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Hayunas cratbs

Kpyuenue PeiinemeiicTepa 111 A10MOJTHEHH 3aLleIVICHUSA
B TPEXMEPHOM Tope

Bao Xb1y BbloHT
Tomckuil 20cydapemeennvlit yuusepcumem, Tomck, Poccust, vuonghuubao@live.com

AnHoTanms. Kiaccuueckast Teopust y3/oB, U3y4as 3a/laudl BJIOXKEHHUH OKPY>KHOCTU B TpeX-
MepHyIo cepy, OblTa paciupena 1o 6oree mHpokoit Teopun. Hampumep, Teopuro Bup-
TYaJIbHBIX Y3JIOB MOXXHO pacCMaTpuBaTh KaK TCOPHIO Y3JIOB Ha YTOJIIICHHBIX 3aMKHYTBIX
OPHEHTHPOBAHHBIX TOBEPXHOCTSIX. T€OpHs y31I0B B APYIHX TPEXMEPHBIX MHOTOOOPA3MsIX,
TaKUX KaK MPOEKTUBHOE U JIMH30BOE MPOCTPAHCTBO, BOIIOTHIIACH B )KU3HB B IOCIIEIHEE
necAaTHIeTHe. ABTOP HCCIE0Ball ANarpaMMHBIA MTOJXOA K U3YYEHHIO y3JI0B B TpeXMep-
HOM Tope. B pabGoTe mpe/ioskeH anropuT™ BEIYHCIICHUS] CKPYYEHHBIX MOINHOMOB AJIeK-
caHziepa y3JIOB U 3allellJIeHHH B TpexMepHoM Tope. Jloka3aHo, uto KpyueHue Peiinemeii-
cTepa JOMNOJHEHHS K 3alleIUIEHHIO U €r0 CKPYYEHHBIN MOJMHOM AJieKcaHJepa paBHBIL.
CBs13p MEXXTy TOJIMHOMOM AJIeKCaHzepa y3/la ¥ MHBapHAaHTOM KpydeHHs Pefinemeiicre-
pa, @panna u ne Pama g nononHeHus y3ia Oblia Brepsble 3ameueHa MumHopoM. Kak
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CJIEJICTBUE 3TOI'0 COOTHOUIEHUS! MUIIHOpP Aaj elle OJHO JI0Ka3aTelbCTBO CUMMETPUU IO-
nuHOMa AJiekcaHaepa. MHIITHOp MPUMEHII 3TOT Pe3yNIbTaT K TEOPHH Y3JIOB, pacCMaTpH-
Basl CIIydail KJIaCCHYECKOro y3Jia B TPEXMEpHOIl cepe, T.e. JOIOIHEHHE y3Jia HMEeT Io-
MOJIOTHIO OKpPY>KHOCTH. OKa3bIBaeTcs, CYIIECTBYIOT aHAJIIOTHYHBIE OTHOIICHHS MEXIY
KkpyueHueM Peiinemeiictepa u cKpy4eHHBIM NMOJIMHOMOM AJleKcaHaepa Ui ciydas AOMoj-
HEHHS y371a B IPYTUX MPOCTPAaHCTBAX, OTIMYHBIX OT TPEXMEPHOH cdepsl, Korna mneppas
rpymnna TOMOJIOTHH COAEPXKUT Takxke KpydeHue. TeXHOJIOrHs MOJyuyeHHs SIBHBIX OTHO-
mIeHui Obula co3maHa METHOPOM, HCHOJB3YS TEOPHIO MPOCTHIX romoTommid aimst CW-
KOMIUIEKCOB M cBoOomHOe nubdepeHunanbHoe ucuucienne ®okxca. OHU JOMyCKaroOT
KIeTouHyto ctpykTypy CW mist ys3nma, cBsi3aHHYIO C HaHHBIM TpeAcTaBlicHHEM (yHIa-
MEHTaJIbHOW T'PYyMIIBl, TaK YTO PAaHUYHBIC ONEPATOPhl MOJIYYarOTCsA IOCPEICTBOM CBO-
GonubIx mpou3BoaHbIXx Pokca. Takum 00pa3oM, MOKa3aHO, YTO ITOT METOJ uMeeT IPdeKT
TaKOKe JUIS CITydas y37I0B U 3alleTUICHHI B TPEXMEPHOM TOpE.

