Научная статья УДК 902/904

doi: 10.17223/2312461X/41/12

# **Дендрохронологическое исследование древесины** из Оглахтинского могильника: первые результаты

# Игорь Юрьевич Слюсаренко<sup>1, 2</sup> Юрий Николаевич Гаркуша<sup>3</sup>

<sup>1</sup> Национальный исследовательский Томский государственный университет, Томск, Россия
<sup>2,3</sup> Институт археологии и этнографии СО РАН, Новосибирск, Россия
<sup>1,2</sup> slig 1963@yandex.ru
<sup>3</sup> yunga1971@ngs.ru

Аннотация. Представлены первые результаты дендрохронологического датирования древесины из погребений Оглахтинского могильника. Являясь одним из наиболее выдающихся памятников таштыкской культуры, могильник проходит третий этап в истории его исследования, который характеризуется реализацией комплексного междисциплинарного подхода. Благодаря сохранности в погребениях предметов из органических материалов, в том числе деревянных погребальных срубов, актуальные вопросы хронологии решаются с применением дендрохронологического анализа. Источниковую базу составила коллекция из 40 дендрообразцов, происходящих из пяти (возможно шести) могил, исследованных в 1903 г. А.В. Адриановым (мог. 1, 2), в 1969—1970 гг. Л.Р. Кызласовым (мог. 4, 8), в 2021 г. Е.В. Водясовым (мог. 2021/1, 2021/2).

Для получения хронологической информации использовался метод перекрестного датирования, по результатам применения которого сформированы две обобщенные древесно-кольцевые хронологии: по лиственнице — протяженностью 228 лет, по сосне — 178 лет. Из 40 образцов 80% были относительно датированы по этим шкалам, кроме того, ДКХ лиственницы и сосны достаточно надежно датировались друг с другом. По результатам исследования предложена примерная последовательность могил в пределах интервала 50–55 лет: самой ранней выступает могила 2021/2, наиболее поздняя — могила 4. При этом заполнение Восточного и Западного участков Оглахтинского могильника погребениями шло одновременно. Все полученные даты являются относительными, т.е. установленными в рамках «плавающей» древесно-кольцевой хронологии. В плоскость абсолютных они перейдут в ближайшей перспективе путем радиоуглеродного датирования дендрообразцов с использованием методики «wiggle-matching».

Таким образом, в результате исследования древесины от погребальных сооружений Оглахтинского могильника была установлена принципиальная возможность древесно-кольцевого датирования могил и получены первые итоги относительной хронологии.

**Ключевые слова:** таштыкская культура, Оглахтинский могильник, погребальная древесина, дендрохронологическое датирование, древесно-кольцевая шкала, относительная хронология

**Благодарности:** Исследование выполнено в рамках проекта РНФ № 22-18-00478 «Феномен Оглахтинского могильника».

**Для цитирования:** Слюсаренко И.Ю., Гаркуша Ю.Н. Дендрохронологическое исследование древесины из Оглахтинского могильника: первые результаты // Сибирские исторические исследования. 2023. № 3. С. 204–235. doi: 10.17223/2312461X/41/12

Original article doi: 10.17223/2312461X/41/12

# Dendrochronological Study of Wood from the Oglakhty Burial Ground of the Tashtyk Culture (Republic of Khakassia): First Results

Igor Y. Slyusarenko<sup>1, 2</sup> Yuriy N. Garkusha<sup>3</sup>

<sup>1</sup> National Research Tomsk State University, Tomsk, Russian Federation
<sup>2,3</sup> Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russian Federation
<sup>1,2</sup> slig1963@yandex.ru
<sup>3</sup> yunga1971@ngs.ru

**Abstract.** The article presents the first results of dendrochronological dating of wood from the graves of the Oglakhty burial ground. Being one of the most outstanding sites of the Tashtyk culture, the burial ground is going through the third stage in the history of its research, which is characterized by the implementation of an integrated interdisciplinary approach. Due to the preservation of objects made of organic materials in the burials, including wooden burial log cabins, topical issues of chronology are resolved using tree-ring analysis. The material for the study is a collection of 40 wood-samples originating from five (possibly six) graves, investigated in 1903 by A.V. Adrianov (graves 1-2), in 1969-1970 by L.R. Kyzlasov (graves 4, 8), in 2021 by E.V. Vodyasov (graves 2021/1, 2021/2).

To obtain chronological information, the cross-dating method was used, as a result of which two generalized tree-ring width (TRW) chronologies were formed: for larch trees – 228 years long, for pine trees – 178 years long. Of the 40 samples, 80% were relatively dated according to these two TRW-chronologies. Besides, the TRW larch and pine chronologies were cross-dated with each other quite reliably. Based on the results of the study, an approximate chronological order of the graves within the interval of 50–55 years was proposed: the earliest is grave 2021/2, the latest is grave 4. At the same time, the construction of burials in the Eastern and Western plots of the Oglakhty burial ground proceeded simultaneously. All dates obtained are relative, that is, established within the framework of a "floating" tree-ring chronology. They will move into the absolute category in the near future by radiocarbon dating of wood samples using the "wiggle-matching" technique.

Thus, as a result of the study of wood from the burial structures of the Oglakhty burial ground, the fundamental possibility of tree-ring dating of graves was established and the first results of relative chronology were obtained.

**Keywords:** Tashtyk culture, Oglakhty burial ground, burial wood, dendrochronological dating, tree-ring chronology, relative chronology

**Acknowledgements:** The study was carried out within the framework of the Russian Science Foundation project No. 22-18-00478 "The phenomenon of the Oglakhty burial ground".

**For citation:** Slyusarenko, I.Y. & Garkusha, Y.N. (2023) Dendrochronological Study of Wood from the Oglakhty Burial Ground of the Tashtyk Culture (Republic of Khakassia): First Results. *Sibirskie Istoricheskie Issledovaniia – Siberian Historical Research.* 3. pp. 204–235 (In Russian). doi: 10.17223/2312461X/41/12

## Введение

Оглахтинский грунтовый могильник, являясь одним из наиболее выдающихся памятников таштыкской культуры, имеет непростую судьбу с точки зрения истории его исследования. В этом году исполнилось 120 лет с момента обнаружения могильника и первых работ на нем, произведенных А.В. Адриановым в 1903 г., и 55 лет с повторного открытия памятника в 1968 г. Хакасской археологической экспедицией МГУ под руководством Л.Р. Кызласова, который провел здесь раскопки в 1969–1971 и 1973 гг. (Водясов и др. 2021: 8-9). Несмотря на достаточно длительное существование в поле зрения научного сообщества и яркие находки, Оглахтинский могильник до сих пор не удостоился полноценной публикации открытых на нем материалов. Сами находки оказались «распылены» между несколькими музеями Москвы, Санкт-Петербурга, Красноярска, что также не способствовало созданию целостной картины. Наконец, после третьего и последнего открытия памятника в 2018 г. и проведенных на нем работ по картографированию с использованием современных методик могильник впервые был задокументирован и поставлен на государственную охрану как выявленный объект археологического наследия (Водясов и др. 2021: 9–10). С 2020 г. здесь проводятся археологические и геофизические исследования совместными усилиями Томского государственного университета и Государственного Эрмитажа (Зайцева и др. 2021).

Современный этап исследования Оглахтинского могильника (рис. 1) характеризуется реализацией комплексного междисциплинарного подхода. Одним из первых при исследовании любого памятника встает вопрос о его хронологии. В данном случае замечательной особенностью могильника является удивительная сохранность в ряде погребений предметов из органических материалов, в том числе деревянных погребальных срубов, что, в свою очередь, позволяет применить для датирования бревен из них дендрохронологический анализ, основанный на изучении погодичной изменчивости древесных колец. Древесина из погребений могильника в силу своей хорошей сохранности уже привлекала внимание предшествующих исследователей: А.В. Адрианов среди различных

предметов инвентаря передал в Красноярский краеведческий музей несколько фрагментов бревен из могил 1 и 2, а Л.Р. Кызласов доставил в Государственный Эрмитаж целиком сруб из мог. 4, экспонируемый сегодня в открытом хранении Реставрационно-хранительского центра (РХЦ) «Старая Деревня».



Рис. 1. Оглахтинский могильник. Общий вид с северо-запада. Фото С.В. Панковой

Дендрохронологический (древесно-кольцевой) анализ позволяет датировать древесину с точностью до года и, при хорошей сохранности, даже сезона, получая в первую очередь относительные даты, а при наличии «местной» длительной абсолютной дендрошкалы — и календарные. В настоящее время этот метод является наиболее точным из всех существующих естественно-научных методов датирования. Погребальный обряд, практикуемый таштыкским населением, оставившим Оглахтинский могильник, предполагал практически в каждой могиле сооружение бревенчатого сруба. Соответственно, располагая древесиной из исследованных погребений, мы имеем возможность выстроить достоверную хронологию не только всего памятника, но и проверить хронологическое соотношение его отдельных участков (Западного, Восточного и Центрального). С учетом возможностей данного метода в настоящем исследовании ставились следующие задачи:

- формирование коллекции образцов древесины, представляющих, по возможности, наибольшее количество исследованных погребений могильника;
- построение относительной («плавающей») древесно-кольцевой хронологии по древесине могильника;

- установление относительной хронологии погребений в рамках всего могильника и его отдельных участков;
- выявление последовательности сооружения могил и длительности функционирования могильника в целом;
- получение абсолютных дат для погребений могильника при помощи сочетания дендрохронологического и радиоуглеродного анализов.

# Материалы

Первое упоминание об оглахтинской древесине встречается в литературе еще в начале 1970-х гг.: в статье Б.А. Колчина и Т.Т. Битвинскаса приводится короткая информация об относительной дендрошкале, составленной «по образцам от бревен погребальной камеры Оглахтинского могильника». Никаких деталей не сообщается за исключением того, что «древесина (сибирская лиственница) очень хорошей сохранности», а протяженность шкалы 185 лет (1972: 85). Повторно эта же информация приведена в известной работе Н.Б. Черных «Дендрохронология и археология» (1996) с пояснением о том, что указанных материалов «в лаборатории не имеется и по этой причине высказать свои соображения по поводу обоснованности данных шкал не представляется возможным» (1996: 29-30). Сегодня с учетом всей собранной нами информации можно высказать предположение, что речь, скорее всего, шла о древесине из мог. 8, раскопанной Л.Р. Кызласовым в 1970 г. В полевом отчете при описании мог. 8 сообщается, что «четыре бревна сруба взяты в коллекцию» (Кызласов 1971: 113). Два фрагмента от одного из этих бревен были впоследствии обнаружены в хранилище Лаборатории естественнонаучных методов ИА РАН. С тех пор и до настоящего момента оглахтинская древесина в поле зрения исследователей как материал для дендрохронологического анализа не попадала.

Более определенные результаты датирования по древесине из Оглахтинского могильника были получены, когда два бревна (лиственница и сосна) из сруба мог. 4 (раскопки Л.Р. Кызласова 1969 г.) использовались как материал для высокоточного радиоуглеродного датирования методом «wiggle-matching» (Панкова и др. 2010). Метод основывается на анализе серий образцов, представляющих группы годичных колец, хронологическое соотношение которых известно, благодаря чему точность радиоуглеродного датирования существенно повышается. В связи с особенностями калибровочной кривой для периода II–IV вв. были получены два возможных хронологических интервала, а применение методов математической статистики позволило признать более вероятным поздний интервал — 372—402 гг. (2010: 51—56). Еще раз подчеркнем, что в данном исследовании древесина из погребения послужила только материалом для радиоуглеродного датирования, хотя и наиболее благоприятным из

всех возможных. В отношении же применения собственно дендрохронологического метода потенциал Оглахтинского могильника до сих пор не был раскрыт.

С учетом поставленной цели – древесно-кольцевое датирование Оглахтинского могильника - первой задачей нам представлялось формирование коллекции образцов древесины, максимально отражающей состав исследованных на сегодня погребений. Как уже упоминалось выше, работы на памятнике проходили в три этапа: 1903 г. – А.В. Адрианов; 1968–1973 гг. – Л.Р. Кызласов; 2019–2023 гг. – С.В. Панкова, Е.В. Водясов, О.В. Зайцева. На каждом из этих этапов были раскопаны захоронения, содержавшие бревенчатые срубы, но судьба найденной древесины складывалась по-разному. Соответственно, существовало несколько потенциальных возможностей пополнения коллекции образцов: 1) музейные и архивные собрания; 2) современные ведущиеся раскопки; 3) повторные раскопки ранее исследованных могил, где была оставлена найденная в них древесина. Каждый из этих путей дал свои результаты. Так, из собрания Красноярского краевого краеведческого музея (КККМ) удалось получить 5 образцов от фрагментов бревен, переданных в музей в 1903 г. А.В. Адриановым. Несмотря на некоторую неясность, связанную с точной атрибуцией материалов по конкретным могилам, известно, что эти фрагменты происходят из могил 1 и 2, которые содержали наиболее многочисленные и лучше сохранившиеся находки (Pankova et al. 2021). Из фондов Государственного Эрмитажа были получены образцы в виде кернов от 13 бревен сруба из мог. 4, исследованной Л.Р. Кызласовым в 1969 г. Из его же раскопок 1970 г. (мог. 8) происходит единственный образец великолепной сохранности, переданный нам из Лаборатории естественнонаучных методов ИА РАН.

