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Аннотация. Рассматривается задача минимизации гладкой функции на границе 

так называемого внешнего обобщенного сегмента сферы, который строится опре-

деленным образом из сферы и выпуклого телесного конуса с вершиной, лежащей 

вне соответствующего замкнутого шара. Предлагается модификация метода про-

екции градиента и обосновывается ее сходимость к стационарной точке задачи. 
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Abstract. In this paper we consider a constrained optimization problem of the form 

( ) min, n

Sf x x X→   , 

where : nf →  is Lipschitz smooth on n ; S X  is the boundary of X relative to the 

sphere 1nS S −= ; X is an outer generalized segment of S and is defined as follows. Let K 

be an affine convex cone with a nonempty interior and with the vertex с located in the 

exterior of the closed ball B generated by S. We assume that the set K S  is represent-

ed as disjoint unions of its connected components X1 and X2. Let X1 be closer to с than X2 

with respect to the Euclidean distance; by definition, put X = X1. 
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In this work we modify the method proposed by the author, where the cone vertex is lo-

cated in the interior of the ball B. Our method works according to the following scheme. 

After choosing a starting point x1 and setting up a few parameters of Algorithm, the new 

iteration point is determined in three steps. First, we perform gradient descent along the 

tangent cone to the feasible set; the result of this operation is the point Sk. Then we find 

the point tk by projecting Sk onto K and return to the feasible set by reconstructing the ray 

starting from the vertex of K and passing through tk; finally, we update the iteration point 

xk+1. By a lemma and a proposition, we state that the sequence  ( )kf x  is monotonic 

and each accumulation point *x  of  kx  is stationary for the optimization problem. 

Keywords: nonconvex optimization, descent method, spherical segment, gradient pro-

jection algorithms 
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1. Введение 

 

Рассмотрим задачу минимизации 

 ( ) min, n

Sf x x X→   , (1.1) 

где : nf →  – гладкая функция, производная которой на всем 
n

 удовлетво-

ряет условию Липшица с константой 0L  ; Y  – граница множества в относи-

тельной топологии nY  ; X – внешний обобщенный сегмент (n – 1)-мерной 

сферы S, определяемый следующим образом. Пусть K – выпуклый телесный ко-

нус с вершиной с, расположенной вне замкнутого шара B, ограничиваемого S. 

Считаем, что каждая образующая конуса K пересекает S ровно в двух точках. 

Очевидно, множество K S  состоит из двух связных компонент, одна из кото-

рых, X1, ближе к с в евклидовой метрике, а другая, X2, – дальше. По определению 

полагаем, что множество X равно X1. 

Ранее в статье [1] рассматривалась аналогичная задача, в которой вершина 

конуса находилась во внутренности шара B. Был предложен алгоритм, который 

при определенных ограничениях, накладываемых на целевую функцию и допу-

стимое множество, обеспечивал сходимость итерационной последовательности  

к стационарной точке. В настоящей работе приводится модификация данного ал-

горитма для задачи (1.1). Главное отличие этой модификации от предложенного  

в [1] алгоритма состоит в том, что на каждой итерации необходимо следить, чтобы 

при решении вспомогательной задачи проектирования на конус K найденная проек-

ция не оказалась расположенной вне множества  2(1 λ) λ | , λ (0,1)U c u u X= − +   . 

Как мы увидим ниже, это достигается путем соответствующего выбора величины 

шага. 

Если говорить кратко, то алгоритм работает по следующей схеме (рис. 1). Пе-

реход к новой итерационной точке осуществляется в три этапа. Вначале произво-



Математика / Mathematics 

24 

дится спуск вдоль конуса касательных направлений к допустимому множеству; 

затем находится проекция на конус K; после этого осуществляется возврат на 

допустимое множество путем восстановления луча, исходящего из вершины ко-

нуса через найденную проекцию на конусе. 

kx

1kx +

ks

kt

S
K

c

X

 

Рис. 1. Итерация алгоритма в 3  

Fig. 1. An iteration of the algorithm in 3  
 

Алгоритмы подобного типа, в которых используются процедуры, так или 

иначе связанные с проектированием, не редкость. Среди них встречаются алго-

ритмы как общего вида (например, метод проекции градиента, метод линеариза-

ции), так и специального, различающиеся, как правило, видом целевой функции 

или структурой допустимого множества (например, методы, разработанные в [2]). 

