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The main results of the paper relate to the nonlinearity of APN functions defined
for a vectorial Boolean function as the Hamming distance from it to the set of affine
mappings in the space of images of all vectorial Boolean functions in fixed dimen-
sion. For APN functions in dimension n, the lower nonlinearity bound of the form
2n −

√
2n+1 − 7 · 2−2 − 2−1 and the corresponding lower bound on the affinity order

are obtained. The exact values of the nonlinearity of all APN functions up to dimen-
sion 5 are found, and also for one known APN 6-dimensional permutation and for all
differentially 4-uniform permutations in dimension 4.
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ÍÅËÈÍÅÉÍÎÑÒÜ APN-ÔÓÍÊÖÈÉ: ÑÐÀÂÍÈÒÅËÜÍÛÉ ÀÍÀËÈÇ
È ÎÖÅÍÊÈ

Â.Ã. Ðÿáîâ

ÍÏ ¾ÃÑÒ¿, ã. Ìîñêâà, Ðîññèÿ

Íåëèíåéíîñòü APN-ôóíêöèè îïðåäåëÿåòñÿ êàê ðàññòîÿíèå Õýììèíãà îò íå¼ äî
ìíîæåñòâà àôôèííûõ îòîáðàæåíèé â ïðîñòðàíñòâå çíà÷åíèé âåêòîðíûõ áóëåâûõ
ôóíêöèé ôèêñèðîâàííîé ðàçìåðíîñòè. Äëÿ APN-ôóíêöèé ðàçìåðíîñòè n ïîëó-
÷åíû íèæíÿÿ ãðàíèöà íåëèíåéíîñòè âèäà 2n −

√
2n+1 − 7 · 2−2 − 2−1 è ñîîòâåò-

ñòâóþùàÿ åé íèæíÿÿ ãðàíèöà ïîðÿäêà àôôèííîñòè. Íàéäåíû òî÷íûå çíà÷åíèÿ
íåëèíåéíîñòè âñåõ APN-ôóíêöèé ðàçìåðíîñòè, íå ïðåâîñõîäÿùåé 5, à òàêæå äëÿ
îäíîé èçâåñòíîé APN-ïîäñòàíîâêè ðàçìåðíîñòè 6 è äëÿ âñåõ äèôôåðåíöèàëüíî
4-ðàâíîìåðíûõ ïîäñòàíîâîê ðàçìåðíîñòè 4.

Êëþ÷åâûå ñëîâà: âåêòîðíàÿ áóëåâà ôóíêöèÿ, ïîäñòàíîâêà, APN-ôóíêöèÿ, EA-
ýêâèâàëåíòíîñòü, íåëèíåéíîñòü, äèôôåðåíöèàëüíàÿ ðàâíîìåðíîñòü.

1. Introduction
Denote by Fn2 the n-dimensional vector space over the two-element �eld F2, where n is

a natural number, and by P n,k
2 the set of all mappings of the space Fn2 into the space Fk2.

The mapping F ∈ P n,k
2 is called a vectorial Boolean function or simply a vectorial function,

implying the Boolean case, and in the case k = 1 we will use similar terms without the
adjective �vectorial�. The subset of one-to-one mappings from P n,n

2 , called permutations, is
denoted by Sn2 .

Any vectorial Boolean function is uniquely determined by an ordered set of coordinate
Boolean functions. In turn, each coordinate function can be represented by a polynomial
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of n variables over the �eld F2. For a vectorial function F ∈ P n,k
2 , the algebraic degree of

nonlinearity degF is usually de�ned as the maximum degree of the polynomials representing
its coordinate functions. Under the condition degF ⩽ 1 the mapping F is a�ne. Denote
by An,k2 the subset of all a�ne mappings from the set P n,k

2 .
As noted in [1], two approaches to the de�nition of the nonlinearity of vectorial functions

have become widespread. The �rst approach is based on using the Hamming distance.
The Hamming distance from the function f ∈ P n,1

2 to the set An,12 in the space F2n

2 , called
its nonlinearity, is denoted by Nf . In [2], with an orientation towards the linear method of

cryptanalysis, the nonlinearity of the vectorial function F ∈ P n,k
2 with a set of coordinate

functions f = (f1, . . . , fk) is de�ned by the formula

NLF = min
w∈Fk

2\{0}
N⟨w ,f ⟩, (1)

where ⟨·, ·⟩ denotes the inner product of vectors, that is, it is the minimum of the
nonlinearities of all nonzero linear combinations of coordinate functions of the mapping F .
The Boolean case allows to give an equivalent de�nition of the nonlinearity of a vectorial
function using the maximum absolute value of the Walsh �Hadamard transform coe�cients
of all nonzero linear combinations of its coordinate functions.

