2024

Математика и механика

Nº 87

Tomsk State University Journal of Mathematics and Mechanics

МАТЕМАТИКА

MATHEMATICS

Научная статья УДК 515.1

doi: 10.17223/19988621/87/1

MSC: 54D20

О свойствах пространств $C_p(X)$, близких к свойству Фреше-Урысона

Олег Олегович Бадмаев

Томский государственный университет, Томск, Россия, badmaev1995@bk.ru

Аннотация. По аналогии со свойством Фреше—Урысона введены в рассмотрение свойства n-Фреше—Урысона и ω -Фреше—Урысона пространств $C_p(X)$. Изучена связь этих свойств со свойствами γ'_n и γ'_ω пространства X. В частности, установлено, что свойство γ'_ω пространства X равносильно свойству ω -Фреше—Урысона пространства $C_p(X)$, а также что из свойства n-Фреше—Урысона следует γ'_n .

Ключевые слова: ω -покрытие, γ -свойство, свойство Герлича—Надя, свойство Фреше—Урысона, γ_k' -свойство, свойство Линделефа, свойство ω -Фреше—Урысона, свойство n-Фреше—Урысона

Благодарности: Автор благодарен А.В. Осипову за интерес к этой работе и полезные обсуждения.

Для цитирования: Бадмаев О.О. О свойствах пространств $C_p(X)$, близких к свойству Фреше–Урысона // Вестник Томского государственного университета. Математика и механика. 2024. № 87. С. 5–10. doi: 10.17223/19988621/87/1

Original article

About the properties of spaces $C_p(X)$ close to Frechet–Urysohn property

Oleg O. Badmaev

Tomsk State University, Tomsk, Russian Federation, badmaev1995@bk.ru

Abstract. This paper deals with relationships between topological properties of Tykhonoff spaces X and properties of their functional spaces $C_p(X)$. Tykhonoff spaces X are supposed to have the property γ'_k or γ'_{ω} , which are defined in the terms of k-saturated (respectively, saturated) ω -covers. We define for an arbitrary integer n the n-Fréchet–Urysohn property and ω -Fréchet–Urysohn property of the space $C_p(X)$ in such a manner that 1-Fréchet–Urysohn is the known Fréchet–Urysohn property, n-Fréchet–Urysohn implies both (n+1)-Fréchet–Urysohn, and ω -Fréchet–Urysohn property. We prove that the γ'_{ω} - property of X is equivalent to ω -Fréchet–Urysohn property of $C_p(X)$ and, consequently, X is Lindelöf if and only if $C_p(X)$ is ω -Fréchet–Urysohn. We also prove that for each integer n the property γ'_n of X follows from the n-Fréchet–Urysohn property of $C_p(X)$, as well as the inverse slightly weaker theorem.

Keywords: ω-cover, γ-property, Gerlits–Nagy property, Fréchet Urysohn property, γ'_k -property, Lindelöf property, ω-Fréchet–Urysohn, n-Fréchet–Urysohn

Acknowledgments: The author is grateful to Alexander V. Osipov for his interest in this work and useful discussions.

For citation: Badmaev, O.O. (2024) About the properties of spaces $C_p(X)$ close to Frechet–Urysohn property. *Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics.* 87. pp. 5–10. doi: 10.17223/19988621/87/1

Введение

В работе [1] для тихоновских пространств введены в рассмотрение топологические свойства γ_n' ($n=1,2,\ldots$) и γ_ω' , последовательно (с ростом номера n) ослабляющие классическое γ -свойство. В данной статье устанавливается связь свойств γ_n' , γ_ω' пространства X с некоторыми свойствами пространства непрерывных функций $C_p(X)$, аналогичными свойству Фреше–Урысона.

Все топологические пространства предполагаются тихоновскими. Все рассматриваемые покрытия нетривиальны, т.е. не содержат всё топологическое пространство как элемент. Запись $n \in \omega$ означает, что n — натуральное число.

Следующие два понятия широко известны (см. напр.: [2. Гл. II, § 3])

Определение 1. Скажем, что последовательность подмножеств $\eta = \{A_n\}_{n \in \omega}$ пространства X сходится к X (пишем $A_n \xrightarrow[n \to \infty]{} X$ или $\eta \to X$), если произвольная точка $x \in X$ принадлежит всем членам последовательности η , начиная с некоторого (зависящего от x) номера.

Определение 2. Семейство η подмножеств пространства X называется ω -покрытием этого пространства, если для каждого конечного множества $K \subset X$ существует $U \in \eta$ такое, что $K \subset U$.

Приведем также для удобства читателя определения понятий, введенных в [1] и активно используемых в дальнейшем.

