, Siberian Federal Research Centre for Agrobiotechnologies of the Russian Academy of Sciences (Krasnoobsk, Russian Federation). Email: droopy@mail.ru

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 504.4.054

doi: 10.17223/7783494/3/7

Разработка проекта норматива допустимого остаточного содержания нефтепродуктов в донных отложениях после восстановительных работ на водных объектах Красноярского края

Данил Сергеевич Воробьев¹, Юлия Александровна Франк², Александр Николаевич Блохин³, Валерий Валентинович Сусляев⁴, Фёдор Николаевич Родиков⁵, Максим Сергеевич Денисенко⁶

```
1, 2, 3, 4, 5, 6 Национальный исследовательский Томский государственный университет, Томск, Россия

and danilvorobiev@yandex.ru

yulia.a.frank@gmail.com

bansoil@mail.ru

sturwal@mail.ru

teodoro2014@mail.ru

maxden1198@ya.ru
```

Аннотация. Статья описывает результаты исследований по разработке проекта норматива допустимого остаточного содержания нефтепродуктов в донных отложениях после восстановительных работ на водных объектах Красноярского края. В основу работы положены анализ данных по содержанию органического вещества и суммарному содержанию нефтепродуктов в 170 водных объектах; определение биоиндикационных показателей сообществ макрозообентоса; моделирование сорбции сырой нефти разнотипными отложениями и биотестирование.

Ключевые слова: водные объекты, донные отложения, нефть, нефтепродукты, Красноярский край

Благодарности: исследование выполнено по заказу Министерства экологии и рационального природопользования Красноярского края, Государственный контракт № Ф.2022.008154. Авторы благодарят АО «ТомскНИПИнефть» за помощь в сборе архивных материалов.

Для цитирования: Воробьев Д.С., Франк Ю.А., Блохин А.Н., Сусляев В.В., Родиков Ф.Н., Денисенко М.С. Разработка проекта норматива допустимого остаточного содержания нефтепродуктов в донных отложениях после восстановительных работ на водных объектах Красноярского края // Технологии безопасности жизнедеятельности. 2023. № 3. С. 56–66. doi: 10.17223/7783494/3/7

Original article

doi: 10.17223/7783494/3/7

Development of a draft standard for the permissible residual content of petroleum hydrocarbons in bottom sediments after restoration work on water bodies of Krasnoyarsk Krai

Danil S. Vorobiev¹, Yulia A. Frank², Alexander N. Blokhin³, Valeriy V. Suslyaev⁴, Fedor N. Rodikov⁵, Maksim S. Denisenko⁶

```
1. 2, 3, 4, 5, 6 National Research Tomsk State University, Tomsk, Russian Federation

1 danilvorobiev@yandex.ru

2 yulia.a.frank@gmail.com

3 bansoil@mail.ru

4 sturwal@mail.ru

5 teodoro2014@mail.ru

6 maxden1198@ya.ru
```

Abstract. Analytical and experimental studies were carried out to collect information on the state of water bodies of Krasnoyarsk Krai, on the background content of petroleum hydrocarbons, and on the toxicity of crude oil for aquatic organisms. Analysis of stock materials for monitoring licensed areas (245 sites), the mineral nature of the vast majority of bottom sediments was revealed, the scatter values of the total hydrocarbon content ranged from <5 to 712 mg/kg, of which almost half were <50 mg/kg. Quantitative chemical analysis of 306 sediment samples collected in Krasnoyarsk Krai as a part of the current work also showed the predominance of mineral sediments (> 75%). The largest proportion of samples (67.7%) was represented by bottom sediments

containing from 50 to 250 mg/kg of petroleum hydrocarbons. The Spearman correlation between the total hydrocarbon concentration in bottom sediments and the content of organic matter was strong and significant ($r_s = 0.75, p < 0.01$). Experiments to determine the sorption characteristics of different types of bottom sediments to crude oil of Krasnovarsk Krai (Kuyumbinskoe and Yurubcheno-Tokhomskoe fields) showed that mineral sediments had the minimum sorption capacity, in which the residual hydrocarbon content was 14.4 g/kg oil. In mixed and organic sediments this was 73.1 and 91.2 g/kg, respectively. There is a significant strong correlation between the content of organic matter and residual hydrocarbons in bottom sediments ($r_s = 0.84$, p < 0.01). It was discovered that in the surveyed areas the concentration of hydrocarbons does not affect the benthic communities, and the variation in bioindicators is due to natural causes. The statistical calculations showed that there is no reliable correlation between the total content of hydrocarbons in bottom sediments and bioindication indices (Shannon and oligochaete indices). Biotests to determine the range of organism tolerance to crude oil showed that in mineral sediments it does not have acute toxicity to the Scendesmus quardricauda (Turp.) Breb. Algae in concentrations up to 1000 mg/kg, and on the crustacean Daphnia magna Straus - up to 500 mg/kg; no chronic toxicity was noted for Limnodrillus worms up to 2000 mg/kg. Crude oil contained in organic sediments did not have a toxic effect on all test objects at concentrations up to 20,000 mg/kg. The average hydrocarbon content in organic sediments, safe for macrozoobenthos, calculated based on our results and published data was 5013 mg/kg. A draft standard "Permissible residual content of crude oil and petroleum hydrocarbons in bottom sediments after restoration work on water bodies of Krasnoyarsk Krai" was proposed based on the current work results. It is proposed to introduce a diversified standard for different types of bottom sediments: 5000 mg/kg for organic sediments, 200 mg/kg for mineral sediments; for mixed bottom sediments, set the standard using a calculation method based on the content of organic matter.

Keywords: water bodies, bottom sediments, crude oil, petroleum hydrocarbons, Krasnoyarsk Krai

Acknowledgments: The study was funded by the Ministry of Ecology and Rational Natural Resources Management of Krasnoyarsk Territory, State Contract No. F.2022.008154. The authors thank JSC TomskNIPIneft for their assistance in collecting archival materials.

For citation: Vorobiev, D.S., Frank, Yu.A., Blokhin, A.N., Suslyaev, V.V., Rodikov, F.N. & Denisenko M.S. (2023) Development of a draft standard for the permissible residual content of petroleum hydrocarbons in bottom sediments after restoration work on water bodies of the Krasnoyarsk Krai. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 56–66. doi: 10.17223/7783494/3/7 (In Russian).

Введение

Красноярский край - один из наиболее водообеспеченных регионов России. Среднемноголетние ресурсы речного стока составляют 740 км³ в год [1]. Густая и полноводная речная сеть края принадлежит бассейну Северного Ледовитого океана, преимущественно Карского моря (за исключением рек Хатанга и Попигай, впадающих в море Лаптевых). Основная река края – Енисей с многочисленными притоками [2]. Часть рек юго-западной части региона относится к бассейну р. Обь (крупнейшие – Чулым, Кеть). На севере – бассейны рек Пясина, Верхняя Таймыра, Нижняя Таймыра и др. На территории края находятся крупные водохранилища: Богучанское, Красноярское, Хантайское, Саяно-Шушенское, Курейское. Озёра наиболее распространены на Северо-Сибирской низменности (крупнейшие – Таймыр, Пясино) и в западной равнинной части (Маковское, Большое Советское и др.).

Многие водотоки и водоемы на территории края находятся под прессом антропогенного воздействия, источником которого являются предприятия топливно-энергетического комплекса, химической промышленности и цветной металлургии. Как следствие, поверхностные воды загрязнены нефтепродуктами, фенолами, соединениями меди, цинка, железа, алюминия, марганца, мышьяка и т.д. [3]. Для обеспечения безопасности жизнедеятельности населения

Красноярского края важны как защита уязвимых водных экосистем, так и своевременное восстановление загрязненных водотоков и водоемов. Анализ ежегодных государственных докладов о состоянии и охране окружающей среды в Красноярском крае позволяет сделать заключение о том, что концепция ведения мониторинга поверхностных вод суши в Красноярском крае построена на приоритете проведения наблюдений на участках с повышенным антропогенным воздействием в форме лабораторно-аналитических работ с отбором проб воды. На территории края ведется непрерывный мониторинг экологического состояния водных ресурсов, сосредоточенный преимущественно на качестве поверхностных вод. Однако имеющиеся данные о различных показателях качества воды не могут быть взяты в основу оценки качества донных отложений, т. к. между уровнем загрязнения воды и уровнем загрязнения донных отложений редко находятся достоверные связи. Государственный норматив допустимого остаточного содержания нефтепродуктов в донных отложениях отсутствует, а региональный норматив для Красноярского края до настоящего времени не был разработан и установлен.

Цель работы – разработка обоснованного норматива допустимого остаточного содержания нефти и нефтепродуктов в донных отложениях для оценки качества проведения восстановительных работ на нефтезагрязненных водных объектах Красноярского края.

Материалы и методы

Работа проведена в 2022–2023 гг. в два этапа. Исследования первого этапа были направлены на сбор данных для систематизации информации о состоянии водных объектов Красноярского края, а также на выявление территорий Красноярского края, наиболее подверженных загрязнению нефтью и нефтепродуктами (с учетом объектов добычи, транспортировки и переработки нефти и нефтепродуктов). Выполнены аналитические исследования, а именно обзор литературных источников и фондовых материалов для сбора информации о состоянии водных объектов Красноярского края, фоновом содержании нефтепродуктов и биоразнообразии

гидробионтов. Проведены натурное обследование 170 водных объектов на территории края (рис. 1) и отбор проб донных отложений по ГОСТ 17.1.5.01-80 [4]. Отобрано 306 проб донных отложений для проведения количественного химического анализа. Основными контролируемыми показателями были процентное содержание органического вещества, определенное как потери при прокаливании (ППП, %) ГОСТ 27800-93 [5], и суммарное содержание углеводородов, определенное методом ИК-спектрометрии [6]. Для отнесения донных отложений к тому или иному типу использовали следующие критерии: 1) минеральные отложения с ППП от 0 до 10%; 2) органогенные отложения с ППП 10–60%.

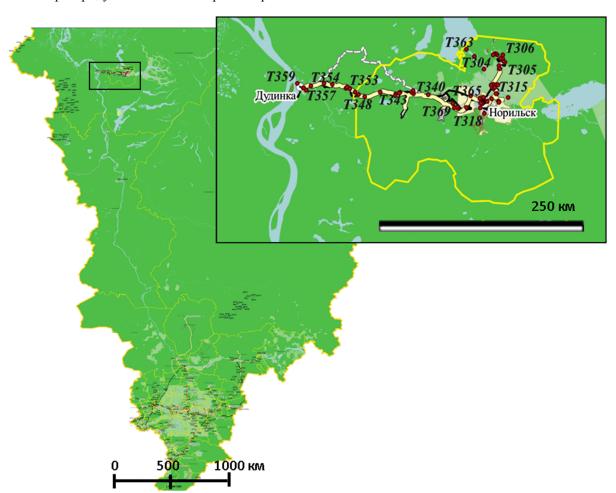


Рис. 1. Карта-схема расположения исследованных водных объектов Красноярского края

Fig. 1. Schematic map of the studied water bodies of the Krasnoyarsk Krai

Также в осенний период 2022 г. были отобраны пробы организмов зообентоса для анализа состояния сообществ (27 проб). Для взятия проб зообентоса использовали дночерпатель системы Петерсена с площадью захвата 1/80 м². Взятую пробу отмывали от мелких фракций ила в промывочном мешке, изготовленном из мельничного газа № 28. Оставшееся

содержимое разбирали с помощью лупы и пинцета для извлечения организмов зообентоса. Организмов фиксировали 70%-ным этиловым спиртом в стеклянных емкостях и этикетировали.

В рамках второго этапа были проведены камеральные работы и аналитические исследования. Выполнен количественный химический анализ

поверхностных вод и донных отложений объектов Красноярского края. Обработку и анализ проб макрозообентоса проводили в соответствии с общепринятыми гидробиологическими методиками [7]. Для оценки экологического состояния обследованных участков и определения качества донных отложений по состоянию сообществ макрозообентоса использовались биоиндикационные показатели — индексы Гуднайта—Уитлея и Шеннона [8–9].

Проведены эксперименты для определения сорбционно-десорбционных характеристик разнотипных донных отложений по отношению к нефти и модельные биотесты для определения диапазона толерантности гидробионтов к нефти. В экспериментах использовали 3 типа донных отложений: минеральные - песок без органического вещества, смешанные отложения (ППП 35%) и органогенные (торф) с показателем ППП 95,5%. В навеску воздушно-сухого грунта добавляли расчётное количество сырой нефти красноярских месторождений (Юрубчено-Тохомского и Куюмбинского 1:1 v/v). Суммарное содержание природных углеводородов в пробе торфа составило 3 875 мг/кг, что учитывали при моделировании нефтяного загрязнения донных отложений. Для количественной оценки сорбции нефти разнотипными донными отложениями в каждую навеску воздушно-сухого грунта добавляли определенное количество смеси сырой нефти и выдерживали 7 сут для прохождения процессов сорбции в герметичном состоянии экспериментальных ёмкостей. Далее в емкости добавляли 200 мл воды и интенсивно перемешивали в течение 1 мин, отстаивали 6 ч и промывали водой в течение 2 мин с использованием мельничного газа № 49. Отмытый грунт переносили в чистые емкости и высушивали до воздушно-сухого состояния и передавали в аналитическую лабораторию для определения концентрации нефтепродуктов. Эксперимент выполняли в 3 повторностях, после промывки получали объединенную пробу. Биотестирование образцов донных отложений разных типов, искусственно загрязненных сырой нефтью (как описано выше), проводили с использованием организмов фитопланктона Scendesmus quardricauda (Turp.) Breb., зоопланктона Daphnia magna Straus и зообентоса Limnodrilus hoffmeisteri Claparède, 1862. В случае S. quardricauda и D. magna биотесты проводили в ОГУ «Облкомприрода» г. Томска с применением стандартизованных методов [10-11]. Для оценки токсичности нефти по отношению к малощетинковым червям фиксировали выживаемость и изменение средней массы тела по отношению к контрольной группе в течение 30 сут.

По итогам вышеописанных исследований обоснован и предложен проект норматива «Допустимое

остаточное содержание нефти и нефтепродуктов в донных отложениях после проведения восстановительных работ на водных объектах Красноярского края».

Результаты и обсуждение

Характеристика донных отложений водных объектов Красноярского края по результатам анализа фондовых материалов и экспериментальных исследований

Анализ фондовых материалов позволил установить разброс фоновых концентраций нефтепродуктов в донных отложениях. Были систематизированы сведения о фактическом содержании нефтепродуктов в 245 точках мониторинга, расположенных в границах лицензионных участков на территориях Таймырского Долгано-Ненецкого, Туруханского и Эвенкийского районов Красноярского края (рис. 2, А). Разброс значений суммарного содержания нефтепродуктов в пробах донных отложений по данным фондовых материалов составил от <5 до 712 мг/кг. Выявлено, что почти в половине всех проб (47,2%) концентрации нефтепродуктов не превышали 50 мг/кг, 34,6% исследованных проб донных отложений содержали от 50 до 100 мг/кг, а 15,9% – от 101 до 250 мг/кг. Доля проб донных отложений с более высокими концентрациями нефтепродуктов составила 2,4%, из них в 0,8% донных отложений зафиксировано содержание нефтепродуктов от 251 до 500 мг/кг, а в 1,6 % – от 501 до 712 мг/кг. В целом, в точках мониторинга, расположенных в границах Юручено-Тохомского, Куюмбинского и Терско-Камовского участков в Эвенкии выявлено наибольшее число проб с высокими концентрациями нефтепродуктов (до 712 мг/кг). Среди проб с концентрацией нефтепродуктов >100 мг/кг почти половина была представлена суглинистыми донными отложениями, имеющими минеральную или смешанную (органоминеральную) природу, за ними следовали песчаные минеральные отложения (34.8%).

В ходе анализа выявлена минеральная природа подавляющего большинства исследованных проб донных отложений (> 75%), смешанные донные отложения обнаружены в 73 пробах из 306 (почти 24%), на долю органогенных отложений приходилось < 1% (рис. 2, B). Как видно из рис. 2, B, в 9,8% проб донных отложений содержание нефтепродуктов по результатам ИК-спектрометрии было ниже предела обнаружения (< 50 мг/кг). На долю донных отложений, содержащих от 50 до 250 мг/кг нефтепродуктов, приходилось в общей сложности 67,7% проб, а в категорию «от 251 до 750 мг/кг» попало 17,3%. По 1 % пришлось

на долю донных отложений водных объектов Красноярского края, в которых зафиксировано 751–1000 и

более 1000 мг нефтепродуктов на килограмм сухой массы (рис. 2, B).

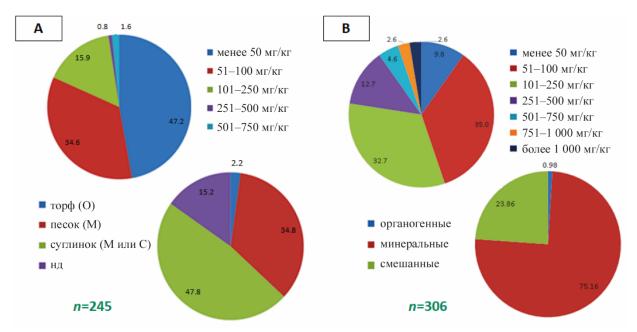


Рис. 2. Тип донных отложений водных объектов Красноярского края и суммарное содержание НП по данным мониторинга в пределах лицензионных участков (*A*) и по данным количественного химического анализа 2022 г. (*B*):

О – органогенные донные отложения, М – минеральные, С – смешанные;

п = количество точек мониторинга (для *A*) и точек отбора проб (для *B*)

Fig. 2. Type of bottom sediments in water bodies of the Krasnoyarsk Krai and the total content of petroleum hydrocarbons according to monitoring data within the licensed areas (A) and quantitative chemical analysis in 2022 (B): O – organic bottom sediments, M – mineral, C – mixed; n = number of monitoring points (for A) and sampling points (for B)

На 27 обследованных участках, где отбирались пробы макрозообентоса, содержание нефтепродуктов варьировало от минимального порога определения (<50 мг/кг) до 509 мг/кг. Проведенный корреляционный анализ (ранговый коэффициент корреляции Спирмэна) между содержанием нефтепродуктов в донных отложениях и потерями при прокаливании показал высокую положительную достоверную (p < 0.01) связь, где r = 0.75. Проведенные статистические расчёты показали, что между суммарным содержанием нефтепродуктов в донных отложениях и биоиндикационными индексами отсутствует достоверная корреляционная связь (коэффициент ранговой корреляции Спирмэна): нефтепродукты – индекс Шеннона (r = -0.05, p > 0.05), нефтепродукты – олигохетный индекс (r = 0.08, p > 0.05). Следовательно, на обследованных участках концентрация нефтепродуктов не влияет на биоиндикационные показатели сообществ донных организмов, а вариация показателей обусловлена естественными причинами. Достоверно установлено, что связь между содержанием углеводородов в донных отложениях и количественными и биоиндикационными показателями макрозообентоса отсутствует.

