
2024

ÏÐÈÊËÀÄÍÀß ÄÈÑÊÐÅÒÍÀß ÌÀÒÅÌÀÒÈÊÀ

Ìàòåìàòè÷åñêèå ìåòîäû êðèïòîãðàôèè � 63

ÓÄÊ 519.7 DOI 10.17223/20710410/63/3
BLIND SIGNATURE AS A SHIELD

AGAINST BACKDOORS IN SMART CARDS

L.R. Akhmetzyanova, A.A. Babueva, A.A. Bozhko

CryptoPro, Moscow, Russia

E-mail: {lah, babueva, bozhko}@cryptopro.ru

The problem of signature forgery (including signature key recovery) in the presence
of backdoors in the hardware or software of functional key carriers (smart cards)
is considered. A new approach to solving the problem based on using blind signa-
ture schemes is proposed. It is shown that honest-signer blindness and honest-but-
curious unforgeability of the blind signature schemes imply security against backdoors
in smart cards. As a concrete example, we consider a blind version of the GOST sig-
nature scheme (the blind signature scheme proposed by Camenisch) and show that
this scheme is resistant to backdoors under the single assumption that GOST is secure
in the standard sense.

Keywords: blind signature scheme, GOST R 34.10-2012, untrusted smart cards,
backdoors.

ÑÕÅÌÛ ÏÎÄÏÈÑÈ ÂÑËÅÏÓÞ ÊÀÊ ÇÀÙÈÒÀ ÎÒ ÇÀÊËÀÄÎÊ
Â ÑÌÀÐÒ-ÊÀÐÒÀÕ

Ë.Ð. Àõìåòçÿíîâà, À.À. Áàáóåâà, À.À. Áîæêî

ÊðèïòîÏðî, ã. Ìîñêâà, Ðîññèÿ

Ðàññìàòðèâàåòñÿ çàäà÷à îáåñïå÷åíèÿ çàùèòû îò ïîääåëêè ïîäïèñè (â òîì ÷èñ-
ëå çà ñ÷¼ò âîññòàíîâëåíèÿ êëþ÷à ïîäïèñè) â óñëîâèÿõ íàëè÷èÿ çàêëàäîê â àï-
ïàðàòíîì èëè ïðîãðàììíîì îáåñïå÷åíèè ôóíêöèîíàëüíûõ êëþ÷åâûõ íîñèòåëåé
(ñìàðò-êàðò). Ïðåäëàãàåòñÿ íîâûé ïîäõîä ê ðåøåíèþ çàäà÷è, îñíîâàííûé íà èñ-
ïîëüçîâàíèè ñõåì ïîäïèñè âñëåïóþ. Ïîêàçûâàåòñÿ, ÷òî îáåñïå÷åíèå ñõåìîé ïîäïè-
ñè âñëåïóþ ñâîéñòâ íåîòñëåæèâàåìîñòè ïðè óñëîâèè ÷åñòíîé ãåíåðàöèè êëþ÷åé è
íåïîääåëûâàåìîñòè îòíîñèòåëüíî ¾÷åñòíîãî, íî ëþáîïûòíîãî¿ íàðóøèòåëÿ îáåñ-
ïå÷èâàåò çàùèòó îò çàêëàäîê â ñìàðò-êàðòàõ. Â êà÷åñòâå êîíêðåòíîãî ïðèìåðà
ðàññìàòðèâàåòñÿ ñõåìà ïîäïèñè âñëåïóþ íà îñíîâå óðàâíåíèÿ ÃÎÑÒ, ïðåäëîæåí-
íàÿ Êàìåíèøåì. Äîêàçûâàåòñÿ, ÷òî ýòà ñõåìà îáåñïå÷èâàåò çàùèòó îò çàêëàäîê
ïðè åäèíñòâåííîì ïðåäïîëîæåíèè, ÷òî ñõåìà ïîäïèñè ÃÎÑÒ îáåñïå÷èâàåò ñâîé-
ñòâî íåïîääåëûâàåìîñòè â ñòàíäàðòíîì ñìûñëå.

Êëþ÷åâûå ñëîâà: ñõåìà ïîäïèñè âñëåïóþ, ÃÎÑÒ Ð 34.10-2012, íåäîâåðåííûå

ñìàðò-êàðòû, çàêëàäêè.

1. Introduction
Consider an information system consisting of two components: a smart card (or

token) used as a functional key storage and an application installed on a user device
(desktop or handheld). The applied function of a system is to compute a signature of
any document transmitted via the application with a key uploaded and stored on a smart
card. The components usually interact in the following way:



50 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

1) the user opens the application, chooses the document to be signed and pushes the
button �Sign�;

2) the application connects to the smart card (usually by setting up a password-
protected secure channel [1]) and sends it the selected document or document hash
value;

3) the smart card computes the signature value of the document on its own under a
stored private key and returns the computed value to the application;

4) the application veri�es the received signature value and returns the signed document
to the user.

The use of smart cards with unrecoverable on-board private key cryptography is
considered one of the most secure approaches to key management that allows to protect
against adversaries which can get physical access to key storage devices. However, it has its
own disadvantages. Unlike software applications, which can be open source and therefore
fully veri�ed, self-compiled and securely installed by anyone, smart card development is
a much more technically complex process that is usually carried out by companies that
specialize in the �eld. Indeed, the signing code is often hardwired directly into smart
card microchips to improve performance and, consequently, cannot be openly veri�ed by
outsiders: the users are given a ready-to-use �black-box� device. This makes it possible for
unscrupulous developers to implement a malicious code.