Из раскопок последних лет, в которых один из авторов принимал непосредственное участие, срубы присутствовали в целом виде в могилах 2020/1, 2021/1, 2023/1 и в виде остатков в могиле 2021/2<sup>2</sup>. Поскольку получение древесины для дендрохронологического исследования было одной из целей проводимых раскопок, при отборе образцов делалась ставка на их максимально возможное количество и по возможности представленность образцами всех элементов погребальной конструкции (стены сруба, перекрытие, пол и пр.). Результатом работы с вновь раскопанными объектами стала следующая выборка дендрообразцов: мог. 2020/1 – от 16 бревен, мог. 2021/1 – от 21 элемента, мог. 2021/2 – от 2, мог. 2023/1 – двухвенцовый сруб с перекрытием взят целиком и доставлен в ИАЭТ СО РАН (г. Новосибирск), но образцы еще не отбирались.

Параллельно с исследованием новых погребений на Оглахтинском могильнике с целью пополнения дендрохронологической коллекции производились повторные раскопки ранее исследованных могил: в 2020 г. – могилы 7 и 9, раскопанные Л.Р. Кызласовым в 1970 и 1973 гг.

соответственно; в 2023 г. – три могилы, раскопанные А.В. Адриановым в 1903 г. В мог. 7 сруб был оставлен почти целиком, за исключением бревен перекрытия; часть найденных бревен была перемещена со своих первоначальных мест, и их оригинальный контекст остался неясен. Из сруба мог. 7 взято 16 образцов. В мог. 9 обнаружены отдельные фрагменты бревен очень плохой сохранности, в большинстве своем перемещенные с первоначальных мест, назначение которых в конструкции не всегда понятно. Всего из мог. 9 взято 5 образцов. Из трех могил, исследованных А.В. Адриановым, сруб был обнаружен только в одной, сохранившийся на высоту двух венцов. Образцы брались от бревен трех стен — северной, западной и восточной. В настоящее время образцы из этих объектов пока в работу не поступили.

Таким образом, с учетом всех возможных источников поступления древесины, мы располагаем коллекцией из 79 образцов, представляющих 8–9 погребений Оглахтинского могильника. Количество образцов по отдельным погребениям распределено неравномерно: от 1 (мог. 8) до 21 (мог. 2021/1), но большинство погребений представлено сериями от 5 и более образцов. Сохранность древесины также различна: наряду с отлично сохранившимися срубами, которые достойны занять место в музейных экспозициях (мог. 4, мог. 8 – раскопки Л.Р. Кызласова; мог. 1–2 – раскопки А.В. Адрианова), имеются срубы весьма хорошего (мог. 2021/1 (рис. 2)) и достаточно плохого (мог. 2020/1) состояния. Но в целом, с учетом всех обстоятельств, степень сохранности древесины в погребениях Оглахтинского могильника можно признать уникальной для Минусинской котловины и памятников такого возраста.

Подавляющее большинство имеющихся дендрообразцов представляют собой полные поперечные спилы. Образцы в виде кернов были отобраны с помощью возрастного бура лишь в одном случае — от 13 бревен сруба из мог. 4, экспонируемого в РХЦ Государственного Эрмитажа (рис. 3), что накладывает понятные ограничения на возможность отбора проб. Учитывая характер археологической древесины, спилы являются гораздо более предпочтительным материалом для исследования по сравнению с кернами. Поперечный спил от бревна позволяет выбрать оптимальную траекторию измерения ширины годичных колец даже при наличии обычных для древесины из раскопок трещин, гнили, отсутствующих участков и прочих дефектах. Но в случае музейных собраний зачастую керны являются единственной возможностью получения необходимого материала.

Все оглахтинские срубы отвечают определенной конструктивной схеме изготовления и сборки, но в каждом случае имеются свои строительные и технологические нюансы. Соответственно, внешние параметры изделий отличаются: среди имеющихся образцов представлены круглые бревна, полубревна, полубрус (двусторонне отесанные бревна).





Рис. 2. Оглахтинский могильник. Могила 2021/1: I – общий вид сруба после демонтажа перекрытия; 2 – угловое сопряжение сруба, вид с юго-запада. Фото И.Ю. Слюсаренко





Рис. 3. Оглахтинский могильник. Могила 4: *1* – общий вид сруба, находящегося в экспозиции Государственного Эрмитажа (РХЦ «Старая Деревня»); 2 – перекрытие сруба. Фото И.Ю. Слюсаренко

В зависимости от профиля древесины, а также степени сохранности на ней фиксируется наличие или отсутствие таких важных признаков, как сердцевина и подкоровое кольцо. Сердцевина имеет значение для более точного установления собственного возраста дерева и отнесения его в зависимости от возраста к той или иной возрастной группе. Наличие подкорового кольца, т.е. последнего, образовавшегося при жизни дерева, важно для фиксации года гибели дерева, который, так или иначе проецируется на год сооружения археологического объекта. В данном случае наличие последних колец в большей степени зависело от сохранности древесины, чем от степени ее строительной обработки, так как даже при большой площади оттески бревен на них, как правило, остаются участки подкоровой поверхности. Лишь в единичных случаях сплошная оттеска бревна не оставляла шанса найти необработанный участок. Более критическое значение имела степень деградации поверхностного слоя в результате его залегания в грунте, поскольку внешний слой колец, так называемая заболонь, отличается меньшей плотностью и большей склонностью к гниению. Из всего массива образцов подкоровое кольцо уверенно отмечено лишь в 12 и под вопросом еще в 9. Именно в силу отличной сохранности древесины последние кольца имелись у 11 из 13 образцов из сруба мог. 4. Хорошее состояние позволило также в нескольких случаях определить сезон гибели деревьев, при этом зафиксированы промежутки: осень-зима, что является более типичным, и весна-лето, что встречается гораздо реже в традиционной практике заготовки древесины. Однако даже при отсутствии подкорового кольца, возможно было судить о его близости по такому признаку, как наличие колец заболони, которые у лиственницы отличаются цветом и текстурой и количество которых обычно ограничено 25-30. У еще нескольких образцов таким образом можно было диагностировать близость подкорового кольца при отсутствии последних 5–20 колец.

Видовой состав деревьев представлен двумя хвойными породами: 75% — лиственница сибирская (Larix sibirica Ledeb.), 25% — сосна обыкновенная (Pínus sylvestris L). Древесина сосны присутствует в конструкциях погребальных срубов могил 4, 7, 8, раскопанных Л.Р. Кызласовым; в материалах из раскопок Адрианова, а также в могиле 2021/1.

Отнесение древесины погребальных срубов к лиственнице давно уже стало общим местом в различных публикациях (Кызласов 1970: 34, 39; 1971: 104, 112; Вадецкая 1999: 232). Однако уже А.В. Адрианов в своем обобщенном описании оглахтинских срубов отметил, скорее интуитивно, что они сложены из бревен лиственницы или сосны (Вадецкая 1999: 232). Первый же детальный специализированный анализ, основанный на анатомических особенностях древесины, позволил дать более обоснованную картину ее породового состава из сруба мог. 4. Из 19 бревен, составляющих стенки и перекрытие, 12 являются лиственничными,

7 – сосновыми (Панкова и др. 2010: 51). Таким образом, стало понятно, что для идентификации вида древесины, что важно при последующем дендрохронологическом исследовании, необходим специальный анализ каждого бревна. Такой анализ, с определением анатомических диагностирующих признаков (Бенькова, Швейнгрубер 2004), был проделан авторами для всех образцов, которые получили отражение в данной публикации. Кроме того, анатомический анализ бревен сруба из мог. 2021/1 был также проведен в Отделе научно-технической экспертизы Эрмитажа. Оказалось, что в составе сруба мог. 2021/1 также присутствуют лиственница и сосна: из 14 бревен стенок 12 – лиственничные, 2 – сосновые. Все 11 бревен перекрытия – лиственничные. При этом наблюдается общая для мог. 4 и 2021/1 картина: стенки срубов сделаны в основном из лиственницы, а сосна больше представлена в бревнах перекрытия. Даже, когда сосновые бревна использованы в стенках, из них в обоих случаях сделаны только нижние венцы западной и восточной стенок. Эти бревна не связаны жестко в угловых соединениях, а просто вложены между длинными северным и южным бревнами. Анатомический анализ бревен из других могил также позволил отметить использование сосны для сооружения стенок срубов в виде стволов значительного диаметра, которые собраны в венцы с помощью угловых вырубов: мог. 7 – бревна нижнего венца диаметром 23-26 см, мог. 8 - нижнее бревно стенки диаметром 53 см. На этом фоне наши возражения вызвал пассаж, касающийся соотношения лиственницы и сосны в древесине оглахтинских срубов, из статьи, посвященной анализу материалов из раскопок А.В. Адрианова, хранящихся в КККМ (Pankova et al. 2021). Британские соавторы, основываясь на сделанном ими определении видового состава древесины от различных предметов, включая и фрагменты бревен сруба, заключили, что лиственница не встречена ни в одном случае. Бревна срубов отнесены ими к роду сосна (Pinus sp.) без определения конкретного вида древесины (2021: 44-45). Однако проведенный нами анатомический анализ со всей очевидностью показывает: во-первых, отличное состояние древесины позволяет определить ее принадлежность не только до рода, но и до вида; во-вторых, характерные диагностические признаки (Бенькова, Швейнгрубер 2004: 72-73, 78-79) однозначно свидетельствуют, что оба фрагмента бревен от стенок сруба из раскопок А.В. Адрианова принадлежат не сосне, а лиственнице. В любом случае присутствие разных пород в составе погребальной древесины заставляет более внимательно подходить к ее дендрохронологическому анализу.

Также был выполнен учет возрастного состава образцов. Данный параметр может находиться в определенной связи с локализацией памятника, его типом, социальной значимостью, хронологическим периодом. Принято выделять шесть возрастных групп деревьев: I) возраст до

50 лет; II) 51–100; III) 101–150; IV) 151–200; V) 201–250; VI) свыше 250 лет (Черных 1996: 36–37).

Поскольку целью работы было оценить возможность и перспективы дендрохронологического анализа оглахтинской древесины, была сформирована рабочая коллекция, включающая образцы, отвечающие следующим требованиям:

- наиболее представительные выборки образцов;
- наилучшая сохранность образцов;
- происхождение образцов из разных могил и разных участков могильника;
  - принадлежность образцов к разным породам древесины.

Таким образом, источниковую базу для первых работ по дендрохронологическому исследованию погребальных сооружений Оглахтинского могильника составила коллекция из 40 дендрообразцов, происходящих из пяти (возможно шести) могил. Состав коллекции, ее предметное описание и статистические характеристики представлены в табл. 1.

Таблица 1 **Характеристика дендрообразцов из Оглахтинского могильника** 

| No | Код обр. | Вид* древесины | Длина ряда, лет | Средняя ширина<br>кольца, мм | Ф      | Пкр. к.** | pS     | S     | R    | Интервал<br>относительный,<br>гг. | Место<br>расположения<br>в конструкции      |
|----|----------|----------------|-----------------|------------------------------|--------|-----------|--------|-------|------|-----------------------------------|---------------------------------------------|
|    | 1        | 1 1            |                 | илы 1, 2                     |        | сопки /   |        |       |      |                                   |                                             |
| 1  | og1      | LASI           | 147             | 0,87                         | +      | _         | 0,67   | 0,45  | 0,62 | 46–192                            | Стена сруба                                 |
| 2  | og2      | LASI           | 165             | 0,77                         | +      | _         | 0,65   | 0,38  | 0,53 | 46–210                            | Стена сруба                                 |
| 3  | og3      | LASI           | 94              | 0,89                         | +      | WK?       | 0,52   | 0,38  |      | Не<br>датирован                   | Неизвестно                                  |
| 4  | og4      | PISY           | 132             | 0,45                         | _      | _         | 0,25   | 0,19  | 0,49 | 39-170                            | Неизвестно                                  |
| 5  | og5      | PISY           | 170             | 0,57                         | _      | _         | 0,58   | 0,19  | 0,35 | 3-172                             | Неизвестно                                  |
|    |          |                |                 | Могил                        | a 2021 | /1 (объ   | ьект № | 2 55) |      |                                   |                                             |
| 6  | og57     | LASI           | 151             | 0,96                         | +      | _         | 0,55   | 0,32  | 0,30 | 40–190                            | <ul><li>С. стена,</li><li>венец 1</li></ul> |
| 7  | og60     | LASI           | 77              | 1,43                         | +      | WK?       | 0,68   | 0,51  | 0,51 | 84–160                            | <ul><li>С. стена,</li><li>венец 2</li></ul> |
| 8  | og63     | LASI           | 80              | 0,87                         | _      | _         | 0,36   | 0,21  |      | Не датиро-<br>ван                 | <ul><li>С. стена,</li><li>венец 3</li></ul> |
| 9  | og58     | LASI           | 130             | 0,92                         | +      | _         | 0,51   | 0,32  | 0,42 | 50–179                            | Ю. стена,<br>венец 1                        |
| 10 | og61     | LASI           | 122             | 0,74                         | +      | WK        | 0,56   | 0,37  | 0,60 | 64–185                            | Ю. стена,<br>венец 2                        |
| 11 | og64     | LASI           | 122             | 0,88                         | +      | _         | 0,35   | 0,18  |      | Не датиро-<br>ван                 | Ю. стена,<br>венец 3                        |