К последним относится и предлагаемый в данной статье алгоритм. Важным его 

свойством является то, что целевая функция может быть невыпуклой (в отличие 

от метода, приведенного в [3]), а генерируемая им итерационная последователь-

ность { }kx  является релаксационной, причем каждая точка kx , 0,1,...k = , при-

надлежит допустимому множеству S X , возврат на которое производится не 

прямым проектированием на S X  (как, например, в [4]), а через ряд более про-

стых операций. 

Кроме того, стоит отметить, что множества типа внешнего сегмента сферы 

возникают естественным образом в задачах обзора искусственными спутниками 

заданных областей поверхности планеты. При этом сфера служит моделью поверх-

ности планеты; вершина конуса соответствует положению искусственного спут-

ника, а сам конус – лучу направленности его антенны. Тогда множество X точек 
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поверхности планеты, видимых со спутника, является внешним сегментом сфе-

ры. Если в качестве целевой функции взять, например, угловое расстояние между 

двумя точками на сфере, одна из которых, x, фиксирована и не принадлежит X, то 

задача проектирования точки x на множество X может быть записана в виде (1.1). 
 

2. Описание алгоритма 
 

Всюду ниже будем придерживаться следующих допущений и обозначений  

в дополнение к уже перечисленным выше.  – евклидова норма в n ; prQ x  – 

проекция точки x на множество Q по норме ; сфера S имеет центр в нуле и 

радиус R; конус (2 )K K c K=  −  с вершиной c задается неравенством ( ) 0F x  , 

где : nF →  – гладкая функция, производная которой на K  удовлетворяет 

условию Липшица с константой 0M  , и существует такое 0C  , что ( )F x C   

всюду в S; 
{ λ( )|λ 0}

min max
Sx X y B c x c

d R y S
   + − 

 
= − − 

 
 (здесь вычитаемое показыва-

ет, насколько множество отрезков, лежащих на образующих границы конуса K  

и расположенных в шаре B, близко к сфере S); для точки kx X  положим: k  – 

опорная гиперплоскость к S в xk, Zk – опорная гиперплоскость к K в xk, 

k k kZ =   , ( )( )pr '
kk k k ks x f x= −  , 

 prk K kt s= , ( ) min 0 |k kc t c S =   +  −  , (2.1) 

( ) 1 | 0k k kx c t c S+ = +  −    , 

( )( )pr '
kk k kp x f x= − ,  | 0k ky t S=     , 

2 22T R d= − , ( )02 'B RL f x= + , 

 
1 1

2

M
D

R

 
= + 

 
, 

( )

1 2

2

ζ
min ,

C N
E

MB B D R c

  −  −  =  
 +   

, (2.2) 

( )( ) ( )( )

2 2

2

2 2

2

(1 )

γ 4γ

2ζ ,
ζ

BM L E LB M E

BD
R c R c B DE LBDE R c B DE

+
 = + +

+ + + + + + +

 

 20 N c R  + , 0 C C  , 0 γ C  , γC C C−  − , 

 0 ζ c R  − , ε 0 . (2.3) 

 

Алгоритм 
 

Шаг 0. Выбрать начальную точку 0x X  и задать параметры N, C, , , ,  

исходя из условий (2.3). Вычислить B, D, E, Δ, T по формулам (2.2) и задать A,  
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0,  ∊ (0, A), удовлетворяющие условиям из (3.29) (см. лемму ниже). Установить 

k = 0. 

Шаг 1. Найти множества Γk, Zk и определить pk. 