The second approach to determining the nonlinearity of the vectorial function F ,
associated with the di�erential method of cryptanalysis, is to compare for all possible
α ∈ Fn2 \ {0} and β ∈ Fk2 the cardinalities of subsets of variables for which the directed
derivative satis�es the condition

DαF (x ) = F (x ⊕ α)⊕ F (x ) = β, (2)

where ⊕ is the addition operation in the corresponding space. Since in the Boolean case the
equality DαF (x ) = DαF (x ⊕ α) is true, all elements of this spectrum have an even value.
For F ∈ P n,k

2 , the value

△F = max
α∈Fn

2 \{0},
β∈Fk

2

∣∣{x : DαF (x ) = β}
∣∣,

is considered in this approach as an indicator of nonlinearity. A mapping F ∈ P n,k
2 for

which the condition △F ⩽ δ is satis�ed is called a di�erentially δ-uniform [3], and in the
case k = n and δ = 2 it is called almost perfect nonlinear or APN function [4].

At the same time, within the framework of the �rst approach, one more indicator of the
nonlinearity of the vectorial function can be naturally determined. Taking into account the
isomorphism of the Abelian groups of the vector space Fk2 and the �eld F2k , the classical
Hamming distance in space F2n

2k
can be used to measure the remoteness of the functions F1

and F2 from P n,k
2 . Let's denote this distance by ρ(F1, F2). For a vectorial function F ∈ P n,k

2

let's de�ne the nonlinearity indicator NF using the formula

NF = min
A∈An,k

2

ρ(F,A). (3)

In [5�7] this indicator was called the second type of nonlinearity, and in [8] � the vectorial
nonlinearity.

For k = 1, the nonlinearity indicators in the sense (1) and in the sense (3) are the
same. However, starting from k = 2, they di�er signi�cantly. The indicator NF also plays
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an important role in cryptography and coding [7]. In particular, it is more relevant for
the analysis of methods using multi-dimensional a�ne approximations of Boolean vectorial
functions. For example, it can be used to get the lower bound on the minimum number
of a�nity domains in an arbitrary piecewise a�ne representation of a vectorial Boolean
function, which in the domestic cryptographic literature is referred to as the a�nity order
and denoted by ardF . Indeed, it is easy to see that the a�nity order of the vectorial
function F ∈ P n,k

2 satis�es the inequality

ardF ⩾
2n

2n −NF

. (4)

Moreover, unlike the characteristics NLF and △F , the indicator NF is a metric, which
makes it possible to speak mathematically correctly about the remoteness of a vectorial
function from a�ne ones. In this regard, in [9, 10], relating to the case of arbitrary �nite
�elds, the indicator of the form NF was called the nonlinearity of the mapping F .

The nonlinearity in the sense (1) for APN functions has been studied by many authors.
Here it is necessary to highlight the papers of C. Carlet (see, for example, [11�16]). For a
vectorial function F ∈ P n,n

2 , the Sidelnikov �Chabaud�Vaudenay inequality implies an
upper bound on the nonlinearity in the sense (1), namely

NLF ⩽ 2n−1 − 2(n−1)/2. (5)

This bound is reached only for odd n for the so-called almost bent or AB functions. All AB
functions are APN functions. The converse is not true in general, but it is true in particular
case of odd n for quadratic functions. For other currently known APN functions, including
the case of even n, the largest value of nonlinearity in the sense (1) is 2n−1 − 2n/2. Also of
interest are the lower bounds given in [16], namely, NLF ⩾ 2n−1 − 2(3n−3)/4 for odd n and
NLF ⩾ 2n−1− 2(3n−2)/4 for even n. At the same time, there are a number of open problems
regarding nonlinearity in the sense (1) for APN functions [13].