Результаты модельного лабораторного эксперимента по оценке сорбционной емкости донных отложений по отношению к сырой нефти

В результате эксперимента минимальной сорбционной способностью обладали минеральные грунты, в которых содержание сорбированной нефти составило 14,4 г/кг воздушно-сухого грунта (рис. 3). В смешанных и органогенных грунтах этот показатель составил соответственно 73,1 и 91,2 г/кг. Проведенный корреляционный анализ (коэффициент ранговый корреляции Спирмэна) между содержанием органического вещества и показателем остаточной нефти показал достоверную зависимость 0,84 (p < 0,01).

Достоверные отличия зафиксированы в группах «минеральные отложения» — «смещанные отложения» (p < 0.01), «минеральные отложения» — «органогенные отложения» (p < 0.01). Между смещанными и органогенными отложениями достоверных отличий по показателю остаточного содержания нефти после десорбционных манипуляций не выявлено, что подтверждает значимое влияние органической части отложений на показатели сорбционной способности донных отложений.

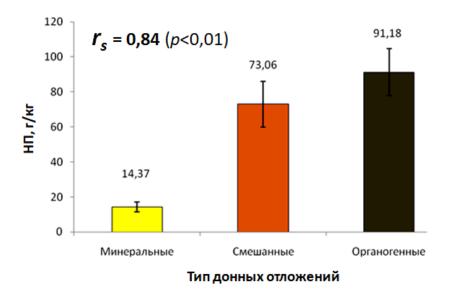


Рис. 3. Среднее содержание нефтепродуктов (± стандартная ошибка) в отложениях после десорбции в модельном эксперименте

Fig. 3. Average content of hydrocarbons (± standard error) in sediments after desorption in the model experiment

Полученные результаты сорбционно-десорбционных характеристик разнотипных донных отложений по отношению к нефти и проведенная математикостатистическая обработка данных подтвердили необходимость дифференциации норматива в зависимости от содержания органического вещества в донных отложениях.

Результаты биотестирования

В ходе выполнения биотестов с использованием организмов фитопланктона установлено, что сырая нефть месторождений Красноярского края (Юрубчено-Тохомского и Куюмбинского) оказывает токсическое воздействие на протококковые водоросли Scendesmus quardricauda за 72 ч экспозиции только в случае минеральных донных отложений и только при концентрации 2,0 г/кг (табл. 1). Ракообразные зоопланктона оказались более чувствительными к нефтяному загрязнению донных отложений. Обнаружено вредное воздействие искусственно загрязненных грунтов на Daphnia magna за 72 ч экспозиции в случае минеральных донных отложений при концентрациях 1,0 и 2,0 г/кг. В случае смешанных донных отложений водная вытяжка из образцов с максимальными концентрациями нефти (6,0 и 8,0 г/кг) оказывала воздействие на D. magna только при отсутствии разведения (см. табл. 1).

В настоящей работе минеральные, смешанные и органогенные донные отложения, содержащие до 2,0; 8,0 и 20,0 г/кг сырой нефти месторождений Красноярского края, не оказывали токсического действия на малощетинковых червей даже через 30 сут. Однако

для разработки адекватного нормативного значения ДОСНП необходимо учитывать и литературные данные. Для установления нормативного значения углеводородов в органогенных отложениях были использованы концентрации углеводородов, не оказывающие летального эффекта по опубликованным данным (табл. 2).

Было получено среднее арифметическое значение 5 013 мг/кг. В расчёте не применялись максимальные значения (20 000 мг/кг), которые не оказывали токсичного эффекта. С учётом округления данного значения предлагается установить норматив для органогенных грунтов на уровне 5 000 мг/кг. Во всех случаях данная концентрация углеводородов (5 000 мг/кг) в гомогенизированном состоянии в составе органогенных отложений не оказывает токсичного действия на основные группы бентоса.

Аналогичные расчёты были проведены для минеральных отложений, где не были учтены значения, полученные в результате тех же тестирований: отсутствие острой токсичности для зеленых протококковых водорослей *Scendesmus quardricauda* (Turp.) Breb. — 1 000 мг/кг; отсутствие острой токсичности для ракообразных дафний *Daphnia magna* Straus — 500 мг/кг; отсутствие хронической токсичности для лимнодрилусов — 2 000 мг/кг. Среднее арифметическое значение для минеральных отложений составило 190,5 мг/кг, с учётом округления данного значения — 200 мг/кг.

В силу зависимости содержания (определения) углеводородов в пробе от содержания органического вещества (ППП, %) нормативное содержание нефтепродуктов в смешанных донных отложениях рекомендуется

определять по линейному уравнению, которое устанавливает зависимость между величинами норматива для

минеральных отложений и органогенных от величины потерь при прокаливании (рис. 4).

Таблица 1 Токсичность донных отложений, искусственно загрязненных нефтью месторождений Красноярского края, для тест-объектов в модельных экспериментах

				Токсичность дл	я тест-объектов			
	НП, г/кг	Микрово	одоросли	Зоопл	анктон	300б	ентос	
Тип ДО		S. quare	dricauda	D. m	agna	L. hoffmeisteri		
		72	2 ч	72	2 ч	30 сут		
		Kp = 1	Kp <10000	Kp = 1	Kp <10000	Kp = 1	Kp <10000	
	0,00	-	_	_	_	-	_	
	0,25	-	_	_	_	-	_	
Минеральные	0,50	1	_	_	_	1	_	
_	1,00	-	_	Да	_	-	_	
	2,00	Да	Да	Да	_	1	_	
	1,42	I	_	_	-	ı	_	
	2,00	-	_	_	_	-	_	
Смешанные	4,00	ı	-	_	-	ı	_	
	6,00	-	_	Да	_	-	_	
	8,00	1	_	Да	_	1	_	
	3,88	1	_	_	_	1	_	
	5,00	-	_	_	_	-	_	
Органогенные	10,00	ı	_	_	_	ı	-	
	15,00	-	-	-	_	-	_	
	20,00	_	_	_	_	_	_	

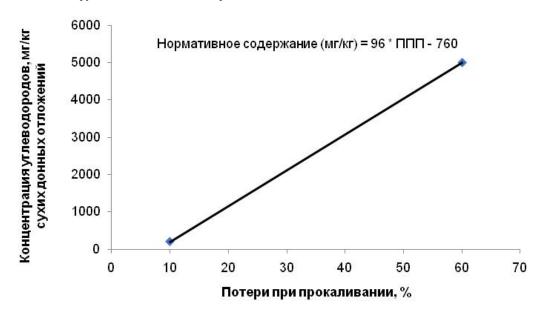

Примечание. Кр – коэффициент разведения.

Таблица 2 Сводные данные по содержанию углеводородов в донных отложениях и их токсичности для беспозвоночных (инфауны)

Критерий	Минеральные отложения ППП 0%–до 10%	Смешанные отложения ППП 10%–60%	Органогенные отложения ППП более 60%	Источник/ примечание
Средние концентрации нефтепродуктов, мг/кг	$131,7 \pm 9,8$ $(25,0-1588,0)$ $n = 252$	$283,0 \pm 31,4$ $(25,0-2514,0)$ $n = 128$	988,3 ± 116,4 (772,0–1171,0) n = 3 3875 μγ/κγ *	Данная работа
Средние концентрации нефтепродуктов, мг/кг	60,0	131,6	240,9	Результаты мониторинга лицензионных участков (архивы)
Острая токсичность све- жей нефти** для прото- кокковых водорослей S. quardricauda	До 1 000 мг/кг нет острого токсичного эффекта за 72 ч	До 8 000 мг/кг нет острого токсичного эффекта за 72 ч	До 20 000 мг/кг нет острого токсичного эффекта за 72 ч	Данная работа
Острая токсичность све- жей нефти** для ракооб- разных дафний <i>D. magna</i>		До 6 000 мг/кг нет острого токсичного эффекта за 96 ч	До 20 000 мг/кг нет острого токсичного эффекта за 96 ч	Данная работа
Хроническая токсич- ность свежей нефти** для лимнодрилусов	До 2000 мг/кг нет достоверного летального эффекта за 30 сут	До 8 000 мг/кг нет достоверного летального эффекта за 30 сут	До 20 000 мг/кг нет достоверного летального эффекта за 30 сут	Данная работа
Содержание углеводоро- дов в донных отложе- ниях после проведения	_	бентосом – олигохеты	ожения озера заселялись , личинки хирономид, ые моллюски	[12]
очистных работ на вод-	70,2 мг/кг	70,2 мг/кг –		[13]
ных объектах	-		2000 г/кг	[14]
Влияние нефти на количественные показатели бентоса		падают виды рода <i>Chiron</i> s; > 5 000 мг/кг – снижени йчивые гидробионты	[15]	

Критерий	Минеральные отложения ППП 0%–до 10%	Смешанные отложения ППП 10%–60%	Органогенные отложения ППП более 60%	Источник/ примечание
	_	6 000 мг/кг – концентраци жениях, при которой туби количественные показате.	[16]	
	< 7 000 мг/кг наблюдались максимальные показатели выживаемости, плодовитости, а также отсутствие поведенческих отклонений		[17]	
	_	16 720 мг/кг – не вызывае за 30 сут, отмечено появл	[18]	

 $\overline{\Pi}$ римечание. * – содержание углеводородов в органогенных условно чистых отложениях (торф), $\Pi\Pi\Pi$ = 95,5%; ** – смесь сырой нефти Куюмбинского и Юрубчено-Тохомского месторождений в соотношении 1:1.

Рис. 4. Линейное уравнение для определения нормативного содержания углеводородов в смешанных донных отложениях (ППП от 10 до 60%)

Fig. 4. Linear equation for determining the standard hydrocarbon content in mixed bottom sediments (loss on ignition from 10 to 60%)

Заключение

На основании полученных материалов предложено ввести дифференцированный норматив ДОСНП для трёх типов донных отложений: минеральные (ППП</br>
(ППП
(10%); смешанные (ППП 10–60%); органогенные (ППП > 60%). Необходимость дифференциации норматива в зависимости от содержания органического вещества в донных отложениях была достоверно подтверждена математико-статистической обработкой результатов эксперимента по сорбционно-десорбционным характеристикам разнотипных отложений по отношению к нефти, а также данными биотестов.

Предлагаемые нормативные значения составляют для минеральных донных отложений 200 мг/кг, для органогенных донных отложений 5 000 мг/кг, а для смешанных отложений значение определяется исходя из показателя ППП по формуле

$$x = 96 \times \Pi\Pi\Pi - 760, \tag{1}$$

где x — значение ДОСНП, мг/кг; ППП — потери при прокаливании, %.

Предложенные значения ДОСНП для водных объектов Красноярского края определены с использованием метода ИК-спектрометрии для анализа суммарного содержания углеводородов в воздушно-сухих донных отложениях.

Сформулированы требования для сдачи-приемки восстановительных работ на водных объектах, которые должны быть соблюдены в обязательном порядке наряду с установленными нормативными значениями ДОСНП, включая отсутствие мобильной нефти на поверхности водного объекта и в составе донных отложений. Допускается превышение нормативного значения содержания нефти и нефтепродуктов в отдельных точках, но среднее арифметическое значение концентраций по всем точкам обследования по водному объекту (участку очистки) должно соответствовать нормативному значению.

Разработанный норматив позволит обратить внимание специалистов на проблематику комплексной

очистки нефтезагрязненных водных объектов, включая донные отложения, и ввести требования к природопользователям по восстановлению водных экосистем.

Список источников

- 1. *Виноградова Л.И*. Ресурсы поверхностных вод в Красноярском крае // Современные проблемы землеустройства, кадастров и природообустройства. Красноярск: Краснояр. гос. аграр. ун-т, 2020. С. 128–132.
- 2. Корытный Л.М. Реки Красноярского края. Красноярск: Красноярское книжное изд-во, 1991. 157 с.
- 3. Государственный доклад «О состоянии и охране окружающей среды в Красноярском крае в 2022 году». Красноярск : КГБУ «ЦРМПиООС», 2023. 367 с.
- 4. ГОСТ 17.1.5.01—80. Охрана природы. Гидросфера. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность. Дата введения: 01.01.1982 г.
- ГОСТ 27800–93. Глинозем. Методы определения потери массы при прокаливании. Дата введения: 01.01.1995 г.
- ПНД Ф 16.1:2.2.22−98. Количественный химический анализ почв. Методика выполнения измерений массовой доли нефтепродуктов в минеральных, органогенных, органоминеральных почвах и донных отложениях методом ИК-спектрометрии. М., 1998.
- 7. Методика изучения биогеоценозов внутренних водоемов / под ред. Ф.Д. Мордухай-Болтовского. М.: Наука, 1975. 240 с.
- 8. Рябов Ф.П., Дыга А.К., Кириленко А.С. и др. Оценка качества воды индексом удельного биотического разнообразия // Самоочищение и биоиндикация загрязненных вод. М.: Наука, 1980. С. 227–231.
- 9. Макрушин А.В. Биологический анализ качества вод. Л.: АН СССР. Зоол. ин-т. Всесоюз. гидробиол. о-во, 1974. 60 с.
- 10. ФР.1.39.2007.03223. Методика определения токсичности вод, водных вытяжек из почв, осадков сточных вод и отходов по изменению уровня флуоресценции хлорофилла и численности клеток водорослей (тест-объект зеленые протококковые водоросли *Scendesmus quardricauda* (Turp.) Breb.). М.: AKBAPOC, 2007.
- 11. ПНД Ф Т 14.1:2:4.12–06. Методика определения острой токсичности питьевых, пресных природных и сточных вод, водных вытяжек из почв, осадков сточных вод и отходов по смертности дафний (*Daphnia magna* Straus). М., 2011. 30 с.
- 12. *Лушников С.В., Воробьев Д.С.* Очистка донных отложений от нефти: результаты экспериментальных работ // Экология и промышленность России. 2006. № 10. С. 11–13.
- 13. *Воробьев Д.С., Лушников С.В., Фадеев В.Н., Лушников В.С., Франк Ю.А.* Опыт комплексной очистки обводненных карьеров от нефти // Экология и промышленность России. 2008. № 4. С. 26–28.
- 14. Frank Y.A., Vorobiev D.S., Merzlyakov O.E. et al. Cleaning of oil-polluted bottom sediments of the boreal lake, Samotlor oil field, North Russia: case report // Water Science & Technology. 2020. Vol. 82 (12). P. 3062–3073.
- 15. *Михайлова Л.В., Исаченко-Боме Е.А.* Разработка и апробация норматива содержания нефти в донных отложениях поверхностных водных объектов // Водные ресурсы. 2012. Т. 39, № 5. С. 530–542.
- 16. *Цветкова Л.И*. О роли тубифицид в кислородном балансе водоемов // Водные малощетинковые черви (систематика, экология, исследования фауны СССР) // Труды ВГБО. М.: Наука, 1972. Т. 17. С. 118–125.
- 17. Воробьев Д.С., Франк Ю.А., Залозный Н.А., Лушников С.В., Сидорская С.Н. Перемещение Limnodrilus hoffmeisteri (Oligochaeta, Tubificidae) в нефтезагрязненных илах // Вестник Томского государственного университета. Биология. 2008. № 1 (2). С. 82–89.
- 18. Воробьев Д.С. Биологические основы очистки донных отложений от нефти и нефтепродуктов : автореф. дис. . . . д-ра биол. наук. Томск, 2013. 46 с.

References

- 1. Vinogradova, L.I. (2020) Resursy poverkhnostnyh vod v Krasnoyarskom Krae [Surface water resources in the Krasnoyarsk Krai]. In: Sovremennye problem zemleustrojstva, kadastrov I pripodoobustrojstva [Modern problems of land management, cadastres and environmental management]. Krasnoyarsk: KSAU. pp. 128–132.
- 2. Korytnyj, L.M. (1991) *Reki Krasnoyarskogo Kraja* [Rivers of the Krasnoyarsk Krai]. Krasnoyarsk : Krasnoyarsk book publishing house.
- 3. Gosudarstvennyj doklad "O sostojanii I okhrane okruzhayuschej sredy v Krasnoyarskom Krae v 2022 godu" [State Report "On the On the state and protection of the environment in the Krasnoyarsk Territory in 2022"]. Krasnoyarsk: Regional State Budgetary Institution "Center for Implementation of Activities for Nature Management and Environmental Protection of the Krasnoyarsk Territory", 2023.
- 4. n.a. (1982) GOST 17.1.5.01-80. Okhrana prirody. Gidrosphera. Obschie trebovanija k otboru prob donnyh otlozhenij dlja analiza na zagrjaznennost' [State Standard 17.1.5.01-80. Protection of Nature. Hydrosphere. General requirements for sampling of bottom sediments of water bodies for pollution analysis]. Moscow.
- 5. n.a. (1995) GOST 27800-93. Glinozjem. Metody opredelenija poteri massy pri prokalivanii [State Standard 27800-93. Alumina. Methods for determining mass loss on ignition]. Moscow.
- 6. n.a. (1998) PND F 16.1:2.2.22-98. Kolichestvennyj khimicheskyj analiz pochv. Metodika vypolnenija izmerenij massovoj doli nefteproduktov v mineral'nykh, organogennykh, organomineral'nykh pochvah i donnyh otlozhenijah metodom IK-spektrometrii [PND F 16.1:2.2.22-98. Quantitative chemical analysis of soils. Methodology for measuring the mass fraction of petroleum products in mineral, organic, organomineral soils and bottom sediments using the IR spectrometry method]. Moscow.
- 7. Mordukhaj-Boltovskyj, F.D. (Ed.) (1975) *Metodika izuchenija biogeotsenozov vnutrennikh vodoemov* [Methodology for studying biogeocenoses of inland water bodies]. Moscow: Nauka.