KitroueBble cjioBa: y37bl, 3alCIUICHUS, TPEXMEPHBIA TOpP, CKPYUYECHHBIH HOMUHOM AJIEeK-
cannepa, kpydenue Peitnemeiicrepa, CW-komruieke, ucurcienue ®okca

Baarogapuoctu: I GnarogapeH aHOHHMHOMY PCLCH3CHTY 3a IOJIC3HBIC 3aMEYaHMS,
KOMMEHTapuu ¥ KOppekTypy. PaGora BbImONHEHA mpH MOMIepXKKe MHHOOpHAYKH
Poccun (morosop Ne 075-02-2023-943).
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B TpexmepHoM Tope // BecTHrnk TOMCKOTO rOCYIapCTBEHHOTO YHUBEpCUTEeTa. MaTeMaTika
u Mexanuka. 2024. Ne 87. C. 11-21. doi: 10.17223/19988621/87/2

1. Introduction

Recently, the classical knot theory has been extended to a wider theory, such as the
virtual knot theory that can be considered as the theory of knots in thickened closed
oriented surfaces. The theory of knots in other 3-manifolds, such as the projective
space and the lens space, had come to life in the last decade. In a forthcoming paper [1]
the author investigated the diagrammatic approach to the study of knots in a three-
dimensional torus. In that work, | establish an algorithm for computing twisted Alexander
polynomials of knots and links in a three-dimensional torus. In this paper, | prove that
the Reidemeister torsion of the link complement and its twisted Alexander polynomial
are equal.

The relation between the Alexander polynomial of a knot and the torsion invariant
of Reidemeister, Franz, and de Rham for knot complement was first noticed by Milnor
(see [2]). As a consequence of the relation, Milnor gave another proof for symmetry of
the Alexander polynomial [3]. Milnor applied the result to the knot theory, considering
the case of classical knot i.e., the knot complement has the homology of the circle.
It turns out that there are similar relations between Reidemeister torsion and twisted
Alexander polynomial for the case of knot complement in other spaces, rather than
three-dimensional sphere when the homology group contains also torsion (see [4, 5]).
The technology to get explicit relations as Milnor had created making use of the simple
homotopy theory for CW-complexes and Fox free differential calculus. Those ensure a
CW structure for the knot complement associated with a presentation of the fundamental
group, so that the boundary maps are obtained by free derivatives. Thus, in Section 5
I show that the method works out fine also for the case of knots and links in a three-
dimensional torus.
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1. The first homology group of link complement in T3

A link L with n components in a three-dimensional torus T is an embedding of
a disjoint union of n circles S* into three-dimensional torus. If n = 1, the link is called
knot. Two links are considered equivalent if they are ambient isotopic, that is, if there
exists a continuous deformation of T2 which takes one link to the other.

A diagram of link in T2 is a regular plane graph represented on a square (see [1]),
which has nodes of 4-valent (with extra structure representing the crossing in the link)
and 2-valent nodes (vertices with poles). It is said that two such diagrams are equiva-
lent if there is a sequence of generalized Reidemeister moves (see Fig. 1) and vertex
moves indicated in Fig. 2 taking one diagram to the other. These moves are performed
locally on the regular plane graph (with extra structure) that constitutes the link diagram.

\ Switching vertex move

SRR

R4, R5 moving through boundary Fobidden move

Fig. 1. Generalized Reidemeister moves Fig. 2. Vertex moves

| proposed an algorithm to get a presentation of the fundamental group of link com-
plement in [1] from a diagram of a link as defined above. Having a diagram of a knot

K in a three-dimensional torus, we can easily define its homology class [K]e Z?
of K. Also having a presentation of the fundamental group of link complement, the
abelianization of the fundamental group m, (T>\L)/[m (T*\L),m,(T*\L)] is its first
homology group H,(T*\L). Thus, I recall the following theorem from [1] about the
first homology group of link complement in T2,
Theorem 1 [1]. Let L be a link in 3-torus T*, with components L, ..., L, . For each
1=1..,0,let(5,0,&)=[L]e 73 = H1(|'3) . Then
7 ® Z,, if o=1
H,(T\L) 272’ ®7 &7, if w=2
1°®L, OL, ®L,, if ©23.
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where p=gcd(3,,0,,&,); « and A are the invariant factor of the matrix M,; {,n and 0
are the invariant factor of the matrix M, .

o 9, & 6, .. 9,
M,=|oc, o, M,=|oc, o, .. o,
él éZ él 222 é(u

Now we see that the first homology group might contain torsion part. We say that
alink LeT? is nontorsion if torsion part Tors(H,(T*\L)) is zero, otherwise we say
that L is torsion. A local link or affine link is a link that can be isotoped so that it is
contained inside a 3-ball in T>. A local link is clearly nontorsion.