The nonlinearity in the sense (3) for APN functions has been studied to a lesser extent.
From the results of [7] for a vectorial function F ∈ P n,k

2 follows a chain of inequalities of
the form 0 ⩽ NLF ⩽ NF ⩽ 2n − 2n−k − 1. In [15]1, another upper bound of the form

NF ⩽ 2n − n− 1 (6)

is obtained (for k ⩽ 2n − 5 or k = n = 4, a strict inequality holds). Using estimates of
the size of the image set, the lower bound on the indicator NF for di�erentially δ-uniform
vectorial functions from P n,k

2 of the form

NF ⩾ 2n −
√
2n + δ (2n − 1) (7)

is also obtained there, from which the lower bound on this indicator follows for all APN
functions in dimension n of the form

NF ⩾ 2n −
√
3 · 2n − 2. (8)

At the same time, the study of the behavior of nonlinearity in the sense (3) of vectorial
Boolean functions, including APN functions, needs to be continued, which was, in particular,
indicated in the open problem 11 of the eighth international Olympiad in cryptography

1In [15], as applied to the indicator NF , the term nonlinearity is not used.
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NSUCRYPTO2021 [17]. In the footsteps of solving this problem using estimates of the size
of the Sidon set, G. P. Nagy at the end of 2022 posted material with new lower bounds on
the Internet [8]. Its lower bound on the indicator NF for di�erentially δ-uniform vectorial
functions from P n,k

2 has the form

NF ⩾ 2n −
√
δ · 2n − 2−1,

from which the lower bound on this indicator follows for all APN functions in dimension n
of the form

NF ⩾ 2n −
√
2n+1 − 2−1.

This paper is devoted to the study of the nonlinearity of APN functions in the sense (3).
In what follows, unless otherwise stated, by the nonlinearity of a vectorial function we mean
the indicator NF . The main task is to re�ne the bounds on the nonlinearity of the APN
functions and �nd its exact values for the APN functions in small dimension (n ⩾ 5), as
well as to compare the behavior of NF with degF and NLF for such mappings. In parallel
and independently of the studies of G.P. Nagy, without resorting to estimates of the size of
the Sidon set, the author has obtained a lower bound on the nonlinearity of APN functions,
which is presented in Section 2. A lower bound on the a�nity order that follows from it is
also given. In Section 3, the exact values of the nonlinearity for all APN functions up to
dimension 5, as well as for one known APN 6-dimensional permutation, are found. Since
none of the 4-dimensional permutations is an APN, in Section 4 the case of di�erentially
4-uniform permutations in dimension 4 is considered. In Section 5, open problems and
conjectures related to the behavior of the nonlinearity of APN functions are presented.

2. Boundaries on nonlinearity of APN functions
In [18], the following necessary and su�cient condition for a Boolean vectorial function

to be an APN was �rst obtained.

Proposition 1 [18]. Let a vectorial function F ∈ P n,n
2 . Then F is APN if and only if

there is no 2-dimensional linear manifold2 in the space of the domain of F on which the
mapping F coincides with some a�ne one.

In [19] this condition is used as an alternative de�nition of APN functions. There
are other formulations of this condition, for example, for pairwise distinct variables
x 1, x 2, x 3, x 4 ∈ Fn2 , if the equality x 1 ⊕ x 2 ⊕ x 3 ⊕ x 4 = 0 holds, then the inequality
F (x 1)⊕ F (x 2)⊕ F (x 3)⊕ F (x 4) ̸= 0 is true.

Theorem 1. Let F be the APN function in dimension n. Then the following inequality
is true for its nonlinearity:

NF ⩾ 2n −
√
2n+1 − 7 · 2−2 − 2−1. (9)

Proof. Let's prove the theorem by contradiction, assuming that the inequality

NF < 2n −
√
2n+1 − 7 · 2−2 − 2−1 (10)

is true. It follows from the de�nition of nonlinearity that there is at least one a�ne
mapping A ∈ An,n2 with which the vectorial function F coincides on 2n − NF variables
of the domain of F and A. Let CF,A = {x ∈ Fn2 : F (x ) = A(x )} and CF,A = |CF,A| =
= 2n −NF . Then inequality (10) implies the inequality

CF,A >
√
2n+1 − 7 · 2−2 + 2−1.