In the paper, we address the security issues that arise when the smart card used is
seen as an untrusted component and is believed to contain backdoors. In the context of
systems based on ElGamal or Schnorr type signature schemes, these issues are highly
crucial, since this type of signature uses one-time random values that are generated using a
smart card and whose compromise immediately results in the recovery of the user's private
key. For instance, malicious smart card can use low-entropy one-time values allowing an
adversary (e.g., company implementing this backdoor) to perform the brute force attack
and recover the user key from a correct signature.

Related work. The paper [2] is devoted to these issues. Firstly, the paper introduces
two types of adversary to be considered:

External adversary: it models an honest-but-curious adversary acting on the application
side; the adversary's goal is to make a new correct pair (message, signature) without
interacting with a smart card or, in other words, to make a forgery. Note that this threat
includes the stronger one � key recovery. Consideration of such adversaries covers the
scenario where only honest user interacts with smart card through veri�ed and trusted
application, but this application is less protected from memory leaks compared to the
smart card.

Remark 1. Note that this type does not cover the capabilities of active adversaries
that can directly interact (e.g., using its own malicious application) with the smart card.
In practice, it means that the adversary that steals the smart card cannot get access to
its API. Considering only passive adversaries is justi�ed by the fact that smart cards are
usually also protected with a memorable password that should be entered by the human to
get access to its API [3].

Adversary with agent: this adversary is supposed to consist of two parts. The �rst part
is a fully active adversary on the smart card side but it can interact only with the trusted
application, i.e., there is no other channel for data transmition from smart card. The second
part collects the pairs (message, signature) computed by application and malicious smart
card � this is the agent. Similar to the �rst type of adversary, the goal is to make a forgery.



Blind signature as a shield against backdoors in smart cards 51

In order to deal with these adversaries, the paper [2] proposed a solution for the GOST
signature scheme [4] based on the usage of the interactive Schnorr zero-knowledge proof.
This protocol is executed with the main signing algorithm and its purpose is to prove to
the application that smart card is using the �correct� one-time value (for details see the
original paper). This solution has the following two signi�cant drawbacks:

1) it allows to protect against the semi-trusted smart card only: the crucial assumption
for security is that low-level (short) arithmetic operations are implemented correctly
in the smart cards. Although it is realistic assumption, there are no convenient ways
to validate this on practice;

2) it is not secure if the smart card can terminate the signing process with the error on
the application side. The paper [2] describes the concrete attack where the malicious
smart card successfully completes the signing protocol only if certain bits of resulting
signature are equal to certain bits of the signing key. One approach to protect against
this attack is to delete the private signing key immediately after such errors occur.
However, in practice, errors can occur not only due to the adversary's actions, but
also due to technical failures, so deleting the key after each error is not a practical
solution.

Our contribution. To negate the disadvantages mentioned above, we propose a new
approach, the main idea of which is to use the �blind versions� of the signature schemes.
The blind signature schemes �rstly introduced by Chaum [5] allow one party called User to
obtain a signature for an arbitrary message after interacting with another party called Signer
holding a signing key in such a way that the Signer does not receive any information about
either the message or the signature value (blindness property) and the User can compute
only one single signature per interaction with the Signer (unforgeability property).

In the context of considered signing system, the smart card executes the Signer side
and the application executes the User side. Due to the blindness property, the malicious
smart card learns no information about the signature during the protocol execution and,
therefore, cannot �control� the signature values, e.g., covertly transmiting bits of private
key through the signature values.

In this paper, we introduce two new security notions for blind signature schemes:
honest-but-curious unforgeability and backdoor resilience, which characterize the security
of the proposed solution against external adversary and adversary with agent. We show
that honest-signer blindness (where an adversary cannot a�ect the key generation
algorithm) and standard unforgeability imply backdoor resilience. Moreover, for the GOST
signature scheme we propose the concrete blind signature scheme for use: the Camenisch
scheme [6] that provides perfect blindness (and thus honest-signer blindness) and honest-
but-curious unforgeability (and thus standard unforgeability), which is implied only by the
unforgeability of GOST. It means that the Camenisch blind signature scheme provides the
security against both external adversary and adversary with agent under a single assumption
that the GOST signature scheme provides standard security, i.e., is unforgeable under the
chosen message attack.

The rest of the paper is organised as follows. In Section 2 we remind the de�nitions of
conventional and blind signature schemes, the accompanying security notions are given.
In Section 3 the formal de�nitions of honest-but-curious unforgeability and backdoor
resilience are introduced. Section 4 is devoted to the formal analysis and Section 5 considers
the Camenish blind signature scheme in details.



52 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

2. Basic de�nitions

(Conventional) signature schemes. The conventional signature scheme SS is
determined by three algorithms:

� (sk, pk) ← SS.KGen(): a key generation algorithm that outputs a secret key sk and a
public key pk;

� σ ← SS.Sig(sk,m): a signature generation algorithm that takes a secret key sk and a
message m and returns a signature σ;

� b← SS.Vf(pk,m, σ): a (deterministic) veri�cation algorithm that takes a public key pk,
a message m, and a signature σ, and returns 1 if σ is valid on m under pk and 0
otherwise.

Correctness. We say that SS is correct if for each message m, with probability one over
the sample of parameters and the key pair (sk, pk), the equality SS.Vf(pk,m, SS.Sig(sk,m)) =
= 1 holds.

Blind signature schemes. The blind signature scheme BS is de�ned in the same way
as the conventional signature scheme except for the signature generation algorithm which
is replaced by the following protocol:

� (b, σ) ← ⟨BS.Signer(sk),BS.User(pk,m)⟩: an interactive signing protocol that is run
between a Signer with a secret key sk and a User with a public key pk and a message m;
the Signer outputs b = 1 if the interaction completes successfully and b = 0 otherwise,
while the User outputs σ that is either the resulting signature or an error message.