Шаг 2. Положить αk = α и найти sk, tk и xk+1 по формулам (2.1). 

Шаг 3. Если xk+1 = xk, то считать xk+1 решением задачи. В противном случае 

установить k := k + 1 и перейти к шагу 1. 
 

3. Обоснование сходимости алгоритма 
 

Покажем, что последовательность, генерируемая алгоритмом, является релак-

сационной. 

Лемма. Существуют такие 0, ε 0A  , не зависящие от k, что шаг 2 алго-

ритма при любом 0α (ε , )k A  обеспечивает оценку 

 ( ) ( )
22

1 εαk k k k kf x f x p x+−  − . (3.1) 

Доказательство. Представим разность ( ) ( )1k kf x f x +−  следующим образом: 

 
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1 .

k k k k

k k k k

f x f x f x f s

f s f t f t f x

+

+

− = − +

+ − + −
 (3.2) 

Оценим каждую из разностей, стоящих в скобках правой части равенства (3.2). 

Рассуждения для первых двух разностей повторяют соответствующие рас-

суждения для случая, когда вершина c конуса K находится во внутренности  

шара B [1]. Из них следуют неравенства 

 ( ) ( )
21

α 2
k k k k

k

L
f x f s x s

 
−  − − 

 
, (3.3) 

 ( ) ( )
2 2 2

2

2

(1 α ) α

2γ 8γ

k k
k k k k

BM L LB M
f s f t x s

 +
−  − − + 

 
 

, (3.4) 

которые выполняются при 

 
γ

αk

C

MB

−
 . (3.5) 

Найдем оценку третьей разности ( ) ( )1k kf t f x +− , представив ее в виде, ана-

логичном (3.4), а именно ( ) ( )
2

1k k k kf t f x x s const+−  − − , 0const  . 

Поскольку 0x S , то 

1 1 0 0 1 0 0 0( ) ( ) ( ) ( ) ( ) 2 ( )k k kf x f x f x f x L x x f x RL f x B+ + +
      − +  − +  + = . 

Отсюда и из липшицевости производной функции ( )f x  вытекает 

 

( ) ( ) ( )
2

1 1 1 1

2
1 1

' ,
2

.
2

k k k k k k k

k k k k

L
f t f x f x t x x t

L
B x t x t

+ + + +

+ +

−  − − − 

 − − − −

 (3.6) 

Таким образом, необходимо оценить 1k kx t+ − . Из геометрических соображе-

ний ясно, что возможно три случая расположения точки tk относительно сферы S 
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в зависимости от удаленности от c. Разберем эти случаи подробно. При этом 

условимся начало координат в n  обозначать через O, луч ( ) | 0a b a+  −     

с началом в na   и проходящий через nb   обозначать символом ab; кроме 

того, положим 

1{ } \{ }k k kz ct S x +=  ,   { , }k kv w cO S=  ,   k kv c w c−  − ,  

k k kt y = − ,   
1

k
k

 =


,   k k kt z = − . 

Случай 1. k kc t c z−  − . 

Покажем, что величину шага αk можно подобрать таким образом, чтобы данный 

случай никогда не реализовался, т.е. чтобы точка tk оказалась или внутри шара B, 

или между внутренностью шара В и точкой c (при этом не исключается kt X ). 

Сперва оценим kc z− . Записывая теорему о секущих для лучей czk и cv 

1k k k kc z c x c v c w+− − = − − , 

получаем 

 
2 2

1k kc z c x c R+− − = − . (3.7) 

Рассматривая треугольник с вершинами в точках O, zk, xk+1, находим 

2 2
1 2k kc z c x R h+− = − + − , 

где h – расстояние от нуля до луча czk. Поскольку d h , то  

 2 2
1 2 .k kc z c x R d+−  − + −  (3.8) 

Выражая 1kc x +−  из (3.7) и подставляя затем в (3.8), приходим к неравенству 

( )2 22 2 22 0k kc z R d c z c R− − − − − −  , 

откуда 

 
22 2 2

kc z R d c d−  − + − . (3.9) 

Далее, подберем αk таким образом, чтобы kc t−  было меньше правой части не-

равенства (3.9). Поскольку точка tk определяется как проекция с касательного направ-

ления к конусу K, то α ( ) (α )k k k k k k kt x p x r= + − + , где (α ) (α )k k kr o=  при α 0k → . 