2. Twisted Alexander polynomial

Given a presentation of the group of a link, one may calculate its Alexander poly-
nomial using Fox free calculus [6]. We recall the following definition of Alexander
polynomials (compare [5, 7-9]). Let

P=(X, X, | s )
be a presentation of a group G and denote by H =G/[G,G] its abelianization. Let
F =(x,....x,) be the corresponding free group. We apply the chain of maps

0

ZF —2 5 7F — 157G —%>7H,

0 . . . . .

where x denotes the Fox differential, y is the quotient map by relations r,,...,r, and
X

o is the abelianization map. The Alexander—Fox matrix of the presentation P is

the matrix A=[a ;], where aij:oc(y(j—ri)) for i=1..,m andj=1..n. For
, : "
]

k=1.., min{m-1,n-1}, the k-th elementary ideal E, (P) is the ideal of ZH , gene-
rated by the determinants of all the (n—k) minors of A. The first elementary ideal
E,(P) is the ideal of ZH , generated by the determinants of the all the (n—1) minors
of A.

Definition 1. Let L < S® be a link, and let E, (P) be the k -th elementary ideal ob-
tained from a presentation P of fundamental group =, (S*\L,*). Then the k -th link
polynomial A, (L) is the generator of the smallest principal ideal containing E, (P).
The Alexander polynomial of L, denoted by A(L), is the first link polynomial of L.

For a classical link L in S*, the abelianization of m,(S°\L,*) is the free abelian

group, whose generators correspond to the components of L. For a link in a 3-torus T?,
the abelianization of its link group may also contain torsion, as we know by Theorem 1.
In this case, the Alexander polynomial is not defined, we need the notion of twisted
Alexander polynomials. Thus, we recall the definition of twisted Alexander polyno-
mials.

14
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Let G be a group with a finite presentation P and abelianization H =G /[G,G] and
denote K =H/Tors(H). Then every representation ¢:Tors(H)—C =C\{0}
determines a twisted Alexander polynomial A’(P) as follows. Choosing a splitting
H =Tors(H)xK, ¢ induces a ring homomorphism ¢:Z[H]— C[K] sending
(f,g9) eTors(H)xK to ¢(f)g. The ring homomorphism is called twisted homomor-
phism. Thus, we apply the chain of maps

0

ZIF1—2— Z[F]——Z[G] —— Z[H]—> C[K]

and obtain the ¢ -twisted Alexander matrix A® = {d)((x(y(aa—ri)))} . The twisted Alexan-
X .
]

der polynomial is then defined by A*(P) = gcd(¢(E, (P))) -

Definition 2. Let LcT? be a link in the three-dimensional torus T*. For any
presentation P of the link group =, (T*\L,*), we may define the following.

The Alexander polynomial of L, denoted by A(L), is the generator of the smallest
principal ideal containing E,(P).

For any homomorphism ¢:Tors(H,(T*\L)) — C", the ¢ -twisted Alexander poly-
nomial of L is A®(L) = gcd (¢(E,(P))) .

We know from Theorem 1 that the torsion subgroup of H,(T*\L)) is the group
L,®%L,®ZL, in general. So the image of the group homomorphism

¢:Tors(H,(T*\L)) > C" is contained in the cyclic group, generated by Q, the
d -root of unity, where d is Icm(¢,n,0). The ¢ -twisted Alexander polynomial
A*(L) € Z[Q][K] is defined up to multiplication by a unit.

3. Reidemeister torsion of cell complex

In this section | recall the definition of Reidemeister torsion following [4] (for fur-
ther references see Turaev [9, 10], Milnor [11]).