2In the original, a linear manifold is called an a�ne subspace.
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The number of all possible unordered pairs of elements from the set CF,A satis�es the chain
of relations (

CF,A
2

)
=
CF,A(CF,A − 1)

2
> 2n − 1.

Therefore, among nonzero vectors from the set {x 1 ⊕ x 2 : x 1, x 2 ∈ CF,A, x 1 ̸= x 2} there
will de�nitely be the same. The vectors x 1 ⊕ x 2 and x 1 ⊕ x 3, where x 2 ̸= x 3, obviously
di�er. Therefore, there are pairwise distinct vectors x 1, x 2, x 3, x 4 ∈ CF,A, for which the
equality x 1⊕ x 2 = x 3⊕ x 4 is satis�ed. These vectors form a 2-dimensional linear manifold
on which F coincides with A. In accordance with Proposition 1, the vectorial function F is
not APN.

It is easy to see that the lower bound on the nonlinearity of APN functions, obtained
in Theorem 1, for n > 4 re�nes the estimate (8) from [15].

Corollary 1. Under the conditions of Theorem 1, for odd n ⩾ 3, the following
inequality is true:

NF ⩾ 2n − 2(n+1)/2. (11)

Indeed, in the case of odd n ⩾ 3, for the di�erence of an integer 2(n+1)/2 and the root
from expression (9), the chain of relations is valid

√
2n+1 −

√
2n+1 − 7 · 2−2 =

7

22(
√
2n+1 +

√
2n+1 − 7 · 2−2)

<
7

30
.

Corollary 2. Under the conditions of Theorem 1, the following inequality is true:

ardF ⩾
2n√

2n+1 − 7 · 2−2 + 2−1
; (12)

and in the case of odd n

ardF ⩾ 2(n−1)/2. (13)

Estimates (12) and (13) re�ne the lower bound on the a�nity order from [20] for APN
functions.

Inequality (6) can be used as the upper nonlinearity bound for APN functions.

3. Nonlinearity of APN functions up to dimension 5

Results on the nonlinearity of APN functions in small dimensions are given for
classes of extended a�ne (EA) equivalence, since unordered sets of algebraic degrees
of nonlinearity and absolute values of the Walsh �Hadamard coe�cients for nonzero
linear combinations of coordinate functions, cardinalities of subsets of variables satisfying
condition (2), and also, Hamming distances to all a�ne mappings are invariants [9] for
EA-equivalent vectorial Boolean functions (under CCZ-equivalence, only the spectrum of
absolute Walsh �Hadamard values remains as an invariant). Accordingly, all the above
nonlinearity indicators, including the algebraic degree, are also invariants in the case of
EA-equivalence.

The results obtained in this section are based on results [21, 22], where all classes of EA-
equivalent APN functions up to dimension 5 are presented through the canonical element,
which is the representative of the class with the smallest truth table in the lexicographic
sense. To shorten the notation, the 2n-ary number system will be used.
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For n = 1, all Boolean functions are APN and simultaneously a�ne.
For n = 2, there is a single class of EA-equivalent APN functions presented in the

Table 1. Along with the nonlinearity value NF found here, the values of the degree of
nonlinearity degF and the nonlinearity in the sense (1) NLF are also given.

Ta b l e 1
Nonlinearity of APN functions in dimension 2

x 0 1 2 3 degF NLF NF

F (x ) 0 0 0 1 2 0 1

The value of the nonlinearity coincides with the lower bound (9) and the upper
bound (6). The a�nity order of all APN functions in dimension 2 is 2. There are no
permutations in this EA-class and there is the APN function represented by the power
function x3 over a �eld F4. Vectorial functions in dimension n over the �eld F2, represented
by one-dimensional power functions of the form xd over the �eld F2n , are commonly called
power vectorial functions or simply power functions3 with exponent d.

For n = 3, the class of EA-equivalent APN functions is also unique and is presented
together with the nonlinearity indicators in the Table 2.