| 33       og13       PISY       144       0,72       —       —       0,37       0,31       0,37       39—182       Перекрытие 5         34       og14       PISY       162       0,60       —       WK       0,26       0,27       0,61       77—238       Перекрытие 6         35       og15       PISY       147       0,67       —       WK       0,40       0,28       0,66       92—238       В. стена, венец 1         36       og16       LASI       193       0,61       —       WK       0,31       0,20       0,39       45—237       В. стена, венец 3         37       og17       LASI       145       0,62       —       WK       0,32       0,25       0,51       93—237       Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1        |                |                 |                              |        |           |         | 1      | 1    |                                   | 1                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----------------|-----------------|------------------------------|--------|-----------|---------|--------|------|-----------------------------------|----------------------------------------|
| 12 0g39 PIST 113 1,12 — — 0,82 0,27 ван ван венец 1 13 0g62 LASI 127 0,84 + WK? 0,56 0,38 0,62 54—180 венец 2 14 0g65 LASI 104 0,74 — — 0,69 0,45 0,51 27—130 3. стена, венец 1 15 0g66 LASI 77 0,91 — — 0,37 0,22 Не датирован венец 4 16 0g69 LASI 96 0,88 + WK? 0,76 0,42 Не датирован венец 4 17 0g70 LASI 67 0,87 — WK? 0,55 0,32 0,48 82—146 Перекрытие 2 18 0g71 LASI 80 0,89 — WK? 0,56 0,40 0,66 85—164 Перекрытие 3 18 0g71 LASI 80 0,89 — WK? 0,66 0,45 Не датирован перекрытие 5 20 0g73 LASI 101 0,89 + WK? 0,66 0,45 Не датирован перекрытие 5 21 0g74 LASI 79 1,09 + WK 0,77 0,34 0,45 70—148 Перекрытие 7 22 0g75 LASI 71 0,82 + — 0,72 0,42 0,62 25—95 Перекрытие 8 23 0g76 LASI 76 0,87 + — 0,66 0,44 0,52 20—95 Перекрытие 8 24 0g77 LASI 84 0,90 — WK? 0,74 0,36 0,67 81—164 Перекрытие 10  Могила 4, раскопки Л.Р. Кызласова 26 0g6 LASI 140 0,59 — WK 0,62 0,27 0,49 63—226 В. стена, венец 1 27 0g7 LASI 164 0,92 — WK 0,62 0,27 0,49 63—226 В. стена, венец 2 28 0g8 LASI 40 0,36 — 0,12 0,22 0,57 184—223 В. стена, венец 2 29 0g9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 3. стена, венец 2 29 0g9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 3. стена, венец 2 31 0g11 PISY 177 0,60 — WK 0,31 0,26 0,46 122—38 Перекрытие 3 30 0g10 PISY 117 0,60 — WK 0,31 0,26 0,46 122—38 Перекрытие 3 31 0g11 PISY 177 0,72 — WK 0,38 0,31 0,35 0,49 95—228 Перекрытие 4 31 0g11 PISY 177 0,72 — WK 0,38 0,31 0,35 0,49 95—228 Перекрытие 4 31 0g11 PISY 177 0,72 — WK 0,38 0,31 0,35 0,49 95—228 Перекрытие 4 31 0g11 PISY 177 0,72 — WK 0,38 0,31 0,35 0,49 95—228 Перекрытие 4 31 0g11 PISY 177 0,72 — 0,72 0,73 0,73 0,74 0,74 0,74 0,74 0,74 0,74 0,74 0,74                                                                                                                                                                                                       | Ne | Код обр. | Вид* древесины | Длина ряда, лет | Средняя ширина<br>кольца, мм | Ъ      | Пкр. к.** | pS      | S      | R    | Интервал<br>относительный,<br>гг. | Место<br>расположения<br>в конструкции |
| 14 од65 LASI 104 0,74 — — 0,69 0,45 0,51 27—130 3. стена, венец 2  15 од66 LASI 77 0,91 — — 0,37 0,22 Не датирован Ван перекрытие 2  16 од69 LASI 96 0,88 + WK? 0,76 0,42 Не датирован Ван перекрытие 2  17 од70 LASI 67 0,87 — WK? 0,55 0,32 0,48 82—146 Перекрытие 3  18 од71 LASI 80 0,89 — WK? 0,56 0,40 0,66 85—164 Перекрытие 4  19 од72 LASI 101 0,89 + WK? 0,66 0,45 Не датирован Перекрытие 5  20 од73 LASI 79 1,09 + WK 0,77 0,34 0,45 70—148 Перекрытие 6  21 од74 LASI 79 0,99 — WK 0,77 0,34 0,45 70—148 Перекрытие 8  22 од75 LASI 71 0,82 + — 0,72 0,42 0,62 25—95 Перекрытие 8  23 од76 LASI 76 0,87 + — 0,66 0,44 0,52 20—95 Перекрытие 7  24 од77 LASI 84 0,90 — WK? 0,74 0,36 0,67 81—164 Перекрытие 10  Могила 2021/2 (объект № 46)  25 од78 LASI 140 0,59 — WK 0,37 0,26 0,32 87—226 Венец 1  26 од6 LASI 140 0,59 — WK 0,62 0,27 0,49 63—226 В. стена, венец 1  27 од7 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 3. стена, венец 2  28 од8 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 3. стена, венец 2  29 од9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 3. стена, венец 2  30 од10 РІЅУ 117 0,60 — WK 0,31 0,26 0,46 122—238 Перекрытие 3  20 од12 LASI 134 0,75 — — 0,33 0,23 0,49 95—228 Перекрытие 3  20 од12 LASI 134 0,75 — — 0,37 0,31 0,37 39—182 Перекрытие 3  20 од15 РІЅУ 147 0,67 — WK 0,31 0,26 0,46 122—238 Перекрытие 3  21 од11 РІЅУ 177 0,72 — WK 0,38 0,31 0,56 61—237 Перекрытие 3  22 од12 LASI 134 0,75 — — 0,37 0,31 0,37 39—182 Перекрытие 3  23 од15 РІЅУ 147 0,67 — WK 0,38 0,31 0,56 61—237 Перекрытие 3  24 од15 РІЅУ 144 0,72 — — 0,37 0,31 0,37 39—182 Перекрытие 3  25 од15 РІЅУ 147 0,67 — WK 0,40 0,28 0,66 92—238 В. стена, венец 1  36 од16 LASI 193 0,61 — WK 0,31 0,20 0,39 45—237 Верекрытие 4  37 од17 LASI 145 0,62 — WK 0,31 0,20 0,39 45—237 Верекрытие 4  37 од17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие 3 | 12 | og59     | PISY           | 113             | 1,12                         | _      | _         | 0,82    | 0,27   |      | _                                 | венец 1                                |
| 14 одо                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13 | og62     | LASI           | 127             | 0,84                         | +      | WK?       | 0,56    | 0,38   | 0,62 | 54–180                            |                                        |
| 15         од66         LASI         77         0,91         —         —         0,37         0,22         Не датирован Венец 4         3. стена, венец 4           16         од69         LASI         96         0,88         +         WK?         0,76         0,42         Не датирован Перекрытие 2 ван Перекрытие 2           17         од70         LASI         67         0,87         —         WK?         0,55         0,32         0,48         82—146         Перекрытие 3           18         од71         LASI         80         0,89         —         WK?         0,56         0,40         0,66         85—164         Перекрытие 3           20         од72         LASI         101         0,89         +         WK?         0,66         0,45         Не датирован Перекрытие 4           20         од73         LASI         73         1,09         +         WK         0,77         0,34         0,45         70—148         Перекрытие 5           21         од74         LASI         71         0,82         +         —         0,72         0,42         0,62         25–95         Перекрытие 2           23         од76         LASI         84 <td< td=""><td>14</td><td>og65</td><td>LASI</td><td>104</td><td>0,74</td><td>-</td><td>-</td><td>0,69</td><td>0,45</td><td>0,51</td><td>27–130</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14 | og65     | LASI           | 104             | 0,74                         | -      | -         | 0,69    | 0,45   | 0,51 | 27–130                            |                                        |
| 16         овб9         LASI         96         0.88         +         WK?         0,76         0,42         Не датированно ван В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15 | og66     | LASI           | 77              | 0,91                         | _      | _         | 0,37    | 0,22   |      | _                                 | 3. стена,                              |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |          |                |                 |                              | +      |           |         |        |      | ван                               | Перекрытие 2                           |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 | og70     | LASI           | 67              | 0,87                         | _      | WK?       |         | 0,32   | 0,48 | 82-146                            | Перекрытие 3                           |
| 19         од 72         LASI         101         0,89         +         WK?         0,66         0,45         Не датирован         Перекрытие 5           20         од 73         LASI         53         1,43         -         -         0,74         0,33         0,54         109-161         Перекрытие 7           21         од 74         LASI         79         1,09         +         WK         0,77         0,34         0,45         70-148         Перекрытие 7           22         од 75         LASI         76         0,87         +         -         0,66         0,44         0,52         20-95         Перекрытие 9           24         од 77         LASI         84         0,90         -         WK?         0,74         0,36         0,67         81-164         Перекрытие 10           Могила 2021/2 (объект № 46)           25         од 78         LASI         185         0,67         -         -         0,76         0,48         0,42         0-184         3. стена, венец 1           Могила 4, раскопки Л.Р. Кызласова           26         од 6         LASI         140         0,59         -         WK         0,32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 | og71     | LASI           | 80              | 0,89                         | _      | WK?       | 0,56    | 0,40   | 0,66 | 85-164                            |                                        |
| 21 од74 LASI         79 1,09 + WK 0,77 0,34 0,45         70–148 Перекрытие 7           22 од75 LASI         71 0,82 + - 0,72 0,42 0,62 25–95 Перекрытие 8           23 од76 LASI         76 0,87 + - 0,66 0,44 0,52 20–95 Перекрытие 9           24 од77 LASI         84 0,90 - WK? 0,74 0,36 0,67 81–164 Порткрытие 10           25 од78 LASI         185 0,67 0,76 0,48 0,42 0–184 Венец 1           26 од6 LASI 140 0,59 - WK 0,37 0,26 0,32 87–226 Венец 2           27 од7 LASI 164 0,92 - WK 0,62 0,27 0,49 63–226 Венец 2           28 од8 LASI 40 0,36 0,12 0,22 0,57 184–223 Венец 2           29 од9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57–227 Венец 3           30 0д10 РІЗУ 117 0,60 - WK 0,31 0,26 0,46 122–238 Перекрытие 2           31 0д11 РІЗУ 177 0,72 - WK 0,38 0,31 0,56 61–237 Перекрытие 3           32 0д12 LASI 134 0,75 0,33 0,23 0,49 95–228 Перекрытие 3           33 0д13 РІЗУ 144 0,72 0,37 0,31 0,37 39–182 Перекрытие 3           34 0д14 РІЗУ 147 0,67 - WK 0,40 0,28 0,66 92–238 Перекрытие 4           35 0д15 РІЗУ 147 0,67 - WK 0,40 0,28 0,66 92–238 Венец 1           36 0д16 LASI 193 0,61 - WK 0,31 0,20 0,39 45–237 Венец 3           37 0д17 LASI 145 0,62 - WK 0,32 0,25 0,51 93–237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 | og72     | LASI           | 101             | 0,89                         | +      | WK?       | 0,66    | 0,45   |      | _                                 | Перекрытие 5                           |
| 21 од74 LASI         79 1,09 + WK 0,77 0,34 0,45         70–148 Перекрытие 7           22 од75 LASI         71 0,82 + - 0,72 0,42 0,62 25–95 Перекрытие 8           23 од76 LASI         76 0,87 + - 0,66 0,44 0,52 20–95 Перекрытие 9           24 од77 LASI         84 0,90 - WK? 0,74 0,36 0,67 81–164 Порткрытие 10           25 од78 LASI         185 0,67 0,76 0,48 0,42 0–184 Венец 1           26 од6 LASI 140 0,59 - WK 0,37 0,26 0,32 87–226 Венец 2           27 од7 LASI 164 0,92 - WK 0,62 0,27 0,49 63–226 Венец 2           28 од8 LASI 40 0,36 0,12 0,22 0,57 184–223 Венец 2           29 од9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57–227 Венец 3           30 0д10 РІЗУ 117 0,60 - WK 0,31 0,26 0,46 122–238 Перекрытие 2           31 0д11 РІЗУ 177 0,72 - WK 0,38 0,31 0,56 61–237 Перекрытие 3           32 0д12 LASI 134 0,75 0,33 0,23 0,49 95–228 Перекрытие 3           33 0д13 РІЗУ 144 0,72 0,37 0,31 0,37 39–182 Перекрытие 3           34 0д14 РІЗУ 147 0,67 - WK 0,40 0,28 0,66 92–238 Перекрытие 4           35 0д15 РІЗУ 147 0,67 - WK 0,40 0,28 0,66 92–238 Венец 1           36 0д16 LASI 193 0,61 - WK 0,31 0,20 0,39 45–237 Венец 3           37 0д17 LASI 145 0,62 - WK 0,32 0,25 0,51 93–237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20 | og73     | LASI           | 53              | 1,43                         | _      | _         | 0,74    | 0,33   | 0,54 | 109–161                           | Перекрытие 6                           |
| 22 од 75 LASI         71 0,82 + - 0,72 0,42 0,62 25-95 Перекрытие 8           23 од 76 LASI         76 0,87 + - 0,66 0,44 0,52 20-95 Перекрытие 9           24 од 77 LASI         84 0,90 - WK? 0,74 0,36 0,67 81-164 Перекрытие 10           Могила 2021/2 (объект № 46)           25 од 78 LASI         185 0,67 0,76 0,48 0,42 0-184 Венец 1           Могила 4, раскопки Л.Р. Кызласова           26 од 6 LASI 140 0,59 - WK 0,37 0,26 0,32 87-226 Венец 2           27 од 7 LASI 164 0,92 - WK 0,62 0,27 0,49 63-226 Венец 2           28 од 8 LASI 40 0,36 0,12 0,22 0,57 184-223 Венец 2           29 од 9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57-227 За. стена, венец 3           30 од 10 РІЅУ 117 0,60 - WK 0,31 0,26 0,46 122-238 Перекрытие 2           31 од 11 РІЅУ 177 0,72 - WK 0,38 0,31 0,56 61-237 Перекрытие 3           32 од 12 LASI 134 0,75 0,33 0,23 0,49 95-228 Перекрытие 3           33 од 13 РІЅУ 144 0,72 0,37 0,31 0,37 39-182 Перекрытие 4           35 од 15 РІЅУ 147 0,67 - WK 0,40 0,28 0,66 92-238 Венец 1           36 од 16 LASI 193 0,61 - WK 0,40 0,28 0,66 92-238 Венец 3           37 од 17 LASI 145 0,62 - WK 0,31 0,20 0,39 45-237 Перекрытие 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |          |                | 79              |                              | +      | WK        |         |        |      |                                   |                                        |