Let F be a field, V be a k-dimensional vector space over F. Suppose that
b=(b,b,,..,b) and c=(c,¢c,,....c,) are two bases of V then there is a non-singular

k
kxk matrix (a;) such that b; = > a;c, . We write [b/c]=det(a;) e F". Two bases b
i=1

and c are said to have the same orientation if [b/c] > 0, and to be equivalent if [b/c]=1.

Let 0 >C—->D—L3E 0 be a short exact sequence of vector spaces. Let
c=(c,C,,....c,) be abasis for C and e=(e,e,,....) be a basis for E . Since the
map B is surjective we can lift e, to a vector & in D . Then ce=(c,....C.,&,....§) IS
a basis for D and its equivalent class depends not on the choice of & but only on the
equivalence classes of ¢ and e.

15
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The finite chain complex (C,0)=(0—C,—*>C, ,—*t ... %2 5C %
—4 5C, — 0) of finite-dimensional vector spaces over F is called acyclic if it is exact.
The chain is called based if for each C, a basis is chosen.

Assume that (C,0) is acyclic and based with basis c. Choose a basis b, for
B, =Im0,,, =ker ¢,. From the short exact sequence 0 - B, - C, - B,;, >0 we get
a basis bb,_, for C,.

Definition 3. The torsion of the acyclic and based chain complex C is defined to be

C) = ﬁ[bibi—l / Ci](i1

The torsion t(C) depends on ¢ but does not depend on the choice of b;'s. If a ba-

)i+1

eF. If C isnotacyclic, then t(C) is defined to be 0.

sis ¢, is used instead of c; , then the torsion is multiplied with [c, /c, V" .
Let X be a finite connected CW-complex and let m=m, (X). The universal cover

X of X has a canonical CW-complex structure obtained by lifting the cells of X .
If {e",1<i<n} is an ordered set of oriented k -cells of X and & is any lift of e,
then the ordered set {&°,1<i <n,} is a basis of the Z[r]-module C,(X).

If Z[r]——>T is a ring homomorphism then by the change of rings construction
F ®C,(X) is a chain complex of finite dimensional vector spaces over F . If this chain
complex is acyclic then its torsion T(F®C,.(X))eF* is defined. However,
(F®C.(X)) depends on the chosen of basis for C.(X), that is on the choices of
lifting cells{&/,
Z[=] -module C, (X) but change the order of the cells in the basis then t(F ®C. (X))
is multiplied with 1. If we change the orientations of the cells, then torsion is also
multiplied with £1. If we choose a different lifting cell for eik —Dby an action h.éik of

1<i<n}. If we fix a choice of a set of lifting cells as a basis for the

a covering transformation h e m—then torsion is multiplied with ¢(h)*.
Definition 4. The Reidemeister torsion t*(X) of the CW-complex X is defined

to be the image of ©(F ® C,(X)) under the quotient map F — F/+¢().

It is well known that torsion is a simple homotopy invariant and a topological inva-
riant of compact connected CW-complexes. And for every topological manifold of
dimension 3 admits a piecewise linear structure or in other words admits a triangulation.
Such a piecewise linear structure is unique in the sense that every homeomorphism h
between two piecewise linear manifolds is isotopic to a piecewise linear homeo-
morphism. In terms of triangulations, the triangulations can be subdivided so that there
is an isomorphism of the subdivided triangulations isotopic to h. Thus, torsion is well-
defined for our cases.

Remark. We see that for defining the twisted Alexander polynomial we need a repre-
sentation ¢: Tors(H) — C™ = C\{0} of the torsion part Tors(H) into C" as described

16
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in the section 3. The representation induces the twisted homomorphism Z[H]——C[K],
that we also denote by ¢ . If Q(K) denotes the field of quotient of C[K]. Then by
composing with the projection into the quotient, twisted homomorphism ¢ determines
a ring homomorphism from Z[H] to the field Q(K) that we still denote by ¢ . Thus

with a representation ¢:Tors(H) — C" we can define both a twisted Alexander poly-

nomial A* and a torsion t*.
4. Reidemeister torsion of link complements in a 3-torus

Let L be a link in a three-dimensional torus T°. The Euler characteristic of
a 3-torus T° is x(T*)=0. Removing a tubular neighborhood N(L) of the link L
from the 3-torus T3, we obtain a compact 3-manifold X with a boundary that is the
link complement in the 3-torus. In terms of the Euler characteristic, we have
0=2(T*) =%(X UN(L)) = x(X) +x(N(L)) —x(X " N(L)), that implies 3(X)=0.