- 8. Ryabov, F.P., Dyga, A.K., Kirilenko, A.S., et al. (1980) Otsenka kachestva vody indeksom udel'nogo bioticheskogo raznoobrazija [Assessment of water quality using the specific biotic diversity index]. In: *Samoochischenie i bioindikatsija zagrjaznennykh vod* [Self-purification and bioindication of contaminated waters]. Moscow: Nauka. pp. 227–231.
- 9. Makrushin, A.V. (1974) *Biologicheskyj analiz kachestva vod* [Biological analysis of water quality]. Leningrad: Academy of Science USSR
- 10. n.a. (2007) FR.1.39.2007.03223. Metodika opredelenija toksichnosti vod, vodnykh vytjazhek iz pochv, osadkov stochnyh vod I othodov po izmeneniju urovnja fluorescencii khlorofilla I chislennosti rletok vodoroslej (test-objekty zelenye protokokkovye vodorosli Scendesmus quardricauda (Turp.) Breb.) [FR.1.39.2007.03223. Methodology for determining the toxicity of water, water extracts from soils, sewage sludge and waste by changes in the level of chlorophyll fluorescence and the number of algae cells (test object green protococcal algae Scendesmus quardricauda (Turp.) Breb.).] Moscow: AQUAROS.
- 11. n.a. (2011) PND F T 14.1:2:4.12-06. Metodika opredelenija ostroj toksichnosti pitjevykh, presnyh prirodnykh I stochnyh vod, vodnykh vytjazhek iz pochv, osadkov stochnyh vod I otkhodov po smertnosti dafnij (Daphnia magna Straus) [PND F T 14.1:2:4.12-06. Methodology for determining the acute toxicity of drinking, fresh natural and waste waters, water extracts from soils, sewage sludge and waste by mortality of Daphnia (Daphnia magna Straus)]. Moscow.
- 12. Lushnikov, S.V. & Vorobiev, D.S. (2006) Ochistka donnykh otlozhenij ot nefti: resultaty experimental'nykh rabot [Cleaning bottom sediments from crude oil: Experimental work results]. Ekologija I promyshlennoct' Rossii Ecology and Industry of Russia. 10. pp. 11–13.
- 13. Vorobiev, D.S., Lushnikov, S.V., Fadeev, V.N., Lushnikov, V.S. & Frank, Y.A. (2008) Opyt kompleksnoj ochistki obvodnennykh karjerov ot nefti [Experience in comprehensive cleaning of watered quarries from oil]. *Ekologija I promyshlennoct' Rossii Ecology and Industry of Russia*. 4. pp. 26–28.
- 14. Frank, Y.A., Vorobiev, D.S., Merzlyakov, O.E., et al. (2020) Cleaning of oil-polluted bottom sediments of the boreal lake, Samotlor oil field, North Russia: case report. *Water Science & Technology*. 82 (12). pp. 3062–3073
- 15. Mikhailova, L.V. & Isachenko-Bome, E.A. (2012) Razrabotka i aprobatsiya normativa soderzhaniya nefti v donnykh otlozheniyakh poverkhnostnykh vodnykh ob'ektov [Development and testing of standards for oil content in bottom sediments of surface water bodies]. *Vodnye Resursy Water Resources*. 39 (5). pp. 530–542.
- 16. Tsvetkova, L.I. (1972) O roli tubificid v kislorodnom balance vodoemov [On the role of tubificides in the oxygen balance of water bodies]. In: *Vodnye maloschetinkovye chervi (sistematika, ecologiya, issledovanija fauny SSSR): trudy VGBO* [Aquatic oligochaete worms (systematics, ecology, studies of the fauna of the USSR): Proceedings of the All-Russian Hydrobiological Society]. Moscow: Nauka. 17. pp. 118–125.
- 17. Vorobiev, D.S., Frank, Y.A., Zaloznyj, N.A., Lushnikov, S.V. & Sidorskaja, S.N. (2008) Перемещение *Limnodrilus hoffmeisteri* (Oligochaeta, Tubificidae) в нефтезагрязненных илах [Movement of *Limnodrilus hoffmeisteri* (Oligochaeta, Tubificidae) in oilcontaminated silts]. *Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya Tomsk State University Journal of Biology.* 1(2). pp. 82–89.
- 18. Vorobiev, D.S. (2013) *Biologicheskiye osnovy ochistki donnykh otlozhenij ot nefti I nefteproduktov* [Biological basis for cleaning bottom sediments from crude oil and petroleum hydrocarbons]. Abstract of Biology Dr. Diss. Tomsk.

Информация об авторах:

Воробьев Данил Сергеевич – доктор биологических наук, директор Биологического института Томского государственного университета (Томск, Россия). E-mail: danilvorobiev@yandex.ru

Франк Юлия Александровна — кандидат биологических наук, доцент кафедры ихтиологии и гидробиологии Биологического института Томского государственного университета (Томск, Россия). E-mail: yulia.a.frank@gmail.com

Блохин Александр Николаевич — младший научный сотрудник научно-производственной лаборатории инженерных изысканий и технологий природопользования Биологического института Томского государственного университета (Томск, Россия). E-mail: bansoil@mail.ru

Сусляев Валерий Валентинович — младший научный сотрудник научно-производственной лаборатории инженерных изысканий и технологий природопользования Биологического института Томского государственного университета (Томск, Россия). E-mail: sturwal@mail.ru

Родиков Фёдор Николаевич – лаборант научно-производственной лаборатории инженерных изысканий и технологий природопользования Биологического института Томского государственного университета (Томск, Россия). E-mail: teo-doro2014@mail.ru

Денисенко Максим Сергеевич – лаборант научно-производственной лаборатории инженерных изысканий и технологий природопользования Биологического института Томского государственного университета (Томск, Россия). E-mail: maxden1198@ya.ru

Вклад авторов: Разработка концепции и методологии исследования — Воробьев Д.С., Франк Ю.А.; общее руководство работой — Воробьев Д.С.; натурные изыскания, отбор проб — Блохин А.Н., Сусляев В.В.; камеральные исследования и модельные эксперименты — Воробьев Д.С., Франк Ю.А., Родиков Ф.Н., Денисенко М.С; анализ и статистическая обработка данных — Воробьев Д.С., Франк Ю.А., Блохин А.Н., Родиков Ф.Н.; подготовка иллюстраций и рукописи публикации — Воробьев Д.С., Франк Ю.А.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Vorobiev Danil S., Dr. Sc. (Biology), director of the Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: danilvorobiev@yandex.ru

Frank Yulia A., Cand. Sc. (Biology), associate professor, Department of Ichthyology and Hydrobiology, Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: yulia.a.frank@gmail.com

Blokhin Alexander N., junior researcher, Research and Production Laboratory of Engineering Surveys and Environmental Technologies, Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E -mail: bansoil@mail.ru

Suslyaev Valeriy V., junior researcher, Research and Production Laboratory of Engineering Surveys and Environmental Technologies, Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E -mail: sturwal@mail.ru

Rodikov Fedor N., laboratory assistant, Research and Production Laboratory of Engineering Surveys and Environmental Technologies, Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E -mail: teodoro2014@mail.ru

Denisenko Maksim S., laboratory assistant, Research and Production Laboratory of Engineering Surveys and Environmental Technologies, Biological Institute, National Research Tomsk State University (Tomsk, Russian Federation). E -mail: maxden1198@ya.ru

Contribution of the authors: Conceptualization and methodology of the study – Vorobiev D.S., Frank Y.A.; Supervision – Vorobiev D.S.; Field studies and sampling – Blokhin A.N., Suslyaev V.V.; Laboratory investigations and model experiments – Vorobiev D.S., Frank Y.A., Rodikov F.N., Denisenko M.S.; Data analysis and statistics – Vorobiev D.S., Frank Y.A.; Writing and visualization – Vorobiev D.S., Frank Y.A., Blokhin A.N.
The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 504.054

doi: 10.17223/7783494/3/8

Диапазон резистентности водных организмов к контаминации среды искусственными наночастицами

Юрий Николаевич Моргалёв¹, Сергей Юрьевич Моргалёв², Оксана Владимировна Кондратова³, Тамара Григорьевна Моргалёва⁴

^{1,2,3,4} Национальный исследовательский Томский государственный университет, Томск, Россия

¹ yu.morgalev@gmail.com

² s.morgalev2@gmail.com

³ kov-2710@yandex.ru

⁴ tg.morgaleva@gmail.com

Аннотация. Наряду с вопросами безопасности высокодисперсных материалов непосредственно для человека и сельскохозяйственных животных одинаково важным является их возможное влияние на более низкие звенья пищевых цепей, формирующих экосистему обеспечения трофической безопасности. Согласно закону равнозначности, все условия среды, необходимые для поддержания жизни, имеют равную роль. Поэтому нарушения в низших, обычно менее устойчивых элементах пищевых цепей могут критически ограничить существование человечества. В процессе жизненного цикла наноматериалов одним из наиболее массовых путей попадания в биосферу является перенос в виде аэрозолей с последующим осаждением на поверхностные воды или почву, либо непосредственный перенос почвенными водами из мест складирования или захоронения. Поэтому одними из первых звеньев, контактирующих с наночастицами, являются гидробионты. Проведена оценка экологических и биологических эффектов искусственных металлических и бинарных наночастиц (NPs) различной химической природы и структурных характеристик. На основе экспресс-методов оценки токсичности с использованием водных тест-организмов различных трофических уровней (Escherihia coli, Chlorella vulgaris B., Paramecium caudatum, Daphnia magna S., Danio rerio) установлен диапазон резистентности к NPs никеля (nNi), платины (nPt), оксида цинка (nZnO) и оксида церия (nCeO₂). Установлено, что тест-реакция на контаминацию водной среды NPs и развитие комплекса неблагоприятных последствий для фито- и зоопланктона зависит от физико-химических свойств NPs и чувствительности гидробионтов. Определены концентрации NPs, не вызывающие видимых изменений тест-реакций организмов. Выявлено, что наиболее чувствительным к контаминации среды NPs гидробионтом является одноклеточная зелёная водоросль Chlorella vulgaris B., наиболее чувствительным параметром – содержание фотосинтетических пигментов: для nCeO₂ $L(E)C_{10} = 0.0007 \text{ мг/л}$, для nNi $L(E)C_{10} = 0.0015 \text{ мг/л}$, для nZnO $L(E)C_{10} = 0.0048 \text{ мг/л}$, для nPt $L(E)C_{10} = 0.033 \text{ мг/л}$. Наиболее устойчивы (L(E) $C_{10} > 100$ мг/л) к контаминации nPt оказались *E. Coli, D. magna S., D. rerio*, к контаминации nNi и nZnO – $D.\ rerio$, к контаминации nCeO $_2$ – $E.\ Coli,\ P.\ caudatum,\ D.\ rerio$ по показателю «эмбриотоксичность». Выявлены наиболее уязвимые звенья трофической структуры сообществ и возможность нарушения пищевой пирамиды водной экосистемы. Показано, что интегральной характеристикой воздействия NPs на экосистему может служить «диапазон резистентности» – диапазон концентраций, в рамках которого сохраняется резистентность биоты.

Ключевые слова: резистентность, наночастицы, гидробионты, тест-организм, тест-реакция, дисперсные системы

Благодарности: исследование выполнено при финансовой поддержке программы развития Томского государственного университета (Приоритет-2030).

Для цитирования: Моргалёв Ю.Н., Моргалёв С.Ю., Кондратова О.В., Моргалёва Т.Г. Диапазон резистентности водных организмов к контаминации среды искусственными наночастицами // Технологии безопасности жизнедеятельности. 2023. № 3. С. 67–77. doi: 10.17223/7783494/3/8

Original article

doi: 10.17223/7783494/3/8

The range of resistance of hydrobionts to medium contamination with manufactured nanoparticles

Yuri N. Morgalev¹, Sergey Yu. Morgalev², Oksana V. Kondratova³, Tamara G. Morgaleva⁴

1, 2, 3, 4 National Research Tomsk State University, Tomsk, Russian Federation

¹yu.morgalev@gmail.com

²s.morgalev2@gmail.com

³kov-2710@yandex.ru

⁴tg.morgaleva@gmail.com

Abstract. In addition to the safety issues of highly dispersed materials directly for humans and farm animals, of equal importance is their possible impact on the lower links of the food chains that form the ecosystem of trophic security. According to

the law of equivalence, all environmental conditions necessary to sustain life have an equal role to play. Therefore, disturbances in the lower, usually less resilient elements of food chains can critically limit humanity's existence. During the life cycle of nanomaterials, one of the most common pathways of entry into the biosphere is through aerosol transport with subsequent deposition on surface water or soil, or direct transport by soil water from storage or disposal sites. Therefore, hydrobionts are among the first links in contact with nanoparticles. An assessment was performed to estimate ecological and biological effects of metallic and binary nanoparticles (NPs) of various chemical nature and structural characteristics. Application of rapid toxicity tests using hydrobionts of various trophic levels (Escherihia coli, Chlorella vulgaris B., Paramecium caudatum, Daphnia magna S., Danio rerio) allowed to determine resistance range to NPs Ni, Pt, ZnO and CeO2. It was established that test reaction to contamination of water with NPs and development of adverse effects to phyto- and zooplankton is contingent on NPs physicochemical properties and sensitivity of hydrobionts. Concentrations of NPs not causing observed change of test reactions were determined. C. vulgaris B. was established to be the most vulnerable to contamination of medium with NPs; photosynthetic pigment quantity was determined to be the most sensitive parameter: $nCeO_2$ L(E)C₁₀ = 0.0007 mg/l, nNi L(E)C₁₀ = 0.0015 mg/l, nZnO L(E)C₁₀ = 0.0048 mg/l, nPt $L(E)C_{10} = 0.033$ mg/l. The highest resistance ($L(E)C_{10} > 100$ mg/l) to contamination shown by: E. Coli, D. magna S., D. rerio to nPt; D. rerio. to nNi and nZnO, E. coli, P. caudatum to nCeO₂; and D. rerio by the parameter 'embryotoxicity'. The most vulnerable chains of trophic structure of communities were revealed as well as ways of disrupting food pyramid of an aquatic system. Range of resistance or range of concentrations within which biota retains resistance was shown to be an integral characteristic of NPs effects on ecosystems.

Keywords: resistance, nanoparticles, hydrobionts, test-organism, test-reaction, dispersed systems

Acknowledgments: This study was supported by the Tomsk State University Development Programme (Priority-2030).

For citation: Morgalev, Yu.N., Morgalev, S.Yu., Kondratova, O.V. & Morgaleva, T.G. (2023) The range of resistance of hydrobionts to medium contamination with manufactured nanoparticles. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 67–77. doi: 10.17223/7783494/3/8 (In Russian).

Введение

В последние десятилетия развитие нанотехнологий привело к быстрому росту разнообразия искусственных наночастиц (NPs) и наноматериалов (NM), многие из которых принципиально отличаются от естественных NPs по своим физико-химическим характеристикам, в том числе более высокой дисперсностью, элементным составом, внутренней структурой и сложной пространственной организацией. В отличие от естественных искусственно полученные NPs, во всё больших масштабах применяемые в различных сферах жизнедеятельности, могут представлять потенциальную опасность для окружающей среды.

Нарастающие объёмы производства высокодисперсных материалов (SFM) в связи с развитием нанотехнологий и экспоненциальный рост количества товаров, содержащих искусственные NPs, с одной стороны, открывают новые возможности использования SFM в области биомедицины, фармакологии, производстве продуктов питания, при решении экологических и сельскохозяйственных проблем. С другой стороны, как показывают многочисленные исследования, интенсивное использование NM в разных сферах потребления ведёт к их массовому поступлению в водные экосистемы, являющиеся конечной принимающей средой веществ, загрязняющих биоту, где их судьба и потенциальные последствия неизвестны. Уникальными NM, промышленное производство которых исчисляется уже сотнями тонн в год, а практическое применение охватывает различные отрасли индустрии, являются nPt, nNi, nCeO2 nZnO. Особую значимость приобретает изучение NPs Ni, поскольку nNi является перспективным NM, в том числе для замены nPt в разнообразных каталитических процессах. NPs CeO₂ всё чаще используются в автомобильной промышленности в качестве катализаторов (в системах дожига топлива в выхлопных системах, как присадки к топливу, как электролиты в твёрдоокисных топливных элементах, для полировки и покрытий), как лакокрасочные покрытия, защитные покрытия для дерева (wood care products), в биомедицинской промышленности (при лечении воспалений, рака, противорадиационной защиты), в солнцезащитных кремах [1–4]. Широкий спектр применения NPs nZnO в области косметологии, медицины, материаловедения [5–8] обусловлен антибактериальными, поверхностно-активными и каталитическими свойствами [9, 10].

Уникальные свойства NPs могут нести в себе потенциальную опасность для окружающей среды. Наличие биологических эффектов при контакте NPs с представителями биоты ставит в число приоритетных задач изучение диапазона резистентности водных организмов к контаминации среды искусственными NPs, определение рисков для водной среды и обеспечение биобезопасности и является необходимой составляющей в развитии нанотехнологий. Использование гидробионтов перспективно при исследовании водных экосистем, которые подвержены антропогенному загрязнению SFM с множественными путями их поступления в гидросферу. Согласно литературным и собственным данным, большинство искусственно созданных NPs способно оказывать вредное воздействие и аккумулироваться в гидробионтах преимущественно в начальных звеньях трофических цепей [3, 4, 11], что в итоге может привести к нежелательной трансформации трофических связей и нарушению трофического каскада.

Имеющиеся литературные сведения относительно влияния NPs металлов и их оксидов на рост и развитие гидробионтов малочисленны, противоречивы и трудно сопоставимы по дозам, размерностям NPs и видам водных растений и животных. Вопросы исследования физиологических функций и поведения организмов в условиях загрязнения водных экосистем SFM практически не изучены.

Материалы и методы

Биологические эффекты и экотоксичность тестируемых NPs определяли по ингибированию бактериальной биолюминесценции рекомбинантного люминесцирующего штамма E. coli, рекомендуемого для медико-биологической оценки NM действующим национальным нормативом [12], и по характерным для водных организмов тест-реакциям: одноклеточная водоросль *C. vulgaris B.* – рост массы (оценка по оптической плотности суспензии) и концентрации суммы хлорофиллов [13, 14], одноклеточные животные P. caudatum – хемотаксическая реакция [15], низшие ракообразные D. magna S. – показатели смертности и подвижности [16, 17], рыбы D. rerio – показатели смертности и эмбриотоксичности [18, 19]. Оценку степени токсичности проводили в соответствии с критериями аттестованных методик и нормативными документами [20, 21].

Резистентность гидробионтов оценивали по верхнему пределу концентраций дисперсных систем (DS) NPs, вызывающих 10% ингибирование тест-реакций или гибель организма ($L(E)C_{10}$), по сравнению с контролем.

Наночастицы nNi ($\Delta 50 = 5$ nm, Ssp = 80–100 m²/g), nPt ($\Delta 50 = 5$ nm, Ssp = 36 m²/g), nZnO ($\Delta 50 = 12$ nm, Ssp = 47 m²/g) и nCeO2 ($\Delta 50 = 16$ nm, Ssp = 20–40 m²/g) получены в лаборатории новых материалов и перспективных технологий СФТИ (зав. В.А. Светличный) методом лазерной абляции в дистиллированной воде из брусков металлов высокой степени чистоты. При воздействии на брусок излучением импульсного лазера происходили абляция и разбрызгивание материала мишени в окружающую среду. Вне мишени удаляемый материал организовывался в NPs.

Характеристики наночастиц получены с помощью метода TEM («Phillips CM-12», France), метода динамического рассеивания света («Zetasizer Nano ZS», USA) и метода BET («TriStar 3000», USA).

Стабильность DS NPs сохранялась в течение срока инкубации. Уменьшение концентрации взвешенных частиц составляло не более 5%.

DS NPs создавали по разработанной нами методике [22], включающей этапы разведения исходной DS культивационной средой для конкретного вида тест-организмов и ультразвукового редиспергирования (30 W/l, 5 мин). Биологические эффекты и экотоксичность NPs изучали в концентрациях (C) 0,0001; 0,001; 0,01; 0,01; 1,0; 5,0; 10,0; 20,0 мг/л и в отдельных сериях – 30,0; 40,0 и 50,0 мг/л.

