ГЕОСФЕРНЫЕ ИССЛЕДОВАНИЯ GEOSPHERE RESEARCH

Научный журнал

2024 № 2

Зарегистрирован в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (свидетельство о регистрации ПИ № ФС77-66443 от 14 июля 2016 г.)

Журнал индексируется в Web of Science Core Collection's Emerging Sources Citation Index и SCOPUS.

The Journal is indexed in the Web of Science Core Collection's Emerging Sources Citation Index and SCOPUS.

Подписной индекс в объединённом каталоге «Пресса России» 94288

Учредитель – Томский государственный университет

Адрес редакции и издателя: 634050, г. Томск, пр. Ленина, 36, Национальный исследовательский Томский государственный университет, геолого-географический факультет, ауд. 242. Сайт: http://journals.tsu.ru/geo/

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор: **Изох А.Э.,** д-р геол.-минерал. наук, Институт геологии и минералогии СО РАН, Новосибирск, Россия Заместитель главного редактора: **Шпанский А.В.,** д-р геол.-минерал. наук, профессор Томского государственного университета, Томск, Россия

E-mail: shpansky@ggf.tsu.ru

Ответственный секретарь: **Асочакова Е.М.,** канд. геол.-минерал. наук, Томский государственный университет, Томск. Россия

E-mail: ev.asochakova@gmail.com

Гордиенко И.В., д-р геол.-минерал. наук, чл.-кор. РАН, Геологический институт СО РАН, Улан-Удэ, Россия

Гутак Я.М., д-р геол.-минерал. наук, профессор Сибирского государственного индустриального университета, Новокузнецк, Россия Дорошкевич А.Г., д-р геол.-минерал. наук, заведующая лабораторией, Институт геологии и минералогии СО РАН, Новосибирск, Россия

Евсеева Н.С., д-р геогр. наук, профессор Томского государственного университета, Томск, Россия

Земцов В.А., д-р геогр. наук, профессор Томского государственного университета, Томск, Россия

Коротеев В.А., д-р геол.-минерал. наук, академик РАН, Институт геологии и геохимии УрО РАН, Екатеринбург, Россия

Крук Н.Н., д-р геол.-минерал. наук, чл.-кор. РАН, директор, Институт геологии и минералогии СО РАН, Новосибирск, Россия

Кузьмин М.И., д-р геол.-минерал. наук, академик РАН, Институт геохимии СО РАН, Иркугск, Россия

Парначев В.П., д-р геол.-минерал. наук, профессор Томского государственного университета, Томск, Россия

Поздняков А.В., д-р геогр. наук, Институг мониторинга климатических и экологических систем СО РАН, Томск, Россия

Ревердатто В.В., д-р геол.-минерал. наук, академик РАН, Институт геологии и минералогии СО РАН, Новосибирск, Россия

Савичев О.Г., д-р геогр. наук, профессор Томского политехнического университета, Томск, Россия

Сазонов А.М., д-р геол.-минерал. наук, профессор Сибирского федерального университета, Красноярск, Россия

Скляров Е.В., д-р геол.-минерал. наук, чл.-кор. РАН, Институт земной коры СО РАН, Иркутск, Россия

Соломина О.Н., д-р геогр. наук, чл.-кор. РАН, директор Института географии РАН, Москва, Россия

Худолей А.К., д-р геол.-минерал. наук, профессор Санкт-Петербургского государственного университета, Санкт-Петербург, Россия

Цыганков А.А., д-р геол.-минерал. наук, Геологический институт СО РАН, Улан-Удэ, Россия

Чернышов А.И., д-р геол.-минерал. наук, профессор Томского государственного университета, Томск, Россия

Ярмолюк В.В., д-р геол.-минерал. наук, академик РАН, Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Москва, Россия

Бэнкс Давид, CGeol, компания Holymoor Consultansy, Честерфилд, Университета Глазго, Великобритания

Гутиеррес-Алонсо Г., профессор Университета Саламанки, Саламанка, Испания

Покровский О.С., ведущий научный сотрудник обсерватории Миди-Пиренейз Национального центра научных исследований, Тулуза, Франция

Чамберлейн К.Р., профессор, Университет Вайоминг, Ларами, США

Чан Чонг Хоа, Геологический институт Вьетнамской академии наук и технологий, Ханой, Вьетнам

Эрнст А.А., профессор, Гамбургский университет, Гамбург, Германия

Эрист Р.Э., профессор Карлетонского университета, Оттава, Канада

РЕДАКЦИОННЫЙ СОВЕТ

Гертнер И.Ф., канд. геол.-минерал. наук, Томский государственный университет, Томск, Россия; Горбатенко В.П., д-р геогр. наук, Томский государственный университет, Томск, Россия; Краснова З.Н., канд. геогр. наук, Томский государственный университет, Томск, Россия; Краснова Т.С., канд. геол.-минерал. наук, начальник научного управления, Томский государственный университет, Томск, Россия; Кужевская И.В., канд. геогр. наук, Томский государственный университет, Томск, Россия; Кужевская И.В., канд. геогр. наук, Томский государственный университет, Томск, Россия; Лещинский С.В., д-р геол.-минерал. наук, Томский государственный университет, Томск, Россия; Подобина В.М., д-р геол.-минерал. наук, Томский государственный университет, Томск, Россия; Россия;

Founder – Tomsk State University

"Geosphere Research"

International standard serial edition number: 2542-1379

Languages: Russian, English

Publication are non-commercial basis (FREE)

Open access

Contacts: 36 Lenin Avenue, Tomsk, Russia, 634050. Tomsk State University. Faculty of Geology and Geography;

http://journals.tsu.ru/geo

EDITORIAL BOARD

Editor-in-Chief: Izokh A.E., Professor, Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

Deputy Editor-in-Chief: Andrey V. Shpansky, Dr. Sci. (Geol.-Miner.), Professor of the Tomsk State University, Tomsk, Russia

E-mail: shpansky@ggf.tsu.ru

Executive Editor: Evgeniya M. Asochakova, Cand. Sci. (Geol.-Miner.), Assistant Professor, Tomsk State University,

Tomsk, Russia

E-mail: ev.asochakova@gmail.com

Gordienko I.V., Corresponding Member of RAS, Geological Institute SB RAS, Ulan-Ude, Russia

Gutak Ya.M., Professor of the Siberian State Industrial University, Novokuznetsk, Russia

Doroshkevich A.G., Head of Laboratory, Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

Evseeva N.S., Professor of the Tomsk State University, Tomsk, Russia

Zemtsov V.A., Professor of the Tomsk State University, Tomsk, Russia

Kruk N.N., Corresponding Member of RAS, Director, Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

Kuzmin M.I., Member of RAS, A.P. Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russia

Parnachov V.P., Professor of the Tomsk State University, Tomsk, Russia

Pozdnyakov A.V., Professor, Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia

Reverdatto V.V., Member of RAS, Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

Savichev O.G., Professor of the Tomsk Polytechnic University, Tomsk, Russia

Sazonov A.M., Professor of the Siberian Federal University, Krasnoyarsk, Russia

Sklyarov E.V., Corresponding Member of RAS, Institute of the Earth Crust SB RAS, Irkutsk, Russia

Solomina O.N., Corresponding Member of RAS, Director of the Geography Institute RAS, Moscow, Russia

Khudoley A.K., Professor of the St. Petersburg University, St. Petersburg, Russia

Tsygankov A.A., Director of the Geological Institute of SB RAS, Ulan-Ude, Russia

Chernyshov A.I., Professor of the Tomsk State University, Tomsk, Russia

Yarmolyuk V.V., Member of RAS, Institute of the Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow, Russia

David Banks, CGeol, Holymoor Consultancy, Chesterfield, UK

Gabriel Gutierrez-Alonso, Professor of the Salamanca University, Salamanca, Spain

Pokrovsky O.S., Leading Scientist, the Observatory Midi-Pyrénées of CNRS, Toulouse, France

Tran Trong Hoa, Chief Scientist, Geological Institute of the Vietnam Academy of Sciences and Technologies, Hanoi, Vietnam

Chamberlain K.R., Research Professor, Department of Geology & Geophysics, University of Wyoming, Laramie, USA

Ernst A.A., Professor of the Hamburg University, Hamburg, Germany

Richard E. Ernst, Professor of the Carleton University, Ottawa, Canada

EDITORIAL COUNCIL

Gertner I.F., Cand. Sci. (Geol.-Miner.), Tomsk State University, Tomsk, Russia; Gorbatenko V.P., Dr. Sci. (Geogr.), Professor of the Tomsk State University, Tomsk, Russia; Grinev O.M., Cand. Sci. (Geol.-Miner.), Tomsk State University, Tomsk, Russia; Tomsk State University, Tomsk, Russia; Krasnova T.S., Cand. Sci. (Geol.-Miner.), Tomsk State University, Tomsk, Russia; Krasnova T.S., Cand. Sci. (Geol.-Miner.), Tomsk State University, Tomsk, Russia; Kuzhevskaya I.V., Cand. Sci. (Geogr.), Tomsk State University, Tomsk, Russia; Lychagin D.V., Dr. Sci. (Phys.-Math.), Professor of the Tomsk State University, Tomsk, Russia; Podobina V.M., Dr. Sci. (Geol.-Miner.), Professor of the Tomsk State University, Tomsk, Russia; Sevast'yanov V.V., Dr. Sci. (Geogr.), Professor of the Tomsk State University, Tomsk, Russia; Tat'yanin G.M., Cand. Sci. (Geol.-Miner.), Tomsk State University, Tomsk, Russia; Tomsk, Ru

СОДЕРЖАНИЕ

ГЕОТЕКТОНИКА	, ГЕОДИНАМИКА
--------------	---------------

Енисейский кряж)	••••
ПЕТРОЛОГИЯ	
Уляшева Н.С., Шуйский А.С., Хубанов В.Б. Амфиболиты харбейского метаморфического комплекса (Полярный Урал): геохимические и геохронологические данные	
Чернышов А.И., Юричев А.Н. Деформации изломом в породах Хопсекского ультрамафитового массива (Западная Тыва)	
ГЕОЛОГИЯ МЕСТОРОЖДЕНИЙ	
Колпаков В.В., Неволько П.А., Фоминых П.А., Похмелкин Н.С. Минералого-геохимическая характеристика и вероятные коренные источники самородного золота россыпей района Шахтаминского Мо-порфирового месторождения (Восточное Забайкалье)	
Редин Ю.О., Борисенко А.С., Редина А.А., Малютина А.В., Дульцев В.Ф. Основные этапы формирования золотого и редкометалльного оруденения Восточного Забайкалья и связанного с ним магматизма: новые U-Pb и Ar-Ar данные	
Шутов В.А., Мехоношин А.С., Колотилина Т.Б. Процессы родингитизации и нефритообразования на контакте серпентинитов с плагиориолит-порфирами Улан-Ходинского месторождения (Восточные Саяны, Россия)	
геоэкология, гидрология	
Бондаревич Е.А., Михайлова Л.А., Коцюржинская Н.Н., Лескова О.А., Лагутенко М.Р., Ерофеева Е.С., Ломаковский К.Б., Апрелков Р.Э. Микроэлементный состав природных вод Восточного Забайкалья в условиях техногенного воздействия	
Поздняков А.В., Грачев И.Г., Фузелла Т.Ш. Экосистема и экологическая емкость: методы и результаты исследования (на примере Ушайской экосистемы. Россия, Томская область)	
Савичев О.Г., Хващевская О.А., Паромов В.В. Пространственно-временные изменения химического состава компонентов водных объектов в горно-ледниковом бассейне Актру (Горный Алтай) и на прилегающих территориях	
Сидкина Е.С., Черкасова Е.В., Солдатова Е.А., Конышев А.А., Догадкин Д.Н., Громяк И.Н. Химический состав вод как индикатор природно-техногенного взаимодействия вода – порода на примере рудника Бекк (Питкярантский район, Карелия)	
ПЕРСОНАЛИИ	
Татьянин Г.М. К юбилею заслуженного профессора Томского государственного университета Веры Михайловны Подобиной: ученый с мировым именем	

CONTENTS

GEOTECTONICS, GEODYNAMICS

Likhanov I.I., Reverdatto V.V., Nozhkin A.D., Kozlov P.S. Evidence of Grenville and Valhalla tectonic events at the western margin of the Siberian Craton from rocks of the Angara complex (Yenisey Ridge)	6
PETROLOGY	
Ulyasheva N.S., Shuyskiy A.S., Khubanov V.B. Amphibolites of the Kharbey metamorphic complex (Polar Urals): geochemical and geochronological data	37
Chernyshov A.I., Yurichev A.N. Fracture deformations in rocks of the Hopseksky ultramafic massif (Western Tyva)	53
GEOLOGY OF DEPOSITS	
Kolpakov V.V., Nevolko P.A., Fominykh P.A., Pokhmelkin N.S. Mineralogical-geochemical characteristic and the potential ore sources of placer native gold in the area of the Shakhtaminsky Mo-porphyry deposit (Eastern Transbaikalia)	61
Redin Yu.O., Borisenko A.S., Redina A.A., Malyutina A.V., Dultsev V.F. The main stages of the formation of the gold and rare-metal mineralization of the Eastern Transbaikalia and associated magmatism: new U-Pb and Ar-Ar data	71
Shutov V.A., Mekhonoshin A.S., Kolotilina T.B. Nephrite formation processes at the contact of serpentinites with plagiorhyolite-porphyries of the Ulan-Khodinsky deposit, Eastern Sayans, Russia	101
GEOECOLOGY, HYDROLOGY	
Bondarevich E.A., Mikhailova L.A., Kotsyurzhinskaya N.N., Leskova O.A., Lagutenko M.R., Erofeeva E.S., Lomakovskiy K.B., Aprelkov R.E. Trace element composition of natural waters of Eastern Transbaikalia under the conditions of technogenic impact	117
Pozdnyakov A.V., Grachev I.G., Fuzella T.Sh. Ecosystem and ecological capacity: research methods and results (based on the example of the Ushai ecosystem. Russia, Tomsk region)	129
Savichev O.G., Khvaschevskaya A.A., Paromov V.V. Patial and long-term changes in the chemical composition of water objects components in the Aktru mountain-glacier basin (Gorny Altai) and in the adjacent territories	143
Sidkina E.S., Cherkasova E.V., Soldatova E.A., Konyshev A.A., Dogadkin D.N., Gromyak I.N. Water chemical composition as an indicator of natural-anthropogenic interaction in water-rock system: case study of the mine "Beck" (Pitkyarantsky District, Karelia)	156
GREAT PERSON	
Tatyanin G.M. To the anniversary of the Honored Professor of Tomsk State University Vera Mikhailovna Podobina: a world-famous scientist	168

ГЕОТЕКТОНИКА, ГЕОДИНАМИКА

Научная статья УДК 551.72; 551.24.056 doi: 10.17223/25421379/31/1

СВИДЕТЕЛЬСТВА ГРЕНВИЛЬСКИХ И ВАЛЬГАЛЬСКИХ ТЕКТОНИЧЕСКИХ СОБЫТИЙ НА ЗАПАДНОЙ ОКРАИНЕ СИБИРСКОГО КРАТОНА (АНГАРСКИЙ КОМПЛЕКС, ЕНИСЕЙСКИЙ КРЯЖ)

Игорь Иванович Лиханов¹, Владимир Викторович Ревердатто², Александр Дмитриевич Ножкин³, Павел Сергеевич Козлов⁴

- ^{1, 2, 3} Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия
- 4 Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН, Екатеринбург, Россия
- likh@igm.nsc.ru
- ² rever@igm.nsc.ru
- ³ nozhkin@igm.nsc.ru
- 4 kozlov@igg.uran.ru

Аннотация. Реконструкция геологической истории Енисейского кряжа важна не только для понимания тектонической эволюции подвижных поясов на границах древних кратонов, но и для решения вопроса о вхождении Сибирского кратона в состав суперконтинента Родиния. По результатам минералого-петрологических, геохимических и изотопно-геохронологических исследований получены данные по возрастам и термодинамическим условиям метаморфизма, обстановкам формирования, составам и природе протолитов метапелитов, метабазитов и метавулканитов зоны сочленения Северо- и Южно-Енисейского кряжа (Приангарье). Установлены два импульса мезо-неопротерозойской эндогенной активности в развитии Ангарского комплекса, связанные со становлением суперконтинента Родиния. Ранний этап (1,18–0,85 млрд лет) связывается с гренвильской тектоникой, поздний – с посттренвильскими аккреционно-коллизионными процессами вальгальской складчатости с пиками 810–790 и 730–720 млн лет и завершением неопротерозойской эволюции орогена на западной окраине Сибирского кратона. Геодинамическая история региона сопоставляется с синхронной последовательностью и схожим стилем тектоно-термальных событий по периферии крупных докембрийских кратонов Лаврентии и Балтики, что подтверждает современные палеоконтинентальные реконструкции о тесных пространственно-временных связях между этими кратонами и их вхождении в состав Родинии.

Ключевые слова: геохимия, тектонические обстановки, термобарометрия, протолиты, геохронология, гренвильские и вальгальские события, Ангарский комплекс, Енисейский кряж

Источник финансирования: работа выполнена за счет средств гранта Российского научного фонда (проект № 21-77-20018) с дополнительной поддержкой полевых работ в рамках госзадания ИГМ СО РАН (122041400176-0).