Определение 3. Пусть η — произвольное семейство открытых подмножеств пространства X. Скажем, что η' является n-насыщенным семейством для η , если $\eta' = \{\bigcup_{i \le m} U_i : U_i \in \eta, \, m \le n\}$. Скажем, что η' является насыщенным семейством для η , если $\eta' = \{\bigcup_{i \le m} U_i : U_i \in \eta, \, m \in \omega\}$.

Очевидно, что если $\eta - \omega$ -покрытие пространства X, то его n-насыщенное (насыщенное) семейство η' также является ω -покрытием X для любого $n \in \omega$.

Определение 5. Будем говорить, что в топологическом пространстве X выполнено свойство γ'_n , если для любого открытого ω-покрытия η пространств X, в его n-насыщенном семействе η' найдется последовательность $\zeta = \{B_k\}_{k \in \omega}$ такая, что $B_k \xrightarrow[k \to \infty]{} X$. При этом само пространство X будем называть γ'_n -пространством.

Определение 6. Будем говорить, что в топологическом пространстве X выполнено свойство γ_{ω}' , если для любого открытого ω-покрытия η пространства X, в его насыщенном семействе η' найдется последовательность $\zeta = \{B_k\}_{k \in \omega}$ такая, что $B_k \to X$. При этом само пространство X будем называть γ_{ω}' -пространством.

Обратимся теперь к пространствам непрерывных функций.

Определение 7. Скажем, что в пространстве $C_p(X)$ выполнено свойство ω -Фреше–Урысона, если для любого подмножества A из $C_p(X)$ и для любой функции $f \in \overline{A}$ существует последовательность $A' = \left\{A_k\right\}_{k \in \omega}$, состоящая из конечных подмножеств в A такая, что для любой окрестности $W = W(f, K, \varepsilon) \subset C_p(X)$ существует такое натуральное число $n_0 = n_0(\varepsilon)$, что для всех $n \geq n_0$ и для каждой точки $x \in K$ найдется функция $g_x \in A_n$ такая, что $|g_x(x) - f(x)| < \varepsilon$.

В [1] получена следующая характеризация свойства Линделёфа пространства X: **Теорема 8** [1]. Пространство X линделёфово тогда и только тогда, когда X является γ'_{∞} -пространством.

В то же время А.В. Осипов охарактеризовал свойство Линделёфа пространства X некоторым свойством пространства $C_p(X)$. Напомним, что множество $A\subseteq C_p(X)$ называется n-плотным в $C_p(X)$, если $A\cap W\neq\varnothing$ для каждой стандартной окрестности $W=W(f,x_1,\ldots,x_m,\epsilon)$ в $C_p(X)$, где $m\le n$.

Теорема 9 [3]. Пространство X линделёфово тогда и только тогда, когда каждое 1-плотное множество в $C_p(X)$ содержит счетное 1-плотное подмножество.

Установим теперь один из основных результатов данной работы.

Теорема 10. Пусть X является тихоновским пространством, тогда следующие условия эквивалентны:

- (1) в пространстве X выполнено свойство γ'_{ω} ;
- (2) в пространстве $C_p(X)$ выполнено свойство ω -Фреше–Урысона.

Доказательство. (2) \Rightarrow (1) Пусть η является ω -покрытием пространства X. Через η обозначим насыщенное семейство для η . Для каждого $U \in \eta$ построим

семейство
$$A_U=\bigcup_{i=1}^k A_{W_i}$$
 , где $A_{W_i}=\left\{f\in C_p(X)\,|\,\overline{f^{-1}(\mathbb{R}\setminus\{0\})}\subset W_i
ight\}$, $U=W_1\bigcup\ldots\bigcup W_k$

и $W_i\in \mathfrak{h}$ для всех $i=\overline{1,k}$. Положим $A=\cup \left\{A_U\mid U\in \mathfrak{h}'\right\}$, тогда $f_0\in \overline{A}$, где $f_0\equiv 1$. Так как выполнено условие (2), то существует последовательность $A'=\left(A_i\right)_{i\in \omega}$ конечных подмножеств $A_i\subset C_p(X)$, такая как в определении 7. Для каждого $k\in \omega$

и каждого $f\in A_k$ зафиксируем $W_f\in \mathfrak{\eta}$ такое, что $\overline{f^{-1}(\mathbb{R}\setminus\{0\})}\subset W_f$, и положим $U_k=\cup \left\{W_f\mid f\in A_k\right\}$. Ясно, что $U_k\in \mathfrak{\eta}'$.