| 23 од 76 LASI         76 0,87 + - 0,66 0,44 0,52 20-95 Перекрытие 9           24 од 77 LASI         84 0,90 - WK? 0,74 0,36 0,67 81-164 Перекрытие 10           Могила 2021/2 (объект № 46)           25 од 78 LASI         185 0,67 0,76 0,48 0,42 0-184 Венец 1           Могила 4, раскопки Л.Р. Кызласова           26 од 6 LASI 140 0,59 - WK 0,37 0,26 0,32 87-226 В. стена, венец 2           27 од 7 LASI 164 0,92 - WK 0,62 0,27 0,49 63-226 В. стена, венец 2           28 од 8 LASI 40 0,36 0,12 0,22 0,57 184-223 Венец 2           29 од 9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57-227 З. стена, венец 3           30 од 10 РІЗУ 117 0,60 - WK 0,31 0,26 0,46 122-238 Перекрытие 2           31 од 11 РІЗУ 177 0,72 - WK 0,38 0,31 0,56 61-237 Перекрытие 3           32 од 12 LASI 134 0,75 0,33 0,23 0,49 95-228 Перекрытие 3           33 0д 13 РІЗУ 144 0,72 0,37 0,31 0,37 39-182 Перекрытие 5           34 од 14 РІЗУ 162 0,60 - WK 0,40 0,28 0,66 92-238 В. стена, венец 1           36 од 16 LASI 193 0,61 - WK 0,31 0,20 0,39 45-237 Венец 1           37 од 17 LASI 145 0,62 - WK 0,32 0,25 0,51 93-237 Перекрытие 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |          |                |                 |                              | +      | _         |         |        |      |                                   |                                        |
| 24 од 77 LASI 84 0,90 — WK? 0,74 0,36 0,67 81—164         Перекрытие 10           МОГИЛА 2021/2 (объект № 46)           25 од 78 LASI 185 0,67 — — 0,76 0,48 0,42 0—184         3. стена, венец 1           МОГИЛА 4, раскопки Л.Р. Кызласова           26 од 6 LASI 140 0,59 — WK 0,37 0,26 0,32 87—226         3. стена, венец 2           27 од 7 LASI 164 0,92 — WK 0,62 0,27 0,49 63—226 B. стена, венец 2         8. стена, венец 2           28 од 8 LASI 40 0,36 — — 0,12 0,22 0,57 184—223 Венец 2         С. стена, венец 2           29 од 1 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 Венец 3         3. стена, венец 3           30 од 10 PISY 117 0,60 — WK 0,31 0,26 0,46 122—238 Перекрытие 2         1 од 11 PISY 177 0,72 — WK 0,38 0,31 0,56 61—237 Перекрытие 3           32 од 12 LASI 134 0,75 — — 0,33 0,23 0,49 95—228 Перекрытие 4           33 од 13 PISY 144 0,72 — — 0,37 0,31 0,37 39—182 Перекрытие 5           34 од 14 PISY 162 0,60 — WK 0,40 0,28 0,66 92—238 В. стена, венец 1           36 од 16 LASI 193 0,61 — WK 0,40 0,28 0,66 92—238 В. стена, венец 1           36 од 16 LASI 193 0,61 — WK 0,31 0,20 0,39 45—237 Венец 3           37 од 17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _  |          |                |                 | _                            |        | _         |         |        |      |                                   |                                        |
| MOFUJIA 2021/2 (Объект № 46)   25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |          |                |                 |                              |        | WK?       |         |        |      |                                   | Перекрытие                             |
| 25 од78 LASI         185 0,67 — — 0,76 0,48 0,42 0—184         З. стена, венец 1           26 од6 LASI 140 0,59 — WK 0,59 — WK 0,37 0,26 0,32 B7—226         З. стена, венец 2           27 од7 LASI 164 0,92 — WK 0,62 0,27 0,49 63—226 B. стена, венец 2         В. стена, венец 2           28 од8 LASI 40 0,36 — О,12 0,22 0,57 184—223         С. стена, венец 2           29 од9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 Венец 3         З. стена, венец 3           30 од10 PISY 117 0,60 — WK 0,31 0,26 0,46 122—238 Перекрытие 2         Перекрытие 2           31 од11 PISY 177 0,72 — WK 0,38 0,31 0,56 61—237 Перекрытие 3         Перекрытие 3           32 од12 LASI 134 0,75 — О,33 0,23 0,49 95—228 Перекрытие 4         Перекрытие 5           34 од14 PISY 162 0,60 — WK 0,26 0,27 0,61 77—238 Перекрытие 6           35 од15 PISY 147 0,67 — WK 0,40 0,28 0,66 92—238 Венец 1           36 од16 LASI 193 0,61 — WK 0,31 0,20 0,39 45—237 Венец 3           37 од17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |          |                |                 | Могил                        | a 2021 | /2 (объ   | ьект М  | 246)   |      |                                   |                                        |
| 26         og6         LASI         140         0,59         —         WK         0,37         0,26         0,32         87–226         З. стена, венец 2           27         og7         LASI         164         0,92         —         WK         0,62         0,27         0,49         63–226         В. стена, венец 2           28         og8         LASI         40         0,36         —         —         0,12         0,22         0,57         184–223         С. стена, венец 2           29         og9         LASI         171         0,94         +         WK?         0,63         0,26         0,34         57–227         З. стена, венец 2           30         og10         PISY         117         0,60         —         WK         0,31         0,26         0,46         122–238         Перекрытие 2           31         og11         PISY         177         0,72         —         WK         0,38         0,31         0,56         61–237         Перекрытие 3           32         og12         LASI         134         0,75         —         —         0,33         0,23         0,49         95–228         Перекрытие 5           34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25 | og78     | LASI           |                 |                              | _      | _         |         |        | 0,42 | 0-184                             |                                        |
| 26         og6         LASI         140         0,39         —         WK         0,37         0,26         0,32         87–226         венец 2           27         og7         LASI         164         0,92         —         WK         0,62         0,27         0,49         63–226         В. стена, венец 2           28         og8         LASI         40         0,36         —         —         0,12         0,22         0,57         184–223         С. стена, венец 2           29         og9         LASI         171         0,94         +         WK?         0,63         0,26         0,34         57–227         3. стена, венец 3           30         og10         PISY         117         0,60         —         WK         0,31         0,26         0,46         122–238         Перекрытие 2           31         og11         PISY         177         0,72         —         WK         0,38         0,31         0,56         61–237         Перекрытие 3           32         og12         LASI         134         0,75         —         —         0,33         0,23         0,49         95–228         Перекрытие 5           34         o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |          |                | Mo              | гила 4                       | раско  | пки Л     | .Р. Кыз | зласов | a    |                                   |                                        |
| 28 og8 LASI 40 0,36 — — 0,12 0,22 0,57 184—223 Венец 2 29 og9 LASI 171 0,94 + WK? 0,63 0,26 0,34 57—227 З. стена, венец 3 30 og10 PISY 117 0,60 — WK 0,31 0,26 0,46 122—238 Перекрытие 2 31 og11 PISY 177 0,72 — WK 0,38 0,31 0,56 61—237 Перекрытие 3 32 og12 LASI 134 0,75 — — 0,33 0,23 0,49 95—228 Перекрытие 4 33 og13 PISY 144 0,72 — — WK 0,36 0,37 39—182 Перекрытие 5 34 og14 PISY 162 0,60 — WK 0,26 0,27 0,61 77—238 Перекрытие 6 35 og15 PISY 147 0,67 — WK 0,40 0,28 0,66 92—238 В. стена, венец 1 36 og16 LASI 193 0,61 — WK 0,31 0,20 0,39 45—237 В. стена, венец 3 37 og17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26 | og6      | LASI           | 140             | 0,59                         | -      | WK        | 0,37    | 0,26   | 0,32 | 87–226                            |                                        |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27 | og7      | LASI           | 164             | 0,92                         | -      | WK        | 0,62    | 0,27   | 0,49 | 63–226                            |                                        |
| 29       0g9       LASI       171       0,94       -       WK1       0,03       0,26       0,34       37-227       венец 3         30       0g10       PISY       117       0,60       -       WK       0,31       0,26       0,46       122-238       Перекрытие 2         31       0g11       PISY       177       0,72       -       WK       0,38       0,31       0,56       61-237       Перекрытие 3         32       0g12       LASI       134       0,75       -       -       0,33       0,23       0,49       95-228       Перекрытие 4         33       0g13       PISY       144       0,72       -       -       0,37       0,31       0,37       39-182       Перекрытие 5         34       0g14       PISY       162       0,60       -       WK       0,26       0,27       0,61       77-238       Перекрытие 6         35       0g15       PISY       147       0,67       -       WK       0,40       0,28       0,66       92-238       В. стена, венец 1         36       0g16       LASI       193       0,61       -       WK       0,31       0,20       0,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28 | og8      | LASI           | 40              | 0,36                         | _      | _         | 0,12    | 0,22   | 0,57 | 184–223                           | венец 2                                |
| 31         og11         PISY         177         0,72         —         WK         0,38         0,31         0,56         61–237         Перекрытие 3           32         og12         LASI         134         0,75         —         —         0,33         0,23         0,49         95–228         Перекрытие 4           33         og13         PISY         144         0,72         —         —         0,37         0,31         0,37         39–182         Перекрытие 5           34         og14         PISY         162         0,60         —         WK         0,26         0,27         0,61         77–238         Перекрытие 6           35         og15         PISY         147         0,67         —         WK         0,40         0,28         0,66         92–238         В. стена, венец 1           36         og16         LASI         193         0,61         —         WK         0,31         0,20         0,39         45–237         В. стена, венец 3           37         og17         LASI         145         0,62         —         WK         0,32         0,25         0,51         93–237         Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29 | og9      | LASI           | 171             | 0,94                         | +      | WK?       |         | 0,26   | 0,34 | 57–227                            |                                        |
| 32 og12 LASI 134 0,75 -       -       0,33 0,23 0,49 95-228 Перекрытие 4         33 og13 PISY 144 0,72 -       -       0,37 0,31 0,37 39-182 Перекрытие 5         34 og14 PISY 162 0,60 -       WK 0,26 0,27 0,61 77-238 Перекрытие 6         35 og15 PISY 147 0,67 -       WK 0,40 0,28 0,66 92-238 В. стена, венец 1         36 og16 LASI 193 0,61 -       WK 0,31 0,20 0,39 45-237 В. стена, венец 3         37 оg17 LASI 145 0,62 -       WK 0,32 0,25 0,51 93-237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 | og10     | PISY           |                 |                              | -      |           |         |        |      |                                   |                                        |
| 33       og13       PISY       144       0,72       —       —       0,37       0,31       0,37       39—182       Перекрытие 5         34       og14       PISY       162       0,60       —       WK       0,26       0,27       0,61       77—238       Перекрытие 6         35       og15       PISY       147       0,67       —       WK       0,40       0,28       0,66       92—238       В. стена, венец 1         36       og16       LASI       193       0,61       —       WK       0,31       0,20       0,39       45—237       В. стена, венец 3         37       og17       LASI       145       0,62       —       WK       0,32       0,25       0,51       93—237       Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 |          |                | 177             | 0,72                         |        | WK        | 0,38    |        | 0,56 |                                   | Перекрытие 3                           |
| 34 og14 PISY 162 0,60 -       WK 0,26 0,27 0,61 77–238 Перекрытие 6         35 og15 PISY 147 0,67 -       WK 0,40 0,28 0,66 92–238 В. стена, венец 1         36 og16 LASI 193 0,61 -       WK 0,31 0,20 0,39 45–237 В. стена, венец 3         37 og17 LASI 145 0,62 -       WK 0,32 0,25 0,51 93–237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32 | og12     | LASI           | 134             | 0,75                         | _      | _         | 0,33    | 0,23   | 0,49 | 95–228                            | Перекрытие 4                           |
| 35 og15 PISY 147 0,67 — WK 0,40 0,28 0,66 92—238 В. стена, венец 1 36 og16 LASI 193 0,61 — WK 0,31 0,20 0,39 45—237 В. стена, венец 3 37 og17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 33 |          |                | 144             | 0,72                         | _      | _         | 0,37    | 0,31   | 0,37 |                                   | Перекрытие 5                           |
| 33 og13 PIST 147 0,67 — WK 0,40 0,28 0,00 92–238       венец 1         36 og16 LASI 193 0,61 — WK 0,31 0,20 0,39 45–237       В. стена, венец 3         37 og17 LASI 145 0,62 — WK 0,32 0,25 0,51 93–237       Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34 | og14     | PISY           | 162             | 0,60                         | _      | WK        | 0,26    | 0,27   | 0,61 | 77–238                            | Перекрытие 6                           |
| 30 од 16 LASI 193 0,61 - WK 0,31 0,20 0,39 43-237       37 од 17 LASI 145 0,62 - WK 0,32 0,25 0,51 93-237       Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35 | og15     | PISY           | 147             | 0,67                         | -      | WK        | 0,40    | 0,28   | 0,66 | 92–238                            |                                        |
| 37 og 17 LASI 145 0,62 — WK 0,32 0,25 0,51 93—237 Перекрытие                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 | og16     | LASI           | 193             | 0,61                         | _      | WK        | 0,31    | 0,20   | 0,39 | 45–237                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37 | og17     | LASI           | 145             | 0,62                         | -      | WK        | 0,32    | 0,25   | 0,51 | 93-237                            |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 |          |                | 154             | 0,61                         | _      | WK        | 0,30    | 0,28   | 0,61 | 85–238                            | Перекрытие 7                           |