Для цитирования: Лиханов И.И., Ревердатто В.В., Ножкин А.Д., Козлов П.С. Свидетельства гренвильских и вальгальских тектонических событий на западной окраине Сибирского кратона (Ангарский комплекс, Енисейский кряж) // Геосферные исследования. 2024. № 2. С. 6–36. doi: 10.17223/25421379/31/1

Original article

doi: 10.17223/25421379/31/1

EVIDENCE OF GRENVILLE AND VALHALLA TECTONIC EVENTS AT THE WESTERN MARGIN OF THE SIBERIAN CRATON FROM ROCKS OF THE ANGARA COMPLEX (YENISEY RIDGE)

Igor I. Likhanov¹, Vladimir V. Reverdatto², Alexander D. Nozhkin³, Pavel S. Kozlov⁴

^{1, 2, 3} V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

⁴A.N. Zavaritsky Institute of Geology and Geochemistry UB RAS, Ekaterinburg, Russia

¹ likh@igm.nsc.ru

² rever@igm.nsc.ru

³ nozhkin@igm.nsc.ru

⁴kozlov@igg.uran.ru

Abstract. The tectonic evolution of the Siberian cratonic margins offers important clues for global paleogeographic reconstructions, particularly with regard to the complex geological history of Central Asia. The Yenisey Ridge fold-and-thrust belt at the western margin of the Siberian Craton forms part of the Central Asian Orogenic Belt (CAOB) and is a key to understand the Precambrian tectonic evolution of the Siberian Craton and crustal growth in the CAOB. Understanding the tectonic evolution of the Yenisei Ridge is crucial for solving the debate related to the role of the Siberian Craton within the Rodinia supercontinent assemblies and breakup with the opening of the Paleoasian Ocean. The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara-Kan inlier of the Yenisey Ridge. The studied metabasites, volcanics and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites of the Rybnaya-Panimba volcanic belt were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes and metapicrite-basalt rock associations of the Nizhnerechinskaya Sequence resemble those of within-plate basalts and ocean island tholeittes. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chloritehydromica compositions. The P-T conditions of metamorphism (4.9-5.5 kbar/570-650 °C for metabasites of the RPVB; 4.1-7.1 kbar/500-630 °C for metapelites) correspond to epidote-amphibolite to amphibolite facies transition. The Late Mesoproterozoic-Early Neoproterozoic rifting of the Earth's crust in the Angara region led to the opening of the marginalcontinental sea basin, where basalt-picrite volcanism occurred simultaneously with accumulation of terrigenous-carbonate sediments, including ore-bearing (Pb-Zn) rocks of the Gorevskaya Formation, which host the unique Gorevskoye Pb-Zn deposit. Based on the results of geochronology, two new pulses of Neoproterozoic endogenous activity at the western margin of the Siberian craton were established, associated with Grenville (1.18–0.85 Ga) and post-Grenville Valhalla with the peaks at 810–790 and 730– 720 Ma accretion-and-collision processes. These episodes of regional crustal evolution are correlated with the synchronous successions and similar style of rocks along the Arctic margin of Rodinia and supports the spatial proximity of Siberia and North Atlantic cratons (Laurentia and Baltica), which is consistent with the proposed Neoproterozoic paleogeographic reconstructions of the Rodinia configuration.

Keywords: geochemistry, tectonic settings, geothermobarometry, protoliths, geochronology, Grenville and Valhalla events, Yenisey Ridge

Source of financing: This study was funded by Russian Science Foundation, grant No. 21-77-20018 with additional support of field works in the framework of the State Tasks of the Institute of Geology and Mineralogy SB RAS (122041400176-0).

For citation: Likhanov I.I., Reverdatto V.V., Nozhkin A.D., Kozlov P.S. (2024) Evidence of Grenville and Valhalla tectonic events at the western margin of the Siberian Craton from rocks of the Angara complex (Yenisey Ridge). *Geosfernye issledovaniya – Geosphere Research.* 2. pp. 6–36. (In Russian) doi: 10.17223/25421379/31/1

Введение

Реконструкция геологической истории Енисейского кряжа, представляющего собой аккреционноколлизионный ороген на западной окраине Сибирского кратона, важна не только для понимания тектонической эволюции подвижных поясов континентальных окраин, но и для верификации данных палеомагнитного моделирования о конфигурации Родинии. Этот суперконтинент возник на рубеже мезонеопротерозоя в результате гренвильского орогенеза [Добрецов, 2003; Ярмолюк и др., 2006]. Гренвильский пояс в Лаврентии, являющейся ядром Родинии, служит опорным для любых палеореконструкций периода формирования этого суперконтинента. Гренвильская складчатость фиксировала закрытие позднемезопротерозойского океана: ее заключительные деформации, связанные с процессами континентальной коллизии мезопротерозойских блоков, имели возраст 1,2-0,85 млрд лет [Ernst et al., 2008; Богданова и др., 2009]. Образованный в ходе этих событий гренвильский пояс протягивался по периферии большинства палеоконтинентов - от западной Австралии до Сибири на расстояние более 10 тыс. км [Dalziel, 1997; Тогѕvік, 2003; Лиханов и др., 2014а]. Ключевым для палеоконтинентальных реконструкций неопротерозойского этапа эволюции Родинии является вальгальский ороген [Cawood et al., 2004, 2010], расположенный вдоль ее арктической окраины и включающий северные территории Лаврентии, Балтики, Гренландии и Свальбарда. По времени эти деформационно-метаморфические события (интенсивная складчатость, тектоническое утолщение коры, связанный с надвигами коллизионный метаморфизм, магматизм) охватывают диапазон гренвильского и постгренвильского циклов, включающих эпохи Ренланд (980–910 млн лет) и Нордатьян (880–720 млн лет) соответственно.

Однако существуют представления, что интервал геологической эволюции Земли между 1,8 и 0,75 млрд л. н., известный в литературе как скучный миллиард (boring billion) [Buick et al., 1995], характеризуется низкой эндогенной активностью, наряду со снижением изотопных отношений Rb-Sr в карбонатных осадках и калиевости гранитов и песчаников, что, вероятно, было связано с перестройкой конвективных течений и плюмов в мантии и что контрастирует с драматическими изменениями в предыдущие и последующие эпохи [Santosh et al., 2009]. Так, синтез

полученных геохронологических данных позволил установить наличие в докембрийской истории развития южной части Сибирского кратона глобального по своей продолжительности перерыва 0,75 млрд лет) в проявлении эндогенной активности и процессов осадконакопления [Gladkochub et al., 2010]. Выявленный феномен в совокупности с выполненными межкратонными корреляциями позволил авторам обосновать возможность существования на Земле долгоживущего (транспротерозойского) суперконтинента, объединявшего в своей структуре целый ряд древних кратонов: Сибирь, Лаврентию, Балтику и др. Причина этого явления до настоящего времени остается предметом дискуссий.

Некоторые геодинамические модели развития Енисейского кряжа базируются на предположении о минимуме магматической активности в регионе в возрастном диапазоне более 1 млрд лет — со времени внедрения таракских гранитоидов (1900—1750 млн лет), прорывающих палеопротерозойские гранулиты и амфиболиты Ангаро-Канского террейна, до среднего неопротерозоя (~750 млн лет) [Верниковский и др., 2009]. На основании этого в ряде работ был сделан вывод об отсутствии на Енисейском кряже мезопротерозойских, в том числе гренвильских коллизионных событий, что приводит к противоречивой трактовке целого ряда ключевых вопросов геологии региона.

Мы считаем, что проблемы оценки геохронологических рубежей в истории суперконтинента Родиния во многом еще далеки от окончательного решения. Это связано с дефицитом геохимических данных и возрастных датировок, включающих периоды его становления и распада, что существенно ограничивает возможности временных корреляций глобальных геологических процессов в истории Земли.

В пределах Сибирского кратона в качестве возрастных аналогов процессов гренвильской и вальгальской складчатости рассматриваются гранитогнейсовые купола, гранитоиды Гаревского метаморфического комплекса и метапелиты низких/умеренных давлений Приенисейской и Татарско-Ишимбинской систем разломов, проявленные в структурах Северного и Южного Енисейского кряжа [Лиханов, 2000а, 2023; Лиханов и др., 2006а, 2008а, 2009; 2012а; Ревердатто и др., 2017; Козлов и др., 2020]. Геохимические аспекты, петрогенезис и возраст метаморфизма орто- и парапород области сочленения данных сегментов орогена изучены слабо. Попытка восполнения этого пробела предпринята в настоящей статье, в которой обсуждаются особенности происхождения пород Ангарского комплекса, условия их метаморфизма и геохронологические свидетельства мезонеопротерозойских событий в эволюции Енисейского кряжа. Из-за отсутствия согласованных петрологических, геохимических и геохронологических данных между магматическими и метаморфическими событиями вопрос о возрасте и тектонической позиции этого кристаллического комплекса является предметом дискуссий. Такие исследования важны не только для понимания процессов, сформировавших тектонический облик региона, но и для выяснения тектонической эволюции подвижных поясов в обрамлении древних кратонов и решения широко дискутируемого вопроса о вхождении Сибирского кратона в состав древнего суперконтинента Родиния [Li et al., 2008; Ernst et al., 2016; Reverdatto et al., 2019].

В последние годы повышенный интерес к этой территории вызван тем, что здесь локализован ряд месторождений полезных ископаемых, по объему разведанных запасов во многом определяющих минерально-сырьевую базу России: золото, глинозем, марганец, свинец, цинк, ниобий, сурьма, железо и другие виды минерального сырья [Козлов и др., 2022; Ножкин, Лиханов, 2023].

Геологическое положение и основные структурные элементы Енисейского кряжа

Енисейский кряж расположен на западной окраине Сибирского кратона, протягиваясь в субмеридианальном направлении вдоль р. Енисей почти на 700 км при ширине от 50 до 200 км (рис. 1, а). Геофизические данные свидетельствуют о вертикальном утолщении и транспрессионной обстановке: ширина складчатой области Енисейского кряжа на глубине более 10 км вдвое уменьшается, что придает ему грибовидную форму [Likhanov et al., 2004]. Глубина залегания поверхности Мохоровичича под Енисейским кряжем по сравнению с соседними регионами увеличена с 40 до 50 км [Егоров, 2004]. Таким образом, этот складчатый ороген обладает структурой с утолщенной корой, сохранившейся в течение длительного геологического времени. Коллизионная модель формирования структуры земной коры в регионе подтверждается данными сейсмического профилирования и объясняется «скучиванием» пород неопротерозойских формаций [Митрофанов и др., 1988]. В строении Енисейского кряжа выделяются два крупных сегмента - южный и северный (Заангарский), разделенные субширотным Ангарским региональным глубинным разломом [Ножкин и др., 2016а]. К югу от этого разлома выделяются два структурных элемента – раннедокембрийский кратонный Ангаро-Канский блок, образованный канским гранулито-гнейсовым и енисейским гнейсовосланцевым комплексами, и неопротерозойский островодужный Предивинский террейн [Лиханов и др., 2016; Ножкин и др., 2016б, 2019; Попов и др., 2020] (рис. 1).

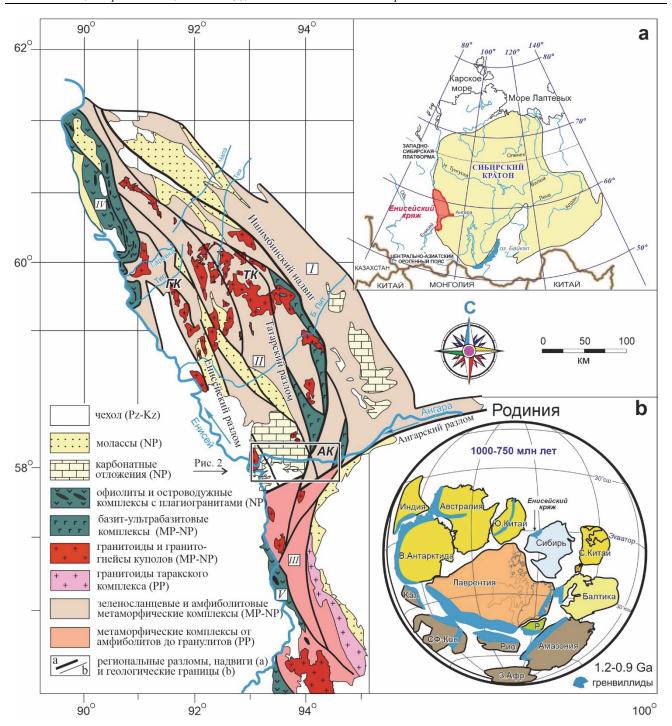


Рис. 1. Местоположение района исследований на схематической тектонической карте Енисейского кряжа Тектонические блоки: I — Восточный (приплатформенный) и II — Центральный Заангарского сегмента; III — Южно-Енисейский (Ангаро-Канский) сегмент, IV — Исаковский и V — Предивинский островодужные террейны. АК, ГК и ТК — Ангарский, гаревский и Тейский комплексы Енисейского кряжа. а — положение Енисейского кряжа в структуре Сибирского кратона; b — конфигурация ядра Родинии и расположение подвижных поясов гренвильской складчатости показаны голубым цветом по [Rino et al., 2008] с модификацией [Ernst et al., 2008] в период ее стабилизации. Положение Сибирского кратона по [Метелкин и др., 2012]. Символы для малых кратонов: С — Свальбард, Кал — Калахари, СФ-Кон — Сан-Франциско-Конго, Рио — Рио де ла Плато, З.Афр — Западная Африка, Р — Рокол

Fig. 1. Location map of the study area in a schematic tectonic map of the Yenisey Ridge

Tectonic blocks: I – East (platform) and II – Central blocks of the Transangarian segment; III – South-Yenisey (Angara-Kan) segment, IV – Isakovka and V – Predivinsk island-arc blocks. AC, GC and TC – Angara, Garevka and Teya complexes of the Yenisey Ridge. a – Location of the Yenisei Range in the Siberian craton; b – configuration of the core of Rodinia and the location of mobile belts of Grenville folding (pale blue), modified by [Ernst et al., 2008] from [Rino et al., 2008]. Minor craton abbreviations: S.Chi – South China; N.Chi – North China; Kal – Kalahiri; SF-Con – San Francisco-Congo; Rio – Rio de la Plato; R – Rockall; S – Swalbard; W.Af – West Africa

К северу от Ангарского разлома, в заангарской части, Енисейский кряж сложен палеопротерозойскими и мезо-неопротерозойскими породами, составляющими Восточный (приплатформенный) и Центральный кратонные блоки, и Исаковский (западный) террейн, представленный неопротерозойскими офиолитами и островодужными комплексами [Попов и др., 2010; Лиханов и др., 2018]. Исаковский и Предивинский докембрийские террейны аккретировали к Сибирскому континенту в венде (~600 млн лет), маркируя время завершающего этапа неопротерозойской эволюции Енисейского кряжа [Ножкин и др., 2007; Лиханов и др., 2013а]. Все тектонические блоки разделены крупными региональными разломами преимущественно северо-западного простирания с субвертикальным падением [Хераскова и др., 2009]. Приенисейская и Татарско-Ишимбинская региональные сдвиговые зоны – крупные деформационно-метаморфические структуры, разделяющие Центральный и Ангаро-Канский кратонные блоки с Исаковским и Предивинским островодужными террейнами и Центральный и Восточный блоки Заангарья соответственно. Эти структуры представляют собой систему сближенных субпараллельных разломов сдвиговой, взбросовой и надвиговой кинематики с проявлениями приразломного катаклаза, меланжирования и динамометаморфизма. Их протяженность определяется сотнями километров при ширине зоны стресс-метаморфизма от сотен метров до первых десятков километров; как правило, эти линейные зоны являются областями активного взаимодействия тектонических блоков [Козлов и др., 2012].

В приразломных зонах по этим породам развиты бластомилониты [Likhanov et al., 2018]. Региональные разломы часто сопровождаются оперяющими структурами более высокого порядка, вблизи которых происходит коллизия мелких блоков с образованием надвигов [Коробейников и др., 2006]. Последнее вызывает неоднородный по давлению региональный метаморфизм, выраженный сочетанием фациальных серий низких и умеренных давлений [Лиханов и др., 2005; Likhanov, Reverdatto, 2011; Likhanov, 2019; Likhanov, Santosh, 2020].

К зонам смятия приурочены два пояса развития гранитогнейсовых куполов, протягивающиеся на расстояние более 500 км через Заангарье и Южно-Енисейский кряж. В центральной части Енисейского кряжа выделяется Рыбинско-Панимбинский вулканический пояс (РПВП), который прослеживается от р. Ангара до р. Панимба и далее на северо-запад, судя по геофизическим данным, на расстояние около 250 км. Выходы пород этого древнейшего вулканического пояса приурочены к тектоническим зонам, трассирующим Татарско-Ишимбинскую систему раз-

ломов. Детальный обзор геохронологии, тектонической позиции и геодинамической природы комплексов, участвующих в строении региона, приведен в работах [Лиханов и др., 2014a, 2021; Likhanov, 2022]. Там же представлена хронологическая последовательность крупных этапов и событий в геологической истории Енисейского кряжа, сформировавших его тектонический облик.

Объект исследования и минералого-петрографический состав пород

Ангарский комплекс (АК) расположен в Приангарье, в зоне сочленения мезо-неопротерозойских структур Заангарья с архей-палеопротерозойскими комплексами Ангаро-Канского выступа Енисейского кряжа (междуречье Ангары, Енисея, Тасеевой и Большой Сполошной) (рис. 2). Выходы пород АК приурочены к тектоническим зонам, трассирующим Татарско-Ишимбинскую и Ангарскую системы разломов. Выделяются две крупных зоны кливажа - сланцеватости: более древняя северо-западного простирания и более молодая северо-восточного простирания, секущая первую. В тектоническом плане это южная часть Ангаро-Тисского прогиба (синклинория) – одного из структурных элементов западной части Центрального блока Енисейского кряжа. Ангаро-Тисский прогиб сложен неопротерозойскими осадочными и вулканогенно-осадочными комплексами тунгусикской, широкинской и орловской серий [Качевский, Зуев, 2005], залегающими на гнейсах, кристаллических сланцах и филлитах гаревской толщи, тейской и сухопитской серий палео- и мезопротерозоя.

По данным глубинного геологического картирования, среди дофанерозойских складчатых комплексов докембрия в геологическом строении территории Приангарья широкое участие принимают осадочнометаморфические толщи сухопитской серии среднего рифея с возрастом 1300-1200 млн лет. Сложены они разнообразными кристаллическими сланцами, филлитами и кварцитами, коррелируемыми с терригенными толщами горбилокской, удерейской и погорюйской свит Заангарья Енисейского кряжа. Стратиграфически выше этих образований несогласно залегает вулканогенная метапикрит-базальтовая толща [Ножкин и др., 2021а]. Она картируется в ядре Степановской антиклинали в виде полосы (26×5 км) северо-восточного направления, вскрытой преимущественно в левобережной части р. Енисей. С породами сухопитской серии вулканогенная толща имеет преимущественно тектонические границы. В разрезе по левому берегу р. Енисей, ниже устья р. Нижняя, мощность существенно вулканогенной толщи около 1 400 м.