Correctness. We say that BS is correct if for each message m, with probability
one over the sample of parameters and the key pair (sk, pk), the signing protocol
⟨BS.Signer(sk),BS.User(pk,m)⟩ completes with (1, σ), σ ̸=⊥, such that BS.Vf(pk,m, σ) = 1.

In the paper, we are interested in the blind signature schemes that are based on some
conventional signature schemes. We will say that the BS scheme is a blind version of
the SS scheme, if the KGen and Vf algorithms of these schemes coincide and for any (sk, pk),
any message m, and any signature σ

Pr[(1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩] = Pr[σ ← SS.Sig(sk,m)],

where the corresponding probability spaces are determined by the randomness used in the
signing protocol and signing algorithm.

Three-move blind signature schemes. For simplicity, this paper focuses on three-move
blind signature schemes. For such schemes, the signing protocol can be described as follows:

(msgS,1, stateS)← BS.Signer1(sk),

(msgU , stateU )← BS.User1((pk,m),msgS,1),

(msgS,2, b)← BS.Signer2(stateS ,msgU,1)

σ ← BS.User2(stateU ,msgS,2),

where msg role,i, role ∈ {U, S}, is the i-th message sent by the side with role role during the
protocol execution. The variable staterole is aimed to keep the internal state for using on
the next protocol stage. Here the User performs the BS.User1 and BS.User2 functions, and
the Signer performs the BS.Signer1 and BS.Signer2 functions during the protocol execution.

Security notions. Next, we describe security concepts using a game-based
approach [7]. This approach uses the notion of �experiment� played between a challenger
and an adversary. The adversary and challenger are modelled using consistent interactive



Blind signature as a shield against backdoors in smart cards 53

probabilistic algorithms. The challenger simulates the functioning of the analysed
cryptographic scheme for the adversary and may provide him access to one or more
oracles. The parameters of an adversary A are its computational resources (for a �xed
model of computation and a method of encoding) and oracles query complexity. The query
complexity usually includes the number of queries. Denote by AdvMS (A) the measure of the
success of the adversary A in realizing a certain threat, de�ned by the security notion M
for the cryptographic scheme S.

The standard security notion for (probabilistic) signature schemes is strong unforgeability
under chosen message attack (sUF-CMA). The formal de�nition is given below.

De�nition 1. For an adversary A and a signature scheme SS:

AdvsUF-CMA
SS (A) = Pr

[
ExpsUF-CMA

SS (A)→ 1
]
,

where the ExpsUF-CMA
SS (A) experiment is de�ned in the following way:

ExpsUF-CMA
SS (A)

1 : (sk, pk)←− SS.KGen()

2 : L ← ∅
3 : (m,σ)←− ASign(pk)

4 : if (m,σ) ∈ L : return 0

5 : return SS.Vf(pk,m, σ)

Oracle Sign(m)

1 : σ ← SS.Sig(sk,m)

2 : L ← L ∪ {(m,σ)}
3 : return σ

Remark 2. The same security notion can be applied to the blind version BS of the
signature scheme SS. In this case, line 1 in the Sign oracle is replaced with the line
(1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩. It is easy to see that for such schemes sUF-CMA-
security of the SS scheme implies sUF-CMA-security of the BS scheme and vice versa.

The standard notions for blind signature schemes are one-more unforgeability (OMUF
notion that considers a malicious user in the parallel setting) and blindness (Blind notion
that considers a malicious signer), their formal de�nitions can be found in [8]. Note that
the original de�nition of blindness proposed in [9] considers an honest signer that can not
a�ect key generation process. In the paper, we consider only this weak notion and refer to
it as �honest-signer blindness� (HS-Blind notion).

Honest-signer blindness. Informally, the blind signature scheme provides blindness if
there is no way to link a (message, signature) pair to the certain execution of the signing
protocol. In the context of strong notion, the adversary can fully control the Signer side.
In the context of weaker HS-Blind notion, we assume that the key pair is generated honestly
at the beginning of the experiment. The formal de�nition is given below.

De�nition 2. For an adversary A and three-move blind scheme BS:

AdvHS-BlindBS (A) = Pr
[
ExpHS-Blind,1

BS (A)→ 1
]
− Pr

[
ExpHS-Blind,0

BS (A)→ 1
]
,

where the ExpHS-Blind,b
BS (A), b ∈ {0, 1}, experiments are de�ned in the following way:



54 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

ExpHS-Blind,b
BS (A)

1 : (sk, pk)←− BS.KGen()

2 : b0 ← b

3 : b1 ← 1− b

4 : b′ ← AInit,User1,User2(sk, pk)

5 : return b′

Oracle Init(m0,m1)

1 : sess0 ← init

2 : sess1 ← init

Oracle User1(i,msg)

1 : if i /∈ {0, 1} ∨ sessi ̸= init : return ⊥
2 : sessi ← open

3 : (msgi, statei)← BS.User1((pk,mbi),msg)

4 : return msgi

Oracle User2(i,msg)

1 : if sessi ̸= open : return ⊥
2 : sessi ← closed

3 : σbi ← BS.User2(statei,msg)

4 : if sess0 = sess1 = closed :

5 : if σb0 = ⊥ ∨ σb1 = ⊥ : return (⊥,⊥)
6 : return (σ0, σ1)

7 : return ε

3. New security notions for blind signatures
Here we give the formal game-based de�nitions of two security notions: backdoor

resilience and honest-but-curious unforgeability.