| No                                | Код обр. | Вид* древесины | Длина ряда, лет | Средняя ширина<br>кольца, мм | ď | Пкр. к.** | pS   | S    | R    | Интервал<br>относительный,<br>гг. | Место<br>расположения<br>в конструкции |
|-----------------------------------|----------|----------------|-----------------|------------------------------|---|-----------|------|------|------|-----------------------------------|----------------------------------------|
| Могила 8, раскопки Л.Р. Кызласова |          |                |                 |                              |   |           |      |      |      |                                   |                                        |
| 39                                | og35     | PISY           | 177             | 1,18                         | - | WK        | 0,53 | 0,30 | 0,42 | 57-233                            | Неизвестно                             |

Примечание. \* Для указания видовой принадлежности древесины использованы обозначения, применяемые в TSAP (LASI – лиственница сибирская; PISY – сосна обыкновенная); \*\* Пкр. к – подкоровое кольцо (для обозначения свойства подкорового кольца использованы обозначения, применяемые в TSAP: WK (Waldkante) – подкоровое кольцо присутствует; WK? – кольцо устанавливается предположительно); Р – сердцевинное кольцо (указывается, если оно послужило началом ряда прироста); R – межсерийный коэффициент корреляции для всей совокупности датированных образцов; Sd – стандартное отклонение (значения указаны для недетрендированных рядов); S – коэффициент чувствительности.

По объектам образцы распределены следующим образом: мог. 1, 2 из раскопок А.В. Адрианова<sup>3</sup> – 5 образцов; мог. 4 и 8 из раскопок Л.Р. Кызласова – соответственно 13 и 1; мог. 2021/1 – 20; мог. 2021/2 – 1 образец. Все образцы, за исключением двух из раскопок Адрианова (од4 и од5), получены от бревен венцов погребальных срубов и перекрытий. Поперечный размер бревен, использованных при сооружении срубов, разительно отличается – от 13 до 53 см. 27 образцов представлены поперечными спилами; 13 образцов – кернами, которые получены исключительно из бревен сруба мог. 4. В силу физического состояния образца од68 (бревно перекрытия 1 из мог. 2021/1) по нему не удалось получить сплошной древесно-кольцевой ряд, и он не был задействован в дендроанализе.

## Методы

Для получения хронологической информации использовался применяемый в дендрохронологии метод перекрестного датирования (crossdating method), основанный на анализе неповторимого во времени рисунка годичных колец деревьев, устанавливаемого в процессе измерения их ширины. Перекрестное датирование заключается в сравнении древесно-кольцевых рядов от различных деревьев и выборе точного места, где найдено максимальное соответствие в характере изменчивости между ними. Из общей массы индивидуальных древесно-кольцевых хронологий (ДКХ) отбираются имеющие наибольшее сходство, и на их основе формируется обобщенная дендрошкала, отражающая хронологическую последовательность различных объектов изучаемого памятника. Особо подчеркнем, что в нашем случае древесно-кольцевые хронологии

носят относительный характер, показывая лишь временную разницу между образцами, а не их календарные даты.

Измерение ширины годичных колец было выполнено на полуавтоматической установке «LINTAB—6» (с точностью 1/100 мм), подключенной к компьютеру со специализированной программой TSAP-Win Professional (Rinn 2013). Измеренные индивидуальные серии прироста перекрестно датировались также в данной специализированной программе. Она позволяет параллельно осуществлять в процессе перекрестного датирования визуальный контроль сопоставления графиков прироста и рассчитывать серию статистических параметров для каждого варианта их совмещения.

Качество перекрестного датирования между рядами оценивалось на основе стандартных статистических показателей, применяемых в программе TSAP:

- коэффициента ТВР, представляющего t-статистику, адаптированную по алгоритму М. Бейли и Дж. Пильчера, направленному на снижение низкочастотного тренда в исходных данных (Baillie, Pilcher 1973);
- коэффициента Glk (Schweingruber 1988: 83), указывающего на степень сходства (синхронность) между двумя хронологиями, определяемую процентом совпадающих увеличений и уменьшений прироста; асинхронность выражается показателем менее 50%;
- индекса перекрестного датирования CDI (Cross-Dating Index) интегрального показателя, рассчитываемого на основе комплекса параметров, используемых TSAP.

Пороговыми значениями для перечисленных показателей, по умолчанию принятыми в программе, являются: Glk > 60%; CDI > 10. Для ТВР приемлемый минимум равен 3,5 (Baillie, Pilcher 1973). Однако практика дендрохронологических исследований показала, что это значение является слишком низким для обеспечения корректной синхронизации (Haneka 2005: 26). Считается, что для качественного датирования коэффициент ТВР должен иметь значение более 4 или не менее 5 (например: Grissino-Mayer et al. 2010: 67; Haneca, van Daalen 2017: 154; Bernabei 2018: 204; Rzepecki et al. 2019: 22).

Для дополнительного контроля качества датирования использовалась также широко применяемая с этой целью программа СОFECHA (Holmes 1983; Grissino-Mayer 2001). Программа основана на анализе высокочастотного тренда (погодичного изменения прироста) в сериях измерений. Именно высокочастотный климатический сигнал определяет качество перекрестного датирования. Принцип действия — каждый индивидуальный ряд последовательно делится на 50-летние сегменты таким образом, что каждый сегмент имеет общий интервал с соседним продолжительностью 25 лет. Значения коэффициентов корреляции (r) датируемого ряда с референтной хронологией определяются для каждого сегмента

ряда. В результате для каждого древесно-кольцевого ряда датировку получают несколько его отдельных сегментов. Полученная последовательность дат большей части сегментов, сопровождаемых значимой корреляцией, подтверждает корректность датировки всего ряда. Применяемое пороговое значение для коэффициента r-0.33.

Важным показателем, выражающим силу связи между индивидуальными хронологиями в анализируемой выборке, является межсерийный коэффициент корреляции R. Чем выше коэффициент, тем сильнее выражен общий сигнал. В целом, значения выше 0,50 являются желательными для этого параметра. Однако значимость полученной величины зависит от исследуемых видов, географического местоположения и регионального климата (Grissino-Mayer 2001: 214).

Для построения из индивидуальных древесно-кольцевых рядов обобщенных хронологий использована программа ARSTAN (Cook 1985; Cook, Krusic 2005). Она направлена на минимизацию влияния возрастного тренда и других факторов неклиматической природы, которые присутствуют в индивидуальных хронологиях, на абсолютные значения ширины прироста древесных колец. В преобразованных, посредством специализированного математического аппарата, временных рядах исключен тренд, а также различия в величине годичного прироста, связанные с условиями местообитания. Рассчитанные индексы прироста имеют примерно одинаковое среднее значение и примерно одинаковую вариабельность в пределах отдельных временных интервалов. Это дает возможность сопоставлять изменчивость прироста у хронологий, полученных для различных видов деревьев, условий местообитаний и районов (Fritts, Swetnam 1989: 125–127; Cook et al. 1990; Ваганов и др. 1996: 39). Обобщенные хронологии строились методом негативной экспоненты. Данный способ рекомендуется, если прирост выражен стандартной возрастной кривой (Cook, Krusic, 2005). Такая возрастная тенденция характеризует большинство полученных нами индивидуальных хронологий.

# Результаты перекрестного датирования и обсуждение

Древесно-кольцевые ряды по лиственнице характеризуются неоднородными по качеству статистическими показателями перекрестного датирования. Совокупность рядов с наилучшими параметрами отличается значениями CDI в диапазоне 41–136. Пара рядов с максимальным значением CDI (og71, og77) имеет высокий порядок и других статистических показателей: Glk - 88%; TBP - 15,4; CDI - 136. При таких значениях допустимо предполагать, что разные изделия могли быть изготовлены из одного древесного ствола. Согласно современным данным, такое предположение заслуживает внимания уже при значениях показателей Glk > 80%; TBP  $\ge$  9; CDI  $\ge$  90 (см. например: Domínguez-Delmás et al.

2013: 122, 127; Visser 2015: 246; Susperregi et al. 2017: 703). В этом случае графики прироста обладают высоким визуальным сходством; окончания рядов синхронизированы одним годом; последние кольца по косвенным признакам предположительно подкоровые. Начала рядов, в отсутствии сердцевины, имеют разницу в 4 года (рис. 4), что с учетом отмечаемой потери начальных колец показывает возможное полное совпадение в положении обеих серий прироста. В данном случае речь идет о бревнах перекрытия сруба мог. 2021/1.

У части рядов, образующих совокупность, характеризуемую пониженными или неоднозначными значениями показателей датирования, нижняя граница таких значений может приближаться к пороговым. С целью устранения сомнений в результатах сопоставления рядов обращалось внимание на повторяемость хронологической позиции, занимаемой конкретным рядом, при сопоставлении его с другими рядами. В подобных случаях мы принимаем к сведению правило: если два образца, каждый в отдельности, схожи с третьим, то они схожи и друг с другом (Ваганов, Круглов, Васильев 2008: 85). Тем не менее и в этой группе выделяется пара рядов (од75, од76), синхронизация которых сопровождается еще более высокими значениями, допускающими изготовление разных строительных деталей из одного дерева: Glk – 87%; TBP – 25,6; CDI – 203 (рис. 4). В этом случае речь также идет о бревнах перекрытия из мог. 2021/1.

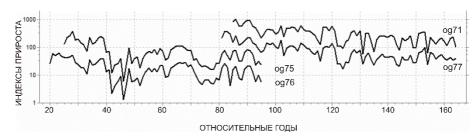



Рис. 4. Оглахтинский могильник. Могила 2021/1. Перекрестное датирование групп рядов (бревна перекрытия): каждая пара рядов предположительно отражает прирост одного дерева

Индивидуальные древесно-кольцевые ряды с высоким коэффициентом межсерийной корреляции R явились основой для формирования обобщенной древесно-кольцевой хронологии по лиственнице OgL. На данном этапе обобщенная ДКХ включает 12 индивидуальных рядов (длина рядов 77-185 лет); ее протяженность -228 лет. Средний межсерийный коэффициент корреляции составил 0,57; коэффициент чувствительности -0,37 (табл. 2, рис. 5).

Датирование по обобщенной хронологии OgL индивидуальных рядов, для которых ранее не удалось получить убедительной хронологической привязки, позволило уточнить их относительное положение с более однозначными статистическими результатами. При датировании

использованы как нестандартизированный, так и стандартизированный варианты лиственничной хронологии. По результатам применения стандартизированного варианта получены те же даты, число датированных рядов не увеличилось и в целом наблюдается даже некоторое снижение значений статистических показателей TSAP.

Таблица 2 Характеристика индивидуальных древесно-кольцевых рядов, на основе которых сформирована обобщенная древесно-кольцевая хронология по лиственнице OgL

| №  | Код<br>образца | Длина<br>ряда, лет | Интервал отно-<br>сительный, гг. | Sd   | S    | R     |
|----|----------------|--------------------|----------------------------------|------|------|-------|
| 1  | og1            | 147                | 46-192                           | 0,67 | 0,45 | 0,638 |
| 2  | og2            | 165                | 46–210                           | 0,65 | 0,38 | 0,563 |
| 3  | og6            | 140                | 87–226                           | 0,55 | 0,32 | 0,483 |
| 4  | og7            | 164                | 63-226                           | 0,68 | 0,51 | 0,582 |
| 5  | og9            | 171                | 57–227                           | 0,51 | 0,32 | 0,462 |
| 6  | og60           | 77                 | 84-160                           | 0,68 | 0,51 | 0,522 |
| 7  | og61           | 122                | 64–185                           | 0,56 | 0,37 | 0,623 |
| 8  | og62           | 127                | 54-180                           | 0,56 | 0,38 | 0,568 |
| 9  | og65           | 104                | 27-130                           | 0,69 | 0,45 | 0,518 |
| 10 | og71           | 80                 | 85-164                           | 0,56 | 0,40 | 0,722 |
| 11 | og77           | 84                 | 81–164                           | 0,74 | 0,36 | 0,717 |
| 12 | og78           | 185                | 0-184                            | 0,76 | 0,48 | 0,509 |

*Примечание.* Здесь и в табл. 3: R – межсерийный коэффициент корреляции; Sd – стандартное отклонение (значения указаны для недетрендированных рядов); S – коэффициент чувствительности.