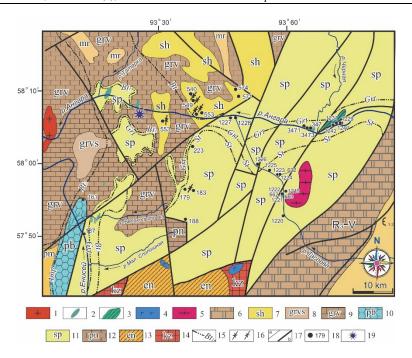


Рис. 2. Схема геологического строения Ангарского комплекса в междуречье Ангары-Енисея-Тасеевой

1 — гранитоиды глушихинского комплекса; 2, 3 — ведугинский комплекс: дайки долеритов (2), диабазы с гранатом (3); 4 — метагаббро РПВП; 5 — ортоамфиболиты Индыглинского комплекса; 6 — осадочные образования верхнерифейского—вендского возраста. Неопротерозойские осадочно-метаморфические образования зеленосланцевой и эпидот-амфиболитовой фаций, верхний рифей: 7–9 — широкинская серия, свита сухого хребта (sh) — метапесчаники, филлиты, кварциты (7), 8, 9 — горевская свита: известняки кристаллические, мраморизованные, доломиты, сидериты и силициты рудоносные (grv) (8), углеродистые сланцы с пиритом (grvs) (9); 10 — метапикробазальты и метабазальты с прослоями карбонатно-слюдисто-графитовых пород (нижнеречинская толща, рb); 11 — мезопротерозойские осадочно-метаморфические образования, нижний—средний рифей: сухопитская серия, нерасчлененная — филлиты, кварциты, слюдяные кристаллические сланцы с гранатом, ставролитом, андалузитом (sp); 12 — палеопротерозой — тейская серия, пенченгинская свитамраморы, сланцы кристаллические (pn); 13, 14 — высокометаморфизованные толщи амфиболитовой и гранулитовой фаций Ангаро-Канского выступа: 13 — архей-нижнепротерозойские гнейсы енисейской серии (en), 14 — архейские гнейсы и чарнокиты кузеевской толщи (kz); 15 — изограды индекс-минералов метаморфизма низких и умеренных давлений: Вt — биотита, ранняя (Вt₁), поздняя (Вt₂); Аmf — амфибола, Grt — граната, St — ставролита; 16 — локальное проявление кианит-хлоритоидных, кианит-гранатовых бластомилонитов; 17 — геологические границы (а), разломы (б); 18 — номера скважин глубинного бурения; 19 — Горевское свинцово-цинковое месторождение. Здесь и далее в тексте символы минералов приняты по [Whitney, Evans, 2010]

Fig. 2. Geological sketch map of the Angara Complex in the interfluve of the Angara, Yenisey, and Taseeva rivers 1 – granitoids of the Glushikha Complex; 2 – dolerite dikes and diabases of the Veduga Complex; 3 – metagabbros of the Rybinsk-Panimba volcanic belt (RPVB); 4 – orthoamphibolites of the Indygla Complex; 5 – granite-gneisses of the Posol'naya Complex; 6 – Upper Riphean–Vendian unmetamorphosed sedimentary rocks; Upper Riphean Neoproterozoic metasedimentary rocks of the greenschist and epidote-amphibolite facies: 7–9 – Shirokaya Group, Sukhoi Khrebet Formation (sh) – metasandstone, phyllite, quartzite (7), 8–9 – Gorevskaya Formation: carbonaceous schists with pyrite (grvs) (8) and ore–bearing crystalline marbled limestone, dolomite, siderite, and silicites (grv) (9); 10 – metapicrobasalt and metabasalt with intercalations of carbonate–mica–graphite rocks of the Nizhnerechinskaya Sequence, (pb); 11 – Lower-Middle Riphean Mesoproterozoic metasedimentary rocks: undivided Sukhoi Pit Group: phyllite, quartzite micaceous crystalline schists with garnet, staurolite, and andalusite (sp); 12 – Paleoproterozoic, Teya Group, Penchenga Formation: marble, crystalline schists (pn); 13, 14 – high-grade amphibolite- and granulite-facies metamorphic sequences of the Angara–Kan inlier: 13 – Archean–Lower Proterozoic gneisses of the Yenisey Complex (en), 14 – Archean gneisses and charnockites of the Kuzeev Sequence (Kan Complex) (kz); 15 – isogrades of index minerals of low and medium-pressure metamorphism: (Bt) biotite, early (Bt₁), late (Bt₂); (Amp) amphibole, (Grt) garnet, (St) staurolite; 16 – local manifestation of the kyanite–chloritoid, kyanite–garnet blastomylonites; 17 – geological boundaries (a) and faults (b); 18 – numbers of deep–drilling holes and sample location; 19 – Gorevskoye lead–zinc deposit. Mineral abbreviations through the text after [Whitney, Evans, 2010]

По объему метапикриты составляют 15 %, метапикробазальты 48 %, метабазальты 20 % и карбонатно-терригенные породы 17 % разреза. В разрезе нижней части нижнеречинской толщи преобладают метаморфизованные пикробазальты и пикриты, в средней и верхней — базальты, рудовмещающие Pb-Zn минерализацию.

В свою очередь метапикрит-базальтовая толща перекрывается неоднородно-метаморфизованной толщей углеродистых сланцев и карбонатных пород горевской свиты широкинской серии неопротерозоя [Ножкин и др., 20216]. Горевская свита подразделяется на три подсвиты: нижняя образована углероди-

стыми сланцами с аутигенным пиритом, известняками, доломитами, рудоносными сидеритами и силицитами, известняками доломитовыми; средняя представлена известняками, известняками с карбонатными и кремнистыми конкрециями, доломитами; верхняя подсвита сложена известняками, слюдистыми известняками, известково-слюдистыми сланцами. Суммарная мощность свиты около 2 000–2 410 м. Рb-Pb возраст карбонатных пород горевской свиты широкинской серии с учетом Sr-хемостратиграфии составляет 1020±70 млн лет [Кузнецов и др., 2019].

В геологическом строении региона принимают участие осадочно-метаморфические толщи сухопитской серии мезопротерозоя и залегающие на них с несогласием верхнерифейские отложения широкинской серии, пронизанные дайками долеритов [Козлов и др., 2014]. Среди метатерригенных отложений нижних горизонтов сухопитской серии в береговых обнажениях р. Ангары (в междуречье рек Черная и Рыбная) развиты вулканогенные образования РПВП. Здесь нижняя часть разреза представлена массивными среднезернистыми амфиболизированными метагаббро-диабазами и габброидами (метадолеритами), которые прорываются дайками метаморфизованных диабазов мощностью до 2 м. Выше по разрезу, конформно с метагаббро-диабазами, залегают покровы амфиболизированных базальтов, включающие горизонты метатуфов пикробазальтового состава и актинолитовых сланцев по туфогенным породам основного состава [Ножкин и др., 20216]. Из пород сухопитской серии в районе исследования наиболее широко распространены отложения удерейской свиты (р. Тасеева), представленные филлитизированными глинистыми сланцами с прослоями алевролитов, песчаников, линз известняков и кварцитов. Среди них локально распространены породы основного состава, представляющие собой субвулканические тела – дайки и силлы. Метабазиты из дайковых тел, с видимой мощностью до первых метров, имеют резкие контакты.

В составе широкинской серии выделяются две свиты — горевская и сухохребтинская. Горевская свита образована известняками, глинистыми углеродистыми и доломитистыми их разновидностями. Перекрывающая ее сухохребтинская свита сложена кварцитовидными олигомиктовыми песчаниками, алевролитами, глинистыми сланцами, лавами и туфами базальтов и трахиандезитов [Лиханов, Ревердатто, 2016]. Отложения широкинской серии коррелируются с чингасанской серией верхнерифейского возраста (~750 млн лет) [Козлов и др., 2014]. Интрузивные базиты, прорывающие отложения широкинской свиты, представлены небольшими телами метабазальтов со слюдой и гранатом мощностью до 20 м

и дайками долеритов. Последние образуют два разноориентированных пояса роев даек: горевского северо-западного направления (раннего) и секущего его белокопытовского (усть-ангарского) северо-восточного направления (позднего). U-Pb возраст долеритов белокопытовского пояса, рвущих сухопитскую толщу, метапикрит-базальты и метакарбонаты горевской свиты по бадделеиту 626±4 млн лет [Метёлкин и др., 2012]. Гранитоидный магматизм в регионе, представленный лейкогранитами глушихинского комплекса (стрелковский массив, устье р. Ангара) с U-Pb возрастом циркона 718±9 млн лет [Верниковский, Верниковская, 2006], ограничивает время накопления карбонатной толщи гораздо древнее, чем 730–750 млн лет.

Терригенно-карбонатные толщи мезо- и неопротерозоя (средний-поздний рифей) метаморфизованы и образуют Ангарский полиметаморфический комплекс неопротерозойского возраста. Метаморфизм этих пород в раннем неопротерозое на рубеже около 800 млн лет отвечал условиям перехода от фации зеленых сланцев до эпидот-амфиболитовой фации. Результаты по датированию регионально-метаморфизованных метапелитов согласуются в пределах ошибок метода с Ar-Ar и U-Pb возрастами прорывающего их бимодального дайкового пояса (797–792 млн лет), представленного метагабброидами и гранитами [Лиханов, Ревердатто, 2015]. Эти данные являются свидетельствами раннего этапа проявления неопротерозойского континентального рифтогенеза на западной окраине Сибирского кратона. Растяжение коры и ассоциирующий с ним бимодальный магматизм этой эпохи, связанной с проявлением плюмовой активности и распадом суперконтинента Родиния, установлены в других регионах мира, входящих в состав крупных магматических провинций [Ernst et al., 2008; Likhanov, Santosh, 2017, 2019].

В районе исследования дислоцированные, интенсивно кливажированные метаморфизованные породы базальт-пикробазальт-пикритового состава превращены в амфиболиты и плагиоклаз-амфиболовые, тремолит-актинолитовые, серпентин-актинолитовые и хлорит-актинолитовые сланцы. Метабазиты РПВП сложены полнокристаллическими мелко- и среднезернистыми породами, состоящими в основном из амфибола и плагиоклаза; биотит встречается реже. Из акцессорных минералов преобладают титанит и магнетит. В метапелитах выделено пять зон регионального метаморфизма и зафиксировано положение пяти одноименных изоград – биотитовая, гранатовая, ставролитовая, андалузитовая и силлиманитовая. По характеру метаморфической зональности прогрессивный метаморфизм изученных пород относится к сравнительно малоглубинному андалузит-силлиманитовому типу низких давлений.

В приразломных полях, приуроченных к Ишимбинско-Татарской региональной сдвиговой зоне, эти породы подверглись метаморфизму с формированием бластомилонитов. На лево- и правобережье р. Ангары локально проявлены две зоны деформаций (мощность около 1,5–2 км) субмеридианального простирания, в которых зафиксированы изограды появления хлоритоида и кианита, что соответствует условиям хлоритоид-кианитовой субфации фации кианитовых сланцев. Основными минералами бластомилонитов являются гранат, ставролит, биотит, кианит, мусковит, кварц и плагиоклаз; акцессорные минералы включают монацит, апатит, ильменит и рутил.

Химический состав породообразующих минералов и термодинамические условия метаморфизма

Химический состав минеральных фаз пород изучен с использованием ренгеноспектрального микроанализатора Jeol JXA–8100 в ИГМ СО РАН (Новосибирск). Высокие значения железистости FeO/(FeO+MgO) в породах и минералах указывают на низкий окислительный потенциал и незначительное содержание Fe³⁺ в структурных формулах железосодержащих фаз [Likhanov et al., 1994], что учитывалось при расчетах структурных формул.

Компонентный состав гранатов в метабазитах РПВП варьирует в узком диапазоне: Alm_{67-68} , Prp_{20-24} , Grs_{6-10} , Sps_{2-3} с незначительным изменением железистости ($X_{Fe} = 0.74-0.77$). Амфибол представлен роговой обманкой с повышенными содержаниями TiO_2 (1,24–1,45 мас. %) и K_2O (1,1–1,7 мас. %) и высокой железистостью ($X_{Fe} = 0.48-0.54$). Плагиоклаз относится к андезину; содержание анортитового компонента $X_{An} = Ca/(Ca+Na+K) = 0.35-0.40$. Железистость биотита варьирует несколько шире ($X_{Fe} = 0.44-0.61$). Состав сфена близок к стехиометрической формуле; магнетит химически однороден во всех образцах.

Компонентный состав гранатов в метапелитах варьирует в широком диапазоне: Alm_{74-87} , Prp_{6-11} , Grs_{2-8} , Sps_{1-15} с незначительным изменением железистости ($X_{Fe} = 0.88-0.93$). Для них типичен прогрессивный характер зональности с уменьшением спессартинового компонента и резким ростом гроссулярового компонента от центра к краям зерен (от $Grs_{2,5}$ до $Grs_{6,1}$) [Лиханов, 20206]. Состав плагиоклаза в разных образцах меняется от $X_{An} = 0.14$ до $X_{An} = 0.28$. Железистость биотита варьирует незначительно ($X_{Fe} = 0.55-0.62$). Для мусковита также характерны слабые вариации содержания одноименного компонента ($X_{Ms} = 0.71-0.79$) при несколько более значительных изменениях парагонитовой составляющей ($X_{Na} = 0.07-0.19$). Ставролит химически однороден

во всех образцах с железистостью $X_{Fe} = 0.75$. Пониженные содержания анортитового минала в плагиоклазах наряду с пониженными концентрациями альмандинового и спессартинового компонента и повышенными концентрациями пиропа и гроссуляра в гранатах из бластомилонитов свидетельствуют о проявлении в приразломных зонах более высокобарического метаморфизма [Лиханов, Ревердатто, 20146]. Эти и другие особенности (рост содержания *Grs* компонента синхронно с уменьшением Sps компонента при слабых вариациях общей железистости, Ргр и Alm миналов) указывают на проявление коллизионного метаморфизма, обусловленного тектоническим утолщением земной коры в результате надвигов с последующим быстрым подъемом и эрозией [Likhanov, 20191.

Р-Т параметры метаморфизма пород рассчитывались на основе реальных составов породообразующих минералов и их зональности с помощью известных минеральных геотермобарометров (таблица). Для гранатсодержащих метапелитов пиковые температуры и давления определялись с использованием калибровок и соответствующих моделей состав-активность для четырех Grt-Bt геотермометров [Ferry, Spear, 1978; Holdaway, 2000; Wu, Zhao, 2006, 2007] c Grt-Bt-Pl-Oz [Wu et al., 2004], Grt-Bt-Ms-Pl [Ghent, Stout, 1981], Grt-Ms-Pl-Qz [Wu, Zhao, 2006] и Grt-Вt-Ms-As-Qz [Wu, Zhao, 2007] геобарометрами. В безгранатовых парагенезисах метабазитов эти оценки были получены с применением калибровки и моделей смешения для Amp-Pl геотермометра [Blundy, Holland, 1990] Amp-Pl-Qz геобарометра [Bhadra, Bhattacharya, 2007]. Величины *P-Т* параметров метаморфизма пород были рассчитаны при совместном использовании вышеуказанных термобарометров в пакете МАТНЕМАТІСА 5.0 с помощью процедуры NullSpace [Wolfram, 2003]. Для независимого контроля давления эти значения сопоставлялись с оценками давлений, полученных с помощью четырех калибровок для Al-Hbl геобарометров [Hammarstrom, Zen, 1986: Hollister et al., 1987: Schmidt, 1992: Anderson, Smith, 1995].

Результаты геотермобарометрии показали видимые различия в пределах погрешностей методов по P-T параметрам формирования толщ разного химического состава: 4,9–7,6 кбар/580–650 °C — метабазиты; 4,1–6,6 кбар/490–610 °C — метапелиты. Ошибки определения P-T параметров при совместном использовании геотермометров и геобарометров, вычисленные с учетом аналитических погрешностей и энтальпии реакций, не превышают ± 30 °C и ± 0 ,5 кбар [Likhanov et al., 2004], что согласуется с цитируемыми в литературе погрешностями геотермобарометров [Kohn, Spear, 1991].

P-T параметры метаморфизма пород Ангарского комплекса, вычисленные с использованием традиционных геотермобарометров

Summary of pressure and temperature conditions calculated with conventional thermobarometry for selected samples of the Angara Complex

		T , $^{\circ}$ С/ P , кбар				Р, кбар				
№ обр.	Минеральная ассоциация	Геотермометры/Геобарометры				Геобарометры				
		1	2	3	4	5	6	7	8	9
р. Тасеева										
1219	Pl+Amp+Bt+Spn	_	_	_	_	629/4,9	7,0	7,5	7,3	7,3
1222	Pl+Amp	_	_	_	_	646/5,1	7,1	7,6	7,4	7,4
663	Grt+Bt+Pl+Hrb+Cum	614/6,8	_	_	601/7,1	_	-	-	_	_
666	Grt+Bt+Ged+Pl+Crd	620/6,1	_	_	626/6,9	_	_	_	_	_
1223	Grt+Bt+Pl+Ms+St+Sil	567/6,0	498/4,6	552/4,3	547/6,5	_	_	_	_	_
1225	Grt+Pl+Ms+Bt+St+Sil	588/6,4	504/4,9	572/4,6	579/6,6	_	_	_	_	_
622	Grt+Pl+Bt+Ms+Sil	601/6,5	509/4,7	592/4,8	609/6,5	_	-	_	_	_
РПВП + р. Ангара										
3471	Grt+Pl+Ms+Bt	546/5,0	540/4,1	_	_	_	_	_	_	_
3473	Grt+Pl+Bt+Ms	527/4,7	485/4,2	_	_	_	_	_	_	_
1229	Pl+Amp+Bt	_	_	_	_	578/5,3	5,9	6,2	6,3	6,3
1230	Pl+Amp+Bt+Spn	ı	ı	_	-	588/5,5	5,6	5,9	6,0	6,0

 \overline{I} Примечание. Использованные геотермобарометры (T, °C/P, кбар): 1 – Grt-Bt [Holdaway, 2000] / Grt-Bt-Pl-Qz [Wu et al., 2004], 2 – Grt-Bt [Wu, Zhao, 2006], 3 – Grt-Bt [Wu, Zhao, 2007], 4 – Grt-Bt [Ferry, Spear, 1978] / Grt-Bt-Ms-Pl [Ghent, Stout, 1981], 5 – Amp-Pl [Blundy, Holland, 1990] / Amp-Pl-Qz [Bhadra, Bhattacharya, 2007]; Al-Hbl геобарометры: 6 – [Hammarstrom, Zen, 1986], 7 – [Hollister et al., 1987], 8 – [Schmidt, 1992], 9 – [Anderson, Smith, 1995]

Note. Geothermobarometers (T, C/P, kbar): 1 – Grt-Bt [Holdaway, 2000] / Grt-Bt-Pl-Qz [Wu et al., 2004], 2 – Grt-Bt [Wu, Zhao, 2006], 3 – Grt-Bt [Wu, Zhao, 2007], 4 – Grt-Bt [Ferry, Spear, 1978] / Grt-Bt-Ms-Pl [Ghent, Stout, 1981], 5 – Amp-Pl [Blundy, Holland, 1990] / Amp-Pl-Qz [Bhadra, Bhattacharya, 2007]; Al-Hbl geobarometers: (P, kbar): 6 – [Hammarstrom, Zen, 1986], 7 – [Hollister et al., 1987], 8 – [Schmidt, 1992], 9 – [Anderson, Smith, 1995]

В целом метаморфизм этих пород отвечал условиям эпидот-амфиболитовой фации и параметрам ее перехода к амфиболитовой фации. Данные оценки приближаются к P-T условиям кианит-силлиманитового метаморфизма тейского комплекса в зоне Татарско-Ишимбинской системы разломов. Об этом свидетельствуют вычисленные P-T тренды эволюции метапелитов с постепенным повышением давления при приближении к надвигу от 4,1 до 5,6 кбар при незначительном повышении температуры от 530 до 560 °C, что указывает на почти изотермическое погружение пород с низким метаморфическим градиентом dT/dH не более 12 °C/км [Likhanov, Reverdatto, 2011a, b].