Статистическая обработка полученных данных выполнена в программе Excel 2010. С помощью пробит-анализа рассчитаны значения $L(E)C_{10}$, $L(E)C_{20}$ и $L(E)C_{50}$. Работы проведены с применением метрологически поверенного оборудования: Autolumat LB953, фотоэлектроколориметр ИПС-03, концентратомер БИОТЕСТЕР-2, спектрофлуориметр CM 2203, дифрактометр XRD 6000.

Результаты и обсуждение

В настоящее время искусственные металлосодержащие NPs являются приоритетными NM для исследований. Не вызывает сомнения тот факт, что наиболее чувствительными и адекватными индикаторами оценки неблагоприятных последствий контаминации водной среды SFM являются методы биотестирования, предполагающие оценку экотоксичности по изменению информативных тест-параметров на основе экспресс-методов с использованием водных тест-организмов различных трофических уровней на модельных тест-системах (лабораторных и полевых). Поведение, состояние и жизнедеятельность организмов разных систематических групп позволяют констатировать факт токсичности среды независимо от того, какие вещества и в каком сочетании её обусловливают. Методы биотестирования позволяют определить интенсивность и качество реакций живых организмов на изменение среды обитания.

В данном исследовании использован разработанный нами (в результате выполнения в 2008—2013 гг. грантов ыедеральных целевых программ) алгоритм оценки экологической токсичности, ориентированный, главным образом, на одновременное изучение тест-реакций совокупности организмов разных систематических групп в зависимости от сферы возможного размещения, использования и утилизации нанопродукции.

При оценке диапазона резистентности гидробионтов к контаминации среды основной акцент сделан на испытуемые концентрации (C) NPs, не дающие наблюдаемого эффекта, $-C < L(E)C_{10}$, т.е. концентрации NPs, на которые реакции водных организмов идентичны контрольным. Использование границы $L(E)C_{10}$ связано с тем, что и-за естественной флуктуации состояния живых объектов точность регистрации исследуемых показателей тест-организмов

практически никогда не превосходит 10%. Исследованы тест-реакции гидробионтов при контаминации среды NPs с различными физико-химическими характеристиками. Установлено, что люминесцентные бактерии менее чувствительны к nPt и nCeO2, чем к nZnO (табл. 1). С повышением С NPs увеличивается негативное воздействие nPt на бактерии $L(E)C_{20} = 7,757$ мг/л, и при достижении C = 79,86 мг/л люминесценция гасится у половины испытуемых бактерий. Люминесцентные бактерии менее резистентны к контаминации среды nZnO. Ингибирование люминесценции у 10 и 20% испытуемых бактерий зарегистрировано при концентрациях, практически в 100 раз более низких, чем при контаминации nPt. Гашение люминесценции у 50% бактерий отмечено при С в 266 раз ниже (С = $0.300 \,\mathrm{MF/J}$), чем nPt. Установлено, что nCeO₂ не оказывает негативного воздействия на люминесцирующие бактерии E. coli в диапазоне изученных концентраций – $L(E)C_{10-50} > 100$ мг/л.

Следовательно, диапазон резистентности люминесцирующих бактерий к контаминации среды зависит от физико-химических свойств NPs и для тестируемых nZnO, nPt и nCeO₂ соответствует C < 0.028 мг/л, C < 2.306 мг/л и C > 100 мг/л.

Таблица 1 Критерии воздействия наночастиц на биосенсор «Эколюм» по изменению уровня флюоресценции

No	Vnumanuu		NPs							
Π/Π	Критерии	Pt	Ni	ZnO	CeO ₂					
1	L(E)C ₁₀ [мг/л]	2,306	I	0,028	>100					
2	L(E)C ₂₀ [мг/л]	7,757	I	0,063	>100					
3	L(E)C ₅₀ [мг/л]	79,86	I	0,300	>100					

Большую чувствительность к изменению факторов внешней среды в силу своих физиологических особенностей проявляют простейшие. При контаминации среды NPs Pt и CeO₂ отмечен положительный хемотаксис *P. caudatum*. В отличие от nPt и nCeO₂, в контаминированной среде nNi и nZnO хемотаксическая реакция инфузорий угнеталась. Установлено, что инфузории *P. caudatum* менее резистентны к nNi, чем к nZnO: угнетение хемотаксиса на 10 и 20% отмечено в менее концентрированных DS nNi (в 100 раз), чем в DS nZnO, а на 50% – в 10 раз (табл. 2).

Многочисленность группы простейших в водных объектах, в частности инфузорий (до 70% численности гетеротрофного микропланктона организмов), экологическая значимость её в процессах самоочищения, трофических связях и в продукционных процессах определяет её значимость как составной части

естественной кормовой базы зоопланктона и молоди рыб.

Таблица 2 Критерии воздействия наночастиц на простейших *P. caudatum* по хемотаксической реакции

No	Varmonium	NPs							
п/п	Критерии	Pt	Ni	ZnO	CeO ₂				
1	L(E)C ₁₀ [мг/л]	>100	0,0018	0,012	>100				
2	L(E)C ₂₀ [мг/л]	>100	0,0042	0,033	>100				
3	L(E)C ₅₀ [мг/л]	>100	0,023	0,239	>100				

Важнейшую группу организмов-продуцентов в водных экосистемах, как и высшие водные растения, представляют планктонные одноклеточные водоросли (фитопланктон). Как правило, влияние вещества на одноклеточные водоросли оценивается по показателям изменения численности клеток водорослей (снижение или увеличение) в опытной среде по сравнению с контролем.

К вспомогательным показателям следует отнести содержание фотосинтезирующих пигментов (хлорофилла и каротиноидов). Установлено, что показатель содержания фотосинтезирующих пигментов (по сумме хлорофиллов a и δ) более чувствительный к контаминации среды NPs. Эффект в виде 10 и 20% снижения концентрации хлорофиллов все тестируемые NPs вызывают в более низких концентрациях (см. табл. 3), чем снижение прироста массы.

В качестве типичного представителя звена зоопланктона и важнейшего кормового объекта наиболее широко применяемыми в стандартных биотестах у нас в стране и за рубежом являются низшие ракообразные *D. magna S.* Наиболее часто в водной токсикологии используются показатели смертности и как дополнительный параметр — подвижность ветвистоусых ракообразных.

Таблица 3

Критерии воздействия наночастиц на одноклеточные водоросли *Chlorella vulgaris B.* по изменению прироста массы и изменению концентрации хлорофиллов

	Критерии	NPs									
$N_0 \Pi/\Pi$	Критерии	Pt		Ni		ZnO		CeO ₂			
	Параметры	Δm	Cchl	Δm	Cchl	Δm	Cchl	Δm	Cchl		
1	L(E)C ₁₀ [мг/л]	0,067	0,033	0,0042	0,0015	0,0068	0,0048	0,0012	0,0007		
2	L(E)C ₂₀ [мг/л]	3,485	0,1169	0,0354	0,0128	0,0637	0,0323	0,059	0,0272		
3	L(E)C50 [мг/л]	52,197	1,3504	0,1534	0,0563	0,2943	0,1184	0,868	0,3322		

Примечание. Дм – прирост массы [мг/л], Ссы – изменение концентрации хлорофиллов [мкг/л].

Однако диапазон резистентности *D. magna S.* целесообразно определять по параметру «ингибирование подвижности», который в большинстве случаев является alarm-signal воздействия NPs, а смертность наступает при более высоких концентрациях NPs и то только в среде, контаминированной nNi или nZnO. Снижение активности *D. magna S.* отмечено в трёх из четырёх исследованных DS NPs, т.е.

чувствительность низших ракообразных, вероятнее всего, обусловлена физико-химическими свойствами NPs. Установлено, что резистентность низших ракообразных к nZnO ($L(E)C_{10} < 0.016$ мг/л) существенно ниже, чем для nNi ($L(E)C_{10} < 0.548$ мг/л) и nPt ($L(E)C_{10} < 26.96$ мг/л). В контаминированной NPs CeO_2 среде выживаемость и подвижность рачков идентичны контрольным (табл. 4).

Таблица 4 Критерии воздействия наночастиц на низших ракообразных *D. magna S.* по смертности и ингибированию подвижности

	Критерии		NPs									
№ п/п	критерии	Pt		Ni		ZnO		CeO_2				
	Параметры	Dead	Ing	Dead	Ing	Dead	Ing	Dead	Ing			
1	L(E)C ₁₀ [мг/л]	>100	26,96	3,395	0,548	0,030	0,016	>100	>100			
2	L(E)C ₂₀ [мг/л]	>100	34,27	19,48	3,020	0,082	0,045	>100	>100			
3	L(E)C ₅₀ [мг/л]	>100	54,38	>100	80,30	0,638	0,314	>100	>100			

Примечание. Dead – гибель, Ing – ингибирование подвижности.

В области конечного звена трофической цепи водных экосистем находятся рыбы (наряду с водными млекопитающими) и включают две трофические группы — мирных и хищных видов рыб, из которых хищники занимают высшее звено по сравнению с мирными. В качестве тест-организма для определения диапазона резистентности использовалась икромечущая аквариумная рыба *D. rerio* по показателям «гибель» и «эмбриотоксичность». Определение токсичности искусственных NPs на ранних стадиях эмбриогенеза и на взрослых рыбах важно с двух точек зрения — установления опасности SFM для существования популяции рыб в водном объекте и угрозы здоровью человека при употреблении их в пищу. Эти особенности рыб учитываются при выборе тест-

организмов, параметров и критериев токсичности, установлении кумулятивных свойств, патологических изменений и отдалённых последствий действия исследуемых SFM.

Выявлена зависимость чувствительности рыб D. rerio от их стадии развития и физико-химических характеристик, тестируемых NPs (табл. 5):

- а) nPt не вызывает гибели мальков и видимых нарушений в развитии эмбрионов рыб $D.\ rerio;$
- б) nNi и nZnO не вызывают гибели мальков, но вызывают нарушение в эмбриональном развитии рыб при $C \ge 0.019$ и $C \ge 7.50$ мг/л соответственно;
- в) nCeO₂ не влияет на развитие эмбрионов, но вызывает гибель мальков рыб D. rerio в диапазоне концентраций $9,071 \ge C \ge 1,585$ мг/л.

Критерии воздействия наночастиц на рыб *D. rerio* по гибели и эмбриотоксичности

	V	NPs								
№ п/п	Критерии		Pt		Ni		ZnO		CeO2	
	Параметры	Dead	Embrtox	Dead	Embrtox	Dead	Embrtox	Dead	Embrtox	
1	L(E)C ₁₀ [мг/л]	>100	>100	>100	0,019	>100	7,504	1,585	>100	
2	L(E)C ₂₀ [мг/л]	>100	>100	>100	>100	>100	17,909	9,071	>100	
3	L(E)C ₅₀ [мг/л]	>100	>100	>100	>100	>100	95,351	>100	>100	

Примечание. Dead – гибель, Embrtox – эмбриотоксичность.

Таблица 5

Следовательно, установлен диапазон резистентности основных представителей трофических уровней к контаминации водной среды искусственными NPs. В то же время не менее актуальным является вопрос о безопасности SFM при поступлении в водную среду, который до сих пор остаётся практически открытым. В проведённых нами исследованиях токсичности водных DS NPs с использованием оптимального, научно обоснованного и ранее апробированного набора биотестов установлена зависимость

степени токсического воздействия на флюоресценцию бактериального биосенсора «Эколюм-13», хемотаксическую реакцию инфузорий *P. caudatum*, скорость роста одноклеточной водоросли *Chlorella v. В.*, смертность низших ракообразных *D. magna S.* и рыб *D. rerio* от концентрации NPs. В табл. 6 представлены данные максимальных значений индекса токсичности (I_{max}, %) для тестируемых NPs, полученных в настоящем и ранее проведённых нами исследованиях [23–25].

Таблица 6 Максимальное значение индекса токсичности (I_{max} , %) для nPt, nNi, nZnO и nCeO₂

№ п/п	Тест-организм	I _{max} [%]			
Nº II/II		nPt	nNi	nZnO	nCeO ₂
1	Биосенсор «Эколюм» (флюоресценция бактерий)	91,8±1,3	_	93,8±6,5	-40,9±0,3
2	P. caudatum (хемотаксическая реакция)	-31,8±1,4	100,0±0,0	94,4±1,1	-15,0±2,7
3	C. vulgaris B. (оптическая плотность)	67,9±2,9	100,2±1,1	95,7±0,7	88,4±2,2
4	C. vulgaris B. (концентрация хлорофиллов)	88,6±3,6	99,1±0,2	99,5±0,04	92,8±1,5
5	D. magna S. (смертность)	13,3±2,4	80,0±4,1	100,0±0,0	13,3±2,4
6	D. magna S. (ингибирование подвижности)	23,3±2,4	80,0±4,1	100,0±0,0	13,3±2,4
7	D. rerio (эмбриотоксичность)	0	0	5,0±0,3	30,0±4,5
8	D. rerio (смертность)	12,5±0,01	37,5±0,01	37,5±0,01	12,5±0,01

Разноречивость имеющихся в литературе заключений о степени токсичности NM вполне обоснована при исследовании разных по физико-химическим характеристикам NPs [26–28], на разных представителях одноклеточных водорослей (Chlorella vulgaris B., Pseudokirchneriella subcapitata, Scenedesmus dimorphus, Chlorella sp.) и низших ракообразных (Daphnia Pulex, Ceriodaphnia dubia) [29–31], с различной продолжительностью экспозиции тест-организмов в контаминированной среде (от 24 ч до 24 сут.) [32, 33] в DS с различными концентрациями [23, 24, 30].

Имеются данные о токсичности промышленных NPs для водорослей, которая снижается в ряду nZnO, nAl₂O₃, nTiO₂, nCeO₂ и nCuO [26], о токсическом воздействии nNiO на рост и морфологические изменения *C. vulgaris B.* [34], причём авторы установили, что nNiO вызывает плазмолиз клеток и разрушение клеточных мембран хлореллы. Выявлена токсичность nNi с размером частиц 6 nm по отношению к рачкам *D. Pulex, C. dubia* и водорослям *P. subcapitata* [35]. В хроническом эксперименте на взрослых рыбах *D. rerio* наблюдались накопление nNiO в организме рыб и его высокая токсичность [36].

Зарегистрирована зависимость повреждающего воздействия nZnO на водные виды бактерий (*V. fischeri*) от концентрации nZnO [32]. Токсическое действие nZnO размером 50–70 nm на инфузорий *T. thermophila*, по мнению Mortimer et. al. [37], может быть связано с переходом NPs в ионную форму и агрегацией nZnO.

Ингибирующий эффект на прирост клеток *C. vulgaris B.* и *S. dimorphus*, который проявлялся уже через 24 ч после контаминации среды nZnO размером 20 nm, исследован Pendashte H. et. al. [30]: число клеток уменьшалось по мере увеличения концентрации nZnO; при концентрации 1,0 мг/л отмечено наиболее значительное снижение прироста клеток. Авторами установлена зависимость степени токсичности nZnO от вида водорослей: nZnO более токсичен для *C. vulgaris B.*

Liu et. al. [28] и Lopes S. et. al. [27] оценивали токсическое действие nZnO с размером частиц 30, 50 и 80-100 nm на выживаемость *D. magna S.* и на развитие эмбрионов рыб D. rerio. Значения $L(E)C_{50}$ для nZnO соответствовали $1,02\pm0,24$ и $1,10\pm0,05$ мг/л, что свидетельствует об острой токсичности тестируемых NPs. Авторами установлено, что nZnO с размером частиц 30 nm более токсичен, чем nZnO с размером частиц 50 nm. В данных исследованиях не отмечено связи между токсичностью и начальным размером частиц. Авторы предполагают, что при проведении эксперимента вследствие седиментации nZnO дафнии подвергаются воздействию не отдельных частиц, а агломератов, которые, вероятно, модифицируют токсичность. Кроме того, по мнению авторов, nZnO может выступать в качестве источника поступления ионов Zn в окружающую среду, вызывая изменения репродуктивной функции дафний.

Также имеются разноречивые заключения о токсичности SFM, связанные с использованием различных тест-организмов. Авторы [26] не наблюдали острой токсичности для ракообразных D. $magna\ S$., $Thamnocephalus\ platyurus\ и\ эмбрионов\ D$. rerio. В отличие от этого, наблюдали хроническую токсичность для одноклеточных зелёных водорослей P. $subcapitata\ (L(E)C_{10}\ B\ диапазоне\ ot\ 2,6\ до\ 5,4\ мг/л)$.

Заключение

Интегральной характеристикой воздействия NPs на экосистему может служить «диапазон резистентности» – диапазон концентраций, в рамках которого сохраняется резистентность биоты к присутствию данного вещества.

Этот диапазон является суперпозицией диапазонов резистентности отдельных видов тест-организмов. Исходя из принципа «лимитирующего звена», он определяется наименьшим значением $L(E)C_{10}$, полученным во всем наборе используемых тест-организмов и параметров их жизнедеятельности.

Проведённые нами исследования показали, что диапазон резистентности представителей фитопланктона (одноклеточных водорослей) и зоопланктона (простейших, низших ракообразных и рыб) обусловлен физико-химическими свойствами NPs. Выявлены «уязвимые звенья» устойчивости экосистемы к искусственным NPs. Наиболее уязвимым звеном водной экосистемы к контаминации среды пPt, nNi, nZnO и nCeO₂ являются одноклеточные зелёные водоросли. Контаминация водной среды nPt, nNi, nZnO и nCeO₂ снижает содержание фотосинтетических пигментов и прирост массы зелёной водоросли *Chlorella v. B*.

Наименьший диапазон резистентности одноклеточной водоросли C. vulgaris~B. зарегистрирован для $nCeO_2$, причём лимитирущим параметром является активность фотосинтетического аппарата (по Chl он составляет C<0,0007 мг/л), а не прирост массы (C<0,0012 mg/l). Наибольший диапазон резистентности зарегистрирован для nPt (по Chl C<0,033 мг/л, по $\Delta m~C<0,067$ mg/l).

Ответные реакции представителей зоопланктона (инфузорий, низших ракообразных, рыб) на контаминацию водной среды искусственными NPs неоднозначны:

- nPt и nCeO $_2$ вызывают положительный хемотаксис инфузорий *P. caudatum*, смертность и

ингибирование подвижности D. $magna\ S$., гибель мальков и нарушение эмбрионального развития рыб D. rerio:

- nNi и nZnO вызывают ингибирование хемотаксической реакции инфузорий P. caudatum, смертность и ингибирование подвижности D. $magna\ S$. и гибель мальков рыб D. rerio.

Наименьший диапазон резистентности простейших P. caudatum. отмечен для nNi (C < 0,0018 мг/л). Определён диапазон концентраций DS nZnO, κ которому инфузории резистентны: для nZnO — C < 0,028 мг/л; для DS nPt и $nCeO_2$ диапазон резистентности соответствует C > 100 мг/л.

Диапазон резистентности низших ракообразных лимитируется параметром «подвижность». Минимальный диапазон резистентности характерен для nZnO (C < 0.016 мг/л), максимальный – для nCeO₂ (C > 100 мг/л).