Backdoor resilience/Security against adversary with agent
Consider an adversary A = (A1,A2) consisting of two algorithms. An algorithm A2

denotes the part of the adversary A collecting signature values for adaptively chosen
messages. An algorithm A1 denotes the agent acting on the backdoored smart card side.

The formal de�nition of BDres (BackDoor resilience) for blind signature schemes is
given below (see De�nition 3). We parametrize this security model by the value k which
determines the number of attempts by the challenger to produce a correct signature for a
message (details are described below).

De�nition 3. For any adversary A = (A1,A2) and blind signature scheme BS:

AdvBDreskBS (A) = Pr
[
ExpBDresk

BS (A)→ 1
]
,

where the ExpBDresk
BS (A), k ∈ N, experiment is de�ned in the following way:

ExpBDresk
BS (A = (A1,A2))

1 : (sk, pk)←− BS.KGen()

2 : L ← ∅
3 : lost← false

4 : st← A1(sk, pk)

5 : (m,σ)
$←− ASign

2 (pk)

6 : if ((m,σ) ∈ L) ∨ (lost = true) :

7 : return 0

8 : return BS.Vf(pk,m, σ)

Oracle Sign(m)

1 : i← 0

2 : do

3 : (st, σ)← ⟨A1(st),BS.User(pk,m)⟩
4 : i← i+ 1

5 : until (i ⩾ k) ∨ (σ ̸=⊥)
6 : if σ =⊥ :

7 : lost← true

8 : return ⊥
9 : L ← L ∪ {(m,σ)}
10 : return σ



Blind signature as a shield against backdoors in smart cards 55

At the experiment initialization stage (line 1), the challenger modeling an honest
application generates a key pair (sk, pk) according to the key generation algorithm and
sends to A1 a pair (sk, pk) (line 4), while to A2 it sends a veri�cation key pk only (line 5).
This stage models the trusted process of generating keys, issuing corresponding certi�cate
and uploading key material onto the smart card.

The A2 algorithm can make queries to the challenger signing oracle Sign that returns
signature values σ for messages m arbitrarily chosen by the adversary. Each signature value
is computed during the execution of the blind signing protocol between oracle that models
the honest User side and the A1 algorithm modeling the malicious Signer side (line 3 in the
oracle). Here the variable st denotes the internal state of A1 that is kept from call to call.

The A1 algorithm is allowed to terminate the protocol execution with an error ⊥ on
the User side (line 5 in the oracle). For this reason, for any requested message m the oracle
makes k attempts to compute a correct signature, and in the case when all k attempts fail,
challenger returns 0 as a game result (meaning that the adversary loses, see line 7 in the
oracle). This simulates the scenario where the smart card has failed and is no longer used.

Remark 3. Note that if the algorithm A2 can obtain errors from the signing oracle,
then there is always a trivial attack. Consider the agent A1 that successfully completes the
signing protocol execution i� i-th bit of sk is equal to 1, where i is a sequence number of
query to oracle. Having such an agent on the smart card side, the A2 algorithm can recover
all bits of signing key and trivially make a forgery.

To break a backdoor resilience, the algorithm A2 is needed to make a forgery (m,σ)
containing a signature σ that has not previously been returned by the oracle Sign in
response to a query m.

Honest-but-curious unforgeability/Security against external adversary
This notion considers only an honest-but-curious adversary acting on the User side.

This adversary can adaptively choose messages to be signed by making a query m to the
oracle and obtain in return a signature σ and a speci�c value view. The latter consits of all
incoming messages and the values of all random parameters processed and sampled by the
User side during the execution of the signing protocol. This simulates the scenario, where
the adversary gets an access to the memory of trusted application.

The formal de�nition of HBC-UF is given below.

De�nition 4. For an adversary A and a blind signature scheme BS:

AdvHBC-UFBS (A) = Pr
[
ExpHBC-UF

BS (A)→ 1
]
,

where the ExpHBC-UF
BS (A) experiment is de�ned in the following way:

ExpHBC-UF
BS (A)

1 : (sk, pk)←− BS.KGen()

2 : L ← ∅
3 : (m,σ)←− ASign(pk)

4 : if (m,σ) ∈ L : return 0

5 : return BS.Vf(pk,m, σ)

Oracle Sign(m)

1 : (1, (σ; view))← ⟨BS.Signer(sk),BS.User(pk,m)⟩
2 : L ← L ∪ {(m,σ)}
3 : return σ, view

It is easy to see that for any blind signature scheme HBC-UF-security implies sUF-CMA-
security.



56 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

4. Security analysis
4.1. B a c k d o o r r e s i l i e n c e / S e c u r i t y a g a i n s t a d v e r s a r y w i t h

a g e n t

In this section, we prove that honest-signer blindness and standard unforgeability
(sUF-CMA) imply backdoor resilience.

Theorem 1. Fix k ∈ N. For any adversary A = (A1,A2) in the BDresk model with
summary time complexity at most t making at most q queries to the signing oracle, there
exist an adversary B in the sUF-CMA model making at most q queries to the signing oracle
and an adversary C in the HS-Blind model such that

AdvBDreskBS (A) ⩽ AdvsUF-CMA
BS (B) + q · k · AdvHS-BlindBS (C).

Time complexities of B and C are at most t and tkq correspondingly.

Remark 4. If the blind signature scheme provides perfect blindness (i.e., AdvHS-BlindBS (C) =
= 0 for any C with any time complexity), then the bound is transformed as follows:

AdvBDreskBS (A) ⩽ AdvsUF-CMA
BS (B).