Петрогеохимическая характеристика и геохимическая типизация

Содержания главных элементов получены рентгенофлуоресцентным методом в ИГМ СО РАН на рентгеноспектральном анализаторе VRA-20R фирмы Carl Zeiss Jena: погрешности определения не превышают 5 отн. %. Концентрации редких и редкоземельных элементов установлены методом ICP-MS на масс-спектрометре высокого разрешения ELEMENT (Finigan Mat) с ультразвуковым распылителем U-5000AT+. Точность анализа составляла в среднем 2–7 отн. %. Работы выполнены в ЦКП Многоэлементных и изотопных исследований СО РАН. U, Th и K определены гамма-спектрометрическим методом, кроме того,

содержания U и Th контролировались лазерно-люминесцентным и калориметрическим методами.

Метабазиты РПВП. По диапазону кремнекислотности (SiO₂ = 47,8–48,6 мас. %) изученные метабазиты отвечают вулканитам основного состава: базальтам и долеритам. Для них характерны умеренные содержания суммы щелочей (Na₂O+K₂O < 2,7 мас. %) с преобладанием Na₂O над K₂O, TiO₂ (0,9–1,5 мас. %), Fe₂O₃ (14,0–16,5 мас. %) и P₂O₅ (0,07–0,23 мас. %). Железистость меняется в узком диапазоне от 0,67 до 0,71. Различия по редкоэлементному составу этих пород более существенны.

Более распространенные низкотитанистые породы отличаются пониженными содержаниями редкоземельных элементов (сумма REE = 37–41 ppm) и наклонным концентрационным профилем распределения с $(\text{La/Yb})_n < 0.74$, характерным для нормальных базальтов срединно-океанических хребтов N-типа (N-MORB).

Спектры REE менее распространенных высокотитанистых метабазитов обогащены легкими лантаноидами (сумма REE = 52 ppm) и имеют плоский профиль распределения ((La/Yb)_n= 2,2), что типично для обогащенных базальтов океанического дна Е-типа (E-MORB) (рис. 3, a). Влияние субдукционной компоненты для этих пород выражается в более высоких по сравнению с N-MORB содержаниях Ba, Th, Ta, Nb, Zr, Hf [McCulloch, Gamble, 1991].

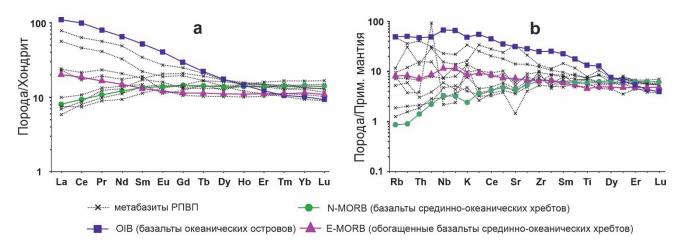


Рис. 3. а — спектры распределения редкоземельных элементов, нормированные к хондриту [Boynton, 1984], и спайдердиаграммы содержаний микроэлементов, нормированных к составу примитивной мантии [Sun, McDonough, 1989], b — для метабазитов РПВП в сравнении с основными разновидностями базальтов: N-MORB, E-MORB и OIB по [Sun, McDonough, 1989]

Fig. 3. a – chondrite-normalized REE patterns [Boynton, 1984] and primitive mantle-normalized spidergrams [Sun, McDonough, 1989] (b) for metabasites of the Angara Complex in comparison with main types of basalts: N-MORB, E-MORB and OIB after [Sun, McDonough, 1989]

В целом же изученные метабазиты имеют слабо фракционированные мультиэлементные спектры, занимающие промежуточное положение между спектрами N- и E-MORB базальтов (см. рис. 3, b). Принадлежность этих пород к группе нормальных и обогащенных базальтоидов подтверждается диагностическими диаграммами, основанными на соотношениях концентраций Hf-Th-Ta [Wood, 1980] (рис. 4, a), Zr-Nb-Y [Meschide, 1986] (рис. 4, b), TiO₂-MnO-P₂O₅ [Mullen, 1983] (рис. 4, c), P₂O₅-TiO₂ [Hooper, 1982] (рис. 5, a) и Nb/Y-Zr/Y [Fitton et al., 1997] (рис. 5, b). Это отличает их от более молодых габброидов дайкового пояса [Лиханов и др., 20136] и ортоамфиболитов западной границы Енисейского кряжа [Лиханов, Ревердатто, 2014а], относящихся к внутриплитным базальтоидам и островодужным толеитам (рис. 4, a, b). Более высокотитанистые метабазиты силлов и дайковых тел р. Тасеевой по содержанию Ті и Р приближаются к внутриплитным базальтам. Они обогащены легкими лантаноидами (сумма REE до 140) и имеют более дифференцированные спектры распределения элементов с высокими ((La/Yb)_n до 6, (La/Sm)_n до 2,5) и повышенными ((Gd/Yb)_n = 1,5-2,1) отношениями, что указывает на образование их протолитов из обогащенного мантийного источника или контаминацию коровым материалом. Для них характерны повышенные концентрации крупноионных литофильных (Rb, Ba, K), радиоактивных (Th, U) и высокозарядных (Nb, Ta, Zr, Hf) элементов по сравнению с метабазитами РПВП. По ряду петро- и геохимических параметров эти породы сопоставимы с толеитовыми базальтами океанических островных дуг (рис. 4, a, b).

Контрастные типы редкоземельных и мультиэлементных спектров для метабазитов разного петрохимического состава свидетельствуют в пользу унаследования распределения и уровня концентраций редких элементов от магматических протолитов – родоначальных магм [Likhanov, Reverdatto, 2007].

Характер редкоземельных спектров, различные величины (La/Sm)_n и (La/Yb)_n отношений и содержаний Hf, Zr, Nb и Та отражают разную деплетированность состава мантийных источников или степень плавления. Протолиты низкотитанистых метабазитов РПВП с пониженными Zr/Y и Nb/Y отношениями могли образоваться при плавлении деплетированного мантийного источника, обедненного несовместимыми элементами-примесями и сопоставимого по своим геохимическим характеристикам с верхней мантией, продуцирующей базальты N-MORB. Повышенные Zr/Y и Nb/Y отношения для более титанистых пород РПВП указывают на обогащенный характер их мантийных компонентов, ответственных за формирование преимущественно E-MORB базальтов.

Образование магматических протолитов метабазитов дайковых тел р. Тасеевой, обогащенных легкими РЗЭ и высокозарядными элементами подобно внутриплитным и островодужным базальтам, вероятно, было связано с плавлением более обогащенного мантийного субстрата.

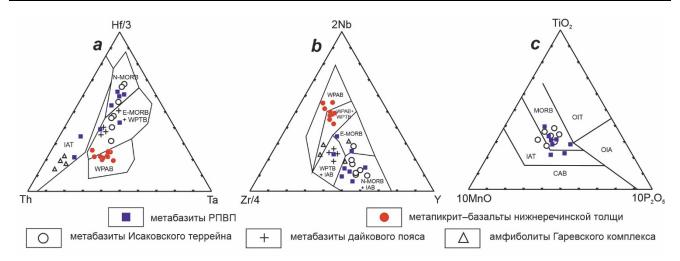


Рис. 4. Положение фигуративных точек составов метабазитов РПВП и метапикрит-базальтов нижнеречинской толщи на диаграммах Hf—Th—Ta (a), Zr—Nb—Y (b) и TiO2-MnO-P2O5 (c) в сравнении с более молодыми амфиболитами дайкового пояса Приенисейской региональной сдвиговой зоны, метабазитами Исаковского террейна и ортоамфиболитами Гаревского комплекса Енисейского кряжа Поля составов на диаграммах: N- и Е-тип MORB — «нормальные» и «обогащенные» базальты срединно-океанических хребтов, WPAB — внутриплитные щелочные базальты, WPTB — внутриплитные толеитовые базальты, CAB — известково-щелочные базальты, IAB — островодужные базальты, OIA — андезиты океанических островов, OIT — толеиты океанических островов

Fig. 4. Plots (a) Hf–Th–Ta, (b) Nb–Zr–Y and (c) TiO₂–MnO–P₂O₅ for metabasite compositions of the RPVB as compared to the other studied mafic rocks of the Transangarian Yenisey Ridge

Fields: N- and E-type MORB-normal and enriched mid-ocean ridge basalts, WPAB-within-plate alkali basalts, WPTB-within-plate tholeiite basalts, IAB-island-arc basalts, IAT-island-arc tholeiites, ACM-active-continental margin, PM-passive margin, CIA-continental island arc, and OIA-oceanic island arc

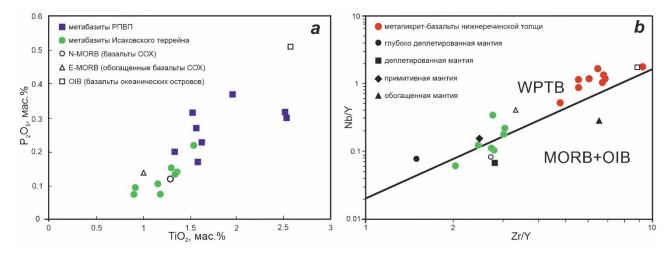


Рис. 5. Диаграммы P₂O₅—TiO₂ (а) и Zr/Y—Nb/Y (b) для метабазитов РПВП, метапикрит-базальтов нижнеречинской толщи и основных разновидностей базальтов: N-MORB, OIB и E-MORB Мантийные компоненты приведены по [Condie, 2005]; наклонная линия разделяет область внутриплитных базальтов (верх) от МОRB и островодужных вулканитов (низ)

Fig. 5. P₂O₅–TiO₂ (a) and Nb/Y–Zr/Y (b) diagrams for metabasites of the RPVB, metapicrite-basalt of the Nizhnerechinskaya Sequence as compared to the main types of basalts: N-MORB, OIB and E-MORB Mantle components after [Condie, 2005]: (DEP) deep depleted mantle, (DM) depleted mantle, (PM) primitive mantle and (EN) enriched mantle. Inclined line separates the field of within-plate basalts (upper part of the figure) from MORB and island-arc volcanic rocks (lower part)

Начальный этап формирования вулканических пород РПВП среди отложений нижних горизонтов сухопитской серии относится к нижнему мезопротерозою. Это подтверждается Sm-Nd модельными возрастами источников сноса для ниже- и вышележащих толщ метапелитов, переслаивающихся с базальтами [Ножкин и др., 2011]. Более поздний этап 1370-1380 млн лет, маркирующий события растяжения по бимодальным магматическим ассоциациям [Попов и др., 2010; Лиханов и др., 2012б], был связан со стадией завершения мезопротерозойского рифтогенеза и синхронными процессами извержения пикробазальтбазальтовых лав РПВП. В последовательности тектонических событий в эволюции Енисейского кряжа изученные проявления основного магматизма могли отражать различные этапы растяжения вдоль западной окраины Сибирского кратона. Образование более примитивных по химическому составу базальтов происходило на начальных этапах спрединга, когда плавлению подвергались верхние горизонты деплетированной мантии. А более высокотитанистые базальты образовались как продукты плавления обогащенного мантийного субстрата (менее истощенных горизонтов мантии) на более поздних этапах спрединга.

Метавулканиты нижнеречинской толщи. Петрохимический и редкоэлементный состав пикрит-базальтовой толщи имеет общие близкие черты, что свидетельствует о парагенетической связи этой ассоциации высокомагнезиальных пород. Для них характерна повышенная титанистость и железистость, метабазальты и метагабброиды отличаются заметно повышенной щелочностью и содержанием P_2O_5 . Так, метапикриты характеризуются высокими содержаниями (в мас. %) MgO (23,7–26,8), Fe₂O₃ (12,6–14,6), повышенными TiO₂ (1,2–1,4), низкими SiO₂, CaO и щелочей.

Повышенными величинами этих же оксидов отличаются и составы метапикробазальтов. Кроме того, в них заметно больше CaO = 9,5 % и щелочей (Na₂O = $2,3; K_2O = 0,37 \%$). Сходные петрохимические черты присущи метабазальтам и метагабброидам, ассоциирующим с метапикрит-пикробазальтовыми в этой же нижней половине разреза толщи. Метабазальты высокотитанистые, высокожелезистые, с повышенным содержанием магния (в мас. %): $TiO_2 = 1,94$; $Fe_2O_3 =$ 12,9; MgO = 8,9. Для них характерны более высокая щелочность: Na_2O+K_2O до 4,2 % и содержание P_2O_5 до 0,5 %. По общей щелочности метабазальт-пикробазальты отклоняются от нормального петрохимического ряда в сторону умеренно-щелочного, субщелочного, что сочетается с их повышенной титанистостью и железистостью (рис 6). Сказанное подтверждается тем, что в составе вулканогенной толщи на двух участках среди метабазитов нормального ряда установлены небольшие пластовые выходы субщелочных высококалиевых (K_2O от 3,0 до 3,7–4,9 %) пород, по петрохимическому составу близких к трахибазальтам. Среди них встречаются более обогащенные щелочами, особенно калием (К2О от 3,0 до 4,2 мас. %), базиты, которые по составу отвечают трахибазальтам. Породы высокотитанистые $(TiO_2 = 3,0-3,4 \text{ мас. }\%)$ с повышенным содержанием Р₂О₅ до 0,5 мас. %. Содержания несовместимых редких элементов отчетливо возрастают от пикритов к базальтам, достигая максимума в трахибазальтах, которые в 1,5-3 раза обогащены высокозарядными элементами по сравнению с базальтами. Наиболее убедительно на парагенетическое единство рассматриваемой ассоциации указывают данные о распределении РЗЭ, которые демонстрируют удивительное сходство спектров: $(La/Yb)_n = 6-7$ при $Eu/Eu^* = 0,9-1$ (рис. 7, a).

Породы метапикрит-базальтовой толщи имеют хорошо фракционированные мультиэлементные распределения, занимающие промежуточное положение между спектрами OIB и E-MORB базальтами (рис. 7, b). В пикритах отмечается максимальная концентрация Cr, Co и Ni, которая уменьшается в пикробазальтах, а затем в базальтах, коррелируя со снижением в них содержания MgO. В пикритах минимальные содержания несовместимых редких элементов: Rb, Cs, Ba, Sr, Zr, Hf, Nb, Ta, Th и U. Эти величины заметно возрастают в пикробазальтах, базальтах и габброидах. За исключением пикритов, содержание Sc и Y в других породах рассматриваемой ассоциации по существу не меняется. Следует указать и на существенную (в 2-4 раза) обогащенность метагабброидов V и Sr. От метабазитов нормального ряда резко отличаются высококалиевые, высокотитанистые субщелочные метавулканиты – трахибазальты, которые в 4–8 раз обогащены Rb, Cs, и в 1,5–3 раза Ва и высокозарядными элементами – Zr, Hf, Nb, Ta, Th и U. В них также повышена величина примеси Cr и Ni, в меньшей мере Со. В целом, мультиэлементные спектры характеризуются преимущественным отсутствием деплетирования Nb и Та относительно Th и легких РЗЭ (рис. 6, b), что является типичным для внутриплитных базальтов, в частности, базальтов континентальных рифтовых зон, связь которых с глубинными мантийными источниками и плюмами является наиболее обоснованной [Stewart, Rogers, 1996]. Геодинамическая принадлежность этих пород к группе внутриплитных базальтоидов подтверждается использованием известных диагностических диаграмм (см. рис. 4). На диаграмме Nb/Y – Zr/Y точки их составов находятся преимущественно в области внутриплитных базальтов между E-MORB и OIB (см. рис. 5, b).

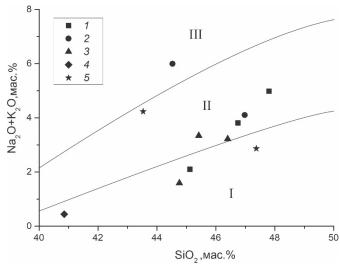


Рис. 6. Положение вулканических пород метапикрит-базальтовой ассоциации на классификационной диаграмме Na₂O+K₂O-SiO₂

1 – метабазальты, 2 – высококалиевые метабазальты, 3 – метапикробазальты, 4 – метапикриты, 5 – метагабброиды. Поля распространения пород: нормальной щелочности (I), субщелочных (II) и щелочных (III)

Fig. 6. Position of the volcanic rocks of the metapicrite-basalt association in the classification diagram 1 – metabasalts, 2 – high-K metabasalts, 3 – metapicrobasalts; 4 – metapicrites; 5 – metagabbros. Fields of rocks: normal alkalinity (I), subalkaline (II) and alkaline (III) rocks

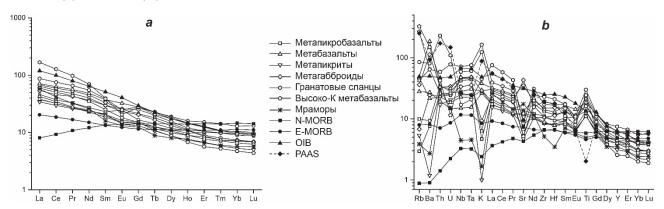


Рис. 7. Спектры распределения редкоземельных элементов, нормированные к хондриту [Boynton, 1984] а – и спайдердиаграмма содержаний микроэлементов, нормированных к составу примитивной мантии [Sun, McDonough, 1989]; b – для метабазитов, трахибазальтов, гранат-биотитовых кристаллических сланцев и мраморов нижнеречинской толщи в сравнении с основными разновидностями базальтов: N-MORB, E-MORB, OIB и PAAS (постархейских австралийских сланцев)

Fig. 7. Chondrite-normalized REE patterns [Boynton, 1984]

a – and primitive mantle-normalized spidergrams [Sun, McDonough, 1989]; b – for metabasalts, metapicrobasalts, metapicro

Метапелиты. По валовому химическому составу изученные метапелиты Ангарского комплекса классифицируются как низкокальциевые и умеренно насыщенные K_2O , одновременно обогащенные железом (до 18 мас. %) и глиноземом (до 28 мас. %). Для диагностики этого типа пород Хошеком [Hoschek, 1969] были предложены критерии, удовлетворяющие следующим соотношениям компонентов: (FeO + MgO)/(FeO + MgO + Al $_2O_3$) > 0,63 и FeO/(FeO + Al $_2O_3$) > 0,58. На петрохимической диаграмме Симмса и Ферри [Symmes, Ferry, 1992] эти породы относятся к железистым (X_{Fe} = FeO/(FeO + MgO + MnO) = 0,65–0,85 на

мольной основе) и глиноземистым (X_{Al} = (Al_2O_3 – $3K_2O$)/ (Al_2O_3 – $3K_2O$ + FeO + MgO + MnO) = 0,3–0,6) метапелитам по сравнению со средними составами типичных метапелитов [Ague, 1991] и PAAS (постархейских австралийских сланцев) [Taylor, McLennan, 1985], характеризующихся более низкими значениями X_{Fe} = 0,52 и X_{Al} = 0,13.