Диапазон резистентности рыб D. rerio к $nCeO_2$ лимитируется параметром «гибель» мальков рыб (C < 1,585 мг/л), к nNi и nZnO — параметром «эмбриональное развитие» (C < 0,019 и C < 7,504 мг/л соответственно). Наименьший диапазон резистентности характерен для nZnO (C < 0,016 мг/л), максимальный — для $nCeO_2$ (C > 100 мг/л).

Таким образом, диапазон резистентности гидробионтов для $nCeO_2$ не превышает 0,0007 мг/л, для Ni-0,0015 мг/л, для ZnO-0,0048 мг/л, для Pt-0,033 мг/л.

Снижение резистентности водных организмов отражается на видовом составе сообществ и соотношении численности слагающих их виды, и в зоне риска оказывается фито- и зоопланктонное сообщество гидросферы, что непременно приведёт к перестройке или нарушению трофических и метаболических взаимоотношений, повреждению целостности естественного биоценоза, его способности к восстановлению и нарушению экосистемы в целом. Для определения наиболее чувствительных (уязвимых) звеньев среди разных групп водных организмов параметры токсичности следует определять по наиболее чувствительным к SFM видам и возрастным группам, актуален поиск наиболее чувствительных тест-реакций. Целесообразно использовать виды, широко распространенные в местных водных объектах, потенциально подверженных контаминации наночастицами в процессе их жизненного цикла.

Список источников

- 1. Brar S.K., Verma M., Tyagi R.D., Surampalli R.Y. Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts // Waste management. 2010. Vol. 30 (3). P. 504–520. doi: 10.1016/j.wasman.2009.10.012
- Karakoti A.S., Munusamy P., Hostetler K., Kodali V., Kuchibhatla S., Orr G., Pounds J.G., Teeguarden J.G., Thrall B.D., Baer D.R.
 Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles // Surface
 and Interface Analysis. 2012. Vol. 44 (8). P. 882–889. doi: 10.1016/j.wasman.2009.10.012
- 3. Shah V., Shah S., Shah H., Rispoli F.J., McDonnell K.T., Workeneh S., Karakoti A.S., Kumar A., Seal S. Antibacterial activity of polymer coated cerium oxide nanoparticles // PLoS One. 2012. Vol. 7 (10). P. e47827. doi: 10.1371/journal.pone.0047827

- 4. *Taylor N.S., Merrifield R., Williams T.D., Chipman J.K., Lead J.R., Viant M.R.* Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations // Nanotoxicology. 2016. Vol. 10 (1). P. 32–41. doi: 10.3109/17435390.2014.1002868
- 5. Sounderya N., Zhang Y. Use of core/shell structured nanoparticles for biomedical applications // Recent Patents on Biomedical Engineering (Discontinued). 2008. Vol. 1 (1). P. 34–42. doi: 10.2174/1874764710801010034
- Chiu W., Khiew P., Cloke M., Isa D. et al. Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe₃O₄/ZnO core/shell nanocrystals // The Journal of Physical Chemistry C. 2010. Vol. 114 (18). P. 8212–8218
- 7. Ahn K.Y., Kwon K., Huh J., Kim G.T. et al. A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure // Biosensors and bioelectronics. 2011. Vol. 28 (1). P. 378–385. doi: 10.1016/j.bios.2011.07.052
- 8. Ovissipour M., Roopesh S.M., Rasco B.A., Sablani S.S. Engineered nanoparticles (ENPs): Applications, risk assessment, and risk management in the agriculture and food sectors // Food Chemical Hazard Detection: Development and Application of New Technologies. 2014. P. 207–247. doi: 10.4172/2332-2608.1000e106
- 9. Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties // Colloids and surfaces B: Biointerfaces. 2010. Vol. 79 (1). P. 5–18. doi: 10.1016/j.colsurfb.2010.03.029
- 10. Song W., Zhang J., Guo J., Zhang J. et al. Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles // Toxicology letters. 2010. Vol. 199 (3). P. 389–397. doi: 10.1016/j.toxlet.2010.10.003
- 11. Maurer-Jones M.A., Gunsolus I.L., Murphy C.J., Haynes C.L. Toxicity of engineered nanoparticles in the environment // Analytical chemistry, 2013. Vol. 85 (6). P. 3036–3049. doi: 10.1021/ac303636s
- 12. МУ 1.2.2634—10. Микробиологическая и молекулярно-генетическая оценка воздействия наноматериалов на представителей микробиоценоза: методические указания. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2010. 58 с.
- 13. *Моргалёв Ю.Н., Моргалёва Т.Г., Григорьев Ю.С.* Методика определения индекса токсичности нанопорошков, изделий из наноматериалов, нанопокрытий, отходов и осадков сточных вод, содержащих наночастицы, по изменению оптической плотности тест-культуры водоросли хлорелла (*Chlorella vulgaris Beijer*). ФР.1.39.2010.09103.
- Walz H. Phytoplankton Analyzer Phyto-PAM and Phyto-Win software V 1.45, System Components and Principles of Operation. Ó Heinz Walz GmbH, Germany, 2003. 135 S.
- 15. Моргалев Ю.Н., Хоч Н.С., Моргалева Т.Г., Дунаевский Г.Е., Моргалев С.Ю. Безопасность методов биоанализа наночастиц и наноматериалов: методическое руководство. Томск, 2010. 56 с.
- 16. Моргалев Ю.Н., Моргалева Т.Г., Григорьев Ю.С. Методика определения индекса токсичности нанопорошков, изделий из наноматериалов, нанопокрытий, отходов и осадков сточных вод, содержащих наночастицы, по смертности тест-организма Daphnia magna Straus. ФР 1.39.2010.09102.
- 17. OECD, Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing, 2004.
- 18. СТО ТГУ 143-2015. Наноматериалы и сверхтонкие материалы, отходы производства и потребления, осадок сточных вод, содержащий наночастицы. Водные дисперсные системы. Тест на индекс токсичности смертности организма Данио Рерио. Томск, 2015.
- 19. OECD, Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2. Paris: OECD Publishing, 2013.
- Globally harmonized system of classification and labelling of chemicals (GHS). Eighth revised edition. United Nations, 2019. P. 227–249.
- 21. Приказ МПР России № 511 от 15 июня 2001 г. «Критерии отнесения опасных отходов к классу опасности для окружающей свелы».
- 22. Morgalev S.Y., Morgaleva T.G., Morgalev Y.N., Gosteva I.A. Stability of disperse systems during bioassay of nanoecotoxicity with use of aquatic organisms // Advanced Materials Research. 2015. Vol. 1085. P. 424–429. doi: 10.4028/www.scientific.net/amr.1085.424
- 23. Morgaleva T., Morgalev Yu., Gosteva I., Morgalev S., Nesterenya D. Embryotoxicity of poorly soluble nanoparticles at various stages of Zebrafish Development // AIP Conference Proceedings. 2017. Vol. 1899 (1). Art. nubmer 050004. P. 1–9. doi: 10.1063/1.5009867
- 24. Morgalev Y.N., Kurovsky A.V., Gosteva I.A., Morgaleva T.G., Morgalev S.Yu., Burenina A.A. Influence of Metal-Containing Nanoparticles on the Content of Photosynthetic Pigments of Unicellular Alga Chlorella vulgaris Baijer // Nano Hybrids and Composites. 2017. Vol. 13. P. 255–262. doi: 10.4028/www.scientific.net/NHC.13.255
- 25. *Моргалёв Ю.Н., Моргалёва Т.Г., Моргалёв С.Ю.* Передача маркерных наночастиц Pt в трехзвенной трофической цепи *Chlorella Beijer–Daphnia magna Straus–Cyprinus carpio* // Российские нанотехнологии. 2022. Т. 17, № 2. С. 225–233. doi: 10.56304/S1992722322020145
- 26. Hoecke K.V., Quik J.T., Mankiewicz-Boczek J., Schamphelaere K.A.D. et al. Fate and effects of CeO₂ nanoparticles in aquatic ecotoxicity tests // Environmental science & technology. 2009. Vol. 43(12). P. 4537–4546. doi: 10.1021/es9002444
- 27. Lopes S., Ribeiro F., Wojnarowicz J., Łojkowski W. et al. Zinc oxide nanoparticles toxicity to Daphnia magna: size dependent effects and dissolution // Environmental toxicology and chemistry. 2014. Vol. 33 (1). P. 190–198. doi: 10.1002/etc.2413
- 28. Liu J., Fan D., Wang L., Shi L.I.L.I., Ding J., Chen Y., Shen S. Effects of ZnO, CuO, Au, and TiO₂ nanoparticles on Daphnia magna and early life stages of zebrafish Danio rerio // Environment Protection Engineering. 2014. Vol. 40 (1). P. 139–149. doi: 10.5277/epe140111
- 29. Aruoja V., Pokhrel S., Sihtmäe M., Mortimer M., Mädler L., Kahru A. Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa // Environmental Science: Nano. 2015. Vol. 2(6). P. 630–644. doi: 10.1039/C5EN00057B
- 30. Pendashte H., Shariati F., Keshavarz A., Ramzanpour Z. Toxicity of zinc oxide nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species // World Journal of Fish and Marine Sciences. 2013. Vol. 5 (5). P. 563–570. doi: 10.5829/idosi.wjfms.2013.05.05.74127
- 31. Becaro A.A., Jonsson C.M., Puti F.C., Siqueira M.C. et al. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans // Environmental Nanotechnology, Monitoring & Management. 2015. Vol. 3. P. 22–29. doi: 10.1016/j.enmm.2014.11.002

- 32. Pakrashi S., Dalai S., Prathna T.C., Trivedi S. et al. Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations // Aquatic Toxicology. 2013. Vol. 132. P. 34–45. doi: 10.1016/j.aquatox.2013.01.018
- 33. Xin Q., Rotchell J.M., Cheng J., Yi J., Zhang Q. Silver nanoparticles affect the neural development of zebrafish embryos // Journal of Applied Toxicology. 2015. Vol. 35 (12). P. 1481–1492. doi: 10.1002/jat.3164
- 34. Gong N., Shao K., Feng W., Lin Z., Liang C., Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris // Chemosphere. 2011. Vol. 83 (4). P. 510–516. doi: 10.1016/j.chemosphere.2010.12.059
- 35. *Griffitt R.J., Luo J., Gao J., Bonzongo J.C., Barber D.S.* Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms // Environmental Toxicology and Chemistry: An International Journal. 2008. Vol. 27 (9). P. 1972–1978. doi: 10.1897/08-002.1
- 36. Kovrižnych J.A., Sotníková R., Zeljenková D., Rollerová E., Szabová E. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio // Interdisciplinary Toxicology. 2014. Vol. 7 (1). P. 23–26. doi: 10.2478/intox-2014-0004
- 37. Mortimer M., Kasemets K., Kahru A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila // Toxicology. 2010. Vol. 269 (2-3). P. 182–189. doi: 10.1016/j.tox.2009.07.007

References

- Brar, S.K., Verma, M., Tyagi, R.D. & Surampalli, R.Y. (2010) Engineered nanoparticles in wastewater and wastewater sludge— Evidence and impacts. Waste Management. 30(3). pp. 504–520. doi: 10.1016/j.wasman.2009.10.012
- 2. Karakoti, A.S., Munusamy, P., Hostetler, K., Kodali, V., Kuchibhatla, S., Orr, G., Pounds, J.G., Teeguarden, J.G., Thrall, B.D. & Baer, D.R. (2012) Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. *Surface and Interface Analysis*. 44(8). pp. 882–889. doi: 10.1016/j.wasman.2009.10.012
- 3. Shah, V., Shah, S., Shah, H., Rispoli, F.J., McDonnell, K.T., Workeneh, S., Karakoti, A.S., Kumar, A. & Seal, S. (2012) Antibacterial activity of polymer coated cerium oxide nanoparticles. *PLoS One.* 7(10). Art. № e47827. doi: 10.1371/journal.pone.0047827
- 4. Taylor, N.S., Merrifield, R., Williams, T.D., Chipman, J.K., Lead, J.R., Viant, M.R. (2016) Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations. *Nanotoxicology*. 10(1). pp. 32–41. doi: 10.3109/17435390.2014.1002868
- 5. Sounderya, N. & Zhang, Y. (2008) Use of core/shell structured nanoparticles for biomedical applications. *Recent Patents on Biomedical Engineering (Discontinued)*. 1(1). 34–42. doi: 10.2174/1874764710801010034
- Chiu, W., Khiew, P., Cloke, M., Isa, D., Lim, H., Tan, T., Huang, N., Radiman, Sh., Abd-Shukor, R., Abd. Hamdi, M.A. & Chia, C. (2010) Heterogeneous seeded growth: synthesis and characterization of bifunctional Fe3O4/ZnO core/shell nanocrystals. *The Journal of Physical Chemistry C*. 114(18), pp. 8212–8218.
- 7. Ahn, K.Y., Kwon, K., Huh, J., Kim, G.T., Lee, E.B., Park, D. & Lee, J. (2011) A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure. *Biosensors and Bioelectronics*. 28(1). pp. 378–385. doi: 10.1016/j.bios.2011.07.052
- 8. Ovissipour, M., Roopesh, S.M., Rasco, B.A. & Sablani, S.S. (2014) Engineered nanoparticles (ENPs): Applications, risk assessment, and risk management in the agriculture and food sectors. *Food Chemical Hazard Detection: Development and Application of New Technologies.* pp. 207-247. doi: 10.4172/2332-2608.1000e106
- 9. Dastjerdi, R. & Montazer, M. (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. *Colloids and surfaces B: Biointerfaces*. 79(1). pp. 5–18. doi: 10.1016/j.colsurfb.2010.03.029
- 10. Song, W., Zhang, J., Guo, J., Zhang, J., Ding, F., Li, L. & Sun, Z. (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. *Toxicology letters*. 199(3). pp. 389–397. doi: 10.1016/j.toxlet.2010.10.003
- 11. Maurer-Jones, M.A., Gunsolus, I.L., Murphy, C.J. & Haynes, C.L. (2013) Toxicity of engineered nanoparticles in the environment. *Analytical chemistry*. 85(6). pp. 3036–3049. doi: 10.1021/ac303636s
- 12. Federal Center of Hygiene and Epidemiology Rospotrebnadzora (2010) MU 1.2.2634—10. Mikrobiologicheskaya i molekulyarnogeneticheskaya otsenka vozdeystviya nanomaterialov na predstaviteley mikrobiotsenoza. Metodicheskie ukazaniya [MR 1.2.2634-10. Microbiological and molecular genetic evaluation of the impact of nanomaterials on the representatives microbiocenosis. Guidelines]. Moscow.
- 13. Morgalev, Yu.N., Morgaleva, T.G. & Grigoriev, Yu.S. (n.d.) Metodika opredeleniya indeksa toksichnosti nanoporoshkov, izdeliy iz nanomaterialov, nanopokrytiy, otkhodov i osadkov stochnykh vod, soderzhashchikh nanochastitsy, po izmeneniyu opticheskoy plotnosti test-kul'tury vodorosli khlorella (Shlorella vulgaris Beijer). FR.1.39.2010.09103 [Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles to modify the optical density of the test culture algae Chlorella (Chlorella vulgaris Beijer), FR.1.39.2010.09103].
- 14. Walz, H. (2003). Phytoplankton Analyzer Phyto-PAM and Phyto-Win software V 1.45, System Components and Principles of Operation. Ó Heinz Walz GmbH, Germany.
- 15. Morgalev, Yu.N., Khoch, N.S., Morgaleva, T.G., Dunaevsky, G.E. & Morgalev, S.Yu. (2010) *Bezopasnost' metodov bioanaliza nanochastits i nanomaterialov* [Bioassay methods safety of nanoparticles and nanomaterials]. Methodological Guide. Tomsk.
- 16. Morgalev, Yu.N, Morgaleva, T.G. & Grigoriev, Yu.S. (n.d.) Metodika opredeleniya indeksa toksichnosti nanoporoshkov, izdeliy iz nanomaterialov. Nanopokrytiy, otkhodov i osadkov stochnykh vod, soderzhashchikh nanochastitsy, po smertnosti test-organizma Daphnia magna Straus. FR 1.39.2010.09102 [Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles mortality test organism Daphnia magna Straus. FR.1.39.2010.09102].
- 17. *OECD*. (2004) Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris.
- 18. *TSU* (2015) STO TGU 143-2015. Nanomaterialy i sverkhtonkie materialy, otkhody proizvodstva i potrebleniya, osadok stochnykh vod, soderzhashchiy nanochastitsy. Vodnye dispersnye sistemy. Test na indeks toksichnosti- smertnost' organizma Danio Rerio [STO TSU 143-2015. Nanomaterials and superfine materials, production and consumption waste, sewage sludge containing of nanoparticles. Aquatic disperse systems. Index toxicity test-organism mortality *Danio rerio*]. Tomsk.