From the perspective of using conventional signature scheme SS, this inequality means
that in order to provide backdoor resilience, it is enough for this signature scheme to have
its blind version BS (with AdvsUF-CMA

BS (B) = AdvsUF-CMA
SS (B)) and to be unforgable in the

standard model. Note, that the bound does not depend on k, so this value can be chosen
arbitrarily by the application developers.

Remark 5. For clarity, the proof is carried out for three-move blind signatures, but
the proof does not base on any speci�c features of such scheme type and can be easily
adapted for any-move blind signatures.

Proof. The proof consits of two parts.
P a r t 1. Consider the consequence of several experiments, where each next experiment

slightly di�ers from the previous one.
Game 0. Let Exp0

BS(A) = ExpBDresk
BS (A).

Game 1. Consider the following modi�ed experiment Exp1
BS(A):

Exp1
BS(A = (A1,A2))

1 : (sk, pk)←− BS.KGen()

2 : L ← ∅
3 : lost← false

4 : st← A1(sk, pk)

5 : (m,σ)
$←− ASign

2 (pk)

6 : if ((m,σ) ∈ L) ∨ (lost = true) :

7 : return 0

8 : return BS.Vf(pk,m, σ)

Oracle Sign(m)

1 : i← 0

2 : do

3 : (st, σ)← ⟨A1(st),BS.User(pk,m)⟩
4 : if σ ̸=⊥ :

5 : (1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩
6 : i← i+ 1

7 : until (i ⩾ k) ∨ (σ ̸=⊥)
8 : if σ =⊥ :

9 : lost← true

10 : return ⊥
11 : L ← L ∪ {(m,σ)}
12 : return σ



Blind signature as a shield against backdoors in smart cards 57

Exp1
BS(A) di�ers from Exp0

BS(A) in additional lines 4 and 5 of the Sign oracle code. If
the oracle, interacting with the agent A1 as a user, completes the signing protocol with a
correct signature, then the oracle recomputes a new signature honestly executing the signing
protocol on its own (without interaction with the agent). The second part of the proof is
devoted to estimation of winning probability di�erence for Exp1

BS(A) and Exp0
BS(A) .

Game 2. Consider the next modi�cation: the experiment Exp2
BS(A). Here the oracle

always responses to requests of A2 with a correct honestly generated signature even in the
case when A1 provokes errors k times in a row that sets the �ag lost in Exp1

BS(A).

Exp2
BS(A = (A1,A2))

1 : (sk, pk)←− BS.KGen()

2 : L ← ∅
3 : st← A1(sk, pk)

4 : (m,σ)
$←− ASign

2 (pk)

5 : if ((m,σ) ∈ L) :
6 : return 0

7 : return BS.Vf(pk,m, σ)

Oracle Sign(m)

1 : i← 0

2 : do

3 : (st, σ)← ⟨A1(st),BS.User(pk,m)⟩
4 : i← i+ 1

5 : until (i ⩾ k) ∨ (σ ̸=⊥)
6 : (1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩
7 : L ← L ∪ {(m,σ)}
8 : return σ

For this experiment:

Pr
[
Exp1

BS(A)→ 1
]
= Pr

[
Exp1

BS(A)→ 1 ∧ (lost = false)
]
+

+Pr
[
Exp1

BS(A)→ 1 ∧ (lost = true)
]︸ ︷︷ ︸

= 0 due to line 6 of Exp1
BS(A)

⩽ Pr
[
Exp2

BS(A)→ 1
]
.

Game 3. Note that in the Exp2
BS(A) experiment the agent A1 can be thrown away, since

it can no longer in�uence the value of the signature (see the Exp3
BS(A2) experiment below).

Note that Pr
[
Exp2

BS(A1,A2)→ 1
]
= Pr

[
Exp3

BS(A2)→ 1
]
.

Exp3
BS(A2)

1 : (sk, pk)←− BS.KGen()

2 : L ← ∅

3 : (m,σ)←− ASign
2 (pk)

4 : if (m,σ) ∈ L :
5 : return 0

6 : return BS.Vf(pk,m, σ)

Oracle Sign(m)

1 : (1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩
2 : L ← L ∪ {(m,σ)}
3 : return σ

Note thatExp3
BS is exactly the experimentExp

sUF-CMA
BS , therefore Pr

[
Exp2

BS(A)→ 1
]
⩽

⩽ AdvsUF-CMA
BS (B) for B = A2.

P a r t 2 . To �nalize the proof, we construct an adversary C breaking the blindness
property. Introduce the following auxiliary experiment:



58 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

Exp4,b
BS(C)

1 : (sk, pk)←− BS.KGen()

2 : b′ $←− CInit,User1,User2(sk, pk)

3 : return b′

Oracle Init(m)

1 : sess← init

Oracle User1(msg)

1 : if sess ̸= init : return ⊥
2 : sess← open

3 : (msg, state)← BS.User1((pk,m),msg)

4 : return msg

Oracle User2(msg)

1 : if sess ̸= open : return ⊥
2 : σ ← BS.User2(state,msg)

3 : if (σ ̸= ⊥) ∧ (b = 0):

4 : (1, σ)← ⟨BS.Signer(sk),BS.User(pk,m)⟩
5 : return σ

Here an adversary can make only one query to each oracle (execute only one session).
The adversary obtains a signature value generated by the oracles intacting with adversary
if b = 1, and a signature computed according to the protocol otherwise. Note that if the
adversary provokes an error in the session, then it always gets ⊥ from the User2 oracle
regardless of bit b.

Using a standard technique called �hybrid argument� [10], it can be trivially shown that
there exists an adversary C ′ such that

Pr
[
Exp0

BS(A)→ 1
]
− Pr

[
Exp1

BS(A)→ 1
]
=

= q · k
(
Pr
[
Exp4,1

BS(C ′)→ 1
]
− Pr

[
Exp4,0

BS(C ′)→ 1
])

.