The complement X , then by pushing in one free face at a time, we can collapse X

down to a 2-dimensional subcomplex Y , so X is simple homotopicto Y (see White-
head [12]). The 2-cell complex Y is of Euler characteristic zero. We can ensure that Y
has a cellular structure, containing only one 0-cell 6°; n 1-cellsoy,...,c., m 2-cells
o.,...,G,, Where m=n-1.

The boundary maps are 9, =0 and 0,(c;) =, where 1, is aword in o', giving
a presentation of fundamental group as m=(X,,X,,...,X, | I, I,,..., I,,» . This presentation

is not necessarily the same as the one, given in another paper (see [1]).
For the sake of completeness, | carry out derivation of some formulas from a paper
by Huynh and Le [4] related to the Reidemeister torsion and Alexander—Fox matrix for

a presentation of a group, that is the fundamental group of a manifold. Let Y be the

maximal abelian cover of Y . The cellular complexes of Y is considered as modules
over integral group ring Z(H) , where H is the first homology group of Y . We have

a chain complex of Z(H) -modules
C,(Y)—2—C,(Y)—2->C,(Y) > 0.
The boundary maps are obtained by Fox’s free differential calculus (Compare Fox

[13. P. 547] and [14], Milnor [2. P. 146]): 8,(5}) = pr(x, —1)&° and az(&f):Zpr(%‘)&lj :
i= i

where the tilde sign denotes a lift of the cell toY . The natural projection pr is the
composition of the maps o,y in the chain Z[F]——Z[G]——Z[H] as defined in
section 3 for the case group G is the fundamental group .

Fix a splitting of H as a product H=KxTors(H) of the free part

K =H/Tors(H) and the torsion part Tors(H) . Denote the quotient field Q(C[K])
of C[K] by Q(K). Using the homomorphism ¢ :7Z[H]— C[K]— 5 ((K),
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construct the tensor Q(K) ®,,,,, C, (Y), considered as a vector space over Q(K). We
have a chain complex of vector spaces over Q(K) :

C= (Q(K) ®7A[H],¢ Cz (Y~) '62_>Q(K) ®’/A[H],¢ Cl(YN) al_’ @(K) ®7/,[H],¢ Co (Y~) - O)-
or.
The boundary maps are [9,], = ¢(x) -1, and [0,] ; = ¢(§J) ,1<u<n,1<j<n-1.

Let A=[9,] . Denote the columns of A by u;, 1<i<n, and denote the (n—1)x(n-1)
matrix obtained from A by omitting the column u; by Ai. Since C is a chain, we have

0=0,(0,(67)) = (Zd{ ](d)(x) 1)’ hence Zd{

l

J(¢(X) 1) =0. That means

Z(q)(xj)—l)uj =0.Forany i > j we have

i=1

(0(x;) —1)detA =detfu,,...,u;;, (d(X;) =Du;, Uy, Upyes U, ]
=detfuy, ..U, =Y (O ) =DUy,Ujygye Uy Uy ]

k#j
= (1) (o(x) —1)detA,.
Thus, for any i and j,
(9(x) —D)detA; =+(¢(x;) ~1)detA,. @)
Because H has at least three free generators (Theorem 1), the image ¢(x) cannot
be {1}, thus there is at least one x such that ¢(x)=1. The property

2,(8%) = (9(x)—1)&° implies & (fl)( -1 Il] , S0 0, is onto. Therefore, the chain

Cis exact if and only if 0, is injective, which means the rank of its matrix is exactly
n—1. Thus C is acyclic if and only if A has a nonzero (n—21)x(n—21) minor.

The Reidemeister torsion of C with respect to ¢ is the torsion t*(Y) of Y, and
since torsion is a simple homotopy invariant, it is also the torsion t*(X) of X .
Now if we assume that C is acyclic. Take the standard bases of Q(K)®,,,,, C.(Y)

given by 6‘1 as above. A lift of ¢, ={6,} is { ! &1}. Then
¢(Xi)_1
ar -1 1 . ) (_1)i+n
¢ x = ! | / 11 1 n =—d AJ
0= [(Zd{ XJ Zd{ J Vox) -1 J (63l @)D

Thus if ¢(x)=1 then t*(X)==detA /(d(x)—1). By equation (1), if o(x;) =1
then detA; =0, hence the following formula is correct for all i, whether C is acyclic or
not:

(0(x) =D’ (X) = +detA € Q(K) /K. (2)
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Remark. Equation (2) derived in the work by Huynh and Le [4] for links in projec-
tive space holds for links in lens space [5] and for link complement in any space of
Euler characteristic zero. The derivation above is carried over from [4].