На треугольной диаграмме AFM [Thompson, 1957] область таких химических составов располагается выше конноды гранат—хлорит и представляет контур, вытянутый в направлении вершины треугольника A [Likhanov, 1988 a,b] (рис. 8). Это указывает на то, что

вариации химического состава метапелитов разных участков Ангарского комплекса связаны в основном с изменением содержания глинозема. По сравнению с метапелитами широкинской серии метапелиты удерейской свиты (р. Тасеева) отличаются повышенными концентрациями Al₂O₃ (до 28 мас. %) и Fe₂O₃ (до 18 мас. %) и пониженными содержаниями SiO₂ и К₂О. Об этом свидетельствуют значимые различия в значениях гидрализатного модуля $\Gamma M = (Al_2O_3 + iO_2 +$ $Fe_2O_{3total}+MnO)/SiO_2$, алюмокремниевого $AM = Al_2O_3/SiO_2$, фемического модуля $\Phi M =$ $(Fe_2O_{3total}+MnO+MgO)/SiO_2$ и калиевого модуля $KM = K_2O/Al_2O_3$. Это позволяет классифицировать породы широкинской серии как нормо- и суперсиаллиты, а метапелиты сухопитской серии – как гипо- и псевдогидрализаты [Юдович, Кетрис, 2000].

На диаграмме для разделения глинистых отложений ФМ—НКМ [Юдович, Кетрис, 2000], где НКМ (модуль нормированной щелочности) = (Na₂O+ K₂O)/ Al₂O₃, породы широкинской серии в основном локализуются в поле составов с доминирующей ролью каолинита, тогда как фигуративные точки составов метапелитов сухопитской серии располагаются в полях хлорита с примесью железистых гидрослюд и существенно монтмориллонитовых глин с примесью каолинита и гидрослюды (рис. 9, *a*). Это может быть обусловлено палеогеографическими условиями осадконакопления, где ближе к области сноса в континентальной обстановке могли накапливаться каолинитовые глины, а в прибрежные части морских бассейнов

выноситься более тонкий глинистый материал хлорит-гидрослюдистого состава [Лиханов и др., 2006б]. Высокие величины титанового модуля $TM = TiO_2/Al_2O_3$ типичны для накопления исходных осадков в прибрежных мелководных бассейнах в условиях гумидного климата, что хорошо согласуется с данными литолого-фациального анализа [Сараев, 1986].

Высокие значения индекса химического измене- $CIA = [Al_2O_3/(Al_2O_3+CaO+Na_2O+K_2O)]\times 100$ [Nesbitt, Young, 1982], химического индекса выветри- $CIW = [Al_2O_3/(Al_2O_3+CaO+Na_2O)]\times 100$ вания [Harnois, 1988], индекса зрелости осадков IVC = (Fe₂O₃+K₂O+Na₂O+CaO+MgO+TiO₂)/Al₂O₃ [Cox et al., 1995] и индекса степени преобразования плагиоклазов $[(Al_2O_3-K_2O)/(Al_2O_3+CaO+Na_2O-K_2O)]\times 100$ PIA [Fedo et al., 1995] свидетельствуют об образовании пелитов за счет продуктов переотложенных кор выветривания в обстановке теплого и влажного климата. Этот вывод подтверждается данными по величине индекса IVC (0,64-0,72), отсутствием положительной корреляции между железным и титановым модулями с повышенными значениями гидролизатного модуля, свидетельствующими о размыве и поступлении в область седиментации геохимически зрелого эродированного материала. Нормативный кварц (24-27 мас. %) – иллит (29–38 мас. %) – монтмориллонит (8– 15 мас. %) – каолинитовый (9–21 мас. %) состав метапелитов, рассчитанный с помощью программы MINLITH [Розен, Аббясов, 2003], соответствует зрелым осадочным породам (пелитам) (рис. 9, b).

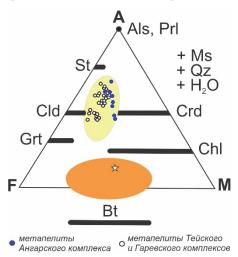


Рис. 8. Диаграмма AFM, иллюстрирующая химические составы пород и минералов типичных (оранжевый эллипс, вытянутый в направлении F–M) и железисто-глиноземистых метапелитов (желтый эллипс, вытянутый в направлении вершины A) AK, ГК и ТК Енисейского кряжа A = Al₂O₃–3K₂O, F = FeO, M = MgO. Звездочкой показан средний состав типичных метапелитов [Symmes, Ferry, 1992]

Fig. 8. AFM diagram projected from muscovite, quartz, and water showing schematically the positions of common (typical) metapelites (orange ellipsis elongated in the F–M direction, below the Grt-Chl tie line) and highly aluminous pelites and other related aluminous rock types (yellow ellipsis elongated towards the A top, above the Grt-Chl tie line)

A = Al₂O₃-3K₂O, F = FeO, M = MgO. Asterisk denotes the average composition of typical metapelites after [Symmes, Ferry, 1992]

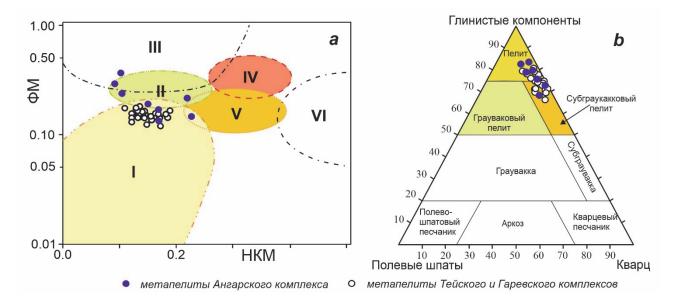


Рис. 9. а – положение точек составов метапелитов на модульной диаграмме ФМ–НКМ; b – MINLITH – нормативный состав метапелитов АК, ГК и ТК в координатах: полевые шпаты (плагиоклаз + ортоклаз) – глинистые минералы (монтмориллонит + иллит + хлорит + каолинит) – кварц а – масштаб для ФМ логарифмический. Поля составов глинистых пород: І – преимущественно каолинитовые глины; ІІ – монтмориллонит-каолинит-гидрослюдистые глины; ІІІ – существенно хлоритовые глины с подчиненной ролью Fе-гидрослюд; ІV – хлорит-гидрослюдистые глины; V – хлорит-монтморилонитовые глины и VI – преимущественно гидрослюдистые глины со значительной примесью полевых шпатов

Fig. 9. a – data points of metapelites Angara and Teya complexes plotted in the FM-NAM module diagram and b – MINLITH – normative composition of metapelites on a feldspar (plagioclase + orthoclase) – clay minerals (montmorillonite + illite + chlorite + kaolinite) – quartz triangular plot

a – FM is represented on a logarithmic scale. Predominent clay minerals in the fields are: I – kaolinite; II – montmorillonite with minor abundance of kaolinite and hydromica; III – chlorite with minor abundance of Fe-hydromica; IV – chlorite and hydromica; V – chlorite, smectite, and hydromica; VI – hydromica with appreciable amount of potassium feldspar

В целом петрохимические данные с учетом реконструкций состава протолитов свидетельствуют о присутствии в детритовом материале широкинской свиты продуктов эрозии богатых калием гранитоидов в отличие от метапелитов сухопитской серии, характеризующихся наличием вулканогенной примеси пород основного и среднего состава и доминирующей роли монтмориллонита. Ранними реконструкциями состава протолита аналогичных по составу железисто-глиноземистых метапелитов гаревского и тейского комплексов было установлено, что они представляют собой переотложенные и метаморфизованные продукты докембрийских кор выветривания каолинитового типа [Лиханов и др., 2008б; Likhanov, Reverdatto, 2008]. Образование протолита этих пород происходило за счет размыва палеопротерозойских гранитогнейсов Сибирского кратона с возрастами в диапазоне 1,9-2,1 млрд лет [Лиханов, Ревердатто, 2022].

Содержания редких элементов и их индикаторных отношений в изученных метапелитах АК похожи. Совокупности распределения РЗЭ, нормированные к

составу хондрита, для изученных образцов разных комплексов характеризуются отрицательной европиевой аномалией $Eu/Eu^* = 0.38-0.71$ и имеют существенный отрицательный наклон, о чем свидетельствуют повышенные величины отношений $(La/Yb)_n$, $(Gd/Yb)_n$ и ЛРЗЭ/ТРЗЭ (рис. 10). Эти особенности характерны для постархейских глинистых сланцев и могут быть обусловлены присутствием в детритовом материале продуктов эрозии гранитоидов, образование которых сопровождалось уменьшением содержания Eu^{2+} при седиментации реститового плагиоклаза [Taylor, McLennan, 1985].

Концентрации литофильных (Rb, Cs, Ba, Sr) элементов в изученных метапелитах несколько ниже, чем в PAAS, в отличие от содержаний практически всех высокозарядных некогерентных (Zr, Hf, Y, Ta, Th) элементов. Для группы переходных металлов характерны более высокие содержания Sc и пониженные концентрации Co и Ni в сравнении с PAAS. Выявленные закономерности подчеркивают как влияние рециклирования осадков, так и наличие продуктов разрушения гранитоидов в областях эрозии (о чем

свидетельствуют величины отношения $Eu/Eu^* < 0.85$) и интенсивность их выветривания. На размыв пород кислого состава указывают также повышенные значения отношения Th/U и пониженные отношения La/Th относительно среднего состава PAAS. На диаграммах $Eu/Eu^*-(Gd/Yb)_n$ [Taylor, McLennan, 1995] (рис. 11, a) и La-Th [McLennan, 1989] (рис. 11, b) точки составов метапелитов локализованы преимущественно в поле постархейских кратонных отложений и гранитоидов, обогащенных TP33 и обедненных Co и Ni по сравнению с кислыми магматическими породами архея.

Такой же вывод следует и из рассмотрения положения точек составов этих пород на диаграмме

(La/Yb)_n—Yb_n [Martin, 1986], где они сконцентрированы в области постархейских гранитоидов, обогащенных тяжелыми РЗЭ и обедненных Со и Ni по сравнению с кислыми магматическими породами архея [Лиханов и др., 2008а].

Отношение Ce/Ce* в метапелитах варьирует в диапазоне 0,64–1,10, что совместно с использованием ЛРЗЭ/ТРЗЭ = 2,43–4,49 отношений [Балашов, 1976] может указывать на вероятное накопление исходных осадков на прибрежном мелководном шельфе в условиях гумидного климата и спокойного тектонического режима, способствующих проявлению выветривания пород [Мurray et al., 1990].

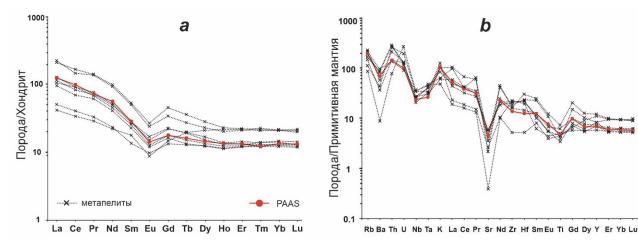


Рис. 10. а – спектры распределения редкоземельных элементов, нормированные к хондриту [Boynton, 1984], и б – спайдердиаграммы содержаний микроэлементов, нормированных к составу примитивной мантии [Sun, McDonough, 1989], для представительных метапелитов АК Енисейского кряжа относительно среднего состава PAAS по [Taylor, McLennan, 1985]

Fig. 10. a – chondrite-normalized REE patterns [Boynton, 1984] and b – primitive mantle-normalized spidergrams [Sun, McDonough, 1989] for the metapelites of the Angara Complex compared to the PAAS (post-Archean Australian schists) [Taylor, McLennan, 1985]

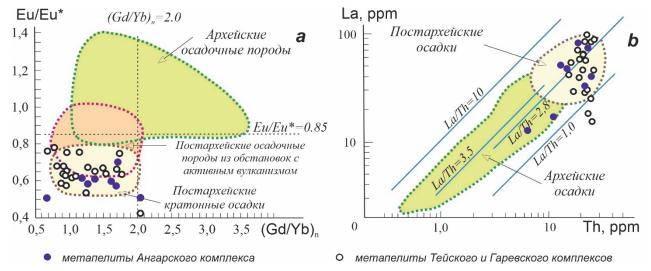


Рис. 11. Положение точек составов изученных пород на диаграммах $a-Eu/Eu^*-(Gd/Yb)_n$ [Taylor, McLennan, 1995] и b-La-Th [McLennan, 1989]

Fig. 11. Data on metapelites of the Angara, Teya and Garevka complexes reported in the different plots and diagrams a – Eu/Eu* versus (Gd/Yb)_n [Taylor, McLennan, 1995], b – La versus Th plot [McLennan, 1989]

Об этом же, как было отмечено выше, свидетельствуют петрохимические особенности пород и данные литолого-фациального анализа [Сараев, 1986].

Геохронологические исследования и обсуждение результатов

Геохронологические ⁴⁰Ar/³⁹Ar исследования проводились методом ступенчатого прогрева проб. Особенность методики − облучение предварительно откачанных кварцевых ампул с пробами в охлаждаемом водой канале исследовательского реактора ФТИ ТПУ (г. Томск). При облучении в таких условиях температура ампул с образцами не поднимается выше 100 °С. Изотопный состав аргона измерялся на многоколлекторном масс-спектрометре Argus фирмы GV-Instruments в ИГМ СО РАН (г. Новосибирск; аналитик Юдин Д.С.) по стандартным методикам [Лиханов и др., 2007]. Результаты ³⁹Ar/⁴⁰Ar датирования амфиболов и биотитов приведены на рис. 12.

Метабазиты. Для спектров роговых обманок, выделенных из метабазитов РПВП обр. 1231 и 1229, получены плато с возрастами 1087,1±11,3 млн лет, которому соответствует 55 % выделенного ³⁹Ar, и 1183 ± 9.8 млн лет (40 % выделенного ³⁹Ar), отвечающими закрытию К-Аг изотопной системы в роговой обманке при охлаждении пород до температуры 500 °С (рис. 12, a, b). Близкий возраст получен этим же методом по роговой обманке (1051±22 млн лет) из метадиабаза на р. Ангара РПВП [Черных, 2000]. В пределах палеоконтинентального сектора Северо-Енисейского кряжа в качестве возрастных аналогов гренвиллид рассматриваются гранитогнейсовые купола (1100-950 млн лет) [Ножкин и др., 1999] и метапелиты низких/умеренных давлений Приенисейской и Татарско-Ишимбинской систем разломов (1056± 28 млн лет), проявленные в структурах Северного и Южного Енисейского кряжа [Лиханов, Ревердатто, 2021]. Они также совпадают с возрастными данными по бластомилонитам западной границы Южно-Енисейского кряжа (1107±25 млн лет) [Лиханов и др., 2015]. Эти датировки могут рассматриваться как время начального метаморфизма основных пород РПВП. Таким образом, деформации мезопротерозойской тектонической активизации в регионе, связанные с коллизией мезопротерозойских террейнов и формированием Родинии, имели возраст 1,09 млрд лет. Выявленный этап хорошо коррелируется с шавининганской (1,19-1,14 млрд лет) и оттаванской (1,08-1,02 млрд лет) фазами орогенеза в гренвильском поясе (Лаврентия) [Rivers, 2008] и арендальской фазой (1,14-1,08 млрд лет) в свеконорвежском складчатом поясе (Балтика) [Bogdanova et al., 2008]. Более молодые возраста адакитоподобных гранитов (913±11 и 915±36 млн лет), порфиробластических ортоклазовых лейкогранитогнейсов (932±26 млн лет) и микроклин-цоизитовых ортоамфиболитов (902±12,8 млн лет) Гаревского комплекса в Заангарые могут также быть рассмотрены в качестве возрастных аналогов поздних процессов гренвильской складчатости и, возможно, синхронных процессов субдукции, связанных с ранней стадией эволюции Палеоазиатского океана на рубеже около 1,0–0,9 млрд лет [Добрецов, 2003; Ярмолюк и др., 2006; Лиханов, 2023].

В низкотемпературной (обр. 1231) и высокотемпературной (обр. 1229) частях спектров изученных амфиболов можно выделить два промежуточных плато с более молодыми возрастами 864±11,7 млн лет (26% выделенного ³⁹Ar) и $865,4\pm12,3$ млн лет (24%выделенного ³⁹Аг) соответственно (рис. 12). Значения возрастов согласуются между собой в пределах ошибки измерений. Причем для низкотемпературной части обр. 1231 фиксируется понижение Са/К отношения (от 10 до 1), что свидетельствует в пользу поздних наложенных процессов, проявленных во внешних частях зерен минерала. В Са/К спектре обр. 1229 наблюдается увеличение Са/К отношения до 30, что указывает на неоднородность исследованных амфиболов по составу. Таким образом, эти плато могут быть сформированы в результате процесса омоложения системы амфибола, приводящей к частичной потере радиогенного 40 Ar при перестройке изотопной системы. Последнее может иметь место при повторном нагреве, сопровождаемом перекристаллизацией минерала; это подтверждается более высокими, по сравнению с температурой закрытия роговой обманки, Р-Т параметрами коллизионного метаморфизма (см. таблицу). Эти значения согласуются с датировками, полученными по биотитам (867.5 ± 7.4 млн лет -92 % выделенного 39 Ar) (обр. 1231), что свидетельствует о двух этапах в термической истории пород (рис. 12, c).

Метавулканиты. Известные в литературе данные по строению разрезов и петрохимическому составу метапикрит-базальтовых вулканитов показывают, что это парагенетически единая ассоциация, сменяющаяся выше по разрезу метатерригенно-карбонатными породами горевской свиты и имеющая одинаковый или близкий с ней возраст. Метапикритбазальтовая толща и вышележащие карбонатные породы горевской свиты рассматриваются в качестве единого вулканогенно-осадочного комплекса, сформированного на рубеже позднего мезопротерозоя – раннего неопротерозоя в рифтогенном окраинноконтинентальном палеобассейне на юго-западе Сибирского кратона. В нижней части разреза преобламетаморфизованные пикробазальты пикриты, в средней и верхней – базальты [Ножкин и др., 2021].