Now let construct an adversary C using C ′ as a black box. The adversary C acts in the
following way:

1) The adversary C obtains (sk, pk) and transmits this value to C ′.
2) When C ′ makes a query m to the Init oracle, C makes a query (m,m) to its own

Init oracle.
3) After starting sessions, the adversary C �rstly executes sess0 according to the

protocols:
à) it computes (msg0S,1, stateS)← BS.Signer1(sk) and makes a query (0,msg0S,1)

to its own User1 oracle;
á) upon receiving msg0U,1, the adversary C computes

(msg0S,2, 1)← BS.Signer2(stateS,msgU,1)

and makes a query (0,msg0S,2) to its own User2 oracle, receiving the ε value.
Note that σb0 ̸=⊥ due to the correctness property of the blind signature scheme.

4) Then the adversary C intercepts all queries of C ′ and simply passes them to sess1:
à) intercepting from C ′ a query msg1 to the User1 oracle, C makes a query

(1,msg1S,1), where msg1S,1 = msg1, to its own User1 oracle and directly
transmits the response msg1U,1 to C ′;

á) intercepting from C ′ a query msg2 to the User2 oracle, C makes a query
(1,msg1S,2), where msg1S,2 = msg2, to its own User2 oracle. C receives (σ0, σ1)
and returns to C ′ the �st component σ0. Note that (σ0, σ1) can be (⊥,⊥).

5) C returns the same bit as C ′ returns.



Blind signature as a shield against backdoors in smart cards 59

If the C interacts with the experimentator ExpHS-Blind,1
BS (ExpHS-Blind,0

BS ), then σ0 = σb1

(σ0 = σb0). Moreover, C returns ⊥ at stage 4 i� C ′ provokes error in sess1 that perfectly
coincides with Exp4

BS. Thus,

Pr
[
Exp4,1

BS(C ′)→ 1
]
= Pr

[
ExpHS-Blind,1

BS (C)→ 1
]
,

Pr
[
Exp4,0

BS(C ′)→ 1
]
= Pr

[
ExpHS-Blind,0

BS (C)→ 1
]
.

Summing up,

Pr
[
Exp0

BS(A)→1
]
−Pr

[
Exp1

BS(A)→1
]
= q · k

(
Pr
[
Exp4,1

BS(C ′)→1
]
−Pr

[
Exp4,0

BS(C ′)→1
])

=

= q · k
(
Pr
[
ExpHS-Blind,1

BS (C)→ 1
]
− Pr

[
ExpHS-Blind,0

BS (C)→ 1
])

= q · k · AdvHS-BlindBS (C).

The theorem 1 is proven.

4.2. H o n e s t - b u t - c u r i o u s u n f o r g e a b i l i t y / S e c u r i t y a g a i n s t
e x t e r n a l a d v e r s a r y

Here we de�ne the particular class of blind signature schemes based on ElGamal
signature equation that provides the honest-but-curious unforgeability. Namely, for such
schemes we construct the security reduction to the unforgeability of the base ElGamal
signature scheme. Note that all known ElGamal blind signature schemes do not provide
strong unforgeability [11].

At �rst, let us introduce the required notations. We denote the group of points of the
elliptic curve over the prime �eld as G, the order of the prime subgroup of G as q, an elliptic
curve point of order q as P and zero point as O. We denote by H the hash function that
maps binary strings to elements from Zq and assume that all �eld operations are performed
modulo q.

ElGamal blind signature scheme
The generalized ElGamal signature scheme was introduced in [12] and further extended

in [13], we denote it by GenEG scheme. A key generation algorithm in this scheme involves
picking random d uniformly from Z∗

q (secret signing key) and de�ning Q = dP (public
verifying key). A signature for message m is a pair (r, s), where r = (kP ).x mod q for
some k picked uniformly at random from Z∗

q and s is computed from the ElGamal signature
equation EG:

EG(d, k, r, e, s) = 0,

where e = H(m). All possible EG equations are listed in [12]. To ensure functionality and
security, certain r, e, s values need to be excluded.

ElGamal blind signature scheme, denoted by GenEG-BS, was introduced in [11]. A key
generation and veri�cation algorithms in GenEG-BS scheme are the same as in the base
GenEG scheme. An interactive signing protocol assumes that the Signer performs ElGamal
signature generating algorithm for the e value received from the User, the User algorithm is
not determined and can be arbitrary. The parameters of the signing protocol are the base
point P , public key Q, and the message m, we denote them by par.

We impose the additional requirements on the algorithm performed by the User:

� all blinding factors (we denote them by rnd) used by the User are selected according to
some distribution D that is independent on the values received from the Signer;



60 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

� the �rst component of the signature r′ is the x-coordinate of the R′ point, which is
computed as a result of applying the function parameterized by the par value (we
denote it by Lpar

1 ) that takes as arguments the R point received from the Signer and
rnd values. This function is linear by R for all rnd values generated according to the
protocol;

� the second component of the signature s′ is computed as a result of applying the function
parameterized by the par value (we denote it by Lpar

2 ) that takes as arguments the s
value received from the Signer, rnd values, and point R. This function is linear by s for
all rnd and R values generated according to the protocol.

We denote such a scheme by GenEG-BSL scheme. The corresponding signing protocol is
illustrated in Fig. 1.