- 19. *OECD*. (2013) Test No. 236: Fish Embryo Acute Toxicity (FET) Test, OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris.
- United Nations. (2019) Globally harmonized system of classification and labelling of chemicals (GHS). Eighth revised edition. pp. 227–249.
- 21. n.a. (2001) Prikaz MPR Rossii № 511 ot 15 iyunya 2001 g. "Kriterii otneseniya opasnykh otkhodov k klassu opasnosti dlya okruzhayushchey sredy" [Order of the Russian Ministry of Natural Resources № 511 on June 15, 2001. The criteria for classifying hazardous waste hazard class for the environment].
- 22. Morgalev, S.Y., Morgaleva, T.G., Morgalev, Y. & Gosteva, I.A. (2015) Stability of disperse systems during bioassay of nanoecotoxicity with use of aquatic organisms. *Advanced Materials Research*. 1085. pp. 424–429. doi: 10.4028/www.scientific.net/amr.1085.424
- 23. Morgaleva, T., Morgalev, Yu., Gosteva, I., Morgalev, S. & Nesterenya, D. (2017) Embryotoxicity of poorly soluble nanoparticles at various stages of Zebrafish Development. *AIP Conference Proceedings*. 1899. Art. № 050004, 1-9. doi: 10.1063/1.5009867
- Morgalev, Y.N., Kurovsky, A.V., Gosteva, I.A., Morgaleva, T.G., Morgalev, S.Yu. & Burenina, A.A. (2017) Influence of Metal-Containing Nanoparticles on the Content of Photosynthetic Pigments of Unicellular Alga Chlorella vulgaris Baijer. *Nano Hybrids and Composites*. 13. pp. 255–262. doi: 10.4028/www.scientific.net/NHC.13.255
- 25. Morgalev, S.Y. Morgaleva, T. G. & Morgalev, Y.N. (2022) Transfer of Pt Marker Nanoparticles in a Three-Link Trophic Chain Chlorella Beijer-Daphnia magna Straus-Cyprinus carpio. Nanobiotechnology Reports. 17(2). pp. 202–210. doi: 10.1134/S2635167622020148
- 26. Hoecke, K.V., Quik, J.T., Mankiewicz-Boczek, J., et al. (2009). Fate and effects of CeO₂ nanoparticles in aquatic ecotoxicity tests. Environmental Science & Technology. 43(12). pp. 4537–4546. doi: 10.1021/es9002444
- 27. Lopes, S., Ribeiro, F., Wojnarowicz, J., Łojkowski, W., Jurkschat, K., Crossley, A., Soares, A.M.V.M. & Loureiro, S. (2014) Zinc oxide nanoparticles toxicity to Daphnia magna: size-dependent effects and dissolution. *Environmental Toxicology and Chemistry*. 33(1), pp. 190–198. doi: 10.1002/etc.2413
- 28. Liu, J., Fan, D., Wang, L., Shi, L. I. L. I., Ding, J., Chen, Y. & Shen, S. (2014) Effects of ZnO, CuO, Au, and TiO₂ nanoparticles on Daphnia magna and early life stages of zebrafish Danio rerio. *Environment Protection Engineering*. 40(1). pp. 139–149. doi: 10.5277/epe140111
- 29. Aruoja, V., Pokhrel, S., Sihtmäe, M., Mortimer, M., Mädler, L. & Kahru, A. (2015) Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa. *Environmental Science: Nano.* 2(6). pp. 630–644. doi: 10.1039/C5EN00057B
- 30. Pendashte, H., Shariati, F., Keshavarz, A. & Ramzanpour, Z. (2013). Toxicity of zinc oxide nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus algae species. *World Journal of Fish and Marine Sciences*. 5(5). pp. 563–570. doi: 10.5829/idosi.wjfms.2013.05.05.74127
- 31. Becaro, A.A., Jonsson, C.M., Puti, F.C., Siqueira, M.C., Mattoso, L.H., Correa, D.S. & Ferreira, M.D. (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. *Environmental Nanotechnology, Monitoring & Management*. 3. pp. 22–29. doi: 10.1016/j.enmm.2014.11.002
- 32. Pakrashi, S., Dalai, S., Prathna, T.C., Trivedi, S., Myneni, R., Raichur, A.M., Chandrasekaran, N. & Mukherjee, A. (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. *Aquatic Toxicology*. 132. pp. 34–45. doi: 10.1016/j.aquatox.2013.01.018
- 33. Xin, Q., Rotchell, J.M., Cheng, J., Yi, J. & Zhang, Q. (2015) Silver nanoparticles affect the neural development of zebrafish embryos. *Journal of Applied Toxicology*. 35(12). pp. 1481–1492. doi: 10.1002/jat.3164
- 34. Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C. & Sun, Y. (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. *Chemosphere*. 83(4). pp. 510–516. doi: 10.1016/j.chemosphere.2010.12.059
- Griffitt, R.J., Luo, J., Gao, J., Bonzongo, J.C. & Barber, D.S. (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. *Environmental Toxicology and Chemistry: An International Journal*. 27(9). pp. 1972–1978. doi: 10.1897/08-002.1
- 36. Kovrižnych, J.A., Sotníková, R., Zeljenková, D., Rollerová, E. & Szabová, E. (2014) Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. *Interdisciplinary Toxicology*. 7(1). pp. 23–26. doi: 10.2478/intox-2014-0004
- 37. Mortimer, M., Kasemets, K. & Kahru, A. (2010) Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. *Toxicology*. 269(2-3). pp. 182–189. doi: 10.1016/j.tox.2009.07.007

Информация об авторах:

Моргалёв Юрий Николаевич — кандидат биологических наук, инженер-исследователь Центра биотестирования безопасности нанотехнологий и наноматериалов научного управления Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: yu.morgalev@gmail.com

Моргалёв Сергей Юрьевич – инженер-исследователь Центра биотестирования безопасности нанотехнологий и наноматериалов научного управления Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: s.morgalev2@gmail.com

Кондратова Оксана Владимировна – старший лаборант Центра биотестирования безопасности нанотехнологий и наноматериалов научного управления Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: kov-2710@yandex.ru

Моргалёва Тамара Григорьевна — кандидат биологических наук, старший научный сотрудник Центра биотестирования безопасности нанотехнологий и наноматериалов научного управления Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: tg.morgaleva@gmail.com

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Morgalev Yuri N., Cand. Sc. (Biology), engineer-researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: yu.morgalev@gmail.com

Morgalev Sergey Yu., engineer-researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: s.morgalev2@gmail.com

Kondratova Oksana V., senior laboratory assistant, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: kov-2710@yandex.ru

Morgaleva Tamara G., Cand. Sc. (Biology), senior researcher, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: tg.morgaleva@gmail.com

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научная статья УДК 007.51

doi: 10.17223/7783494/3/9

Спасательные роботы: краткий обзор технических решений

Артём Шамильевич Буреев¹, Дмитрий Сергеевич Жданов², Яна Валерьевна Костелей³, Евгения Васильевна Голобокова⁴

```
<sup>1, 2, 3, 4</sup> Национальный исследовательский Томский государственный университет, Томск, Россия <sup>3</sup> Томской государственный университет систем управления и радиоэлектроники, Томск, Россия <sup>1</sup> artem_bureev@mail.ru, ORCID: 0000-0001-8911-305X <sup>2</sup> d_s_zhdanov@mail.ru, ORCID: 0000-0002-8639-0681 <sup>3</sup> kosteleyyv@gmail.com, ORCID: 0000-0003-0775-350X <sup>4</sup> jane04@yandex.ru, ORCID: 0000-0002-7806-8879
```

Аннотация. В обзоре приведен анализ возможностей существующих робототехнических решений, обеспечивающих проведение спасательных операций, рассмотрены сложности, которыми можно объяснить недостаточную полноту внедрения роботизированных решений, приведены характеристики серийно выпускаемых спасательных роботов, рассмотрены наиболее интересные экспериментальные и опытно-конструкторские разработки технических решений в рассматриваемой области.

Ключевые слова: спасательные роботы, робототехника, сервисные роботы, обзор решений, обеспечение безопасности

Благодарности: исследование выполнено при поддержке Программы развития Томского государственного университета (Приоритет-2030) в рамках проекта № НУ 2.4.5.22 ИГ «Выбор методов слежения за положением пациента, применимых в составе модульного медицинского комплекса устройств для многоуровневой реабилитации».

Для цитирования: Буреев А.Ш., Жданов Д.С., Костелей Я.В., Голобокова Е.В. Спасательные роботы: краткий обзор технических решений // Технологии безопасности жизнедеятельности. 2023. № 3. С. 78–87. doi: 10.17223/7783494/3/9

Original article doi: 10.17223/7783494/3/9

Rescue robots: a brief overview of technical solutions

Artem Sh. Bureev¹, Dmitry S. Zhdanov², Yana V. Kosteley³, Evgeniya V. Golobokova⁴

```
1.2,3,4 National Research Tomsk State University, Tomsk, Russian Federation

Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation

artem_bureev@mail.ru, ORCID: 0000-0001-8911-305X

align="burden" days of the control of the c
```

Abstract. In the article the authors present the scientific and technical review of the results showing the current state and areas of service robots' application to assist in search and rescue operations. Their use makes it possible to increase the safety level during search and rescue operations, and also, due to automation, to reduce their implementation time and minimize the rescuers' presence in the emergency zone. The materials from publicly available sources were used for this work, containing a description of search and rescue robots use experience, execution methods, functional purpose and design features. The study revealed that there are no unified standards regulating the composition, design options and robots functioning methods to this day. Nevertheless, they are widely used to solve almost all possible problems, from delivering necessary cargo to providing first aid and evacuating victims from dangerous areas. The execution, movement and communication methods implemented in search and rescue robots directly depend on the task at hand. At the same time, the developers' desire to come to unified construction standards is obvious. There is also an interest from the relevant departments and the scientific community in creating more advanced technical means capable of expanding the area of their movements (changing shape depending on the space for movement, combining different modes of movement, etc.), carrying capacity, orientation in difficult conditions methods (dust, fog, fire, loss of communication with the operator, etc.). However, despite progress in development, search and rescue robots are currently not widely implemented. This problem is typical not only for Russia, but also for the whole world. Perhaps this is partly due to the need to change the search and rescue services assistance protocols, and partly due to the existing technical solutions imperfections in the field of search and

rescue robots. However, ongoing research and development suggests that systems will soon be created that will find widespread use in search and rescue services.

Keywords: rescue robots, robotics, service robots, solutions review, security

Acknowledgments: This study was supported by the Tomsk State University Development Programme (Priority-2030) within the project No. NU 2.4.5.22 IG "Selection of methods for monitoring the patient's position, applicable as part of a modular medical complex of devices for multi-level rehabilitation".

For citation: Bureev, A.Sh., Zhdanov, D.S., Kosteley, Ya.V. & Golobokova, E.V. (2023) Rescue robots: a brief overview of technical solutions. *Tekhnologii bezopasnosti zhiznedeyatelnosti – Life Safety / Security Technologies*. 3. pp. 78–87. doi: 10.17223/7783494/3/9 (In Russian).

Поисково-спасательные роботы (ПСР) — одна из сравнительно новых категорий сервисных роботов, предназначенных для оказания помощи при поиске и спасении людей в условиях чрезвычайных ситуаций (ЧС). Их создание и широкое внедрение открывают новые возможности для повышения скорости спасательных операций и обеспечения безопасности спасателей. Однако недостаток информации о существующих технических решениях и их возможностях тормозит рост интереса к внедрению спасательных роботов в практику служб спасения.

Целью статьи является рассмотрение конструктивных особенностей ПСР, их назначения, существующих технических решений, а также проблем, связанных с их разработкой и внедрением.

Классификация и назначение ПСР

ПСР представляют собой беспилотные транспортные средства для содействия в обеспечении спасательных операций, служащие дополнительными средствами реагирования в случае стихийного

бедствия. Существует множество факторов, влияющих на конструкцию технического средства, одним из которых является среда применения, которая может ограничивать как возможные решения по способу перемещения, так и доступные каналы связи системы с оператором. В таблице продемонстрированы различные типы исполнений ПСР.

Размеры роботов варьируются в зависимости от выполняемых задач – от компактных воздушных дронов до крупных грузовых платформ, доставляющих оборудование в зону ЧС.

Для управления ПСР используются различные типы устройств ввода, в том числе портативные устройства, мобильные телефоны и контроллеры с экраном, обеспечивающим отображение поля зрения робота и другой информации: телеметрии с датчиков робота, перечня команд, переданных роботу, карты местности для улучшения навигации и осведомления оператора о ситуации [1]. Для поиска пострадавших ПСР воздушного базирования дополняются тепловизионными устройствами или устройствами пеленга сигналов сотового телефона.

Типы ПСР

По среде применения	По способу перемещения	По типу связи с оператором		
	Самолетного типа	Аналоговый канал на 2,4 ГГц		
ПСР воздинието безирования	Вертолетного типа	Аналоговый канал 5,8 ГГц		
ПСР воздушного базирования	Коптеры	Wi-Fi 2,4 ГГц		
	Самолетно-вертолетного типа	Wi-Fi 5 ГГц		
	Водометные движители			
	Винтовые движители			
ПСР подводного базирования	Подвижные плавниковые движители	Нет открытых данных		
	Неподвижные плавники и корпус с изменением			
	плавучести (глайдер)			
ПСВ на проднага базирарания	Водометные движители	Нет открытых данных		
ПСР надводного базирования	Винтовые движители			
	Колесные	Аналоговый канал на 2,4 ГГц		
ПСР наземного базирования	Гусеничные	Аналоговый канал 5,8 ГГц		
пст наземного оазирования	Шагающие	Wi-Fi 2,4 ГГц		
	Ползающие	Wi-Fi 5Ггц		
	Колесные	Аналоговый канал на 2,4 ГГц		
ПСР подземного базирования	Гусеничные	Аналоговый канал 5,8 ГГц		
пст подземного оазирования	Шагающие	Wi-Fi 2,4 ГГц		
	Ползающие	Wi-Fi 5 ГГц		
	Колесные	Аналоговый канал на 2,4 ГГц		
Сочетанные системы ПСР	Гусеничные	Аналоговый канал 5,8 ГГц		
с различной средой применения	Шагающие	Wi-Fi 2,4 ГГц		
	Вертолетного типа или коптер	Wi-Fi 5 ГГц		

В связи со спецификой применения (всепогодные условия использования, в том числе в агрессивных средах) к ПСР предъявляются дополнительные конструктивные и технические требования: повышенная устойчивость к условиям внешней среды, в частности, к соляному туману, сильному ветру, высоким и низким температурам, защищенности от пыли и песка. Ввиду наличия таких требований, обусловленных условиями эксплуатации, не каждый дрон или робот может быть использован в качестве ПСР.

Функционал ПСР включает, но не ограничивается предоставлением различной информации о ситуации в очаге ЧС в режиме реального времени, оказанием воздействия на факторы ЧС или на пострадавших, транспортировкой грузов в зоне ЧС. На практике это означает, что ПСР обеспечивают видеосъемку места ЧС, построение 3D-модели местности (разрушенные здания, шахты), поиск опасных объектов (например, таких, как мины), анализ химического состава и температуры среды, поиск и манипуляции с пострадавшими для оказания помощи и спасения, а также ряд других задач [2]. Например, для применения ПСР для доставки грузов людям, оказавшимся в зоне ЧС (доставка медикаментов, еды, воды, оборудования), или для доставки реанимационного оборудования до приезда скорой помощи. В Канаде проводятся исследования, связанные с доставкой дроном автоматического дефибриллятора для оказания неотложной медицинской помощи и повышения выживаемости при внебольничной остановке сердца. Исследование показало многообещающие результаты в сельской местности, но выявило проблему необходимости повышения грамотности населения в сфере проведения сердечно-легочной реанимации в случае остановки сердца [3].

Кроме этого, ПСР активно применяются для решения городских задач, связанных с повышенной опасностью или упреждением ЧС. Так, в Китайской Народной Республике в провинции Хэбэй роботы используются для наблюдения за дорожной ситуацией и трафиком, за нарушениями правил дорожного движения и местами аварий. Робот дорожного патруля, цветографически похожий на сотрудника дорожной полиции, может идентифицировать водителей, фотографировать противоправное поведение водителей с помощью своей автоматической навигационной системы, а также предупреждать аварии [4].

Управлением помощника министра транспорта США по исследованиям и технологиям при сотрудничестве с Мичиганским технологическим университетом (МТU) успешно реализован проект, связанный с мониторингом и оценкой состояния грунтовых дорог с помощью беспилотных летательных аппаратов, для предотвращения аварийных ситуаций, связанных с некачественным дорожным покрытием [5].

Для обеспечения большей функциональности ПСР состав программного обеспечения (ПО) может быть дополнен алгоритмами искусственного интеллекта для моделирования поисково-спасательных операций и планирования точек входа в разрушенные здания [6]. В настоящее время одним из вариантов исполнения такого функционала может быть применение системы дополненной реальности. Например, программное обеспечение SmartCam3D компании Rapid Imaging Software может применяться для совмещения карты с изображением зоны ЧС в режиме реального времени для облегчения поиска пострадавших и навигации спасателей, что позволяет определить местонахождение беспилотного летательного объекта, с которого поступает видеоряд, и помечать или нацеливаться на области нахождения пострадавших, объекты инфраструктуры и другие ключевые точки, важные для планирования и проведения спасательной операции [7]. Также это направление расширяется алгоритмами поиска и планирования пути ПСР для автоматизации процесса планирования проведения спасательных работ [8].

Функциональность ПСР значительно расширяется при их применении в формате роя скоординированных роботов для исполнения поставленных задач. Цель таких систем — создание согласованного кооперативного поведения автономных роботов, полученного в результате взаимодействия с окружающей средой или друг с другом [9]. В работе [6] предлагается в качестве роя спасательных роботов использовать микровездеходные системы для исследования завалов в обрушившихся зданиях с целью поиска пострадавших и обеспечения безопасности спасателей.

Полиция США активно применяет дроны для таких задач, как поиск людей в розыске и пропавших людей, а также для текущих наблюдений и обеспечения безопасности, активно заменяя полицейские вертолеты на дроны, которые обходятся намного дешевле с точки зрения закупки, обслуживания и управления [10]. Это говорит о том, что применение ПСР имеет экономическую выгоду за счет частичной или полной замены дорогостоящих технологий, оборудования и транспорта для решения определенного круга задач.

При всём разнообразии задач, выполняемых ПСР, на сегодняшний день нет технических решений, позволяющих в удаленном режиме без непосредственного участия человека оказывать пострадавшим первую доврачебную помощь. Это обусловлено рядом факторов: несовершенство существующих роботизированных манипуляторов, недостаточная чувствительность сенсоров ПСР, многообразие возможных вариантов травм в сочетании с индивидуальными анатомическими особенностями пострадавших на фоне

отсутствия программно-алгоритмических решений, позволяющих учесть эти факторы для индивидуализации подхода при выполнении манипуляций.

Примеры серийно производимых ПСР

В настоящее время существуют серийно производимые ПСР, которые активно применяются на дежурстве служб спасения. При этом применение отечественных серийных ПСР распространено в том числе в МЧС России. Например, научно-производственное предприятие «Радар ммс» является разработчиком роботизированного спасательного плота «Аврора», который применяется для доставки надувного плота до пострадавших при спасении людей на воде. Роботизированный плот может управляться в автоматическом режиме или в ручном - с использованием дистанционного пульта управления с земли или воздуха. Плот «Аврора» отличается надёжностью, что связано с использованием композитов в производстве, и оснащается двумя сонарами для эффективного поиска пострадавших как на воде, так и под водой [11].

Для обеспечения МЧС России роботизированными средствами пожаротушения Всероссийский ордена «Знак Почета» научно-исследовательский институт противопожарной обороны совместно с хорватской компанией DOK-ING и рядом других российских компаний выполнили ряд проектов, в результате которых были разработаны комплексы «Ель-4», «Ель-10», а также мобильный роботизированный комплекс «Кедр» с мобильным пунктом управления «Атаман». «Ель-4» и «Ель-10» являются прототипами пожарного робота «Уран-14», выпущенного позднее. Эти комплексы представляют собой гусеничную беспилотную машину, управляемую дистанционно и оснащенную системой водопенного пожаротушения с запасом воды и огнетушащего вещества, позволяющей проводить непрерывное тушение, не превышающее 1,5 мин в автономном режиме. Установки доставляются в зону очага пожара другим транспортным средством. При эксплуатации «Ель-4» и «Ель-10» был выявлен ряд недостатков, связанных со скоростью движения не более 10 км/ч, а также необходимостью взаимного координирования действий каждой машины операторами, что было связано с независимой работой их систем дистанционного управления [12].

В связи с вышеперечисленными проблемами Всероссийский ордена «Знак Почета» научно-исследовательский институт противопожарной обороны разработал робототехнический комплекс, состоящий из мобильного роботизированного комплекса «Кедр» и мобильного пункта управления «Атаман». В состав «Кедра» входят две машины, обеспечивающие

пожаротушение и прокладку рукавной линии к месту забора воды с закачкой на плаву или из заглубленных водоисточников. Дистанционное управление обеими машинами может организовано из пункта управления «Атаман», или же управление одной машиной может производиться с борта другой при условии их расхождения на не более 2 000 м. Скорость движения машин составляет 60 км/ч, что превышает показатели установок «Ель-4» и «Ель-10». Когда факторы среды угрожают безопасности экипажа, машины управляются из пункта управления «Атаман» с использованием информации, получаемой от выносных видеоинфракрасных камер, расположенных на беспилотном летательном аппарате, который также управляется из пункта управления [12].