Кроме того, согласно [1] имеет место оценка ( )
2

α
2γ

k k k k
M

r x s − , следовательно, 

(α )
α

α

α
α 1

2γ

k k
k k k k k

k

k
k k k k k k

r
c t x c p x

M
x c p x p x

 
−  − + − +   

 

 
 − + − + − 

 

. 

Отсюда и из (3.9) получаем, что αk должно удовлетворять неравенству 

22 2 2α
α 1

2γ

k
k k k k k k

M
p x p x R d c d x c

 
− + −  − + − − − 

 
. 
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Так как d R  и 

 
2 2 2 2:kx c V c d R d−  = − − − , (3.10) 

то 
22 2 2 2 22 0kR d c d x c T R d− + − − −  = −  . 

Стало быть, требуемое αk можно определить из неравенства 

2 2α α 0
2γ

k k k k k k
M

p x p x T− + − −  , 

из которого находим 

 

2
1 1

0 α

γ

k

k k

M T

M
x p

+ −


 

−

. (3.11) 

Поскольку k kx   и pk является проекцией точки ( )k kx f x−  на выпуклое 

множество k , то ( )k k kx p f x B−   . Используя это в (3.11), окончательно 

для рассматриваемого случая получаем оценку величины шага αk: 

 
γ

0 α 1 2 1
γ

k
MT

MB

 
  + −  

 
. (3.12) 

Случай 2. 10 k kc t c x + −  − . 

Данный случай соответствует расположению точки tk между внутренностью 

шара В и точкой c (причем не исключается kt X ), при этом, очевидно, kt R . 

Здесь, как и в [1], можно получить оценки 

 
2

k k k kt y D x s−  − , (3.13) 

 
2

2
k k k

M
t s B−  


,    k k ks x B−   , (3.14) 

 ( )2
1 λ 1k k k k kx t R c D x s+ −  − + + − , (3.15) 

где, напомним, величина λ 0k   определяется условием (2.1). 

Заметим, что согласно (3.15) порядок величины 1k kx t+ −  относительно 

k kx s−  определяется порядком величины λ 1k − . Покажем, что величину шага αk 

можно подобрать удовлетворяющей условию ( )2
λ 1k k kO x s− = − . При этом, 

не ограничивая общности, считаем, что λ 1k  , так как иначе ( ) ( )1 0k kf t f x +− =  

и αk будет оцениваться только из первых двух разностей (3.2). 

Из определения точки xk+1 имеем 

 1 1(1 )( )k k k kx t x c+ +− = −  − . (3.16) 

Положим { } \{ }k k k ku t y S y=  . Так как ku S  и kt c , то  

 k kt u R c−  + . (3.17) 
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Записывая теорему о секущих для лучей tkyk и tkzk 

1k k k k k k k kt y t u t x t z+− − = − −   

и апеллируя к (3.16), (3.17), получаем 

 ( ) 11 μk k k k k kt y R c x c t z+− +  − − − . (3.18) 

Как и в случае 1, выполнено равенство (3.7), из которого находим 

 
2 2

1 1k k k k kx c t z c R t c x c+ +− − = − − − − . (3.19) 

Подставляя (3.19) в (3.18) и учитывая, что μ 1k   и 1kx c V+ −  , имеем 

 ( ) 2 2

1 μ

k k
k

k

t y
R c c R V t c

−
+  − − −

−
. (3.20) 

Теперь убедимся, что найдется такое αk, для которого правая часть неравен-

ства (3.20) не меньше любого 0 N TV  . Во-первых, заметим, что 

k k k k k kt c t s s x x c−  − + − + − . 