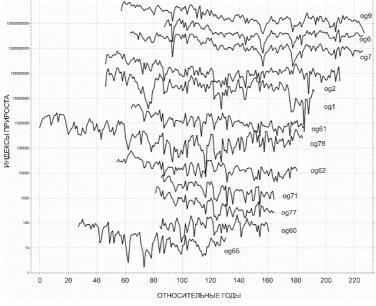



Рис. 5. Перекрестное датирование индивидуальных древесно-кольцевых рядов по лиственнице, вошедших в обобщенную хронологию OgL

Тем не менее некоторые индивидуальные ряды датировать по ДКХ OgL не удалось (образцы из раскопок Адрианова (og3) и мог. 2021/1). В свою очередь, недатированные ряды по образцам из мог. 2021/1 образуют две группы, внутри которых корреляция между рядами имеет достаточно высокие значения (рис. 6).

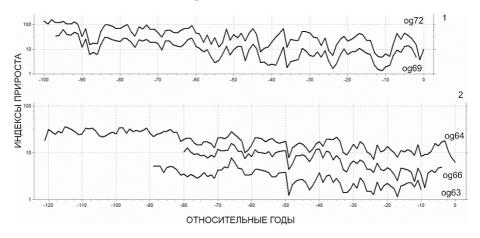



Рис. 6. Оглахтинский могильник. Могила 2021/1. Группы недатированных древесно-кольцевых рядов с высокой внутригрупповой синхронизацией: 1 – og69, og72 (бревна перекрытия); 2 – og63, og64, og66 (бревна венцов)

Первая совокупность состоит из рядов, полученных по бревнам венцов (0g63, 0g64, 0g66), вторая – по бревнам перекрытия (0g69, 0g72). Соответственно, статистика для первой группы характеризуется следующими значениями: Glk - 73-75%; TBP - 5,2-10,6; CDI - 37-89; для второй: Glk - 83%; TBP - 16,5; CDI - 137. Порядок величины показателей для второй совокупности, отражающий высокое графическое сходство рядов, вновь позволяет предполагать, что и эти детали перекрытия могли быть изготовлены из одного дерева. Внешние кольца для образцов 0g69, 0g72 определены как подкоровые, но лишь по косвенным признакам, так что фиксируемая разница в 2 года между последними кольцами не является фактором, исключающим возможность изготовления этих элементов конструкции из одного дерева (см. рис. 6, I). Разница в положении сердцевинных колец на 5 лет может быть объяснима присущими древесине особенностями формирования прироста на разных по высоте участках ствола.

Качественная разница в значениях статистических показателей при сопоставлении рядов может быть вызвана не только эндогенными факторами, определяющими индивидуальные особенности роста. Для лесостепной зоны Хакасии, где отсутствует единый лимитирующий климатический фактор, значимое влияние на трансформацию климатического сигнала, а следовательно, динамику прироста и возможность

синхронизации, оказывают топоэкологические условия места произрастания и видовые особенности древесных растений (Бабушкина 2011).

Индивидуальные древесно-кольцевые ряды по сосне по качеству статистических показателей межсерийного сопоставления, в свою очередь, образуют две группы. Выборка рядов с максимально высокими значениями представлена исключительно образцами из могилы  $4^4$  (рис. 7). Совокупность статистических характеристик для данной группы представлена следующими образом: Glk -67–81 %; TBP -5,5–16,9; CDI -39–133. Максимальными величинами сопровождается синхронизация рядов og14, og15, og18: Glk -71–81 %; TBP -13,5–16,9; CDI -96–133. Полученные значения показателей вновь позволяют предполагать изготовление разных строительных деталей из одного дерева (два бревна перекрытия и бревно из стенки сруба). Отметим, что порубочные даты для этих трех образцов приходятся на один год, а максимальная разница между началом рядов в 15 лет обусловлена отсутствием на кернах сердцевинных колец.

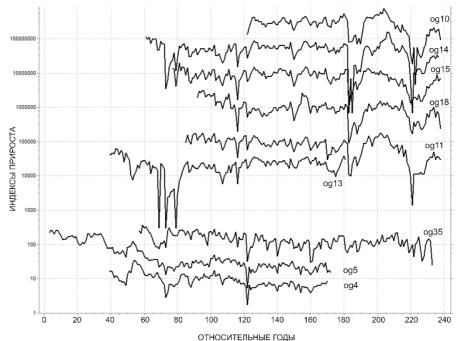



Рис. 7. Перекрестное датирование индивидуальных древесно-кольцевых рядов по сосне. Образцы сгруппированы по объектам: og10, og11, og13-15, og18 – могила 4; og35 – могила 8; og4, og5 – могилы 1, 2 из раскопок А.В. Адрианова

Оставшиеся образцы демонстрируют устойчивое относительное положение при датировании пар рядов в различном сочетании, но с более

низкими статистическими значениями. Наиболее высокую связь между собой показали ряды og4 и og5 по образцам из раскопок А.В. Адрианова (CDI - 88). Значимые величины синхронизации выявлены также для пары рядов og4 и og35 (CDI - 40).

Существенный разброс в значениях статистических показателей, сравнение графиков прироста по ширине колец позволяет предположить, что источником происхождения сосновой строительной древесины для разных погребальных сооружений являлись места, характеризуемые различными условиями произрастания. Наиболее однородной группой по статистике и визуальному сходству прироста, а, следовательно, по месту произрастания, являются ряды по образцам из мог. 4. В пользу этого предположения свидетельствуют и сопоставимые значения таких показателей, как средняя ширина колец (0,60–0,72 мм) и коэффициент чувствительности (0,26–0,31). Для сравнения: более низкие значения указанных параметров демонстрируют ряды по образцам од4 и од5 из раскопок А.В. Адрианова (0,45 и 0,57 мм, 0,19 и 0,19 соответственно).

Высокая межсериальная корреляция, которую показали индивидуальные ряды по сосновым образцам из мог. 4, позволила сформировать из них обобщенную хронологию по сосне OgP протяженностью 178 лет (длина индивидуальных рядов варьирует от 117 до 177 лет). Средний коэффициент межсериальной корреляции R-0.84; коэффициент чувствительности -0.28 (табл. 3, рис. 7).

Таблица 3 Характеристика индивидуальных древесно-кольцевых рядов, на основе которых сформирована обобщенная древесно-кольцевая хронология по сосне OgP

| № | Код<br>образца. | Длина ряда,<br>лет | Интервал отно-<br>сительный, гг. | Sd   | S    | R     |
|---|-----------------|--------------------|----------------------------------|------|------|-------|
| 1 | og10            | 117                | 122-238                          | 0,31 | 0,26 | 0,803 |
| 2 | og11            | 177                | 61–237                           | 0,38 | 0,31 | 0,841 |
| 3 | og14            | 162                | 77–238                           | 0,26 | 0,27 | 0,831 |
| 4 | og15            | 147                | 92-238                           | 0,40 | 0,28 | 0,836 |
| 5 | og18            | 154                | 85–238                           | 0,30 | 0,28 | 0,859 |

Сопоставление с хронологией OgP не вошедших в нее рядов подтвердило их относительное положение, предположенное ранее. Тем не менее статистические параметры были невысокими: Glk -60–64%; TBP -3,8–4,0; CDI -22–29.

Современные исследования динамики изменчивости годичного прироста у хвойных пород (лиственница и сосна) Хакасско-Минусинской котловины под воздействием климатических и локальных факторов показало высокую корреляцию между этими видами в пределах одних мест обитания (Zhirnova et al. 2021). Сопоставление обобщенных ДКХ по лиственнице и сосне (OgL и OgP) подтвердило, что для местных условий

возможно перекрестное датирование между собой хвойных деревьев данных видов, происходящих из погребений Оглахтинского могильника (рис. 8). Косвенным доводом в пользу корректности полученного соотношения между рядами хвойных разных пород является компактное хронологическое положение индивидуальных рядов на относительной хронологической шкале, сформированной по всей совокупности образцов оглахтинской коллекции (рис. 9). Наиболее показательным является распределение дат рядов по разным породам, установленное на материалах из мог. 4: максимальная разница между образцами с подкоровыми кольцами — 12 лет; минимальная — 1 год. Такое же, в целом, распределение дат, хоть и с несколько большим интервалом, соответствует наблюдаемой картине для мог. 2021/1.

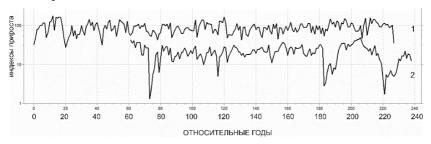



Рис. 8. Перекрестное датирование стандартизированных обобщенных древесно-кольцевых хронологий по хвойным: I — лиственничная хронология OgL; 2 — хронология по сосне OgP

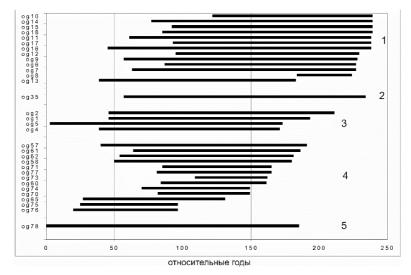



Рис. 9. Диаграмма хронологического распределения дендрообразцов из погребений Оглахтинского могильника. Образцы сгруппированы по объектам: I – могила 4; 2 – могила 8; 3 – могилы 1, 2 из раскопок А.В. Адрианова; 4 – могила 2021/1; 5 – могила 2021/2

Тем не менее перекрестное датирование обобщенных ДКХ разных видов сопровождается невысокими значениями статистических показателей: Glk - 59%; TBP - 4,6; CDI - 25. В то же время коэффициент корреляции r, рассчитанный COFECHA, составил 0,38 (по 5 сегментам из 6 для хронологии OgP), что выше порогового значения.

Возможность перекрестного датирования лиственницы и сосны реализуется также на примере сопоставления отдельных индивидуальных рядов с лиственничной хронологией OgL. При этом статистические показатели, в целом являясь невысокими (например, CDI - 23-27) при датировании по стандартизированному варианту хронологии, в отдельных случаях достигают более убедительных значений (CDI - 34-38). Отметим, что использование стандартизированного варианта хронологии OgL в качестве референтной, тем не менее, не привело к увеличению количества датированных образцов и принципиальному улучшению качества статистики синхронизаций.

Замечено, что результаты сопоставления индивидуальных рядов хвойных разных видов в программе TSAP носят более неоднозначный и менее убедительный характер. В то же время величины коэффициента межсериальной корреляции R в СОFECHA обладают большей значимостью, чем можно было бы ожидать, основываясь на достаточно низких результатах, рассчитанных в TSAP. Для рядов по сосне коэффициент R варьирует от 0,35 до 0,66 (средний коэффициент корреляции составил 0,50).

По итогам перекрестного датирования оглахтинских образцов не удалось получить хронологическую привязку лишь для 8 образцов (20%), что можно считать неплохим результатом.

# Относительная хронология различных элементов отдельных срубов и последовательность сооружения погребений

Полученная в результате перекрестного датирования дендрообразцов информация позволяет высказать ряд предположений о хронологических аспектах сооружения оглахтинских погребальных срубов на примере мог. 2021/1 и 4 как обладающих наиболее репрезентативными выборками образцов, отобранных от различных элементов конструкции.

*Могила 2021/1*. Строительный материал для сруба, за исключением двух образцов, представлен лиственницей, чья древесина использована для сооружения как стен, так и перекрытия. Оба сосновых образца про-исходят от западного и восточного бревен нижнего венца. Датировать не удалось 7 образцов из 20.

Строительный материал сруба, с учетом недатированных образцов, представлен деревьями II—IV возрастных групп. Перекрытие формировалось главным образом из деревьев II группы, биологический возраст которых был близок к деревьям III группы. Только один образец

насчитывал не менее 101 года (подкоровое кольцо определено предположительно).

Распределение дат демонстрирует более раннее положение бревен перекрытия относительно бревен из стен сруба. Разница между наиболее поздней датой бревна из стены сруба и самой поздней датой двух бревен перекрытия составляет 26 лет (см. рис. 8). С учетом предположительного характера наличия подкоровых колец у бревен перекрытия эта разница может сократиться, но вряд ли принципиально: по совокупности косвенных признаков (радиусы, измеренные по разным направлениям, датированы одним годом; количество колец в заболони в среднем около 30) потеря внешних колец, если таковая и имела место, была незначительной.

В свою очередь, разница между измеренными внешними кольцами самих бревен перекрытия достигает 66 лет (см. рис. 8). В реальности эта разница также может быть несколько иной – как в сторону уменьшения, так и увеличения, что может привезти к изменению относительного положения дат образцов. Однако, по нашему мнению, такие изменения будут носить незначительный характер и принципиально не отразятся на более раннем положении бревен перекрытия относительно бревен сруба.

Средняя ширина годичных колец у большинства образцов от бревен перекрытия менее 1 мм (0,87–0,90). У двух образцов она имеет значения 1,09 и 1,43 мм. Разница в ширине колец демонстрирует определенную связь с коэффициентом чувствительности: при увеличении ширины уменьшается чувствительность. У большинства образцов этот коэффициент находится в пределах 0,36–0,45; у вышеупомянутых двух образцов – 0,33–34. Вероятно, деревья с меньшим коэффициентом чувствительности произрастали в относительно благоприятных условиях по сравнению с другими. В пользу разных мест происхождения древесины, использованной при сооружении мог. 2021/1, говорит и наличие нескольких групп рядов, отличающихся по качеству статистики перекрестного датирования и визуальному сходству графиков прироста, но обладающих значительным сходством внутри каждой группы.

Больший разброс по возрасту имеет место для древесины, использованной при сооружении стен сруба: среди деревьев II–IV возрастных групп доминируют деревья III группы. Старшая группа представлена одним деревом, возраст которого лишь незначительно превышает 150 лет, а деревья ранней группы по количеству лет демонстрируют близость к следующей группе.