Theorem. The Reidemeister torsion and the twisted Alexander polynomial of the
complement of a link in 3-torus are the same.

Proof.

The cellular structure of the link complement X in a 3-torus is simple homotopic
to a 2-dimensional subcomplex Y of Euler characteristic zero, so the structure admits
a presentation for the fundamental group of X with n generators and m=n-1 rela-
tions. So the Alexander—Fox matrix A associated to such a presentation isa (n—1)xn

matrix. So the twisted Alexander polynomial A®(X) is defined to be the greatest
common devisor gcd(detA,...,detA)) of all (m—1)-minor A of matrix A, obtained
by removing the i -th column of A.
By equation (2), we have
A*(X) =ged(detA,,..., detA, ) = ged((9(x,) ~D) 7 (X),.... (p(%,) ~D* (X))
We will show that ged((d(x,)—1),...,(d¢(x,)—1) =1 in the case of non-torsion and

torsion links.
Case 1: L isanon-torsion knot or link. We have the first homology group of com-

plement (see section 2) is H,(T*\L)=Z*®7Z°, where o is the number of compo-

©+3
hl

nents. Denote with t,,...,t ., the generators of H,. Then ¢(x;) :tl"'l...tm+3 fori=1..,n.
Let g =ged((9(x)—1),.... (o(x,) -1) e Z[t,t7] .
For a moment we set t,=..=t ,=1. So ¢ divides each of (tl"'1 -1) for

i=1..0+3.
Observe that (see Lickorish [15]) for any a,b € Z
(t* -1 +t2(t* -1) =t*" -1
and
=D —t* Pt - =t>"-1.
Applying the argument, we conclude that g divides tflaihi -1 forany o, €Z.
Since t; is an element of canonical projection of fundamental group pr(n) there is

n ifx n
a collection of a; €Z such that t, =] Jpr(x")=t" .Thus g divides (t, —1). Now

i=1
by letting t; =1 for j=i,i=2,.,(w+3) and repeating the argument we obtain
g =9cd((¢(x) =1),... (¢(x;) —1) = ged((t, -1),..., (.. —1) =1.
Case 2: L is a torsion link. The first homology group of link complement has free
part of rank at most m+2 and the torsion part might be a product of at most three

cyclic group Z, ®Z, ®Z,, where {,n,0eN are the order of respective groups.
Without loss of generality, we consider the case when the first homology group has the
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rank r and torsion part has the structure 7Z . ®7, ®Z,. Now denote with t,,...,t. the

generators of free part F and u,,u,,u, are the generator of torsion part Tors(H,).
We have projection of x, is pr(x)=t"..t"uSusu’". For some homomorphism
¢:Tors(H,) — C* the image ¢(x,) is defined to be ¢(x) =t ..t p(uiusul’) .
Setting t,=..=t =1, applying the previous reasoning we conclude that
cth1 Zak Z":a,k,z iu,kf
g =gcd((o(x,)—1),...,(d(x,) -1 divides t1'1 ou uir ur )-1forany o, eZ.
Since t, is an element of canonical projection of fundamental group pr(m) there
Z(lkl ZQkZ Zak3
is a collection of o, €Z such that t = Hpr(x“') tl'l ¢(u utoout ).

i=1

n erk Zn:a,klz Z":(x,kla
So Zaihi1=1 and  ¢(u= uir uF )=1. Thus, analogously we get

ged((d(x,) =1),.... (¢(x,) —1) =1 that completes the proof.

Remark. The identifications between Alexander type polynomial and Reidemeister
torsion for knot complements in different cases were proved by different people (see
Milnor [2], Kitano [16], Kirk and Livingston [17], Turaev [9], Cattabriga [5], Huynh
and Le [4]). The proving method of Theorem 2 is technically due to Huynh-Le’s work.
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