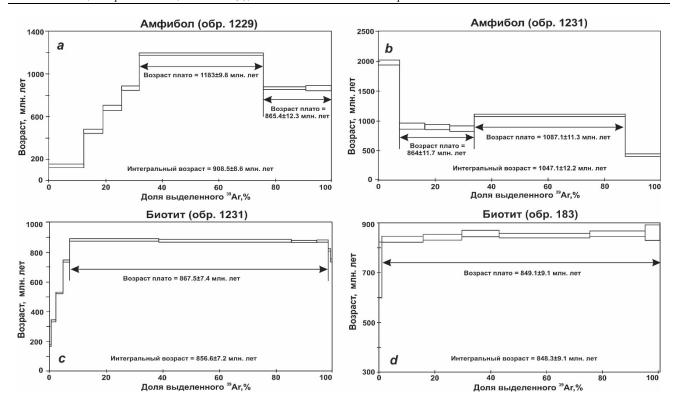


Рис. 12. Результаты ³⁹Ar/⁴⁰Ar датировок роговых обманок (a-b и биотита (c) из метабазитов РПВП и биотита из метапелитов сухопитской серии (d)

Для каждого образца приведен интегральный возраст; стрелками показан возраст, рассчитанный по методу плато

Fig. 12. ³⁹Ar/⁴⁰Ar hornblende (a–b) and biotite (c) ages for metabasites of the RPVB and biotite (d) ages for metapelites of the Sukhov Pit Group

Either the plateau (arrows) or integrated age is given for each sample

В хронологической последовательности тектонических событий в регионе формированию метапикрит-базальтовой толщи предшествовал этап образования Рыбинско-Панимбинского вулканического пояса в условиях континентального рифтогенеза с возрастом на уровне низов сухопитского времени и их последующий региональный метаморфизм с возрастом около 1,1–1,0 млрд лет [Черных, 2000; Ножкин и др., 2011а; Лиханов, Ревердатто, 2016]. Можно предположить, что источником тепла при метаморфизме могли быть субсинхронные рифтогенные процессы, происходящие в системе Ангарского разлома. Следовательно, возраст формирования пикрит-базальтовой толщи мог быть близок к рубежу мезонеопротерозой.

Метапелиты. В спектрах биотитов из метапелитов сухопитской серии наблюдается четкое плато с возрастом $849,1\pm9,1$ млн лет (рис. 12,d), соответствующее остыванию пород до температуры закрытия K-Ar изотопной системы в биотите (330-360 °C) [Hodges, 2004]. Температура закрытия такой изотопной системы отвечает глубине около 14-15 км (в предположении линейного роста литостатического давления с

глубиной — 1 кбар/3,5 км). Для определения возраста метаморфизма проанализирована термическая история породы, образованной при P=5,6 кбар, что совпадает с глубиной около 19,6 км. Это означает, что на постколлизионном этапе метапелиты поднялись не менее чем на 4,6 км. С учетом вычисленной ранее скорости подьема к поверхности (V=370 м/млн лет) [Лиханов и др., 2010], согласующейся с другими оценками [Corsini et al., 2010], представляется возможным получить время (t) подъема метапелитов до уровня изотермы 330—360 °C по формуле: t=H/V, составляющее от 3 до 15 млн лет, где H — расстояние транспортировки пород с глубин их формирования.

Возраст кульминационной стадии коллизионного метаморфизма может быть вычислен суммированием этих величин с датировками слюд, соответствующих возрасту остывания пород до температуры закрытия изотопной системы.

С учетом рассчитанной максимальной величины длительности подъема пород, такой возраст должен быть не древнее 864 млн лет, что в пределах ошибки совпадает с $^{40}{\rm Ar}^{-39}{\rm Ar}$ возрастами позднего этапа в метабазитах.

В качестве близких возрастных аналогов таких событий в пределах Енисейского кряжа могут быть рассмотрены породы тейского комплекса (чапский, маяконский и тейский участки), подвергшиеся позднерифейскому (864-849 млн лет) коллизионному метаморфизму умеренных давлений кианит-силлиманитового типа в пределах Татарско-Ишимбинской системы разломов [Лиханов и др., 20146]. Почти синхронно с этими событиями осуществлялся динамометаморфизм порфиробластических гранитогнейсов (881±8 млн лет), бластомилонитизированных порфиробластических плагиогранитогнейсов (855,6±5 млн лет), рапакивиподобных гранитов (871±10 млн лет) и мигматитов (845±15 млн лет) и других пара- и ортопород Гаревского комплекса [Лиханов, 2023] в Приенисейской региональной сдвиговой зоне. С этим же этапом связано становление гранитоидных плутонов каламинского типа [Верниковский, Верниковская, 2006], вблизи которых локально проявлен термальный метаморфизм позднерифейского (862 млн лет) возраста [Likhanov et al., 2001; Лиханов, 2003].

Последующие события в неопротерозое характеризуются постепенным завершением гренвильской тектоники и началом вальгальской орогении, вызванной утолщением земной коры в результате наложенных эффектов аккреционно-коллизионных процессов по периферии Родинии [Cawood et al., 2010]. В пределах Сибирского кратона в качестве индикаторов ранних процессов вальгальской складчатости рассматриваются метапелиты умеренных давлений кианит-силлиманитового типа Гаревского и Тейского комплексов Енисейского кряжа. В тейском комплексе на этом этапе проявляется коллизионный метаморфизм метапелитов района горы Полкан (802–798 млн лет;

⁴⁰Ar-³⁹Ar по слюдам), обусловленный надвигами восточного направления в зоне Татарско-Ишимбинской системы разломов [Лиханов, Ревердатто, 2021]. Синхронные возрасты (801-792 млн лет, in situ Th-U-Pb по монацитам в зональных гранатах) и однотипный характер Р-Т эволюции коллизионного метаморфизма характерны для гнейсов правобережья рр. Енисей и Тис, приуроченных к Приенисейской сдвиговой зоне [Лиханов и др., 2013в]. Для Ангарского комплекса имеется К-Аг датировка биотита из сланцев горевской свиты (скв. 183; водораздел рек Белокопытовка и Мал. Сполошная) – 805±14 млн лет [Звягина, 1989]. Результаты по датированию метапелитов согласуются в пределах ошибок метода с Ar-Ar и U-Pb возрастами прорывающего их бимодального дайкового пояса, представленного ортоамфиболитами (794–787 млн лет) и гранитами (796–791 млн лет) [Likhanov, Santosh, 2017].

Датирование метапелитов также производилось по зернам монацита непосредственно в шлифах in situ изохронным химическим методом CHIME (chemical U-Th-total Pb isochron method) на основании содержания Th, U и Pb, определенных на электронно-зондовом микроанализаторе Cameca SX 100 (ИГГ УрО РАН, Екатеринбург) с использованием соответствующих эталонов. В результате химического датирования монацита из Grt-Bt плагиогнейса АК (р. Тасеева) получены новые оценки возраста позднего этапа метаморфизма. Для этого использовались достаточно однородные зерна метаморфогенного монацита (рис. 13), являющегося цериевой разновидностью (Се₂О₃ до 28 мас. %) с высоким содержанием тория (ThO2 до 8 мас. %). Условия измерения: ускоряющее напряжение 15 кВ, сила тока электронного пучка 270 нА, диаметр зонда 2-5 мкм.

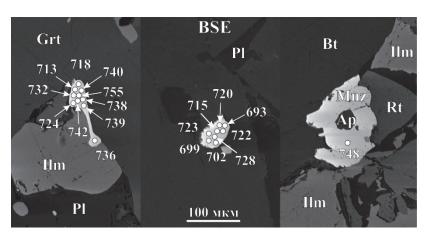


Рис. 13. Местоположения точек датирования в зернах монацитов из метапелитов сухопитской серии в обратных рассеянных электронах. Цифрами показаны значения возрастов (млн лет) в этих точках

Fig. 13. Back scattered electron (BSE) images of monazite grains in metapelites of the Sukhoi Pit Group (Angara complex, Taseeva River) with location of analytical spots (circles) and the calculated concordant ages

Расчет величин возрастов проводился по единичным определениям содержаний Th, U, Pb в каждой точке зерна и по совокупности точек с построением изохроны в координатах ThO₂*-PbO, полученных с использованием модифицированной программы Isoplot 3.66. Здесь ThO₂*= (ThO₂+UO₂^{экв}), где UO₂^{экв} – содержание урана, пересчитанное в эквивалентное содержание тория, способное произвести то же количество Рb за время «жизни» системы при равенстве U-Pb и Th-Pb-значений возраста. В изученных зернах монацита параметр $\beta = (Si+Ca)/(Th+U+Pb) = 0.96-1.04$, характеризующий степень зарядовой компенсации примесей $Th^{4+}(U^{4+})$, свидетельствует о замкнутости системы и корректности оценки возраста. Процедура анализа и расчета возрастов подробно описана в работах [Лиханов и др., 2013а, 2015]; там же показана хорошая сходимость результатов датирования in situ Th-U-Pb методом по монациту с изотопными данными по цирконам, слюдам и амфиболам.

Расчеты возрастов монацита по 18 точечным анализам дают значения в интервале от 693 до 755 млн лет (рис. 14, *a*). Их статистическая обработка с построением гистограмм распределения свидетельствует о возрастной гомогенности минерала со средневзвешенным возрастом 724±14 млн лет

(СКВО = 0,35). Благодаря широкому интервалу содержания тория и свинца в зернах монацита построена изохрона и по углу ее наклона был определен возраст 722 ± 32 млн лет (рис. 14, b). Эти значения, вычисленные в рамках двух различных подходов, в целом, хорошо согласуются между собой в пределах точности метода. К этому интервалу времени в регионе приурочена активизация магматической деятельности с формированием лейкогранитов стрелковского (718 \pm 9 млн лет), глушихинского (731 \pm 5 млн лет) [Верниковский и Верниковская, 2006] и чернореченского массивов (721±20 млн лет) [Лиханов и др., 2014б] Приенисейской зоны разломов, а также становлением тел карбонатитов (725±6 млн лет) пенченгинского комплекса [Врублевский и др., 2011]. Полученные данные являются геохронологическими свидетельствами поздних импульсов аккреционно-коллизионных событий вальгальской орогении на западной окраине Сибирского кратона, связанных с заключительной стадией эволюции орогена.

Выявленные деформационно-метаморфические эпизоды тектонической активности в регионе коррелируют по времени с событиями, установленными в структурах ряда кратонов северной Атлантики, участвовавших в строении суперконтинента Родиния.

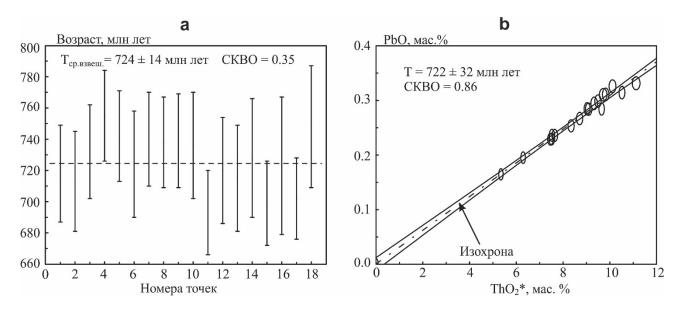


Рис. 14. Вариации значений возрастов (Т), рассчитанных по единичным точкам (с величиной их средневзвешенного возраста) (а) и по совокупности точек на диаграмме ThO₂*/PbO (b) для монацитов из метапелитов сухописткой серии Ангарского комплекса, р. Тасеева

 b – эллипсы это значения погрешности 2σ, штрих-пунктир – изохрона с двумя симметричными гиперболами, фиксирующими погрешности

Fig. 14. a - Th-U-Pb weighted mean age variations for single data points in monazite in metapelites of the Sukhoi Pit Group (Angara complex, Taseeva River) calculated from the weighted mean compositions and the age equation and (b) concordia ages for population of data on ThO₂*/PbO

b- ellipse is the 2σ error values calculated by propagating the analytical uncertainty on trace element compositions through the age equation, represents short-term analytical precision; dashed lines are regressed isochrones with two symmetrical hyperboles, which fixed errors

В частности, подобные по возрасту и стилю метаморфизма проявления были обнаружены в гнейсах и кристаллических сланцах Свальбарда, мойнской серии северо-западной Шотландии и восточной Гренландии (Лаврентия), соройского комплекса в северной Норвегии (Балтика). Такие проявления магматизма и метаморфизма, широко представленные по периферии крупных докембрийских кратонов Родинии – Лаврентии, Балтики и Сибири, служат весомым аргументом в пользу представления об их территориальной близости в эту эпоху. Это также согласуется с выводами о синхронности и схожей последовательности и несколько более ранних однотипных тектоно-термальных событий на окраинах этих палеоконтинентов [Cawood et al., 2004, 2016; Likhanov et al., 2015]. Такая трактовка взаиморасположения арктических кратонов в строении суперконтинента Родиния полностью согласуется с современными палеомагнитными данными и палеоконтинентальными реконструкциями [Dalziel et al., 1997; Torsvik, 2003; Метелкин и др., 2012; Johansson, 2014], подтверждающими, что в неопротерозое Лаврентия, Сибирь и Балтика являлись древними ядрами суперконтинента Родиния (см. рис. 1, b). Об этом же свидетельствуют современные данные по одновозрастным палеополюсам в пределах данных кратонов, подтверждающие, что они могли быть частями единого суперконтинента со стабильной конфигурацией на протяжении 800 млн лет [Pisarevsky, 2013]. В глобальном аспекте особенностей докембрийской геодинамики по современным представлениям этот возрастной рубеж характеризуется повышенной активностью эндогенных процессов в связи с перестройкой конвективных течений в мантии [Добрецов, 2010].

Выводы и тектонические следствия

На основе новых геохимических и петрологических данных выяснены геохимические черты и условия метаморфизма контрастных по составу пород АК, расположенного в зоне сочленения мезо-неопротерозойских структур Заангарья с архей-палеопротерозойскими комплексами Ангаро-Канского выступа Енисейского кряжа.

1. Магматические протолиты низкотитанистых метабазитов Панимбинско-Рыбинского вулканического пояса образовались при плавлении деплетированного верхнемантийного источника, продуцирующего базальты N-MORB, тогда как формирование высокотитанистых пород происходило из обогащенных мантийных источников, ответственных за образование E-MORB базальтов. Протолиты метабазитов дайковых тел р. Тасеевой сопоставимы с внутриплитными базальтами и толеитовыми базальтами океанических островов. В последовательности тектониче-

ских событий в эволюции Енисейского кряжа образование более примитивных по химическому составу базальтов могло происходить на начальных этапах спрединга, когда плавлению подвергались верхние горизонты деплетированной мантии. А более высокотитанистые базальты образовались как продукты плавления обогащенного мантийного субстрата на более поздних этапах спрединга.

- 2. Железисто-глиноземистые метапелиты представляют собой переотложенные и метаморфизованные продукты докембрийских кор выветривания преимущественно каолинитового (широкинская серия) и монтмориллонит-хлорит-гидрослюдистого (сухопитская серия) составов, образованных за счет размыва палеопротерозойских гранитогнейсов Сибирского кратона (широкинская серия) с вовлечением в область эрозии вулканогенной примеси пород основного и среднего состава (сухопитская серия).
- 3. Произошедший в позднем мезопротерозое-раннем неопротерозое рифтогенез земной коры в Приангарье привел к раскрытию окраинно-континентального морского бассейна, в котором субсинхронно происходили базальт-пикритовый вулканизм и накопление терригенно-карбонатных, в том числе рудоносных отложений горевской свиты, вмещающих уникальное Горевское Pb-Zn стратиформное месторождение, входящее в группу месторождений «мирового класса».
- 4. Новые датировки пара- и ортопород Ангарского комплекса Енисейского кряжа свидетельствуют о проявлении двух импульсов мезо-неопротерозойской эндогенной и тектонической активности на западной окраине Сибирского кратона. Ранний этап (1,18–0,85 млрд лет) метаморфической эволюции региона, вызванный процессами континентальной коллизии мезопротерозойских блоков, связывается с гренвильской тектоникой. Постгренвильские события коррелируют с постгренвильскими аккреционно-коллизионными процессами вальгальской складчатости (810–790 и 730–720 млн лет).
- 5. Свидетельства гренвильских и вальгальских тектонических событий в комплексе с другими возрастными эквивалентами в пределах западной окраины Сибирского кратона и палеоконтинентальными реконструкциями позволяют разрешить ряд противоречий в трактовке ключевых вопросов геологии региона, например, ранние предположения об отсутствии на Енисейском кряже эндогенной активности и гренвильских коллизионных событий. Таким образом, северным продолжением Гренвильского пояса, протягивающегося на расстоянии более 10 тыс. км от западной Австралии до Свеконорвежского орогена Балтики, могли быть гренвиллиды западной окраины Сибирского кратона.

Список источников

Балашов Ю.А. Геохимия редкоземельных элементов. М.: Недра, 1976. 266 с.

Богданова С.В., Писаревский С.А., Ли Ч.Х. Образование и распад Родинии (по результатам МПГК 440) // Стратиграфия. Геологическая корреляция. 2009. Т. 17, № 3. С. 29–45.

Верниковский В.А., Верниковская А.Е. Тектоника и эволюция гранитоидного магматизма Енисейского кряжа // Геология и геофизика. 2006. Т. 47, № 1. С. 35–52.

Верниковский В.А., Казанский А.Ю., Матушкин Н.Ю., Метелкин Д.В., Советов Ю.К. Геодинамическая эволюция складчатого обрамления и западная граница Сибирского кратона в неопротерозое: геологоструктурные, седиментологические, геохронологические и палеомагнитные данные // Геология и геофизика. 2009. Т. 50, № 4. С. 380–393.

Врублевский В.В., Ревердатто В.В., Изох А.Э., Гертнер И.Ф., Юдин Д.С., Тишин П.А. Неопротерозойский карбонатитовый магматизм Енисейского кряжа, Центральная Сибирь: ⁴⁰Ar/³⁹Ar-геохронология пенченгинского комплекса // Доклады Академии наук. 2011. Т. 437, № 4. С. 514–519.

Добрецов Н.Л. Эволюция структур Урала, Казахстана, Тянь-Шаня и Алтае-Саянской области в Урало-Монгольском складчатом поясе // Геология и геофизика. 2003. Т. 44, № 1–2. С. 5–27.

Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51. С. 761–784.

Егоров А.С. Глубинное строение и геодинамика литосферы северной Евразии (по результатам геолого-геофизического моделирования вдоль геотраверсов России). СПб. : ВСЕГЕИ, 2004. 199 с.

Звягина Е.А. Метаморфизм и золотоносность Верхне-Енашиминского рудного узла : автореф. дис. ... канд. геол.-минерал. наук. Иркутск : Изд-во ИГУ, 1989. 16 с.