Ta b l e 2
Nonlinearity of APN functions in dimension 3

x 0 1 2 3 4 5 6 7 degF NLF NF

F (x ) 0 0 0 1 0 2 4 7 2 2 4

In this case, according to (5), all APN functions are AB. The value of the nonlinearity
coincides with the lower bound (11) and the upper bound (6). In accordance with (4),
the a�nity order of all such mappings is greater than or equal to 2. This class contains
permutations, including power functions with exponents 3, 5, and 6.

For n = 4, there are 2 classes of EA-equivalent APN functions (these classes are CCZ-
equivalent), presented in the Table 3.

Ta b l e 3
Nonlinearity of APN functions in dimension 4

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 degF NLF NF

F1(x ) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13 2 4 10
F2(x ) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12 3 4 10

The values of nonlinearity for both EA-classes coincides with the lower bound (9) and
the upper bound (6). In accordance with (4), the a�nity order of all APN functions in
dimension 4 is greater than or equal to 3. There are no permutations in these classes. The
�rst class contains power functions with exponents 3, 6, 9, and 12. In the second class, there
are no power functions, but there are APN functions found in [23].

For n = 5, there are already 7 classes of EA-equivalent APN functions, presented in the
Table 4 (the �rst, third and seventh classes, as well as the second, fourth and sixth classes
are CCZ-equivalent).

3The term monomial functions is also used.



Nonlinearity of APN functions: comparative analysis and estimates 21

Ta b l e 4
Nonlinearity of APN functions in dimension 5

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
F1(x ) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25
F2(x ) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27 0 8 16 25
F3(x ) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25
F4(x ) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 29 26 0 8 16 25
F5(x ) 0 0 0 1 0 2 4 8 0 3 6 12 7 16 25 23 0 7 3 22
F6(x ) 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 5 12 27
F7(x ) 0 0 0 1 0 2 4 8 0 3 6 16 8 21 26 29 0 6 15 24

x cont. 20 21 22 23 24 25 26 27 28 29 30 31 degF NLF NF

F1(x ) cont. 5 15 17 26 22 26 14 3 3 13 31 16 2 12 25
F2(x ) cont. 5 15 17 26 27 23 3 14 14 0 18 29 2 12 25
F3(x ) cont. 5 15 19 24 7 11 27 22 26 20 1 14 3 12 25
F4(x ) cont. 5 15 19 24 10 6 22 27 23 25 12 3 3 12 25
F5(x ) cont. 28 19 9 0 19 8 15 28 21 9 29 2 4 10 25
F6(x ) cont. 20 6 31 16 7 31 8 22 9 26 17 11 3 12 25
F7(x ) cont. 18 3 17 30 2 29 14 20 25 13 9 23 3 12 25

The calculated values of nonlinearity for all 7 EA-classes are the same. The resulting
value exceeds the lower bound (11) by 1 and coincides with the the upper bound (6).
In accordance with (4), the a�nity order of all APN functions in dimension 5 is greater
than or equal to 5. All APN functions from the �rst, second, sixth and seventh classes are
AB, and from the �fth class are not AB. These 5 classes contain permutations. The third
and fourth classes don't contain any permutations, but contain the AB functions found
in [23].

In this case, all power functions with exponents from 1 to 30 are permutations. In order
to determine whether they are APN permutations and obtain the distribution of power
APN permutations over the indicated 5 classes of EA-equivalence, which is absent in [21],
let's recall known results. H. Dobbertin [24] conjectured that the six known in�nite families
of power APN functions presented in Table 5 exhaust the entire set of power APN functions
(in accordance with later works, the Niho case for n ≡ 3 (mod 4) was added to the original
table from [24]).

Ta b l e 5
Known in�nite families of power APN functions

Name Exponent Conditions
Gold 2k + 1 (k, n) = 1, 1 ⩽ k < n/2
Kasami 22k − 2k + 1 (k, n) = 1, 2 ⩽ k < n/2

Welch 2(n−1)/2 + 3 n odd

Niho
2(n−1)/2 + 2(n−1)/4 − 1 n ≡ 1 (mod 4)
2(n−1)/2 + 2(3n−1)/4 − 1 n ≡ 3 (mod 4)

Dobbertin 24n/5 + 23n/5 + 22n/5 + 2n/5 − 1 n ≡ 0 (mod 5)
Inverse 2n − 2 n odd

The power functions from the Welch and Niho families, and also in the case of odd n
from the Gold and Kasami families, are AB functions. At the same time, the mappings
from the Dobbertin and Inverse families are not AB. All power functions from the Gold
family are quadratic.