Мобильная установка для пожаротушения «Пеликан», разработанная научно-производственным предприятием «Сибирский Арсенал», предназначена для тушения пожаров в условиях угрозы взрыва, завалов, а также на закрытых предприятиях, примерами которых являются промышленные здания, электростанции, инфраструктура нефтегазовой отрасли и др. Установка управляется дистанционно с помощью пульта, который позволяет задавать направление и скорость движения, управлять лафетом и отвалом. Кроме этого, для координации действий и управления эвакуацией людей «Пеликан» включает устройство, позволяющее оператору отдавать речевые команды в формате громкоговорящего оповещения с помощью гарнитуры или заранее записанных аудиозаписей команд. Для пожаротушения применяется либо пена средней кратности, либо вода, при этом выбранное пожаротушащее вещество поставляется струей дальностью до 60 м. Пополнение запасов воды в установке может быть обеспечено от мобильной автоцистерны резервуара, стационарного гидранта или пенообразователя. ПСР «Пеликан» отличается повышенной проходимостью, полученной за счет большого дорожного просвета в 190 мм. При исполнении установки на колесах их защита от теплового воздействия обеспечивается за счет водяного орошения. также возможен формат установки на гусеничном шасси. Для освобождения пути движения установка содержит отвал, позволяющий поднимать и перемещать предметы [13].

Применение серийно производимых ПСР активно развивается за рубежом, в том числе исследуются и расширяются возможности их применения. Например, беспилотное наводное судно «Emily», разработанное компанией Hydronalix, при поддержке Центра роботизированного поиска и спасения Техасского А&Т университета применяется для миссии по спасению беженцев в Греции. ПСР с использованием дистанционного управления направляется в зону

бедствия, при достижении которой «Emily» используется как плавсредство для жертв, что позволяет эвакуировать 4—6 человек за один раз. Скорость перемещения «Emily» по воде достигает 32 км/ч, что позволяет добраться до жертв быстрее, чем это делает человек-спасатель. Исследователи Техасского А&Т университета дополнили «Emily» алгоритмами навигации, которые позволяют избежать столкновения или игнорирование жертвы, что должно повысить качество проведения спасительной операции [14].

ПСР «U-Safe», предложенный компанией Noras Performance, позволяет производить спасение одного человека на воде. ПСР U-образной формы управляется дистанционно с помощью стика, развивая скорость до 15 км/ч. Особенность этого устройства в том, что СПР продолжает движение, если из-за погодных или иных условий его конструкция перевернётся в воде [15]. «U-Safe» является лауреатом премии «CES 2023 Innovation» и предлагается к использованию не только службами спасения, но и в качестве средств спасения на круизных лайнерах и ином водном транспорте [16].

Примером роботизированного устройства, который может решать служебные задачи спасательных операций, является дрон «Airobotics Optimus». Он обладает довольно высокой скоростью полета до 46 км/ч и позволяет переносить на своем борту оборудование массой до 1 кг. Он поставляется с базой, которая позволяет менять аккумуляторы в автономном режиме. То есть дрон может проводить мониторинг заданной местности в суровых условиях окружающей среды, выполняя последовательно две задачи: сбор данных в течение получаса и возврат на базу с последующей заменой аккумулятора для продолжения выполнения мониторинга [17] с использованием различного оборудования. Например, на базе «Airobotics **Optimus**» был разработан SpectroDrone», позволяющий проводить поиск взрывчатых веществ.

Подобное решение предложено компаниями Teledyne FLIR Defense и Robotics Centre для поиска людей путем оснащения дронов «SkyRaider» и «SkyRanger» модулем поиска сигнала мобильных телефонов «Echo SAR». Масса модуля составляет 1 кг, что позволяет проводить его перемещение дроном. Кроме поиска сигнала, модуль позволяет связаться с пострадавшими с помощью голосовой связи и SMS-сообщений, что позволяет координировать поиск и предоставлять поддержку пострадавшему [18].

Коммерческие решения также могут применяться, как ПСР. Например, дрон для доставки «SkyDrop», производимый одноименной компанией-пионером и основным поставщиком дронов в этой сфере, применяется для доставки медикаментов и медицинского

оборудования в зоны ЧС после того, как их регулярная поставка была одобрена Управлением гражданской авиации Новой Зеландии [19].

Перечисленные выше решения соответствуют требованиям, связанным с их устойчивостью к агрессивным условиям работы в суровой открытой внешней среде. В свою очередь, применение ПСР в замкнутых опасных помещениях и пространствах, вносит дополнительные условия эксплуатации таких приборов. В сфере организации спасательных операций в шахтах существуют также готовые серийные решения. Военный робот «Wolverine V2» применяется Управлением по охране труда и технике безопасности на шахтах США для проведения спасательных операций при ЧС в шахтах. На борту робота находятся датчик газа для непрерывного сбора проб и три видеокамеры, передающие видеосигнал на дисплей оператора. Робот имеет ограниченный радиус действия в 1,5 км и управляется командами, передаваемыми по проводному каналу связи, имеет значительную массу в 550 кг. Стоимость робота составляет 280 тыс. долл.

Как показывает предыдущее решение, такие типы ПСР отличаются высокой стоимостью, поэтому, как правило, разрабатываются по заказу государственных или иных организаций. Например, горноспасательная машина «Gemini scout» разработана компанией Sandia Laboratories при финансовой поддержке Национального института безопасности и гигиены труда США. Гусеничный робот высотой 0,6 м и длиной 1,2 м был создан для условий работы в угольных шахтах и является искробезопасным. Машина оснащена сенсором газов, тепловизором для поиска пострадавших, панорамной камерой и стереокамерой глубины. Управление ПСР – дистанционное, где пульт управления представлен в виде джойстика Xbox [20]. К сожалению, отсутствует информация о применении и эффективности данного ПСР в условиях реальных операций спасения.

Дистанционно-управляемое транспортное средство «Numbat» — восьмиколесный робот с габаритами 2,5 ×1,65 м был создан при поддержке Организации Содружества по научным и промышленным исследованиям Австралии. ПСР позволяет проводить разведывательную операцию по сбору информации о состоянии подземных шахт, необходимой спасателям, в опасных для человека условиях. Управление ПСР осуществляется с помощью четырёх видеокамер, джойстика и графического интерфейса. Панель управления роботом расположена в диспетчерской. Робот до сих пор используется в проекте горных исследований в Организации Содружества по научным и промышленным исследованиям Австралии, но никогда не использовался в спасательных операциях [21].

Обращает на себя внимание малая включенность существующих сложных технических решений в области ПСР в практическое использование. В основном в практику внедрены системы автоматизации и связи стандартных технических решений для борьбы с ЧС. Это может быть связано с отсутствием системы испытаний и сертификации ПСР на пригодность к применению в реальных условиях различных ЧС. Данная система может быть сформирована только при участии государства как основного распорядителя работы служб ГО и ЧС.

Экспериментальные и опытно-конструкторские разработки

Дальнейшие перспективы развития ПСР можно проследить в экспериментальных и опытно-конструкторских разработках, которые позволят расширить возможности, среды применения и эффективность выполнения задач с использованием ПСР.

Из наиболее интересных стоит упомянуть роботов, которые в зависимости от задач и окружения меняют или фиксируют свою форму для прохождения труднодоступных участков пути. Такое направление часто называют «гибкими роботами». Например, в работе [22] описывается воско-пенный материал, который переходит из твердого в мягкое состояние при нагревании и может быть использован для формирования деталей роботов путем покрытия проволочной основы. За счет включения и отключения тока в проволочном основании запускается процесс нагрева материала для изменения формы детали. Фиксация состояния происходит за счет остывания. Использование такого материала при изготовлении ПСР позволит ему протискиваться сквозь завалы зданий в поисках выживших или проникать в другие труднодоступные места во время поисковоспасательных операций [22].

Проблемой в работе ПСР является необходимость построения пути прохождения робота по безопасному и кратчайшему маршруту к заданной точке. В обзоре [8] рассмотрены методы глобального и локального планирования маршрутов роботов, где для глобального планирования пути используются методы моделирования окружающей среды и методы оценки пути. Для локального построения маршрута используются данные с внешних датчиков, таких как, например, камеры. Значительные усилия исследователей направлены на решение проблемы проектирования безопасного пути для мобильного робота при его автономной работе. Данный маршрут должен быть преодолен с кратчайшим расстоянием, без столкновений и с наименьшими затратами времени от начальной до конечной точки. Судя по обзору [8], достигнут определенный прогресс в решении данной задачи, но она по-прежнему актуальна.

Изучаются также и пути повышения надежности групп роботов-спасателей, что особенно важно при проведении спасательных операций в экстремальных условиях. Так, в работе [23] это предлагается реализовать через повышение автономности отдельных роботов и групп роботов, резервирование роботов и обеспечение их взаимозаменяемости.

В работе [24] представлен симулятор для разработки стратегии поведения поисковых групп роботов. Симулятор включает в себя среду моделирования в виде массива данных размером 300 × 300, где каждый элемент массива может содержать одно из 9 значений для построения карты симуляции. Симулятор позволяет отслеживать перемещения роботов, оценивать затраченное время и работу команды роботов. По результатам более 300 экспериментов в рамках симуляции было показано, что по мере увеличения численности роботов в команде возрастает производительность команды, при размере команды роботов в 12–14 штук данные производительности выхолят на плато.

Приведенные данные свидетельствуют о росте интереса к различным аспектам создания ПСР во всем мире. В значительной степени это связано с общим развитием возможностей робототехники, но также обусловлено необходимостью обеспечить службы спасения современной техникой, повысив за счет её внедрения эффективность спасательных операций и безопасность населения.

Однако обращает на себя внимание, что относительно небольшое количество работ посвящено созданию сочетанных (модульных) систем ПСР с различной средой применения, хотя именно такой подход видится наиболее перспективным для обеспечения широких функциональных возможностей роботизированных систем спасения. Кроме того, данный подход позволит унифицировать ПСР в рамках системы ГО и ЧС на уровне государства и предупредить избыточное расширение номенклатуры закупаемых изделий.

Проблемы разработки и внедрения ПСР

Сфера разработки ПСР, как и любое развивающиеся направление робототехники, сопряжена с рядом технических и концептуальных проблем, которые ограничивают или замедляют их внедрение в практическое применения. Для ПСР и других критических робототехнических направлений (таких, как, например, медицина или беспилотные транспортные средства) обеспечение безопасности применения является одним из ключевых моментов организации и их

внедрения на системном, государственном уровне. В работах, посвященных этому [25], часто особое внимание уделяется безопасности Robot Operating System (ROS) – операционной системы робототехнических устройств. Однако исследования также уделяют внимание физической безопасности, связанной с аппаратной надежностью и безопасностью прошивок микроконтроллеров роботов, проблеме подмены данных и безопасности сетей. По мнению некоторых исследователей [25], вероятность рисков угроз безопасности на роботизированных платформах может быть значительно снижена за счет улучшений в шифровании, авторизации и аутентификации, а также физической безопасности роботов-спасателей. Кроме того, в исследовании [26] была предложена методология систематической оценки безопасности роботов (RSF), предполагающая оценку по четырем основным уровням (физический, сетевой, встраиваемое ПО и программное приложение), включающим в себя ряд аспектов безопасности. Также авторы работы предлагают собственную терминологию и описывают структуру оценки безопасности роботизированных систем, связанную с их архитектурой. В работе утверждается, что каждый из выделенных авторами аспектов безопасности должен быть проанализирован и обеспечен активно, а не по принципу «безопасность за счет неизвестности», который в настоящее время широко применяется в робототехнике, но приводит к существованию критических уязвимостей у роботов.

Проектирование модульных самоконфигурируемых роевых систем также приводит к проблеме кибербезопасности (т.е. подслушивание, перехват/подмена пакетов, неверная конфигурация и т.д.) сегмента сети для управления роботами. Например, в работе [27] представлена концепция безопасного и защищенного сегмента сети для управления роботами с централизированным и децентрализированным управлением.

Множество проблем во внедрении и разработке ПСР связано с организацией интерфейса между ПСР и оператором. Например, сложность в адаптации человека-оператора к задержкам передачи информации при управлении роботами-спасателями. Это связано с тем, что задержка в 500 мс между командой и ее выполнением ПСР приводит к значительному снижению производительности выполнения задачи и значительному увеличению восприятия объема физической нагрузки [28].

Увеличение числа роботов, включаемых в систему ПСР, порождает проблему управления одним оператором несколькими роботами. Разработчикам систем ПСР необходимо определить, какая информация, поступающая от роботов, рассредоточенных по местности, может быть интегрирована в графический

интерфейс оператора, как организовать управление роботами в неизвестной среде и какой формат управления использовать: управлять каждым роботом по отдельности или как единой системой [29].

В России, кроме аналогичных технических проблем разработки, существуют сложности в обеспечении единых технических требований к ПСР. В настоящее время действуют множественные ГОСТы, определяющие технические требования к характеристикам создаваемых роботизированных систем, в том числе спасательных:

- ГОСТ Р 60.6.3.12–2019 «Роботы и робототехнические устройства. Методы испытаний сервисных мобильных роботов для работы в экстремальных условиях. Радиосвязь в зоне прямой видимости»;
- ГОСТ Р 60.0.2.1–2016 «Роботы и робототехнические устройства. Общие требования по безопасности»;
- ГОСТ Р 60.6.3.11–2019 «Роботы и робототехнические устройства. Методы испытаний сервисных мобильных роботов для работы в экстремальных условиях. Взаимодействие человека с роботом при выполнении поисковых работ. Произвольные лабиринты на сложной местности»;
- ГОСТ Р 60.0.3.1–2016 «Роботы и робототехнические устройства. Виды испытаний»;
- ГОСТ Р 54344–2011 «Техника пожарная. Мобильные робототехнические комплексы для проведения аварийно-спасательных работ и пожаротушения. Классификация. Общие технические требования. Методы испытаний»;
- ГОСТ Р 55895–2013 «Техника пожарная. Системы управления робототехнических комплексов для проведения аварийно-спасательных работ и пожаротушения. Общие технические требования. Методы испытаний».

Также недавно был разработан ГОСТ Р 70802—2023 «Беспилотные авиационные системы для обеспечения пожаротушения, аварийно-спасательных и других работ, выполняемых в целях предупреждения чрезвычайных ситуаций и ликвидации их последствий. Общие требования», определяющий требования беспилотным авиационным системам для пожаротушения, который вводится в действие с 1 декабря 2023 г.

Многообразие существующих ГОСТов может усложнить внедрение передовых роботизированных решений в практику спасательных операций и требует дополнительного внимания со стороны разработчиков.

Из проанализированных работ видно, что в настоящее время проблема безопасности применения роботизированных автономных систем, а именно кибербезопасность роботизированных устройств,

становится все важнее. Это обусловлено все большим распространением роботов и их широкой интеграцией в такие ответственные отрасли, как здравоохранение и обеспечение общественной безопасности. В то же время, несмотря на многочисленность ГОСТов на роботизированную технику, в ГОСТ Р 60.0.2.1–2016, посвященном обеспечению безопасности роботов и роботизированных устройств, не рассматриваются меры обеспечения или проверки устойчивости роботов к кибернетическим угрозам.

Выводы

Проведенный обзор показывает, что в настоящее время ПСР является интенсивно развивающимся сегментом сервисных роботов. Их широкое внедрение может обеспечить значительное сокращение сроков обнаружения пострадавших, оказания им помощи и эвакуации. Кроме того, применение ПСР экономически оправдано, поскольку позволяет высвободить часть сотрудников поисково-спасательных служб от рутинных задач или заменить применение полномасштабной дорогостоящей в эксплуатации техники миниатюрными роботизированными решениями.

Несмотря на успехи в развитии, ПСР в настоящий момент внедрены недостаточно широко. Данная

проблема характерна не только для России, но и для всего мира. Возможно, отчасти это обусловливается необходимостью изменения протоколов помощи поисково-спасательных служб, а отчасти — несовершенством существующих технических решений в области ПСР. Тем не менее повсеместно ведущиеся исследования и разработки позволяют предположить, что в ближайшее время будут созданы системы ПСР, которые найдут свое широкое применение в поисковоспасательных службах.

Кроме того, в настоящее время существует ряд актуальных проблем, связанных с разработкой и созданием роботизированных систем. Для их дальнейшего успешного внедрения требуется проведение исследований в смежных областях (электронике, материаловедении, кибернетике), направленных на разработку новых технических решений (материалов, элементов интернета вещей, сенсоров), которые позволят обеспечить создаваемым роботизированным системам (в том числе ПСР) необходимые технические характеристики, а также обеспечат безопасность их применения.

Также требуется уделить особое внимание регулированию российского законодательства во избежание ситуации, когда законодательно будет осложнено свободное внедрение инновационных ПСР в практическое использование.

Список источников

- 1. Ferris T., Sarter N., Wickens C.D. Cockpit automation: Still struggling to catch up... // Human factors in aviation. Academic Press, 2010. P. 479–503. doi: 10.1016/B978-0-12-374518-7.00015-8
- 2. Kim D., Masuda R. Development of rescue robot system with human body grasping function // IFAC Proceedings Volumes. 2003. Vol. 36 (17). P. 443–448. doi: 10.1016/S1474-6670(17)33434-1
- 3. *Sedig K., Seaton M.B., Drennan I.R., Cheskes S., Dainty K.N.* «Drones are a great idea! What is an AED?» novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators // Resuscitation Plus. 2020. Vol. 4. P. 100033. doi: 10.1016/j.resplu.2020.100033
- 4. 道路"机器人交警"在邯郸"上岗" // The Chinese Central Government's Official Web Portal. URL: https://www.gov.cn/xinwen/2019-08/08/content 5419720.htm (дата обращения: 01.08.2023).
- Unpaved Roads Assessment // Michigan Technological University. URL: https://www.mtu.edu/mtri/research/project-areas/transportation/infrastructure/unpaved-roads/ (дата обращения: 11.08.2023).
- Blitch J.G. Artificial intelligence technologies for robot assisted urban search and rescue // Expert Systems with Applications. 1996. Vol. 11 (2). P. 109–124. doi: 10.1016/0957-4174(96)00038-3
- 7. SmartCam3D // Rapid Imaging Technologies LLC. URL: https://www.rapidimagingtech.com/smartcam3d/ (дата обращения: 25.07.2023).
- 8. Liu L., Wang X., Yang X., Liu H., Li J., Wang P. Path planning techniques for mobile robots: Review and prospect // Expert Systems with Applications. 2023. Vol. 227, Is. C. P. 120254. doi: 10.1016/j.eswa.2023.120254
- 9. *Bakhshipour M., Ghadi M.J., Namdari F.* Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach // Applied Soft Computing. 2017. Vol. 57. P. 708–726. doi: 10.1016/j.asoc.2017.02.028
- 10. Drones: A Report on the Use of Drones by Public Safety Agencies and a Wake-Up Call about the Threat of Malicious Drone Attacks // Police Executive Research Forum. Office of Community Oriented Policing Services. 2020. 128 p.
- 11. Спасательный робот «Аврора» впервые представлен на «Гидроавиасалоне-2018» в Геленджике // АО «НПП «Радар ммс». URL: https://radar-mms.com/news/media/spasatelnyy-robot-avrora-vpervye-predstavlen-na-gidroaviasalone-2018-v-gelendzhike/? sphrase id=18039 (дата обращения: 20.08.2023).
- 12. *Цариченко С.Г., Овсяник А.И., Павлов Е.В., Симанов С.Е., Исавнина И.Н.* Групповое управление робототехническими комплексами при тушении пожаров в особо опасных условиях // Пожары и чрезвычайные ситуации: предотвращение, ликвидация. 2018. № 4. С. 19–25.
- 13. *Камоцкий В.С.* «Пеликан» мобильная установка для пожаротушения объектов нефтегазового комплекса // Территория Нефтегаз. 2013. № 6. С. 56–57.
- 14. Schofield R.T. Potential Fields Navigation of Lifeguard Assistant Robot for Mass Marine Casualty Response // Undergraduate Research Scholars Thesis. Texas A&M University Libraries, 2018. 44 p.