Покажем, что последовательность $U=\left\{U_k\right\}_{k\in\omega}$ является искомой. Пусть $x\in X$, тогда существует такое $n\in\omega$, что $A_k\cap W(f_0,x,1)\neq\varnothing$ для всех $k\geq n$. Это означает, что существует функция $f\in A_k$, для которой f(x)>0, следовательно, $x\in f^{-1}(\mathbb{R}\setminus\{0\})\subset W_f\subset U_k$. Поэтому $x\in U_k$ для всех $k\geq n$, что означает $U_k\to X$.

 $(1) \Rightarrow (2) \ \text{Рассмотрим произвольное подмножество} \ A \subset C_p(X) \ \text{с предельной}$ функцией f_0 . Обозначим через η_n семейство прообразов U_g интервала $I_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ относительно функций вида $\left|f_0-g\right|$, где $g \in A$. Покажем, что η_n является ω -покрытием пространства X. Пусть K – произвольное конечное подмножество в X. Так как $f_0 \in \overline{A}$, то существует функция $g \in A \cap W\left(f_0, K, \frac{1}{n}\right)$, а значит $\left|f_0-g\right|(x) < \frac{1}{n}$ при $x \in K$. Таким образом, $K \subset \left(\left|f_0-g\right|\right)^{-1}(I_n)$.

Для каждого $n\in \omega$ обозначим η'_n насыщенное семейство для η_n . Так как в пространстве X выполнено свойство γ'_{ω} , то для каждого $n\in \omega$ существует последовательность $\zeta_n\subset \eta'_n$ такая, что $\zeta_n=\left(W_n^j\right)_{j\in\omega}$ и $\zeta_n\to X$. Пусть $H=\left(H_n\right)_{n\in\omega}$, где $H_n=\bigcup_{i+j=n+1}W_i^j$. Рассмотрим $H_1=W_1^1=U_{g_1}\bigcup\ldots\bigcup U_{g_k}$, положим $A_1=\left(g_1,\ldots,g_k\right)$.

Аналогично рассмотрим множество

$$H_2 = W_2^1 \cup W_1^2 = (U_{g_1} \cup ... \cup U_{g_k}) \cup (U_{f_1} \cup ... \cup U_{f_k})$$

и положим $A_2 = (g_1, \dots, g_k, f_1, \dots, f_h)$. Продолжая процесс построения множеств A_n по множествам H_n , получим последовательность $A' = (A_n)_{n=0}$.

Покажем, что последовательность A' искомая. Рассмотрим произвольную окрестность $W=W(f_0,K,\epsilon)$ функции f_0 , и пусть $x\in K$. Выберем $n\in \omega$ так, что $\frac{1}{n}<\epsilon$. Для последовательности ζ_n существует $k'\in \omega$ такое, что для всех $k\geq k'$ выполнено $x\in W_n^k$. Тогда при всех $l\geq k'+n+1$ имеем $x\in H_l$. Следовательно, существует $f\in A_l$ такая, что $\left|f_0(x)-f(x)\right|<\frac{1}{n}<\epsilon$. \square

Таким образом, из теорем 8 и 10 мы получаем еще одну характеризацию свойства Линделёфа в дополнение к теореме 9.

Теорема 11. Пусть X — тихоновское пространство, тогда следующие условия эквивалентны:

- (1) пространство X линделёфово;
- (2) в пространстве $C_p(X)$ выполнено свойство ω -Фреше–Урысона.

Комбинируя теоремы 9 и 10, получаем:

Следствие 12. Пусть X — тихоновское пространство, тогда следующие условия эквивалентны:

- (1) в пространстве X выполнено свойство γ_ω' ;
- (2) каждое 1-плотное множество в $C_p(X)$ содержит счетное 1-плотное подмножество.

Далее мы рассматриваем свойства γ'_n и их связи со свойствами пространства $C_p(X)$.

Определение 13. Скажем, что в пространстве $C_p(X)$ выполнено свойство n-Фреше–Урысона, если для любого подмножества A из $C_p(X)$ и для любой функции $f \in \overline{A}$ существует последовательность $A' = \left(A_m\right)_{m \in \omega}$ состоящая из конечных подмножеств A мощности не более n такая, что для любой окрестности $W = W(f, K, \varepsilon) \subset C_p(X)$ существует такое натуральное число $k_0 = k_0(\varepsilon)$, что для всех $k \geq k_0$ и для каждой точки $x \in K$ найдется функция $g_x \in A_k$, такая что $|g_x(x) - f(x)| < \varepsilon$.

Определение 14. Скажем, что в пространстве X выполнено свойство γ'_{sn} , если для любой последовательности $\left\{\eta_k\right\}_{k\in\omega}$, состоящей из ω -покрытий пространства X, можно для всех $k\in\omega$ так выбрать $U_k\in\eta'_k$, где η'_k-n -насыщенное семейство для η_k , что $U_k\underset{k\to\infty}{\longrightarrow} X$.