The equivalence of exponents was also discussed in [24], which is de�ned as follows:
if a power function xd is an APN, then a power function xh is also an APN, where for
0 ⩽ i < n modulo comparison h ≡ 2id (mod (2n − 1)) is true, and also in the case when
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xd is a permutation, one more comparison hd ≡ 2i (mod (2n − 1)) is true. In this sense,
each exponent presented above gives in fact an equivalence class of exponents for which
the power function is the APN. Unfortunately, this equivalence is sometimes forgotten to
be mentioned by some authors, which narrows the reader's understanding about possible
exponents of power APN functions.

Dobbertin's conjecture has not yet been proven, but it has been checked for all values of n
up to 34. It was shown in [25�27] that the equivalence of exponents corresponds to the CCZ-
equivalence of APN functions. It follows from [21] that the �rst and seventh classes, as well
as the second and sixth classes are CCZ-equivalent. In addition, the �rst class contains x5,
the second class contains x3, the �fth class contains x15, the sixth class contains x11, and
the seventh class contains x7. Then, after calculating the equivalent exponents for the
CCZ-equivalent power APN functions and knowing their algebraic degrees, we obtain the
following proposition.

Proposition 2. All non-a�ne power 5-dimensional permutations are APN and the
following distribution of power APN permutations over 5 classes of EA-equivalence of APN
functions in dimension 5 takes place:

� exponents 5 (Gold, Niho), 9, 10, 18, 20 correspond to the �rst class;
� exponents 3 (Gold), 6, 12, 17, 24 correspond to the second class;
� exponents 15, 23, 27, 29 (Dobbertin), 30 (Inverse) correspond to the �fth class;
� exponents 11, 13 (Kasami), 21, 22, 26 correspond to the sixth class;
� exponents 7 (Welch), 14, 19, 25, 28 correspond to the seventh class.

For n ⩾ 6, the situation with �nding the nonlinearity of APN functions becomes much
more complicated. Firstly, a complete partition of such functions into EA-equivalence classes
is currently unknown, while the number of already known EA-classes even for n = 6 is
measured in hundreds (the most advanced results in this direction are presented in [28, 29]).
Second, the complexity of computing a nonlinearity for a mapping from P n,n

2 is O(2n
2+2n)

additive operations in the �eld F2n , and thus computing such a nonlinearity for n greater
than or equal to 6 is itself a di�cult task.

Consider a special case of the APN 6-dimensional permutation S presented in [30]
(Table 6).

Ta b l e 6
APN 6-dimensional permutation

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x ) 0 54 48 13 15 18 53 35 25 63 45 52 3 20 41 33

x cont.1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S(x ) cont.1 59 36 2 34 10 8 57 37 60 19 42 14 50 26 58 24

x cont.2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
S(x ) cont.2 39 27 21 17 16 29 1 62 47 40 51 56 7 43 44 38

x cont.3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
S(x ) cont.3 31 11 4 28 61 46 5 49 9 6 23 32 30 12 55 22

Permutation S, like the majority of known APN functions in dimensional 6, has a
relatively high nonlinearity in the sense (1) equal to 24. Computer calculation of its
nonlinearity gives a value 55, which exceeds the lower bound (9) by 2 and is inferior to
the upper bound (6) also by 1. In accordance with (4), the a�nity order of permutation S
is greater than or equal to 8.
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The obtained values of nonlinearity for APN functions in small dimensions allow us to
assume that, in contrast to the nonlinearity in the sense (1), all APN functions have the
same nonlinearity.

Since there are no APN 4-dimensional permutations, let's consider further the behavior
of nonlinearity for di�erentially 4-uniform permutations in dimension 4.

4. Nonlinearity of di�erentially 4-uniform permutations in dimension 4

From the results [22], it follows that there are 13 EA-equivalent classes of di�erentially
4-uniform mappings from P 4,4

2 containing 4-dimensional permutations (the second and third,
fourth and twelfth, �fth and sixth EA-classes in addition are pairwise CCZ-equivalent). As in
the case of APN functions, we represent these classes in the Table 7 through their canonical
elements in the hexadecimal notation, with three indicators for each of them, including the
nonlinearity values found here.