- 15. U-Safe // U SAFE. URL: https://www.usaferescue.com/product-en/#about (дата обращения: 13.08.2023).
- 16. U-Safe // Consumer Technology Association. URL: https://www.ces.tech/innovation-awards/honorees/2023/honorees/u/u-safe.aspx (дата обращения: 15.08.2023).
- 17. Optimus // Airobotics. URL: https://www.airoboticsdrones.com/optimus/ (дата обращения: 18.08.2023).
- 18. ECHO // Robotics Centre. URL: https://robotics-centre.com/products/echo/ (дата обращения: 18.08.2023).
- 19. Skydrop // Skydrop. URL: https://getskydrop.com/ (дата обращения: 19.08.2023).
- 20. Gemini-Scout Mine Rescue Vehicle // National Technology and Engineering Solutions of Sandia. URL: https://www.sandia.gov/research/gemini-scout-mine-rescue-vehicle/ (дата обращения: 19.08.2023).
- 21. *Ralston J.C., Hainsworth D.W.* The Numbat: A remotely controlled mine emergency response vehicle // Field and Service Robotics. London: Springer London, 1998. P. 53–59.
- 22. Donaldson L. Squishy robots could revolutionize search-and-rescue // Materials Today. 2014. Vol. 8 (17). P. 368–369. doi: 10.1016/j.mattod.2014.08.030
- 23. Vasilyev I., Kashourina A., Krasheninnikov M., Smirnova E. Use of mobile robots groups for rescue missions in extreme climatic conditions // Procedia Engineering. 2015. Vol. 100. P. 1242–1246. doi: 10.1016/j.proeng.2015.01.489
- 24. Dollarhide R.L., Agah A. Simulation and control of distributed robot search teams // Computers & Electrical Engineering. 2003. Vol. 29 (5). P. 625–642. doi: 10.1016/S0045-7906(01)00048-9
- 25. Botta A., Rotbei S., Zinno S., Ventre G. Cyber Security of Robots: a Comprehensive Survey // Intelligent Systems with Applications. 2023. Vol. 18. P. 200237. doi: 10.1016/j.iswa.2023.200237
- 26. Vilches V.M., Kirschgens L.A., Calvo A.B., Cordero A.H., Pisón R.I., Vilches D.M., & Peter A. Introducing the robot security framework (rsf), a standardized methodology to perform security assessments in robotics // arXiv preprint arXiv. 2018. 1806. 04042.
- 27. Yaacoub J.P.A., Noura H.N., Piranda B. The internet of modular robotic things: Issues, limitations, challenges, & solutions // Internet of Things. 2023. Vol. 23. P. 100886. doi: 10.1016/j.iot.2023.100886
- 28. Khasawneh A., Rogers H., Bertrand J., Madathil K. C., Gramopadhye A. Human adaptation to latency in teleoperated multi-robot human-agent search and rescue teams // Automation in Construction. 2019. Vol. 99. P. 265–277. doi: 10.1016/j.autcon.2018.12.012
- 29. Valero A., de la Puente P., Rodríguez-Losada D. Exploratory analysis of operator: Robot ratio in search and rescue missions // IFAC Proceedings Volumes. 2010. Vol. 43 (23). P. 101–108. doi: 10.3182/20101005-4-RO-2018.00034

References

- 1. Ferris, T., Sarter, N. & Wickens, C. D. (2010) Cockpit automation: Still struggling to catch up... In: *Human factors in aviation*. Academic Press. pp. 479–503. doi: 10.1016/B978-0-12-374518-7.00015-8
- 2. Kim, D. & Masuda, R. (2003) Development of rescue robot system with human body grasping function. *IFAC Proceedings Volumes*. 36 (17). pp. 443–448. doi: 10.1016/S1474-6670(17)33434-1
- 3. Sedig, K., Seaton, M.B., Drennan, I.R., Cheskes, S. & Dainty, K.N. (2020) «Drones are a great idea! What is an AED?» novel insights from a qualitative study on public perception of using drones to deliver automatic external defibrillators. *Resuscitation Plus.* 4. Art № 100033. doi: 10.1016/j.resplu.2020.100033.
- 4. *The Chinese Central Government's Official Web Portal* (n.d.). Traffic "traffic police robot" is "on duty" in Handan. [Online]. Available from: https://www.gov.cn/xinwen/2019-08/08/content_5419720.htm (Accessed: 01.08.2023).
- 5. Michigan Technological University (n.d.). Unpaved Roads Assessment. [Online]. Available from: https://www.mtu.edu/mtri/research/project-areas/transportation/infrastructure/unpaved-roads/ (Accessed: 11.08.2023).
- 6. Blitch, J.G. (1996) Artificial intelligence technologies for robot assisted urban search and rescue. *Expert Systems with Applications*. 11 (2). pp. 109–124. doi: 10.1016/0957-4174(96)00038-3
- 7. Rapid Imaging Technologies LLC. (n.d.) SmartCam3D [Online]. Available from: https://www.rapidimagingtech.com/smartcam3d/(Accessed: 25.07.2023).
- 8. Liu, L., Wang, X., Yang, X., Liu, H., Li, J. & Wang, P. (2023) Path planning techniques for mobile robots: Review and prospect. *Expert Systems with Applications*. 227 (C). Art. № 120254. doi: 10.1016/j.eswa.2023.120254
- Bakhshipour, M., Ghadi, M.J. & Namdari, F. (2017) Swarm robotics search & rescue: A novel artificial intelligence-inspired optimization approach. Applied Soft Computing. 57. pp. 708–726. doi: 10.1016/j.asoc.2017.02.028
- 10. n.a. (2020) Drones: A Report on the Use of Drones by Public Safety Agencies and a Wake-Up Call about the Threat of Malicious Drone Attacks. In: *Police Executive Research Forum. Office of Community Oriented Policing Services*.
- 11. AO «NPP «Radar mms» (n.d.) Spasatelnyi robot «Avrora» vpervye predstavlen na «Gidroaviasalone-2018» v Gelendzhike [The rescue robot "Aurora" was presented for the first time at the "Gidroaviasalon-2018" in Gelendzhik]. [Online]. Available from: https://radar-mms.com/news/media/spasatelnyy-robot-avrora-vpervye-predstavlen-na-gidroaviasalone-2018-v-gelendzhike/?sphrase id=18039 (Accessed: 20.08.2023).
- 12. Tsarichenko, S.G., Ovsyanik, A.I., Pavlov, E.V., Simanov, S.E. & Isavnina, I.N. (2018) Gruppovoe upravlenie robototekhnicheskimi kompleksami pri tushenii pozharov v osobo opasnykh usloviiakh [Group control of robotic systems when extinguishing fires in particularly dangerous conditions]. *Pozhary i chrezvychainye situatsii: predotvrashchenie, likvidatsiia.* 4. pp. 19–25.
- 13. Kamotsky, V.S. (2013) "Pelikan" mobilnaia ustanovka dlia pozharotusheniia obieektov neftegazovogo kompleksa ["Pelican" a mobile fire extinguishing unit for oil and gas complex facilities]. *Territoriia Neftegaz*. 6. pp. 56–57.
- 14. Schofield, R.T. (2018) Potential Fields Navigation of Lifeguard Assistant Robot for Mass Marine Casualty Response. *Undergraduate Research Scholars Thesis. Texas A&M University Libraries*.
- 15. USAFE. (n.d.) U-Safe. [Online]. Available from: https://www.usaferescue.com/product-en/#about (Accessed: 13.08.2023).
- 16. Consumer Technology Association. (n.d.) U-Safe. [Online]. Available from: https://www.ces.tech/innovation-awards/honorees/2023/honorees/u/u-safe.aspx (Accessed: 15.08.2023).
- 17. Airobotics. (n.d.) Optimus. [Online]. Available from: https://www.airoboticsdrones.com/optimus/ (Accessed: 18.08.2023).
- 18. Robotics Centre. (n.d.) ECHO. [Online]. Available from: https://robotics-centre.com/products/echo/ (Accessed: 18.08.2023).
- 19. Skydrop. (n.d.) Skydrop. [Online]. Available from: https://getskydrop.com/ (Accessed: 19.08.2023).

- 20. National Technology and Engineering Solutions of Sandia. (n.d.) Gemini-Scout Mine Rescue Vehicle. [Online] Available from: https://www.sandia.gov/research/gemini-scout-mine-rescue-vehicle/ (Accessed: 19.08.2023).
- 21. Ralston, J.C. & Hainsworth, D.W. (1998) The Numbat: A remotely controlled mine emergency response vehicle. In: *Field and Service Robotics*. Springer London. pp. 53–59.
- 22. Donaldson, L. (2014) Squishy robots could revolutionize search-and-rescue. *Materials Today*. 8(17). pp. 368–369. doi: 10.1016/j.mattod.2014.08.030
- 23. Vasilyev, I., Kashourina, A., Krasheninnikov, M. & Smirnova, E. (2015) Use of mobile robots groups for rescue missions in extreme climatic conditions. *Procedia Engineering*. 100. pp. 1242–1246. doi: 10.1016/j.proeng.2015.01.489
- 24. Dollarhide, R.L. & Agah, A. (2003) Simulation and control of distributed robot search teams. *Computers & Electrical Engineering*. 29(5), pp. 625–642. doi: 10.1016/S0045-7906(01)00048-9
- 25. Botta, A., Rotbei, S., Zinno, S. & Ventre, G. (2023) Cyber Security of Robots: a Comprehensive Survey. *Intelligent Systems with Applications*. 18. Art. № 200237. doi: 10.1016/j.iswa.2023.200237
- 26. Vilches, V.M., Kirschgens, L.A., Calvo, A.B., Cordero, A.H., Pisón, R.I., Vilches, D.M., Rosas, A.M., Mendia, G.O., San Juan, L.U., Ugarte, I.Z., Gil-Uriarte, E., Tews, E. & Peter, A. (2018). *Introducing the Robot Security Framework (RSF), a standardized methodology to perform security assessments in robotics*. Paper presented at Symposium on Blockchain for Robotic Systems 2018, Cambridge, Massachusetts, United States. [Online]. Available from: https://arxiv.org/abs/1806.04042
- 27. Yaacoub, J.P.A., Noura, H.N. & Piranda, B. (2023) The internet of modular robotic things: Issues, limitations, challenges, & solutions. *Internet of Things*. 23. Art. № 100886. doi: 10.1016/j.iot.2023.100886
- 28. Khasawneh, A., Rogers, H., Bertrand, J., Madathil, K. C. & Gramopadhye, A. (2019) Human adaptation to latency in teleoperated multi-robot human-agent search and rescue teams. *Automation in Construction*. 99. pp. 265–277. doi: 10.1016/j.autcon.2018.12.012
- 29. Valero, A., de la Puente, P. & Rodríguez-Losada, D. (2010) Exploratory analysis of operator: Robot ratio in search and rescue missions. *IFAC Proceedings Volumes*. 43(23). pp. 101–108. doi: 10.3182/20101005-4-RO-2018.00034

Информация об авторах:

Буреев Артем Шамильевич — научный сотрудник лаборатории медицинского приборостроения Центра развития науки, технологий и образования в области обороны и обеспечения безопасности государства Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: artem bureev@mail.ru. ORCID: 0000-0001-8911-305X.

Жданов Дмитрий Сергеевич – кандидат технических наук, заведующий лабораторией медицинского приборостроения Центра развития науки, технологий и образования в области обороны и обеспечения безопасности государства Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: d_s_zhdanov@mail.ru. ORCID: 0000-0002-8639-0681.

Костелей Яна Валерьевна – кандидат технических наук, научный сотрудник лаборатории медицинского приборостроения Центра развития науки, технологий и образования в области обороны и обеспечения безопасности государства Национального исследовательского Томского государственного университета; доцент кафедры экономической математики, информатики и статистики Томского государственного университета систем управления и радиоэлектроники (Томск, Россия). E-mail: kosteleyyv@gmail.com. ORCID: 0000-0003-0775-350X.

Голобокова Евгения Васильевна — научный сотрудник лаборатории медицинского приборостроения Центра развития науки, технологий и образования в области обороны и обеспечения безопасности государства Национального исследовательского Томского государственного университета (Томск, Россия). E-mail: jane04@yandex.ru. ORCID: 0000-0002-7806-8879.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Bureev Artem Sh., researcher, Medical Instrumentation Laboratory, Center for the Development of Science, Technology and Education in the Field of Defense and State Security, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: artem_bureev@mail.ru. ORCID: 0000-0001-8911-305X.

Zhdanov Dmitry S., Cand. Sc. (Engineering), head of the Medical Instrumentation Laboratory, Center for the Development of Science, Technology and Education in the Field of Defense and State Security, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: d s zhdanov@mail.ru. ORCID: 0000-0002-8639-0681.

Kosteley Yana V., Cand. Sc. (Engineering), researcher, Medical Instrumentation Laboratory, Center for the Development of Science, Technology and Education in the Field of Defense and State Security, National Research Tomsk State University (Tomsk, Russian Federation); associate professor, Department of Economic Mathematics, Informatics and Statistics, Tomsk State University of Control Systems and Radioelectronics (Tomsk, Russian Federation). E-mail: kosteleyyv@gmail.com. ORCID: 0000-0003-0775-350X.

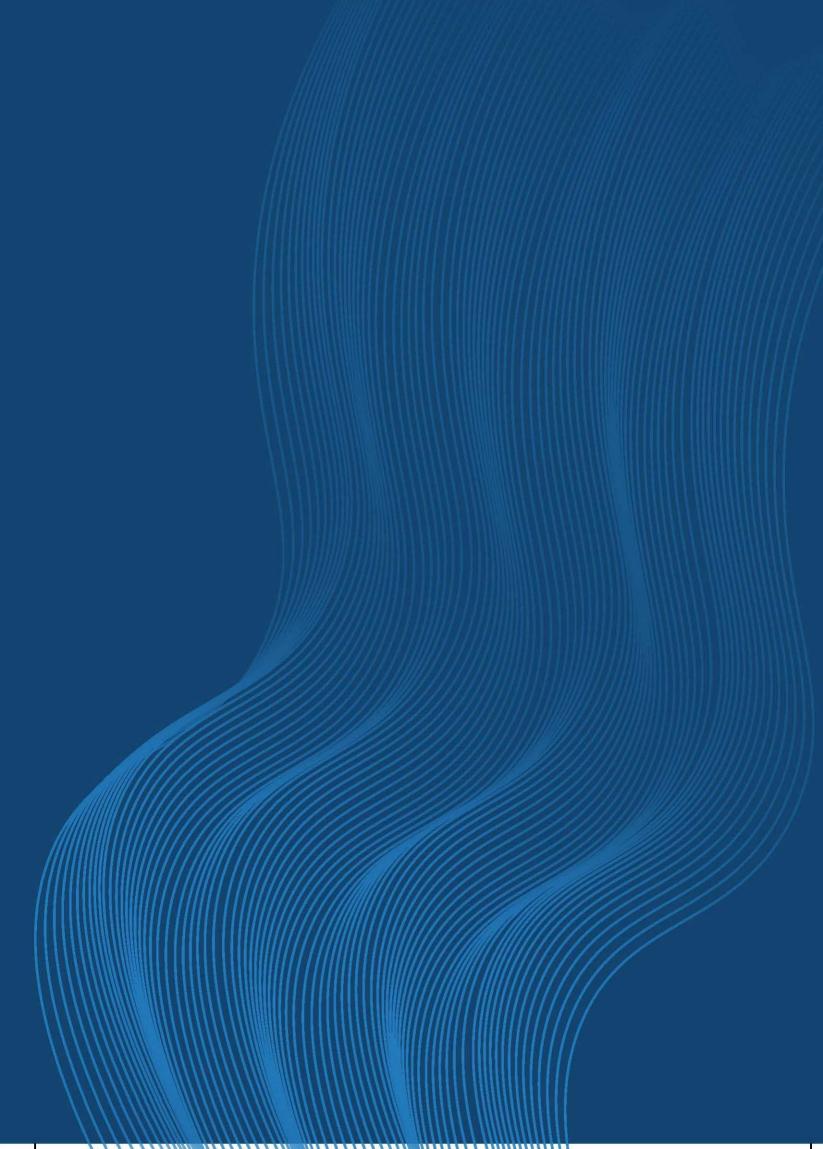
Golobokova Evgeniya V., researcher, Medical Instrumentation Laboratory, Center for the Development of Science, Technology and Education in the Field of Defense and State Security, National Research Tomsk State University (Tomsk, Russian Federation). E-mail: jane04@yandex.ru. ORCID: 0000-0002-7806-8879.

The authors declare no conflicts of interests.

Статья поступила в редакцию 4.10.2023; одобрена после рецензирования 26.10.2023; принята к публикации 13.11.2023

The article was submitted 4.10.2023; approved after reviewing 26.10.2023; accepted for publication 13.11.2023

Научный журнал


ТЕХНОЛОГИИ БЕЗОПАСНОСТИ ЖИЗНЕДЕЯТЕЛЬНОСТИ LIFE SAFETY / SECURITY TECHNOLOGIES 2023. № 3

Редактор К.Г. Шилько Оригинал-макет А.И. Лелоюр Редактор-переводчик Н.А. Глущенко Дизайн обложки А.А. Аббасова

Подписано к печати 14.11.2023 г. Формат $60 \times 84^{1}/8$. Гарнитура Times. Печ. л. 9,7; усл. печ. л. 9. Тираж 500 экз. Заказ № 5654. Цена свободная.

Дата выхода в свет 13.12.2023 г.

Журнал отпечатан на полиграфическом оборудовании Издательства Томского государственного университета 634050, г. Томск, Ленина, 36 Тел. 8(382-2)–52-98-49; 8(382-2)–52-96-75 Сайт: http://publish.tsu.ru; E-mail: rio.tsu@mail.ru