Качевский Л.К., Зуев В.К. Геологическая карта Енисейской металлогенической провинции. Масштаб 1 : 1000000 / ред. А.К. Мкртычьян, М.Л. Шерман. Красноярск: Красноярскгеолсъемка, 2005.

Козлов П.С., Л**иханов И.И., Ревердатто В.В.,** З**иновьев С.В.** Тектоно-метаморфическая эволюция гаревского полиметаморфического комплекса Енисейского кряжа // Геология и геофизика. 2012. Т. 53, № 11. С. 1476—1496.

Козлов П.С., Лиханов И.И., Зиновьев С.В., Хиллер В.В. Приангарский метаморфический комплекс (Енисейский кряж): особенности геологии, Р-Т условия и возраст метаморфизма // Литосфера. 2014. Т. 14, № 6. С. 141–149.

Козлов П.С., Филиппов Ю.Ф., Лиханов И.И., Ножкин А.Д. Геодинамическая модель эволюции Приенисейской палеосубдукционной зоны в неопротерозое (западная окраина Сибирского кратона), Россия // Геотектоника. 2020. № 1. С. 62–78.

Козлов П.С., Лиханов И.И., Ревердатто В.В., Сухоруков В.П. Особенности петрогенезиса, георесурсы и перспективы практического использования высокоглиноземистых пород Северо-Енисейского кряжа (Восточная Сибирь) // Геосферные исследования. 2022. № 4. С. 6–35.

Коробейников С.Н., Полянский О.П., Лиханов И.И., Свердлова В.Г., Ревердатто В.В. Математическое моделирование надвига как причины формирования андалузит-кианитовой метаморфической зональности в Енисейском кряже // Доклады Академии наук. 2006. Т. 408, № 4. С. 512–516.

Кузнецов А.Б., Кочнев Б.Б., Васильева И.М., Овчинникова Г.В. Sr-хемостратиграфия и Pb-Pb возраст известняков тунгусикской и широкинской серий // Стратиграфия. Геологическая корреляция. 2019. Т. 27, № 5. С. 46–62.

Лиханов И.И. Минеральные реакции в высокоглиноземистых и железистых роговиках в связи с проблемой устойчивости редких минеральных парагенезисов контактового метаморфизма // Геология и геофизика. 2003. Т. 44, № 4. С. 301–312.

Лиханов И.И. Метаморфические индикаторы геодинамических обстановок коллизии, растяжения и сдвиговых зон земной коры // Петрология. 2020а. Т. 28, № 1. С. 4–22.

Лиханов И.И. Неустойчивость парагенезисов «тройной точки» Al_2SiO_5 как следствие полиметаморфизма высокоглиноземистых метапелитов // Петрология. 2020б. Т. 28, № 6. С. 610–627.

Лиханов И.И. Свидетельства гренвильских и вальгальских тектонических событий на западной окраине Сибирского кратона (Гаревский комплекс, Енисейский кряж) // Петрология. 2023. Т. 31, № 1. С. 49–80.

Лиханов И.И., Ревердатто В.В. Р-Т-t эволюция метаморфизма в Заангарье Енисейского кряжа: петрологические и геодинамические следствия // Геология и геофизика. 2014а. Т. 55, № 3. С. 385–416.

Лиханов И.И., Ревердатто В.В. Геохимия, возраст и особенности петрогенезиса пород гаревского метаморфического комплекса Енисейского кряжа // Геохимия. 2014б. Т. 52, № 1. С. 3–25.

Лиханов И.И., Ревердатто В.В. Неопротерозойские комплексы-индикаторы континентального рифтогенеза как свидетельство процессов распада Родинии на западной окраине Сибирского кратона // Геохимия. 2015. Т. 53, № 8. С. 675–694.

Лиханов И.И., Ревердатто В.В. Геохимия, особенности происхождения и возраст метаморфизма пород Приангарья в зоне сочленения северного и южного сегментов Енисейского кряжа // Геохимия. 2016. Т. 54, № 2. С. 143—164.

Лиханов И.И., Ревердатто В.В. Свидетельства полиметаморфической эволюции докембрийских геологических комплексов Заангарья Енисейского кряжа // Геосферные исследования. 2021. № 3. С. 19–41.

Лиханов И.И., Ревердатто В.В. Геохимия, обстановки формирования, состав и возраст протолита железисто-глиноземистых метапелитов Северо-Енисейского кряжа // Доклады Российской академии наук. Науки о Земле. 2022. Т. 507, № 1. С. 46–55.

Лиханов И.И., Ревердатто В.В., Селятицкий А.Ю. Минеральные равновесия и Р-Т диаграмма для железисто-глиноземистых метапелитов в системе KFMASH // Петрология. 2005. Т. 13, № 1. С. 81–92.

Лиханов И.И., Козлов П.С., Попов Н.В., Ревердатто В.В., Вершинин А.Е. Коллизионный метаморфизм как результат надвигов в заангарской части Енисейского кряжа // Доклады Академии наук. 2006а. Т. 411, № 2. С. 235–239.

Лиханов И.И., Ревердатто В.В., Вершинин А.Е. Геохимические свидетельства природы протолита железисто-глиноземистых метапелитов Кузнецкого Алатау и Енисейского кряжа // Геология и геофизика. 2006б. Т. 47, № 1. С. 119–131.

Лиханов И.И., Козлов П.С., Полянский О.П., Попов Н.В., Ревердатто В.В., Травин А.В., Вершинин А.Е. Неопротерозойский возраст коллизионного метаморфизма в Заангарье Енисейского кряжа (по 40 Ar- 39 Ar данным) // Доклады Академии наук. 2007. Т. 412, № 6. С. 799–803.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Попов Н.В. Коллизионный метаморфизм докембрийских комплексов в заангарской части Енисейского кряжа // Петрология. 2008а. Т. 16, № 2. С. 148–173.

Лиханов И.И., Ревердатто В.В., Вершинин А.Е. Железисто-глиноземистые метапелиты тейской серии Енисейского кряжа: геохимия, природа протолита и особенности поведения вещества при метаморфизме // Геохимия. 2008б. Т. 46, № 1. С. 20–41.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Попов Н.В. Кианит-силлиманитовый метаморфизм докембрийских комплексов Заангарья Енисейского кряжа // Геология и геофизика. 2009. Т. 50, № 12. С. 1335–1356.

Лиханов И.И., Ревердатто В.В., Травин А.В. Скорость эксгумации пород неопротерозойских коллизионных метаморфических комплексов Енисейского кряжа // Доклады Академии наук. 2010. Т. 435, № 3. С. 372–377.

Лиханов И.И., Ревердатто В.В., Козлов П.С. U-Pb и ⁴⁰Ar-³⁹Ar свидетельства гренвильских событий на Енисейском кряже при формировании Тейского полиметаморфического комплекса // Геохимия. 2012а. Т. 50, № 6. С. 607–614.

Лиханов И.И., Попов Н.В., Ножкин А.Д. Древнейшие гранитоиды Заангарья Енисейского кряжа: U-Pb и Sm-Nd данные, обстановки формирования // Геохимия. 2012б. Т. 50, № 10. С. 966–976.

Лиханов И.И., Ревердатто В.В., Зиновьев С.В, Ножкин А.Д. Возраст бластомилонитов Приенисейской региональной сдвиговой зоны как свидетельство вендских аккреционно-коллизионных событий на западной окраине Сибирского кратона // Доклады Академии наук. 2013а. Т. 450, № 2. С 199–203.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Зиновьев С.В. Неопротерозойский дайковый пояс Заангарья Енисейского кряжа как индикатор процессов растяжения и распада Родинии // Доклады Академии наук. 2013б. Т. 450, № 6. С. 685–690.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Хиллер В.В, Сухоруков В.П. Зональность граната в метапелитах как следствие трех метаморфических событий в докембрийской истории Енисейского кряжа // Петрология. 2013в. Т. 21, № 6. С. 612—631.

Лиханов И.И., Ножкин А.Д., Ревердатто В.В., Козлов П.С. Гренвильские тектонические события и эволюция Енисейского кряжа, западная окраина Сибирского кратона // Геотектоника. 2014а. Т. 48, № 5. С. 32–53.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Хиллер В.В., Ножкин А.Д. Позднепротерозойские А-граниты Чернореченского массива Енисейского кряжа: новые геохимические и геохронологические данные // Доклады Академии наук. 2014б. Т. 455, № 1. С. 82–86.

Лиханов И.И., Ревердатто В.В., Козлов П.С., Зиновьев С.В., Хиллер В.В. Р-Т-t реконструкция метаморфической истории Южно-Енисейского кряжа (Сибирский кратон): петрологические следствия и связь с суперконтинентальными циклами // Геология и геофизика. 2015. Т. 56, № 6. С. 1031–1056.

Лиханов И.И., Ножкин А.Д., Ревердатто В.В., Крылов А.А., Козлов П.С., Хиллер В.В. Метаморфическая эволюция ультравысокотемпературных железисто-глиноземистых гранулитов Южно-Енисейского кряжа и тектонические следствия // Петрология. 2016. Т. 24, № 4. С. 423–440.

Лиханов И.И., Ножкин А.Д., Савко К.А. Аккреционная тектоника западной окраины Сибирского кратона // Геотектоника. $2018. \ T. 52, № 1. C. 28–51.$

Лиханов И.И., Зиновьев С.В., Козлов П.С. Бластомилонитовые комплексы западной части Енисейского кряжа (Восточная Сибирь, Россия): геологическая позиция, эволюция метаморфизма и геодинамические модели // Геотектоника. 2021. Т. 55, № 1. С. 41–65.

Метёлкин Д.В., Верниковский В.А., Казанский А.Ю. Тектоническая эволюция Сибирского палеоконтинента от неопротерозоя до позднего мезозоя: палеомагнитная запись и реконструкции // Геология и геофизика. 2012. Т. 53, № 7. С. 883–899.

Митрофанов Г.Л., Мордовская Т.В., Никольский Ф.В. Структуры скучивания коры некоторых окраинных частей Сибирской платформы. Тектоника платформенных областей. Новосибирск: Наука, 1988. С. 169–173.

Ножкин А.Д., Лиханов И.И. Золото в породах докембрия Енисейского кряжа и геолого-геохимические предпосылки формирования золотого оруденения в Центральном металлогеническом поясе региона // Геосферные исследования. 2023. № 2. С. 49–80.

Ножкин А.Д., Туркина О.М., Бибикова Е.В., Терлеев А.А., Хоментовский В.В. Рифейские гранито-гнейсовые купола Енисейского кряжа: геологическое строение и U-Pb изотопный возраст // Геология и геофизика. 1999. Т. 40, № 9. С. 881–891.

Ножкин А.Д., Туркина О.М., Советов Ю.К., Травин А.В. Вендское аккреционно-коллизионное событие на юго-западной окраине Сибирского кратона // Доклады Академии наук. 2007. Т. 415, № 6. С. 782–787.

Ножкин А.Д., Борисенко А.С., Неволько П.А. Этапы позднепротерозойского магматизма и возрастные рубежи золотого оруденения Енисейского кряжа // Геология и геофизика 2011. Т. 52, № 1. С. 158–181.

Ножкин А.Д., Туркина О.М., Лиханов И.И., Дмитриева Н.В. Позднепалеопротерозойские вулканические ассоциации на юго-западе Сибирского кратона (Ангаро-Канский блок) // Геология и геофизика. 2016а. Т. 57, № 2. С. 312–332.

Ножкин А.Д., Дмитриева Н.В., Лиханов И.И., Серов П.А., Козлов П.С. Геохимические и изотопно-геохронологические свидетельства субсинхронного островодужного магматизма и терригенной седиментации (Предивинский террейн Енисейского кряжа) // Геология и геофизика. 2016б. Т. 57, № 11. С. 1992—2014.

Ножкин А.Д., Туркина О.М., Лиханов И.И., Савко К.А. Палеопротерозойские метавулканогенно-осадочные толщи енисейского метаморфического комплекса на юго-западе Сибирского кратона (Ангаро-Канский блок): расчленение, состав, U-Pb возраст цирконов // Геология и геофизика. 2019. Т. 60, № 10. С. 1384—1406.

Ножкин А.Д., Козлов П.С., Лиханов И.И., Зиновьев С.В., Крылов А.А. Ранненеопротерозойская метапикрит-базальтовая ассоциация Приангарской части Енисейского кряжа: геохимия, обстановки формирования и Pb-Zn минерализация // Геохимия. 2021а. Т. 66, № 5. С. 387–406.

Ножкин А.Д., Козлов П.С., Лиханов И.И., Ревердатто В.В., Крылов А.А. Геохимия, обстановки формирования и рудоносность вулканогенно-осадочных комплексов Приангарья Енисейского кряжа // Доклады Академии наук. 2021б. Т. 501, № 2. C 149 $_$ 155

Попов Н.В., Лиханов И.И., Ножкин А.Д. Мезопротерозойский гранитоидный магматизм в заангарской части Енисейского кряжа: результаты U-Pb исследований // Доклады Академии наук. 2010. Т. 431, № 4. С. 509–515.

Попов Н.В., Лиханов И.И., Ревердатто В.В., Савко К.А. Палеопротерозойский гранитоидный магматизм в тектонической истории Ангаро-Канского блока юго-западного обрамления Сибирской платформы // Доклады Академии наук. 2020. Т. 490, № 2. С. 39—44.

Ревердатто В.В., **Лиханов И.И.**, **Полянский О.П.**, **Шеплев В.С.**, **Колобов В.Ю.** Природа и модели метаморфизма. Новосибирск : Изд-во СО РАН, 2017. 331 с.

Розен О.М., Аббясов А.А. Количественный минеральный состав осадочных пород: расчет по петрохимическим данным, анализ достоверности результатов (компьютерная программа) // Литология и полезные ископаемые. 2003. Т. 34. С. 299–312.

Сараев С.В. Литология и петрохимия глинистых пород рифея Енисейского кряжа // Глинистые минералы в осадочных породах Сибири. Новосибирск: ИГиГ СО АН СССР, 1986. С. 78–85.

Хераскова Т.Н., Каплан С.А., Галуев В.И. Строение Сибирской платформы и ее западной окраины в рифее-раннем палеозое // Геотектоника. 2009. № 2. С. 37–56.

Черных А.И. Геологическое строение и петролого-геохимические особенности докембрийских офиолитовых и палеоостроводужных комплексов Енисейского кряжа: автореф. дис. ... канд. геол.-минерал. наук. Новосибирск: ОИГГМ СО РАН, 2000. 20 с.

Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб. : Наука, 2000. 479 с.

Ярмолюк В.В., Коваленко В.И., Ковач В.П., Рыцк Е.Ю., Козаков И.К., Котов А.Б., Сальникова Е.Б. Ранние стадии формирования Палеоазиатского океана: результаты геохронологических, изотопных и геохимических исследований позднерифейских и венд-кембрийских комплексов Центрально-Азиатского складчатого пояса // Доклады Академии наук. 2006. Т. 410, № 5. С. 657–663.

Ague J.J. Evidence for major mass transfer and volume strain during regional metamorphism of pelites // Geology. 1991. V. 19. P. 855–858.

Anderson J.L., Smith D.R. The effects of temperature and fO₂ on the Al-in-hornblende barometer // American Mineralogist. 1995. V. 80. P. 549–559.

Bhadra S., Bhattacharya A. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages // American Mineralogist. 2007. V. 92. P. 491–502.

Blundy J.D., Holland T.J.B. Calcic amphibole equilibria and new amphibole-plagioclase geothermometer // Contributions to Mineralogy and Petrology. 1990. V. 104. P. 208–224.

Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A. The Eastern European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Research. 2008. V. 160. P. 23–45.

Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies / ed. by P. Henderson. Rare earth element geochemistry. Amsterdam: Elsevier, 1984. P. 63–114.

Buick R., Des Marais D.J., Knoll A.H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia // Chemical Geology. 1995. V. 123. P. 153–171.

Cawood P.A., Nemchin A.A., Strachan R.A., Kinny P.D., Loewy S. Laurentian provenance and an intracratonic tectonic setting for the upper Moine Supergroup, Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions // Journal of Geological Society of London. 2004. V. 161. P. 861–874.

Cawood P.A., Strachan R., Cutts K., Kinny P.D., Hand M., Pisarevsky S. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic // Geology. 2010. V. 38. P. 99–102.

Cawood P.A., Strachan R.A., Pisarevsky S.A., Gladkochub D.P., Murphy J.B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles // Earth and Planetary Science Letters. 2016. V. 449. P. 118–126.

Condie K. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. P. 491–504.

Corsini M., Bosse V., Feraud G., Demoux F., Crevola G. Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed ⁴⁰Ar/³⁹Ar study (Tanneron Massif, SE France) // International Journal of Earth Sciences. 2010. V. 99. P. 327–341.

Cox R., Lowe D.R., Cullers R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwesterm United States // Geochimica et Cosmochimica. Acta. 1995. V. 59. P. 2919–2940.

Dalziel I.W.D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis and environmental speculation // Geological Society of America Bulletin. 1997. V. 109. P. 16–42.

Ernst R.E., Hamilton M.A., Soderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.M. Long-lived connection between southern Siberia and northern Lavrentia in the Proterozoic // Nature Geoscience. 2016. V. 9. P. 464–469.

Ernst R.E., Wingate M.T.D., Buchan K.L., Li Z.H. Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents // Precambrian Research. 2008. V. 160. P. 159–178.

Fedo C.M., Nesbitt H.W., Young G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance // Geology. 1995. V. 23. P. 921–924.

Ferry J.M., Spear F.S. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet // Contributions to Mineralogy and Petrology. 1978. V. 66. P. 113–117.

Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S. Taylor, R.N. Thermal and chemical structure of the Iceland plume // Earth and Planetary Science Letters. 1997. V. 153. P. 197–208.

Ghent E.D., Stout M.Z. Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages // Contributions to Mineralogy and Petrology. 1981. V. 76. P. 92–97.

Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction // Precambrian Research. 2010. V. 183. P. 660–668.

Hammarstrom J.M., Zen E.-A. Aluminum in hornblende: an empirical igneous geobarometers // American Mineralogist. 1986. V. 71. P. 1297–1313.

Harnois L. The CIW index: a new chemical index of weathering // Sedimentary Geology. 1988. V. 55. P. 319-322.

Hodges K.V. Geochronology and Thermochronology in Orogenic System. In Treatise on Geochemistry / eds. by H.D. Holland, K.K. Turekian. Oxford, UK: Elsevier, 2004. P. 263–292.

Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // American Mineralogist. 2000. V. 85. P. 881–892.

Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons // American Mineralogist. 1987. V. 72. P. 231–239.

Hooper P.R. The Columbia River basalts // Science. 1982. V. 215. P. 1463–1468.