Ta b l e 7
Nonlinearity of di�erentially 4-uniform permutations in dimension 4

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 degF NLF NF

F1(x ) 0 0 0 0 0 1 2 3 0 2 4 8 0 12 5 7 3 2 9
F2(x ) 0 0 0 0 0 1 2 3 0 4 8 13 0 5 14 10 3 4 9
F3(x ) 0 0 0 0 0 1 2 3 0 4 8 13 0 6 11 12 3 4 9
F4(x ) 0 0 0 0 0 1 2 3 0 4 8 13 0 6 12 11 3 4 9
F5(x ) 0 0 0 0 0 1 2 4 0 1 3 6 2 8 6 15 3 2 9
F6(x ) 0 0 0 0 0 1 2 4 0 1 3 6 3 8 7 15 3 2 9
F7(x ) 0 0 0 0 0 1 2 4 0 1 3 8 2 7 13 5 3 2 9
F8(x ) 0 0 0 0 0 1 2 4 0 1 3 8 4 11 12 14 3 4 9
F9(x ) 0 0 0 0 0 1 2 4 0 1 3 8 4 13 10 14 3 4 9
F10(x ) 0 0 0 0 0 1 2 4 0 1 3 8 4 13 14 10 3 4 9
F11(x ) 0 0 0 0 0 1 2 4 0 1 6 8 2 9 13 14 3 4 9
F12(x ) 0 0 0 0 0 1 2 4 0 1 6 8 2 13 8 15 3 4 9
F13(x ) 0 0 0 0 0 1 2 4 0 2 8 15 1 10 15 6 3 4 9

Using the results [22], it can be shown based on the number of matches of canonical
elements with zero function that all EA-classes containing 4-dimensional permutations with
di�erential uniformity greater than or equal to 6 give nonlinearity less than or equal to 9.
Since, as can be seen from the Table 7, the permutations of all 13 classes have the same
nonlinearity equal to 9, we can say that di�erentially 4-uniform permutations have the
maximum possible nonlinearity in the class S4

2 , which exceeds the lower bound (7) by 1
and is inferior to the upper bound (6) by 2. In accordance with (4), the a�nity order of all
di�erentially 4-uniform 4-dimensional permutations, as for APN functions in this dimension,
is greater than or equal to 3.

At the same time, the nonlinearity in the sense (1) for permutations of the �rst, �fth,
sixth, and seventh classes is inferior to that for permutations of the remaining nine classes,
equal to 4. The latter, as is known, is the maximum possible nonlinearity in the sense (1)
for 4-dimensional permutations. Thus, we obtain the following proposition.

Proposition 3. There are 9 pairwise not EA-equivalent (7 pairwise not CCZ-equi-
valent) classes of APN functions in dimension 4 containing permutations with three optimal
nonlinearity indicators, namely: △S = 4, NLS = 4 and NS = 9.

In [31], all 4-dimensional permutations with two optimal nonlinearity indicators (△S=4,
NLS = 4) were divided into 16 a�ne equivalence classes. We represent this partition in
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terms of canonical representatives within the extended a�ne equivalence classes in the
Table 8. The left column shows the number of the EA-class from the Table 7.

Ta b l e 8
Classes of 4-dimensional permutations with optimal nonlinear indicators

No. EA-class x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2
S1 0 1 2 13 4 7 15 6 8 11 12 9 3 14 10 5
S2 0 1 2 13 4 7 15 6 8 14 9 5 10 11 3 12

3
S3 0 1 2 13 4 7 15 6 8 11 14 3 5 9 10 12
S4 0 1 2 13 4 7 15 6 8 11 14 3 10 12 5 9

4 S5 0 1 2 13 4 7 15 6 8 14 12 11 9 3 10 5
8 S6 0 1 2 13 4 7 15 6 8 14 12 9 5 11 10 3

9
S7 0 1 2 13 4 7 15 6 8 12 9 11 10 14 5 3
S8 0 1 2 13 4 7 15 6 8 12 11 9 10 14 5 3

10
S9 0 1 2 13 4 7 15 6 8 12 14 11 10 9 3 5
S10 0 1 2 13 4 7 15 6 8 14 11 10 5 9 12 3
S11 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5