The signing protocol

Signer(d) User(Q,m)

k
U←− Z∗

q

R← kP R rnd
D←−

R′ ← Lpar1 (R, rnd)

r′ ← R′.x mod q

r ← R.x mod q e compute e

if ∃! s : EG(d, k, r, e, s) = 0

�nd s

else : return 0 s

s′ ← Lpar2 (s, rnd,R)

return 1 return (r′, s′)

Fig. 1. The signing protocol in GenEG-BSL scheme

Let us show that the GenEG-BSL scheme is indeed the blind version of the GenEG
scheme, i.e., provides the same distribution on the signature values. The distribution on
GenEG signatures is de�ned by the uniform distribution on k values. The distribution on
GenEG-BSL signatures is de�ned by the distribution on k′ values, where k′ is such that
(k′P ).x mod q = r′. The k′ value is linear by k since R′ value is linear by R and rnd values
are chosen independently on R. Thus, the distribution on k′ values is also uniform.

Note that the User view in the GenEG-BSL scheme consists of the incoming messages R, s
and the blinding factors rnd sampled by the User.

Now we are ready to construct the security reduction to the unforgeability of the
conventional ElGamal signature scheme.

Theorem 2. For any adversary A for GenEG-BSL scheme in the HBC-UF model with
time complexity at most t making at most q queries to the signing oracle, there exist an
adversary B for the conventional GenEG scheme in the sUF-CMA model with the same time
complexity at most t making at most q queries to the signing oracle such that

AdvHBC-UFGenEG-BSL
(A) ⩽ AdvsUF-CMA

GenEG (B).



Blind signature as a shield against backdoors in smart cards 61

Proof. Let construct the adversary B for the conventional GenEG scheme.
The adversary B uses the adversary A as a black box. It intercepts the queries of the
adversary A to the signing oracle and process them by itself using its own signing oracle in
the following way.

Receiving the query m, adversary B forwards m to its own oracle and receives the
signature (r′, s′). Then it reconstructs R′ point from the veri�cation algorithm and selects
rnd value according to the distribution D. After that, it calculates the R value using L−1

1

function and s value using L−1
2 function. It returns as an answer the signature (r′, s′) and

the view = (R, s, rnd).
Note that B generates exactly the same distribution on signature values since GenEG-BSL

scheme is the blind version of the GenEG scheme. The rnd value is chosen as in the honest
execution of blind signature protocol, R and s values are also computed as in the honest
execution, since L1 and L2 functions are unambiguously invertible.

When A returns a forgery, B translates it to its own challenger and stops. Obviously,
if A wins, then B wins, whence follows the statement of the theorem.

Remark 6. The same result may be formulated for the Schnorr signature scheme and
its blind version de�ned in [5]. The proof of the theorem is conducted in the same way.

5. GOST-based blind signature scheme
We propose to use the concrete blind signature scheme in case of building the protection

for GOST signature scheme [4]. This scheme was proposed in [6] in 1994 and is commonly
referred to as the Camenisch scheme. We provide the de�nition of this scheme in terms of
elliptic group notation.

The key generation algorithm is the same as in the general ElGamal signature scheme
and assumes picking secret key d uniformly from Z∗

q and de�ning public key Q as dP .
The signing protocol is de�ned in Fig. 2. The veri�cation procedure for the message m and
the signature (r′, s′) assumes checking r′ ̸= 0 and checking the equality r′ = R′.x mod q,
where R′ = (e′)−1 (s′P − r′Q), e′ is equal to H(m), if H(m) ̸= 0, and to 1 otherwise. Note
that the signing protocol in Fig. 2 is de�ned for the case of using the elliptic curves of the
prime order. Nevertheless, it can be slightly modi�ed by adding the additional checks for
use with non-prime order curves, e.g. with Edwards curves.

This scheme provides perfect blindness [6, Theorem 2], but does not provide
unforgeability in the strong sense. In [11] it was shown that it is vulnerable to the ROS-
style attack, which is possible if the adversary acting as a User is given the opportunity
to open ℓ ⩾ ⌈log q⌉ parallel sessions of signing protocol. However, providing such strong
unforgeability is not required for our application, our purpose is the honest-but-curious
unforgeability.

Camenisch scheme is the particular case of the GenEG-BSL scheme de�ned in Section 4.2.
Indeed, the distribution D in this scheme is a uniform distribution on Z∗

q × Z∗
q that is

independent on R; L(P,Q,m)
1 and L(P,Q,m)

2 are de�ned as follows:

L(P,Q,m)
1 (R, (α, β)) = αR + βP, L(P,Q,m)

2 (s, (α, β), R) = sr′r−1 + βe′,

where e′ = H(m), r = R.x mod q, r′ = (αR + βP ).x mod q. These functions are linear
by R and s values respectively for all possible rnd values. Moreover, zero r and e values
are excluded by the corresponding checks on the Signer side as in the GOST signature
scheme. Therefore, the result of Theorem 2 is applied to the Camenisch scheme, which
means that it provides honest-but-curious unforgeability under the assumption that GOST



62 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

Signer(d) User(Q,m)

rand1: k
U←− Z∗

q

R← kP

r ← R.x mod q

if r = 0 : goto rand1 R if R = O : return ⊥

r ← R.x mod q

if r = 0 : return ⊥
rand2 : α, β

U←− Z∗
q

R′ ← αR+ βP

if R′ = O : goto rand2

r′ ← R′.x mod q

if r′ = 0 : goto rand2

e′ ← H(m)

if e′ = 0: e′ ← 1

if e = 0: return 0 e e← αe′r(r′)−1

s← ke+ dr

return 1 s if sP ̸= eR+ rQ : return ⊥

s′ ← sr′r−1 + βe′

σ ← (r′, s′)

return σ

Fig. 2. The signing protocol in Camenisch scheme

scheme provides unforgeability. The security of the Camenisch scheme in the sUF-CMA
model, in its turn, directly follows from the honest-but-curious unforgeability.