Во-вторых, принимая во внимание (3.10) и (3.14), получаем 

2 2
2 22 2 α α

2γ 2γ
k k k

MB MB
c R V t c c R V V B V T B

      
   − − −  − − + +  − +   

      
      

. 

Очевидно, что правая часть последнего неравенства, а значит, и (3.20), не меньше 

N при 

 

1
2

α
2γ

k
N MB

T B
V

−
  

 − +     

. (3.21) 

Таким образом, из (3.20) находим 

1 μk k k

R c
t y

N

+
−  − . 

Так как kt R , то 1k   и 1k  , следовательно, с учетом (3.13) 

( )2
1 μk k k

D R c
x s

N

+
−  − . 

Отсюда вытекает, что при выполнении условия (3.21) справедлива оценка 

 
( )

( )

2

2
λ 1k k k

k k

D R c
x s

N x s D R c

+
−  −

− − +
. (3.22) 

Случай 3. 1k k kc x c t c z+−  −  − . 

Данный случай соответствует расположению точки tk внутри шара В, т.е. при 

этом kt R  и 1k  . Проводя рассуждения аналогично предыдущему случаю, 

в результате приходим к тому, что формула (3.21) остается без изменений, а 

оценка для 1 λk−  выглядит следующим образом: 

 
( )

( )

2

2
1 λk k k

k k

D R c
x s

N x s D R c

+
−  −

+ − +
. (3.23) 
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Объединяя соответствующие случаям 2 и 3 оценки (3.22) и (3.23), получаем 

 
( )

( )

2

2
λ 1k k k

k k

D R c
x s

N x s D R c

+
−  −

− − +
. (3.24) 

Теперь подберем αk так, чтобы выражение, стоящее в знаменателе правой  

части (3.24), было не меньше какого-либо числа 0 ζ N  . Поскольку 

αk k k k kx s x p− = − , то требуемое условие достигается при 

( )
2

2

ζ
αk

k k

N

x p D R c

−


− +
. 

Вспоминая, что k kx p B−   видим, что достаточно выбрать αk, удовлетворяю-

щее неравенству 

 
( )2

ζ
αk

N

B D R c

−


+
. (3.25) 

Таким образом, получаем 

 
( )2

λ 1
ζ

k k k

D R c
x s

+
−  − . (3.26) 

Так как αk k kx s B−  , то 
2 2

k kx s B E−   при αk E . С учетом этого и 

(3.15), (3.26), находим оценку для 1k kx t+ − : 

( )( )2

2
1

ζ
k k k k

D R c B DE R c
x t x s+

+ + +
−  − . 

Отсюда и из (3.6) получаем оценку разности ( ) ( )1k kf t f x +− : 

 

( ) ( )

( )( ) ( )( )
1

22 2

2
2ζ .

2ζ

k k

k k

f t f x

BD
R c R c B DE LBDE R c B DE x s

+− 

 − + + + + + + −
 (3.27) 

Объединяя оценки (3.3), (3.4), (3.27), для разности ( ) ( )1k kf x f x +−  в итоге 

имеем  

( ) ( )
2

1
1

α 2
k k k k

k

L
f x f x x s+

 + 
−  − − 

 
. 

Осталось подобрать αk так, чтобы выражение, стоящее в круглых скобках, бы-

ло положительным, например больше некоторого числа ε 0 : 

 
2

α
2ε

k
L


+  +

. (3.28) 

Поскольку все вышеприведенные оценки (3.5), (3.12), (3.25), (3.28) для вели-

чины шага αk не зависят от k, то для завершения доказательства леммы достаточ-

но положить A равным величине  
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γ 2

min , 1 2 1 ,
γ 2

M T
E

MB L

   
+ −    +  +   

 (3.29) 

и в качестве ε0 взять любое значения из интервала (0, A). Лемма доказана. 