Здесь, так же как и у бревен перекрытия, наблюдается разница в датах последних колец (до 60 лет). С учетом предположительного характера определения подкоровых колец эта разница может измениться как в сторону уменьшения, так и увеличения, но, тем не менее, сохранится. Например, разница между бревном из венца 1 северной стены (подкоровое кольцо отсутствует), имеющим наиболее позднюю дату, и бревном

из венца 2 южной стены, имеющим установленное подкоровое кольцо, составляет 5 лет. Часть образцов с достоверно неустановленными подкоровыми кольцами показывает незначительную разницу в датах последних колец (5–6 лет), что позволяет предполагать заготовку некоторых деревьев в еще более короткое время, либо вовсе в одно время.

Расхождения в показателях датирования, наличие деревьев со средней шириной кольца менее и более 1 мм (0,74–1,43 мм), значительная разница в коэффициентах чувствительности (0,18–0,51) показывают, что происхождение деревьев, послуживших для изготовления стен сруба, связано с разными местами обитания и условиями роста.

Таким образом, складывается впечатление, что целенаправленная заготовка свежесрубленного леса для сооружения погребального сруба не являлась основной задачей для его строителей. По-видимому, использовалась как вторичная древесина, так и погибшие деревья (сухостойные или поваленные), хотя пока трудно судить об их пропорции. При этом есть основания для утверждения, что часть бревен перекрытия могла быть изготовлена из одних и тех же деревьев. О переиспользовании старой древесины для изготовления перекрытия могут также говорить существенно более ранние даты бревен перекрытия по сравнению с датами бревен из стен сруба.

Могила 4. Строительный материал сруба представлен древесиной лиственницы и сосны в пропорции 2:1, относящимся к деревьям III—IV возрастных групп. Из лиственницы в основном изготовлены венцы, а также 4 из 9 бревен перекрытия. В свою очередь, сосна использована для оставшихся 5 бревен перекрытия и двух нижних бревен в западной и восточной стенках сруба. Датированы были все образцы, полученные из этой могилы.

Состояние поверхности позволяет с большой долей уверенности утверждать, что на большинстве образцов (10 из 13) присутствуют подкоровые кольца. Отмечается некоторый разброс в датах между такими образцами, но в целом их группировка имеет более компактный характер, чем в случае с могилой 1. Максимальная разница, зафиксированная среди бревен венцов, достигает 12 лет (см. рис. 8). Более монолитную группу с поздними датами образуют бревна перекрытия: здесь разница между датами гибели деревьев равна 1 году. Наиболее раннее положение — на 55 лет от ближайших по хронологии рядов — демонстрирует образец оg13, что отчасти вызвано разрушением группы периферийных колец еще на стадии получения керна.

Таким образом, для сооружения сруба мог. 4 также использована древесина, заготовленная в течение определенного периода. Речь может идти как о вторичном использовании материала, так и об употреблении сухостойных либо поваленных деревьев, о чем свидетельствует ряд бревен с многочисленными ходами насекомых на поверхности. В случае с

данным срубом бросается в глаза отчетливое группирование дат стенок сруба и перекрытия, при котором сначала рубились бревна для стен в течение двух лет, а примерно на 10–11 лет позже – бревна перекрытия и верхнее бревно восточной стенки. Такое распределение дат внутри одной конструкции также может свидетельствовать о неоднократном проникновении в погребальную камеру и существовании доступа в нее в течение определенного периода, после которого камера окончательно запечатывалась.

Сравнение графиков прироста ширины колец по образцам лиственницы показывает существенную разницу в динамике. На основании этого признака образуются две совокупности индивидуальных рядов. Для первой (og6, og7, og9) характерна стандартная возрастная кривая прироста; для второй (og12, og16, og17) наблюдается чередование периодов минимального и максимального прироста (рис. 10).

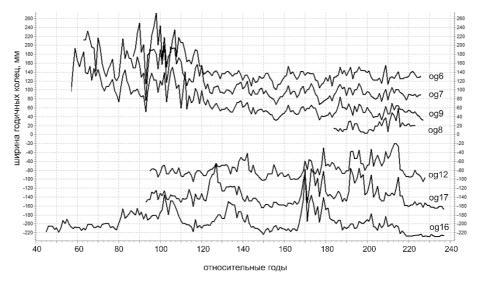



Рис. 10. Оглахтинский могильник. Могила 4. Перекрестное датирование индивидуальных древесно-кольцевых рядов по лиственнице из разных групп

Такая ситуация показывает, что деревья из разных групп формировались в различных экологических условиях, связанных с определенными местами обитания. Это объясняет то, что сформированные по каждой группе обобщенные ряды при сопоставлении между собой показали уверенные, но не очень высокие статистические значения: Glk -62%; TBP -5,4; CDI -28. Такая же хронологическая позиция и сопоставимые статистические значения (CDI -27) получены при сравнении стандартизированных вариантов этих обобщенных рядов. В пользу довода о разных местах произрастания также свидетельствуют коэффициенты

чувствительности: 0,61–0,75 и 0,25–0,25 соответственно. Отметим, что относительное положение индивидуальных рядов получило подтверждение при сопоставлении с обобщенной хронологией по лиственнице OgL.

Сравнение между собой рядов из первой совокупности показало наличие весьма высоких статистических значений (CDI – 116, 126), что позволяет вновь поставить вопрос о возможном изготовлении некоторых деталей (бревна венцов) из одного и того же ствола.

В свою очередь, по качеству перекрестного межсерийного сопоставления образцы по сосне образуют монолитную группу с высокими статистическими значениями и сходством графиков прироста, что говорит о принадлежности деревьев к одному месту произрастания. Порядок значений для некоторых рядов допускает, что отдельные детали также могли быть изготовлены из одного дерева (CDI – 96, 133).

Оценивая в целом распределение дат всех исследованных образцов, можно утверждать, что, за некоторым исключением, они расположены достаточно компактно на относительной шкале, демонстрируя и определенную концентрацию в рамках отдельных конструкций (см. рис. 8). Если исходить из наиболее поздних дат, фиксируемых по каждой могиле, то выстраивается некоторая условная последовательность погребений: самой ранней выступает мог. 2021/2 с относительной отметкой -184-й год, за ней мог. 2021/1 – 190-й год, затем мог. 1–2 из раскопок A.B. Адрианова – 192-й/210-й годы, мог. 8 – 233 год, наиболее поздняя – мог. 4 с относительной датой 238 год. Опираясь на такой порядок погребений, можно констатировать, что сооружения, материалы из которых привлечены для представленного исследования, возникли в течении сравнительно короткого периода, вероятно в пределах 50-55 лет. Оценивая пространственно-временное соотношение могил, можно отметить, что могилы 1, 2 из раскопок А.В. Адрианова, расположенные на Восточном участке Оглахтинского могильника, имеют как предшествующие им, так и следующие за ними могилы на Западном участке. То есть заполнение Восточного и Западного участков погребениями шло одновременно. Еще раз подчеркнем, что все вышеприведенные даты являются относительными, т.е. установленными в рамках «плавающей» древеснокольцевой хронологии. Превратить их в абсолютные поможет в ближайшей перспективе радиоуглеродное датирование дендрообразцов с использованием методики «wiggle-matching».

Рассматривая распределение дат внутри отдельных объектов, напрашивается вывод, что для строительства погребальных сооружений предпочитали использовать часто не свежесрубленный лес, а вторичную древесину, даты рубки которой в одной конструкции могли значительно различаться. К тому же анализ дат в отдельных случаях может говорить об определенном периоде использования конкретного погребального сооружения, когда сохранялся доступ в него. Такое положение дел

существенно ограничивает возможность установления реальной последовательности могил. Скорее можно говорить о периоде, в течение которого функционировали те или иные могилы, а примерную длительность этих интервалов помогает вполне реально оценить дендрохронологический анализ при соблюдении принципиально важного условия — максимальной представительности выборки образцов по каждому объекту.

### Заключение

В результате проведенного дендрохронологического исследования коллекции из 40 образцов древесины от 5—6 погребальных сооружений Оглахтинского могильника была установлена принципиальная возможность древесно-кольцевого датирования могил и получены первые итоги относительной хронологии. Вследствие использования для строительства могильных срубов хвойных деревьев разных пород (лиственница и сосна) были построены две обобщенные древесно-кольцевые хронологии для памятника: ДКХ ОgL по лиственнице длиной 228 лет, ДКХ ОgP по сосне обыкновенной — 178 лет. Перекрестное датирование обобщенных и индивидуальных ДКХ показало, что в местных экологических условиях погодичные изменения радиального прироста у древесины лиственницы и сосны, обнаруженной в оглахтинских погребальных комплексах, достаточно синхронны, что дает возможность сравнивать разные виды между собой.

При этом разница в статистке, конфигурации графиков прироста, определенных параметрах годовых колец показывает, что древесина, используемая для строительства конкретного погребального сооружения, поступала из разных местообитаний, характеризуемых особыми условиями произрастания. В определенной степени это наблюдение коррелирует с практикой применения переиспользованной древесины.

Распределение дат в рамках более многочисленных выборок образцов (могилы 4, 2021/1) также показывает, что для сооружения погребальных конструкций зачастую использовался не свежесрубленный лес, а вторичная древесина. Кроме того, хронологическая разница в порубочных датах в ряде случаев может свидетельствовать об активном использовании погребальных конструкций в течение определенного периода, когда имелся доступ в могилу и осуществлялось периодическое проникновение в камеру. Учитывая эти обстоятельства, относительная хронология погребальных сооружений, фиксируемая по порубочным датам деревьев, отражает реальную хронологию совершения погребений только условно, в рамках более или менее длительных периодов.

Тем не менее по результатам дендрохронологического исследования предложена примерная последовательность могил в пределах 50–55 лет: самой ранней выступает могила 2021/2, наиболее поздняя — мог. 4.

При этом заполнение Восточного и Западного участков Оглахтинского могильника погребениями шло одновременно. Все полученные даты являются относительными, т.е. установленными в рамках «плавающей» древесно-кольцевой хронологии. В плоскость абсолютных они перейдут в ближайшей перспективе путем радиоуглеродного датирования дендрообразцов с использованием методики «wiggle-matching».

## Примечания

- <sup>1</sup> Авторы сердечно благодарят заведующего Отделом археологии и этнографии КККМ Н.П. Макарова и с.н.с. отдела Археологии Восточной Европы и Сибири Государственного Эрмитажа С.В. Панкову за их содействие в получении образцов древесины из музейных собраний.
- <sup>2</sup> Данные объекты имеют на плане могильника, составленном в 2019 г. (Водясов и др. 2021: рис. 5, рис. 6), следующую нумерацию: мог. 2020/1 № 69, 2021/1 № 55, 2021/2 № 46, 2023/1 на план не была нанесена из-за отсутствия внешних признаков.
- <sup>3</sup> Архивные сведения не позволяют надежно установить происхождение данных образцов из конкретных могил, поэтому они рассмотрены как одна группа, представляющая погребения 1 и 2 на Восточном участке.
- <sup>4</sup> Из этой могилы лишь образец og13 имеет невысокие значения статистики, возможной причиной чего являются многочисленные трещины в керне, затрудняющие корректное измерение ширины колец.

#### Список источников

- Бабушкина Е.А. Влияние климатических факторов и условий произрастания на изменчивость радиального прироста и структуры годичных колец: автореф. дис. ... канд. биол. наук. Красноярск, 2011.
- *Бенькова В.Е., Швейнгрубер В.Х.* Анатомия древесины растений России. Берн: Хаупт, 2004.
- Ваганов Е.А., Шиятов С.Г., Мазепа В.С. Дендроклиматические исследования в Урало-Сибирской Субарктике. Новосибирск: Наука, 1996.
- Ваганов Е.А., Круглов В.Б., Васильев В.Г. Дендрохронология. Красноярск: СФУ, 2008.
- Вадецкая Э.Б. Таштыкская эпоха в древней истории Сибири. СПб.: Центр «Петербургское Востоковедение» (Archaeologica Petropolitana, VII), 1999.
- Водясов Е.В., Панкова С.В., Зайцева О.В., Вавулин М.В. Оглахтинский могильник: история открытий, планиграфия и современное состояние // Сибирские исторические исследования. 2021. № 3. С. 6–23.
- Зайцева О.В., Водясов Е.В., Ширин Ю.В., Слюсаренко И.Ю. Многоактность ритуальных действий и эксгумация в таштыкских погребальных комплексах (по материалам раскопок Оглахтинского могильника в 2020 г.) // Сибирские исторические исследования. 2021. № 3. С. 97–107.
- *Колчин Б.А., Битвинскас Т.Т.* Современные проблемы дендрохронологии // Проблемы абсолютного датирования в археологии. М.: Наука, 1972. С. 80–92.
- *Кызласов Л.Р.* Отчет о работе Хакасской археологической экспедиции МГУ в 1969 г. // Архив ИА РАН. Ф-1. Р-1. Д. 4010. 56 л.; Д. 4010a (альбом). М., 1970.
- *Кызласов Л.Р.* Отчет о работе Хакасской археологической экспедиции МГУ в 1970 г. // Архив ИА РАН. Ф-1. Р-1. Д. 4242. 121 л.; Д. 4242a (альбом); Д. 4242б (альбом). М., 1971.