Thus, the Camenisch scheme is a blind version of the GOST scheme and can be applied
in the systems realizing the GOST signature as the protection against backdoors in smart
cards. It provides the security against external adversary and adversary with agent only
by the security of the GOST signature scheme. Note that such solution, in contrast to the
solution from [2], does not need any additional assumptions about the smart card such
as correct implementation of low-level arithmetic operations and the absence of failures.
Moreover, it requires less computations on the smart card side.

6. Conclusion
The paper addressed the security issues that arise in signing systems when the smart

card used for key storage and signing is believed to contain backdoors. A novel approach
based on blind signature schemes to protect against backdoors has been proposed. It has
been proven that weak versions of standard security properties (honest-signer blindness
and honest-but-curious unforgeability) of blind signature scheme imply security against
backdoors in smart cards.



Blind signature as a shield against backdoors in smart cards 63

Moreover, the concrete solution in case of using the GOST signature scheme has been
proposed. This solution is the well known Camenisch blind signature scheme that provides
perfect blindness. It was shown that the target security is held under the sole assumption
that the GOST signature scheme provides standard security, i.e., is unforgeable under
chosen message attack.

One of the most interesting directions for future research is the security analysis of our
solution with regard to a stronger external adversary � an active adversary that has an
access to a smart card signing API (e.g. in a case when the smart card is not protected
with a password or is connected to a malicious terminal).

This case corresponds to the standard unforgeability notion of the blind signatures,
where the user side is treated as a fully active adversary. There are two types of
unforgeability notion di�ering on whether the adversary can open sessions in parallel or
not. In our application scenario, where the signer side is executed by low resource device,
it is fairly enough to consider the adversary's capability to open sessions sequentially only
(this refers to the SEQ-OMUF notion [14]).

Note that the SEQ-OMUF-security of the Camenish scheme is still an open question
(as well as for the most ElGamal blind signature schemes), although there have been some
positive results [14] for the Schnorr blind signature scheme.

REFERENCES
1. Alekseev E.K., Akhmetzyanova L.R., Oshkin I. B., and Smyshlyaev S.V. Obzor uyazvimostey

nekotorykh protokolov vyrabotki obshchego klyucha s autenti�katsiey na osnove parolya
i printsipy postroeniya protokola SESPAKE [A review of the password authenticated key
exchange protocols vulnerabilities and principles of the SESPAKE protocol construction].
Matematicheskie Voprosy Kriptogra�i, 2016, vol. 7, iss. 4, pp. 7�28. (in Russian)

2. Alekseev E.K., Akhmetzyanova L.R., Bozhko A.A., and Smyshlyaev S.V. Bezopasnaya
realizatsiya elektronnoy podpisi s ispol'zovaniem slabodoverennogo vychislitelya [Secure
implementation of digital signature using semi-trusted computational core]. Matematicheskie
Voprosy Kriptogra�i, 2021, vol. 12, iss. 4, pp. 5�23. (in Russian)

3. Wang Y. Password protected smart card and memory stick authentication against o�-line
dictionary attacks. D. Critzalis, S. Furnell, and M. Theoharidou (eds.), Information Security
and Privacy Research, Berlin, Heidelberg, Springer, 2012, pp. 489�500.

4. GOST R 34.10-2012. Informatsionnaya tekhnologiya. Kriptogra�cheskaya zashchita
informatsii. Protsessy formirovaniya i proverki elektronnoy tsifrovoy podpisi. [GOST R 34.10-
2012. Information Technology. Cryptographic Data Security. Signature and Veri�cation
Processes of Electronic Digital Signature]. Moscow, Standartinform Publ., 2012. (in Russian)

5. Chaum D. Blind signatures for untraceable payments. D. Chaum, R. L. Rivest, and
A.T. Sherman (eds.) Advances in Cryptology. Boston, MA, Springer, 1983. pp. 199�203.

6. Camenisch J. L., Piveteau J.M., and Stadler M.A. Blind signatures based on the discrete
logarithm problem. LNCS, 1995, vol. 950, pp. 428�432.

7. Bellare M. and Rogaway P. The security of triple encryption and a framework for code-based
game-playing proofs. LNCS, 2006, vol. 4004, pp. 409�426.

8. Tessaro S. and Zhu C. Short pairing-free blind signatures with exponential security. LNCS,
2022, vol. 13276, pp. 782�811.

9. Juels A., Luby M., and Ostrovsky R. Security of blind digital signatures. LNCS, 1997,
vol. 1294, pp. 150�164.

10. Fischlin M. and Mittelbach A. An Overview of the Hybrid Argument. Cryptology ePrint
Archive, paper 2021/088, https://eprint.iacr.org/2021/088, 2021.



64 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

11. Akhmetzyanova L., Alekseev E., Babueva A., and Smyshlyaev S. On the (im)possibility of
ElGamal blind signatures. Cryptology ePrint Archive, paper 2022/1128, https://eprint.
iacr.org/2022/1128, 2022.

12. Harn L. and Xu Y. Design of generalised ElGamal type digital signature schemes based on
discrete logarithm. Electronics Letters, 1994, vol. 30, pp. 2025�2026.

13. Fersch M. The provable security of Elgamal-type signature schemes. Doctoral Thesis, Ruhr-
Universit�at Bochum, 2018.

14. Kastner J., Loss J., and Xu J. On pairing-free blind signature schemes in the algebraic group
model. LNCS, 2022, vol. 13178, pp. 468�497.