Несложно увидеть, что из свойства γ'_{sn} следует свойство γ'_n для всех $n\in\omega$.

Следующие утверждения напрямую вытекают из определений 7 и 13.

Предложение 15. (а) Свойство 1-Фреше-Урысона эквивалентно свойству Фреше-Урысона;

- (б) Для любого $n \in \omega$ из свойства n-Фреше–Урысона следует свойство (n+1)-Фреше–Урысона.
- (в) Для любого $n \in \omega$ из свойства n-Фреше–Урысона следует свойство ω -Фреше–Урысона.

Ниже устанавливается, как свойства n-Фреше–Урысона связаны со свойствами γ'_n и γ'_{sn} .

Теорема 16. Пусть X — тихоновское пространство, тогда:

- (1) если в $C_p(X)$ выполнено свойство n-Фреше–Урысона, то в X выполнено свойство γ_n' ;
- (2) если в X выполнено свойство γ'_{sn} , то в $C_p(X)$ выполнено свойство n-Фреше–Урысона.

Доказательство. (2) Рассмотрим произвольное подмножество A из $C_p(X)$ с предельной функцией f_0 . Обозначим через η_k семейство прообразов U_g интервала $I_k = \left(-\frac{1}{k}, \frac{1}{k}\right)$ относительно функций вида $\left|f_0 - g\right|$, где $g \in A$. Для каждого $k \in \omega$ обозначим η_k' n-насыщенное семейство для η_k . По условию для каждого $k \in \omega$ существует $U_k = U_{g_1} \cup \ldots \cup U_{g_n} \in \eta_k'$ такое, что последовательность $\xi = \left(U_k\right)_{k \in \omega}$ сходится к X. Положим $A_k = \left\{g_1, \ldots, g_n\right\}$.

Покажем, что последовательность $A' = \left(A_k\right)_{k \in \omega}$ является искомой. Зафиксируем произвольную окрестность $W = W(f_0, x, \varepsilon)$ функции f_0 и точку $x \in K$. Так как $U_k \underset{k \to \infty}{\longrightarrow} X$, то существует $k_0 \in \omega$ такое, что для всех $k \geq k_0$ выполнено $K \subset U_k = W_{g_k^k} \cup \ldots \cup W_{g_n^k}$ и $\frac{1}{k} < \varepsilon$. Значит, для некоторого $j \in \{1, \ldots, n\}$ имеем $f_0(x) - g_j^k(x) \in I_k$, т.е. функция g_n^k — искомая.

(1) Данная импликация доказывается аналогично пункту (2) \Rightarrow (1) теоремы 10. \Box Известно, что свойства γ'_{s1} и γ'_1 эквивалентны [2. Теорема II.3.2], поэтому в связи с теоремой 16 представляет интерес следующий вопрос:

Вопрос 17. Верно ли, что из свойства γ'_n следует свойство γ'_{sn} при n > 1?

Еще один важный вопрос поставлен А.В. Осиповым:

Вопрос 18. Совпадают ли свойства Гуревича и γ'_n при n > 1?

Список источников

- Бадмаев О.О. Об аддитивной модификации γ-свойства // Вестник Томского государственного университета. Математика и механика. 2021. № 74. С. 5–11. doi: 10.17223/ 19988621/74/1
- 2. Архангельский А.В. Топологические пространства функций. М.: Изд-во МГУ, 1989. 222 с.
- Osipov A.V. Projective versions of the properties in the Scheepers Diagram // Topology and its Applications. 2020. V. 278. Art. 107232. doi: 10.1016/j.topol.2020.107232

References

- Badmaev O.O. (2021) Ob additivnoy modifikatsii γ-svoystva [On additive modification of the γ-property]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 74. pp. 5–11. DOI: 10.17223/19988621.
- 2. Arkhangel'skij A.V. (1992) Topological function spaces. Mathematics and its applications, Soviet Series, vol. 78. Dordrecht: Kluwer Academic.
- Osipov A.V. (2020) Projective versions of the properties in the Scheepers Diagram, *Topology and its Applications*. 278. 107232. DOI: 10.1016/j.topol.2020.107232.

Сведения об авторе:

Бадмаев Олег Олегович — аспирант кафедры математического анализа и теории функций Томского государственного университета, Томск, Россия. E-mail: badmaev1995@bk.ru

Information about the author:

Badmaev Oleg O. (PhD Student of the Department of Mathematical Analysis and Theory of Functions, Tomsk State University, Tomsk, Russian Federation). E-mail: badmaev1995@bk.ru

Статья поступила в редакцию 21.07.2023; принята к публикации 12.02.2024

The article was submitted 21.07.2023; accepted for publication 12.02.2024