11
S12 0 1 2 13 4 7 15 6 8 14 11 3 5 9 10 12
S13 0 1 2 13 4 7 15 6 8 14 11 5 10 9 3 12

12 S14 0 1 2 13 4 7 15 6 8 14 12 11 3 9 5 10

13
S15 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9
S16 0 1 2 13 4 7 15 6 8 12 11 9 10 14 3 5

Note also that permutations from the second and third EA-classes have 3 quadratic
nonzero linear combinations of coordinate functions, permutations from the fourth, eleventh
and twelfth EA-classes have 1 such quadratic combination, and for permutations from the
eighth, ninth, tenth and thirteenth EA-classes, all nonzero linear combinations of coordinate
functions are cubic. In addition, all power 4-dimensional permutations, namely x7, x11, x13

and x14, are in the same thirteenth EA-class.

5. Conclusion
The nonlinearity of a vectorial function shows the minimum number of mismatches

between its images and the images of an arbitrary a�ne mapping. Here we study the
behavior of this nonlinearity for the class of mappings of the space Fn2 into itself, which
have an optimal nonlinearity of a di�erent form, namely, APN functions. For comparison
and completeness, the behavior of the nonlinearity de�ned as the maximum nonlinearity of
all nonzero combinations of coordinate functions is also given.

Among the most signi�cant results is the lower bound on the nonlinearity of APN
functions, obtained in Theorem 1 and Corollary 1. The lower bound obtained here, together
with the upper bound from [15], leave a rather narrow range for possible nonlinearity values
of APN functions, which is presented in Table 9 for n ⩽ 8.

Ta b l e 9
Bounds on nonlinearity of APN functions

n 1 2 3 4 5 6 7 8
Lover bound (9) or (11) 0 1 4 10 24 53 112 233
Exact value (Section 3) 0 1 4 10 25 (55) ? ? ?

Upper bound (6) 0 1 4 10 25 56 119 246

In addition, the lower nonlinearity bound makes it possible to obtain a lower bound on
the a�nity order of such mappings (Corollary 2), which guarantees that in an arbitrary
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piecewise a�ne representation of any APN function F there is at least the obtained number
of a�nity domains. This number directly a�ects the complexity of solving the system of
nonlinear equations given by F [20].

The results obtained for the nonlinearity of APN functions in small dimension allow
us to formulate some problems and make conjectures about its behavior in the general
case. As has been shown, all APN functions of �xed dimension up to 5 have the same
nonlinearity value (in contrast to the nonlinearity de�ned as the minimal nonlinearity of
nonzero combinations of coordinate functions). In this regard, the following question arises.

Problem 1. Do all APN functions in �xed dimension really have the same nonlinearity
value?

It was also shown here that all APN functions in dimension up to 5 have the maximum
possible nonlinearity among all mappings in the corresponding dimension. Therefore, if the
answer to the �rst question is yes, then the second question arises.

Problem 2. Is the value of the nonlinearity of APN functions the maximum possible
among all mappings in the corresponding dimension?

In [7] it was conjectured that the nonlinearity of all vectorial Boolean functions from P n,k
2

is less than or equal to (1 − 2−k)(2n − 2n/2), and, accordingly, for k = n, the conjectured
upper bound has the form

NF ⩽ 2n − 2n/2 − 1 + 2−n/2. (14)

From the results obtained above, it is easy to see that the studied 6-dimensional
permutation also has a nonlinearity value coinciding with (14). In a sense, this con�rms
the conjecture that all APN functions have the same nonlinearity, which is the maximum
possible among all mappings in corresponding dimension.

In the paper, the distribution of power APN permutations over 5 classes of EA-
equivalence of APN functions in dimension 5 is obtained (Proposition 2).

All possible 9 classes of EA-equivalent di�erentially 4-uniform vectorial functions in
dimension 4, containing permutations and having optimal two other nonlinearity indicators
are also presented (Proposition 3). Using Table 7 and Table 8, it is much easier to �nd
combinations of not EA-equivalent 4-dimensional permutations with all three optimal
nonlinearity indicators.
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