Предложение. При любом выборе начальной точки 0x X  любая предельная 

точка *x  последовательности  | 0,1,2...kx k = , построенной по алгоритму, яв-

ляется стационарной, т.е. удовлетворяет условию 

 ( )* * *' , 0x f x x x  − = . (3.30) 

Доказательство. Поскольку функция ( )f x  непрерывна на компакте S X  и 

согласно лемме последовательность  ( )kf x  является невозрастающей, то 

 lim ( )k
k

f x
→

  − . (3.31) 

Кроме того, последовательность { }kx  имеет хотя бы одну предельную точку *,x  

которая, очевидно, лежит в S X . Пусть { }
mkx  – подпоследовательность, схо-

дящаяся к *.x  Из (3.1) и (3.31) следует, что существует lim
mk

m
p

→
, причем 

*lim
mk

m
p x

→
= . С другой стороны, ввиду непрерывности оператора проектирова-

ния ( )( ) pr ( ( ))xp x x f x
= −  на множестве X имеет место сходимость 

** * *pr ( ( ))
mk

m
p p x f x

→
→ = − , стало быть, * *p x= . 

Возьмем теперь произвольную точку 
*.x   Из равенства *( )f x =  

* * *( ( ))p x f x= − − по свойству проекций на аффинное множество следует, что 

* * * * * * * *( ), ( ), ( ( )), 0f x x x f x x p p x f x x p  − = − = − − − = , т.е. условие (3.30) 

выполняется. Предложение доказано. 
 

4. Численный эксперимент 
 

Экспериментальная проверка предложенного алгоритма была проведена на 

двух примерах в 3  с целевыми функциями соответственно 
2

1( , , ) ( 10)f x y z x= − +  

2 2( 3)y z+ + −  и 
2 2

2 ( , , ) sin 6 cos arctg( )yf x y z x x e z x y z= + − + − . Их градиенты удов-

летворяют условию Липшица в любом замкнутом шаре Br радиуса r > 0 с центром 

в нуле. Нетрудно заметить, что алгоритм применим для данных функций при до-

статочно больших r > R. В обоих примерах рассматривались сфера с радиусом 3, 

эллиптический конус, задаваемый уравнением 2 2 214( 1.7) 0.3( 5) 0x y z− + − − = , 

начальная точка (1.577; 1.571; 2.011). В качестве критерия останова выбиралось 

выполнение неравенства εk ks x−  , где  – заданная точность.  

Результаты численного эксперимента 

Пример 
Количество итераций для заданной точности 

10–3 10–4 10–5 10–6 

1 9 10 11 12 

2 8 9 10 12 
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Результаты расчетов приведены в таблице. В ней в зависимости от примера и 

точности указано количество итераций, произведенных до достижения заданной 

точности. 

 

 

5. Заключение 

 

При доказательстве леммы было получено не зависящее от k выражение (3.29), 

оценивающее сверху величину шага αk и тем самым обеспечивающее релаксаци-

онную сходимость алгоритма. Однако вместо выбора постоянного αk, которое 

требует вычисления величины T, можно пользоваться процедурой последова-

тельного уменьшения αk начиная с некоторого ˆk =   вплоть до выполнения 

условия (3.1) и условий для tk, соответствующих случаю 2 или 3 из доказатель-

ства леммы. Также заметим, что выбор параметров N, C, , ,  до некоторой сте-

пени произволен и определяется условиями (2.3). 

Очевидно, что основные вычислительные затраты алгоритма приходятся на 

решение вспомогательной задачи проектирования точки на выпуклый конус. Не-

трудно показать, что в определенных случаях эту задачу можно решать доста-

точно эффективно. В частности, когда конус K является конусом второго порядка 

в n  при 3n   или круговым конусом, проекция определяется в явном виде; 

если K – конус второго порядка в n  при 4n  , то для нахождения проекции 

можно воспользоваться методами внутренней точки [5]. 
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