- Панкова С.В., Васильев С.С., Дергачев В.А., Зайцева Г.И. Радиоуглеродное датирование оглахтинской гробницы методом «wiggle matching» // Археология, этнография и антропология Евразии. 2010. № 2 (42). С. 46–56.
- *Черных Н.Б.* Дендрохронология и археология. М.: Nox, 1996.
- Baillie M.G.L., Pilcher J.R. A simple cross-dating program for tree-ring research // Tree-Ring Bulletin. 1973. Vol. 33. P. 7–14.
- Bernabei M. Historical and cultural framing of a medieval wooden artwork through dendrochronology // International Journal of Conservation Science. 2018. Vol. 9, is. 2. P. 201– 208.
- Cook E.R. A time series approach to tree-ring standardization. Tucson: Arizona University Press, 1985.
- Cook E.R., Briffa K.R., Shiyatov S., Mazepa V. Tree-ring standardization and growth-trend estimation // Cook E.R., Kairiukstis L.A. (Eds.). Methods of Dendrochronology: Applications in the Environmental Sciences. Boston: Kluwer Academic Publ., 1990. P. 104–123.
- Cook E.R., Krusic P.J. Program ARSTAN (Version 41d). NY, Palisades: Lamont-Doherty Earth Observatory, Columbia University, 2005. URL: http://www.ldeo.columbia.edu/treering-laboratory/
- Domínguez-Delmás M., Nayling N., Wazny T., Loureiro V., Lavier C. Dendrochronological Dating and Provenancing of Timbers from the Arade 1 Shipwreck, Portugal // The International Journal of Nautical Archaeology. 2013. Vol. 42, is. 1. P. 118–136.
- Fritts H.C., Swetnam T.W. Dendroecology: A Tool for Evaluating Variations in Past and Present Forest Environments // Advances in Ecological Research. 1989. Vol. 19. P. 111–188.
- *Grissino-Mayer H.D.* Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program Cofecha // Tree-Ring Research. 2001. Vol. 57, is. 2. P. 205–211.
- Grissino-Mayer H.D., Kobziar L.N., Harley G.L., Russell K.P., LaForest L.B., Oppermann J.K. The Historical Dendroarchaeology of the Ximénez-Fatio House, St. Augustine, Florida, U.S.A // Tree-Ring Research. 2010. Vol. 66, № 1. P. 61–73.
- *Haneca K.* Tree-ring analyses of European oak: implementation and relevance in (pre-)historical research in Flanders. Ghent: Ghent University, 2005.
- Haneca K., van Daalen S. The roof is on fire! A dendrochronological reconstruction of the restoration of the Basilica of Our Lady in Tongeren (Belgium) // Dendrochronologia. 2017. Vol. 44. P. 153–163.
- Holmes R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement // Tree-Ring Bulletin. 1983. Vol. 43. P. 69–78.
- Pankova S.V., Makarov N.P., Simpson St J., Cartwright C.R. New radiocarbon dates and environmental analyses of finds from 1903 excavations in the eastern plot of the Tashtyk cemetery of Oglakhty // Сибирские исторические исследования. 2021. № 3. С. 24–59.
- *Rinn F.* TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Version 4.64. User reference. Heidelberg, Germany: Frank Rinn Distribution, 2013.
- Rzepecki A., Neyses-Eiden M., Frank T., Diethelm B., Herzig F., Tegel W. Missing link in Late Antiquity? A critical examination of Hollstein's Central European Oak Chronology // Dendrochronologia. 2019. Vol. 54. P. 20–28.
- Schweingruber F.H. Tree rings: basics and applications of dendrochronology. Dordrecht: Kluwer Acad. Publ., 1988.
- Susperregi J., Telleria I., Urteaga M., Jansma E. The Basque farmhouses of Zelaa and Maiz Goena: New dendrochronology-based findings about the evolution of the built heritage in the northern Iberian Peninsula // Journal of Archaeological Science: Reports. 2017. Vol. 11. P. 695–708.
- Visser R.M. Imperial timber? Dendrochronological evidence for large-scale road building along the Roman limes in the Netherlands // Journal of Archaeological Science. 2015. Vol. 53. P. 243–254.

Zhirnova D.F., Belokopytova L.V., Meko D.M., Babushkina E.A., Vaganov E.A. Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs // Scientific Reports. 2021. Vol. 11. Article number: 14266.

### References

- Babushkina E.A. (2011) Vliyanie klimaticheskikh faktorov i uslovii proizrastaniya na izmenchivost' radial'nogo prirosta i struktury godichnykh kolets. Avtoref. dis. . . . kand. biol. nauk [Influence of Climatic Factors and Growth Conditions on the Variability of Radial Growth and Tree Ring Structure. Author's abstract of dissertation PhD (Cand.) in Biology]. Krasnoyarsk.
- Baillie M.G.L., Pilcher J.R. (1973) A simple cross-dating program for tree-ring research, *Tree-Ring Bulletin*, Vol. 33, pp. 7–14.
- Bernabei M. (2018) Historical and cultural framing of a medieval wooden artwork through dendrochronology, *International Journal of Conservation Science*, Vol. 9, Iss. 2, pp. 201–208.
- Ben'kova V.E., Shveingruber V.Kh. (2004) *Anatomiya drevesiny rastenii Rossii* [Anatomy of Russian woods]. Bern: Khaupt.
- Chernykh N.B. (1996) Dendrokhronologiya i arkheologiya [Dendrochronology and archeology]. Moscow, Nox Publ.
- Cook E.R. (1985) A time series approach to tree-ring standardization. Tucson: Arizona University Press.
- Cook E.R., Briffa K.R., Shiyatov S., Mazepa V. (1990) Tree-ring standardization and growth-trend estimation. In: Cook E.R., Kairiukstis L.A. (Eds.). *Methods of Dendrochronology: Applications in the Environmental Sciences*. Boston: Kluwer Academic Publ., pp. 104–123.
- Cook E.R., Krusic P.J. (2005) Program ARSTAN (Version 41d). NY, Palisades: Lamont-Doherty Earth Observatory, Columbia University. Available at: http://www.ldeo.columbia.edu/tree-ring-laboratory/
- Domínguez-Delmás M., Nayling N., Wazny T., Loureiro V., Lavier C. (2013) Dendrochronological Dating and Provenancing of Timbers from the Arade 1 Shipwreck, Portugal, *The International Journal of Nautical Archaeology*, Vol. 42, Iss. 1, pp. 118–136.
- Fritts H.C., Swetnam T.W. (1989) Dendroecology: A Tool for Evaluating Variations in Past and Present Forest Environments, *Advances in Ecological Research*, Vol, 19, pp. 111–188.
- Grissino-Mayer H.D. (2001) Evaluating Crossdating Accuracy: A Manual and Tutorial for the Computer Program Cofecha, *Tree-Ring Research*, Vol. 57, Iss. 2, pp. 205–211.
- Grissino-Mayer H.D., Kobziar L.N., Harley G.L., Russell K.P., LaForest L.B., Oppermann J.K. (2010) The Historical Dendroarchaeology of the Ximénez-Fatio House, St. Augustine, Florida, U.S.A, *Tree-Ring Research*, Vol. 66, no. 1, pp. 61–73.
- Haneca K. (2005) *Tree-ring analyses of European oak: implementation and relevance in (pre-historical research in Flanders*. Ghent: Ghent University.
- Haneca K., van Daalen S. (2017) The roof is on fire! A dendrochronological reconstruction of the restoration of the Basilica of Our Lady in Tongeren (Belgium), *Dendrochronologia*, Vol. 44, pp. 153–163.
- Holmes R.L. (1983) Computer-Assisted Quality Control in Tree-Ring Dating and Measuremen, *Tree-Ring Bulletin*, Vol. 43, pp. 69–78.
- Kolchin B.A., Bitvinskas T.T. (1972) Sovremennye problemy dendrokhronologii [Modern problems of dendrochronology]. In: *Problemy absolyutnogo datirovaniya v arkheologii* [Problems of absolute dating in archeology]. Moscow: Nauka, pp. 80–92.
- Kyzlasov L.R. (1970) Otchet o rabote Khakasskoy arkheologicheskoy expeditsii Moskovskogo gosudarstvennogo universiteta v 1969 godu. [Report on the work of the Khakassian Archaeological expedition by Moscow State University in 1969] // Unpublished report, Scientific Archive of the Institute of Archaeology, Moscow, Russian Academy of Sciences. F-1. R-1. D-4010, 56 p.; № 4010a (album).

- Kyzlasov L.R. (1971) Otchet o rabote Khakasskoy arkheologicheskoy expeditsii Moskovskogo gosudarstvennogo universiteta v 1970 godu. [Report on the work of the Khakassian Archaeological expedition by Moscow State University in 1970] // Unpublished report, Scientific Archive of the Institute of Archaeology, Moscow, Russian Academy of Sciences. F-1. R-1. D-4242; № 4242a (album), № 4242b (album).
- Pankova S.V., Vasil'ev S.S., Dergachev V.A., Zaitseva G.I. (2010) Radiouglerodnoe datirovanie oglakhtinskoi grobnitsy metodom «wiggle matching» [Radiocarbon dating of Oglakhty grave using a wiggle matching method], *Archaeology, Ethnography and Anthropology of Eurasia*, no. 2 (42), pp. 46–56.
- Pankova S.V., Makarov N.P., Simpson St J., Cartwright C.R. (2021) New radiocarbon dates and environmental analyses of finds from 1903 excavations in the eastern plot of the Tashtyk cemetery of Oglakhty, *Sibirskie istoricheskie issledovaniya Siberian historical research*, no. 3, pp. 24–59.
- Rinn F. (2013) TSAP-Win: time series analysis and presentation for dendrochronology and related applications. Version 4.64. User reference. Heidelberg, Germany: Frank Rinn Distribution.
- Rzepecki A., Neyses-Eiden M., Frank T., Diethelm B., Herzig F., Tegel W. (2019) Missing link in Late Antiquity? A critical examination of Hollstein's Central European Oak Chronology, *Dendrochronologia*, Vol. 54, pp. 20–28.
- Schweingruber F.H. (1988) *Tree rings: basics and applications of dendrochronology*. Dordrecht: Kluwer Acad. Publ.
- Susperregi J., Telleria I., Urteaga M., Jansma E. (2017) The Basque farmhouses of Zelaa and Maiz Goena: New dendrochronology-based findings about the evolution of the built heritage in the northern Iberian Peninsula, *Journal of Archaeological Science*: Reports, Vol. 11, pp. 695–708.
- Vadetskaia E.B. (1999) Tashtykskaia epokha v drevnei istorii Sibiri [Tashtyk epoch in the ancient history of Siberia]. St. Petersburg.: Tsentr «Peterburgskoe Vostokovedenie» (Archaeologica Petropolitana, VII).
- Vaganov E.A., Shiyatov S.G., Mazepa V.S. (1996) *Dendroklimaticheskie issledovaniya v Uralo-Sibirskoi Subarktike* [Dendroclimatic study in Ural-Siberian Subarctic]. Novosibirsk: Nauka.
- Vaganov E.A., Kruglov V.B., Vasil'ev V.G. (2008) Dendrokhronologiya [Dendrochronology].
  Krasnovarsk: SFU.
- Visser R.M. (2015) Imperial timber? Dendrochronological evidence for large-scale road building along the Roman limes in the Netherlands. *Journal of Archaeological Science*, Vol. 53, pp 243–254.
- Vodyasov E.V., Pankova S.V., Zaitseva O.V., Vavulin M.V. (2021) Oglakhtinskii mogil'nik: istoriya otkrytii, planigrafiya i sovremennoe sostoyanie [The Oglakhty burial ground: History of discovery, planigraphy, and current state], *Sibirskie istoricheskie issledovaniya Siberian historical research*, no. 3, pp. 6–23.
- Zaitseva O.V., Vodyasov E.V., Shirin Yu.V., Slyusarenko I.Yu. (2021) Mnogoaktnost' ritual'nykh deistvii i eksgumatsiya v tashtykskikh pogrebal'nykh kompleksakh (po materialam raskopok Oglakhtinskogo mogil'nika v 2020 g.) [Multi-activity of ritual actions and exhumation in Tashtyk burial complexes (based on excavations of the Oglakhty burial ground in 2020)], Sibirskie istoricheskie issledovaniya Siberian historical research, no. 3, pp. 97–107.
- Zhirnova, D.F., Belokopytova, L.V., Meko, D.M., Babushkina E. A., Vaganov E.A. (2021) Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs, *Scientific Reports*, Vol. 11. Article number: 14266.

### Сведения об авторах:

СЛЮСАРЕНКО Игорь Юрьевич – кандидат исторических наук, старший научный сотрудник ЛМАИ «Артефакт», Национальный исследовательский Томский государственный университет (Томск, Россия); старший научный сотрудник Института археологии и этнографии СО РАН (Новосибирск, Россия). E-mail: slig1963@yandex.ru

**ГАРКУША Юрий Николаевич** – научный сотрудник Института археологии и этнографии СО РАН (Новосибирск, Россия). E-mail: yunga1971@ngs.ru

Авторы заявляют об отсутствии конфликта интересов.

### Information about the authors:

**Igor Y. Slyusarenko**, National Research Tomsk State University (Tomsk, Russian Federation); Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences (Novosibirsk, Russian Federation). E-mail: slig1963@yandex.ru

**Yuriy N. Garkusha,** Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences (Novosibirsk, Russian Federation). E-mail: yunga1971@ngs.ru

The authors declare no conflict of interests.

Статья поступила в редакцию 01 августа 2023; принята к публикации 09 сентября 2023.

The article was submitted 01.08.2023; accepted for publication 09.09.2023.