Hoschek G. The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks // Contributions to Mineralogy and Petrology. 1969. V. 22. P. 208–232.

Johansson Å. From Rodinia to Gondwana with the 'SAMBA' model—A distant view from Baltica towards Amazonia and beyond // Precambrian Research. 2014. V. 244. P. 226–235.

Kohn M.J., Spear F.S. Error propagation for barometers // American Mineralogist. 1991. V. 76. P. 138–147.

Li Z.-H., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladcochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. Assembly, configuration, and break-up history of Rodinia: a synthesis // Precambrian Research. 2008. V. 160. P. 179–210.

Likhanov I.I. Chloritoid, staurolite and gedrite of the high-alumina hornfelses of the Karatash pluton // International Geology Review. 1988a. V. 30 (8). P. 868–877.

Likhanov I.I. Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton // International Geology Review. 1988b. V. 30 (8). P. 878–887.

Likhanov I.I. Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge, Siberia / eds. by S. Ferrero, P. Lanari, P. Gonsalves, E.G. Grosch // Metamorphic Geology: Microscale to Mountain Belts. Geological Society of London Special Publications. 2019. V. 478. P. 89–115.

Likhanov I.I. Provenance, age and tectonic settings of rock complexes (Transangarian Yenisey Ridge, East Siberia): Geochemical and geochronological evidence // Geosciences. 2022. V. 12 (11). P. 402.

Likhanov I.I., Reverdatto V.V. Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures // Acta Geologica Sinica – English Edition. 2007. V. 81 (3). P. 409–423.

Likhanov I.I., Reverdatto V.V. Precambrian Fe- and Al-rich pelites from the Yenisey Ridge, Siberia: geochemical signatures for protolith origin and evolution during metamorphism // International Geology Review. 2008. V. 50 (7). P. 597–623.

Likhanov I.I., Reverdatto V.V. Neoproterozoic collisional metamorphism in overthrust terranes of the Trans-Angarian Yenisey Ridge, Siberia // International Geology Review. 2011a. V. 53 (7). P. 802–845.

Likhanov I.I., Reverdatto V.V. Precambrian P-T-t history of the Yenisey Ridge as a consequence of contrasting tectonic settings in the western margin of the Siberian craton // Mineralogical Magazine. 2011b. V. 75 (3). P. 1327.

Likhanov I.I., Santosh M. Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent // Precambrian Research. 2017. V. 300. P. 315–331.

Likhanov I.I., Santosh M. A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia // Precambrian Research. 2019. V. 328. P. 128–145.

Likhanov I.I., Santosh M. The "triple point" paradigm of aluminosilicates revisited // Geological Journal. 2020. V. 55 (6). P. 4772–4789

Likhanov I.I., Reverdatto V.V., Memmi I. Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia) // European Journal of Mineralogy. 1994. V. 6 (1). P. 133–144.

Likhanov I.I., Reverdatto V.V., Sheplev V.S., Verschinin A.E., Kozlov P.S. Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian Region of the Yenisey Ridge, eastern Siberia, Russia // Lithos. 2001. V. 58 (1–2). P. 55–80.

Likhanov I.I., Polyansky O.P., Reverdatto V.V., Memmi I. Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia // Journal of Metamorphic Geology. 2004. V. 22 (8). P. 743–762.

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Sukhorukov V.P. P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions // Journal of Asian Earth Sciences. 2015. V. 113(1). P. 391–410.

Likhanov I.I., Régnier J.-L., Santosh M. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean // Lithos. 2018. V. 304. P. 468–488.

McCulloch M.T., Gamble J.A. Geochemical and geodynamial constrints on subduction zone magmatism // Earth and Planetary Science Letters. 1991. V. 102. P. 358–374.

McLennan S.M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes // Geochemistry and Mineralogy of Rare Earth Elements / eds. by B.R. Lipin, G.A. McKay. Washington D.C.: Mineralogical Society of America, 1989. P. 169–200.

Meschide M.A. A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb-Zr-Y diagram // Chemical Geology. 1986. V. 56. P. 207–218.

Mullen E.D. MnO/TiO₂/P₂O₅: a minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis // Earth and Planetary Science Letters. 1983. V. 62. P. 53–62.

Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lulites // Nature. 1982. V. 299. P. 715–717.

Pisarevsky S. Pre-Rodinian supercontinents: how "super" were they? // Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium / eds. by R. Veselovskiy, N. Lubnina. Moscow: PERO Press, 2013. P. 58.

Reverdatto V.V., Likhanov I.I., Polyansky O.P., Sheplev V.S., Kolobov V.Yu. The Nature and Models of Metamorphism. Chum: Springer, 2019. 330 p.

Rino S., Kon Y., Sato W., Maruyama S., Santosh M., Zhao D. The Grenvillian and Pan-African orogens: world's largest orogenies through geological time, and their implications on the origin of superplume // Gondwana Research. 2008. V. 14. P. 51–72.

Rivers T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province – Implications for the evolution of large hot long-duration orogens // Precambrian Research. 2008. V. 167. P. 237–259.

Santosh M., Maruyama S., Yamamoto S. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere // Gondwana Research. 2009. V. 15. P. 324–341.

Schmidt M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer // Contributions to Mineralogy and Petrology. 1992. V. 110. P. 304–310.

Stewart K., Rogers N. Mantle plume and lithosphere contributions to basalts from southern Ethiopia // Earth and Planetary Science Letters. 1996. V. 139. P. 195–211.

Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society of London Special Publications. 1989. V. 42. P. 313–345.

Symmes G.H., Ferry J.M. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism // Journal of Metamorphic Geology 1992. V. 10. P. 221–237.

Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.

Taylor S.R., McLennan S.M. The geochemical evolution of the continental crust. Review of Geophysics 1995. V. 33. P. 241–265. **Thompson J.B. Jr.** The graphical analysis of mineral assemblages in pelitic schists // American Mineralogist. 1957. V. 42. P. 842–

Torsvik T.H. The Rodinia Jigsaw Puzzle // Science. 2003. V. 300. P. 1379–1381.

Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. V. 95. P. 185–186. Wolfram S. The Mathematica Book. 5th ed. Champaign IL: Wolfram Media Inc., 2003. 544 p.

Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province // Earth and Planetary Science Letters. 1980. V. 50. P. 11–30.

Wu C.M., Zhang J., Ren L.D. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium— to high–grade metapelites // Journal of Petrology. 2004. V. 45. P. 1907–1921.

Wu C.M., Zhao G.C. Recalibration of the garnet – muscovite (GM) geothermometer and the garnet – muscovite – plagioclase – quartz (GMPQ) geobarometer for metapelitic assemblages // Journal of Petrology. 2006. V. 47. P. 2357–2368.

Wu C.M., Zhao G.C. The metapelitic garnet – biotite – muscovite – aluminosilicate – quartz (GBMAQ) geobarometer // Lithos. 2007. V. 97. P. 365–372.

References

Balashov Yu.A. Geokhimiya redkozemel'nykh elementov [Geochemistry of Rare-Earth Elements]. Moscow: Nedra Publ., 1976. 266 p. In Russian

Bogdanova S.V., Pisarevsky S.A., Li Z.H. Assembly and breakup of Rodinia (some results of IGCP Project 440) // Stratigrafiya. Geologicheskaya korrelyatsiya [Stratigraphy and Geological Correlation]. 2009. V. 17. No. 3. pp. 29–45. In Russian

Vernikovsky V.A., Vernikovskaya A.E. Tectonics and evolution of granitoid magmatism in the Yenisey Ridge // Geologiya i Geofizika [Russian Geology and Geophysics]. 2006. V. 47. No. 1. pp. 35–52. In Russian

Vernikovsky V.A., Metelkin D.V., Vernikovskaya A.E. Neoproterozoic tectonic structure of the Yenisei Ridge and formation of the western margin of the Siberian Craton based on new geological, paleomagnetic, and geochronological data // Geologiya i Geofizika [Russian Geology and Geophysics]. 2016. V. 57. pp. 63–90. In Russian

Vrublevsky V.V., Reverdatto V.V., Izokh A.E., Gertner I.F., Yudin D.S., Tishin P.A. Neoproterozoic carbonatite magmatism of the Yenisey Ridge, Central Siberia: ⁴⁰Ar–³⁹Ar geochronology of the Penchenga rock complex. // Doklady Akademii Nauk [Doklady Earth Sciences]. 2011. V. 437. No. 4. pp. 514–519. In Russian

Dobretsov N.L. Evolution of structures of the Urals, Kazakhstan, Tien-Shan, and Altai-Sayan region within the Ural-Mongolian Fold Belt (Paleoasian Ocean) // Geologiya i Geofizika [Russian Geology and Geophysics]. 2003. V. 44. pp. 5–27. In Russian

Dobretsov N.L. Global geodynamic evolution of the Earth and global geodynamic models // Geologiya i Geofizika [Russian Geology and Geophysics]. 2010. V. 51. pp. 761–784. In Russian

Egorov A.S. Glubinnoe stroenie i geodinamika litosferi severnoy Evrazii (po rezul'tatam geologo-geofizicheskogo modelirovaniya vdol' geotraversov Rossii [Deep-seated structure and geodynamics of the lithosphere of Northern Eurasia: evidence from geological-geophysical modeling along the geotraverses of Russia]. St. Petersburg: VSEGEI, 2004. 199 p. In Russian

Zvyagina E.A. *Metamorfizm i zolotonosnost' Verkhneye-Yenashiminskogo rudnogo uzla* [Metamorphism and gold content of the Upper-Enashiminsky ore cluster]: avtoref, kand. geol.-min. nauk, Irkutsk: IGU Publ., 1989. 24 p. In Russian

Kachevskiy L.K., Zuyev V.K. Geologicheskaya karta Yeniseyskoy metallogenicheskoy provintsii. Masshtab 1:1000000 (Red. A.K. Mkrtych'yan, M.L. Sherman) [Geological map of the Yenisei metallogenic province. Scale 1:1000000 (Ed. A.K. Mkrtychyan, M.L. Sherman)]. Krasnoyarsk: Krasnoyarskgeolsemka, 2005. In Russian

Kozlov P.S., Likhanov I.I., Reverdatto V.V., Zinov'ev S.V. Tectonometamorphic evolution of the Garevka polymetamorphic complex (Yenisei Ridge) // Geologiya i Geofizika [Russian Geology and Geophysics]. 2012. V. 53. No. 11. pp. 1476–1496. In Russian

Kozlov P.S., Likhanov I.I., Zinovi'ev S.V., Khiller V.V. Priangarskiy metamorficheskiy kompleks (Yeniseyskiy kryazh): osobennosti geologii, R-T usloviya i vozrast metamorfizma Cisangarian metamorphic complex (Yenisey Ridge): Geological features, P-T conditions, and age of metamorphism // Lithosphere(Russian Federation) [Litosfera]. 2014. No. 6. pp. 141–149. In Russian

Kozlov P.S., Filippov Yu.F., Likhanov I.I., Nozhkin A.D. Geodynamic model of the Neoproterozoic evolution of the Yenisei paleosubduction zone (western margin of the Siberian Craton), Russia // Geotektonika [Geotectonics]. 2020. V. 54. No. 1. pp. 62–78. In Russian

Kozlov P.S., Likhanov I.I., Reverdatto V.V., Sukhorukov V.P. Petrogenesis, georesourses, and prospects for practical use of high-aluminous rocks of the North Yenisei Ridge (East Siberia) // Geosfernye Issledovaniya – Geosphere Research. 2021. No. 3. pp. 19–41. In Russian

Korobeinikov S.N., Polyansky O.P., Likhanov I.I., Sverdlova V.G., Reverdatto V.V. Mathematical modeling of overthrusting fault as a cause of andalusite-kyanite metamorphic zoning in the Yenisei Ridge // Doklady Akademii Nauk [Doklady Earth Sciences]. 2006. V. 408. No. 4. pp. 652–656. In Russian

Kuznetsov A.B., Kochnev B.B., Vasileva I.M., Ovchinnikova G.V. The Upper Riphean of the Yenisei Range: Sr chemostratigraphy and Pb–Pb age of limestones of the Tungusik and Shirokaya Groups // Stratigrafiya. Geologicheskaya korrelyatsiya [Stratigraphy and Geological Correlation]. 2019. V. 27. No. 5. pp. 46–62. In Russian

Likhanov I.I. Mineral reactions in high-alumina ferriferous metapelitic hornfelses in connection with the problem of stability of rare parageneses of contact metamorphism // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2003. V. 44. No 4. pp. 301–312.

Likhanov I.I. Metamorphic indicators for collision, extension and shear zones geodynamic settings of the Earth's crust // Petrologiya [Petrology]. 2020. V. 28. No. 1. pp. 4–22. In Russian

Likhanov I.I. Instability of Al₂SiO₅ "triple point" assemblages as a consequence of polymetamorphism in Al-rich metapelites // Petrology [Petrology]. 2020. V. 28. No. 6. pp. 610–627. In Russian

Likhanov I.I. Grenville and Valhalla tectonic events at the western margin of the Siberian Craton: Evidence from rocks of the Garevka Complex, Northern Yenisei Range, Russia // *Petrologiya* [Petrology]. 2023. V. 31. No. 1. pp. 49–80.

Likhanov I.I., Reverdatto V.V. *P-T-t* constraints on the metamorphic evolution of the Transangarian Yenisei Ridge: geodynamic and petrological implications // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2014a. V. 55. No. 3. pp. 385–416. In Russian

Likhanov I.I., Reverdatto V.V. Geochemistry, age and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge // Geokhimiya [Geochemistry International]. 2014b. V. 52. No. 1. pp. 3–25. In Russian

Likhanov I.I., Reverdatto V.V. Zoning of garnets as an indicator of metamorphic evolution in metapelites of Yenisei Ridge // Doklady Akademii Nauk [Doklady Earth Sciences]. 2014. V. 458. No. 1. pp. 74–79. In Russian

Likhanov I.I., Reverdatto V.V. Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of Siberian craton: implications for the breakup of Rodinia // *Geokhimiya* [Geochemistry International]. 2015. V. 53. No. 8. pp. 675–694. In Russian Likhanov I.I., Reverdatto V.V. Geochemistry, petrogenesis and age of metamorphic rocks of the Angara complex at the junction of South and North Yenisei Ridge // *Geokhimiya* [Geochemistry International]. 2016. V. 54. No. 2. pp. 143–164. In Russian

Likhanov I.I., Reverdatto V.V. Evidence for polymetamorphic evolution of the Precambrian geological complexes of the Transangarian Yenisei Ridge // Geosfernye Issledovaniya – Geosphere Research. 2021. No. 3. pp. 19–41. In Russian

Likhanov I.I., Reverdatto V.V. Geochemistry, formation settings, composition and age of the protolith for the Fe- and AL-rich metapelites of the North Yenisei Ridge // Doklady Akademii Nauk [Doklady Earth Sciences]. 2022. V. 507(1). pp. 46–55. In Russian

Likhanov I.I., Reverdatto V.V., Selyatizkii A.Y. Mineral equilibria and P-T diagram for Fe- and Al-rich metapelites in the KFMASH system (K₂O-FeO-MgO-Al₂O₃-SiO₂-H₂O) // Petrologiya [Petrology]. 2005. V. 13. No. 1. pp. 81–92. In Russian

Likhanov I.I., Kozlov P.S., Popov N.V., Reverdatto V.V., Vershinin A.E. Collision metamorphism as a result of thrusting in the Transangara region of the Yenisei Ridge // Doklady Earth Sciences. 2006a. V. 411. No. 2. pp. 235–239.

Likhanov I.I., Reverdatto V.V., Vershinin A.E. Geochemical evidences for protolith origin of Fe- and Al-rich metapelites from Kuznetsk Alatau and Yenisey Ridge // Geologiya i geofizika [Russian Geology and Geophysics]. 2006b. V. 47. No. 1. pp. 119–131. In Russian

Likhanov I.I., Kozlov P.S., Polyansky O.P., Popov N.V., Reverdatto V.V., Travin A.V., Verschinin A.E. Neoproterozoic age of collisional metamorphism in the Transangarian Yenisey Ridge: based on ⁴⁰Ar-³⁹Ar data // Doklady Akademii Nauk [Doklady Earth Sciences]. 2007. V. 412. No. 6. pp. 799–803. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Popov N.V. Collision metamorphism of Precambrian complexes in the Transangarian Yenisei Range // Petrology. 2008a. V. 16. No. 2. pp. 148–173. In Russian

Likhanov I.I., Reverdatto V.V., Verschinin A.E. Fe- and Al-rich metapelites of the Teya sequence, Yenisei Range: geochemistry, protoliths and the behavior of their matter during metamorphism// *Geokhimiya* [Geochemistry International]. 2008b. V. 46. No. 1. pp. 20–41. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Popov N.V. Kyanite-sillimanite metamorphism of the Precambrian complexes, Transangarian region of the Yenisei Ridge // *Geologiya i geofizika* [Russian Geology and Geophysics]. 2009. V. 50. No. 12. pp. 1335–1356. In Russian

Likhanov I.I., Reverdatto V.V., Travin A.V. Exhumation rate of rocks from Neoproterozoic collisional metamorphic complexes of the Yenisei Ridge // Doklady Akademii Nauk [Doklady Earth Sciences]. 2010. V. 435. No. 3. pp. 372–377. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S. U-Pb and ⁴⁰Ar-³⁹Ar evidence for Grenvillian activity in the Yenisey Ridge during formation of the Teya metamorphic complex // *Geokhimiya* [Geochemistry International]. 2012a. V. 50. No. 6. pp. 607–614. In Russian

Likhanov I.I., Popov N.V., Nozhkin A.D. The oldest granitoids in the Transangarian part of the Yenisey Ridge: U-Pb and Sm-Nd data and geodynamic settings // *Geokhimiya* [Geochemistry International]. 2012b. V. 50. No. 10. pp. 966–976. In Russian

Likhanov I.I., Reverdatto V.V., Zinov'ev S.V., Nozhkin A.D. Age of blastomylonites of the Yenisei regional shear zone as evidence of the Vendian accretionary-collision events at the western margin of the Siberian Craton // Doklady Akademii Nauk [Doklady Earth Sciences]. 2013a. V. 450. No. 1. pp. 199–203. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Zinov'ev S.V. The Neoproterozoic Trans-Angara dike belt. Yenisei Range. as an indicator of extension and breakup of Rodinia // Doklady Akademii Nauk [Doklady Earth Sciences]. 2013b. V. 450. No. 2. pp. 685–690. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Sukhorukov V.P. Three metamorphic events in Precambrian P-T-t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites // Petrologiya [Petrology]. 2013c. V. 21. No. 6. pp. 612–631. In Russian

Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Kozlov P.S. Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian craton // Geotectonics. 2014a. V. 48. No. 5. pp. 32–53. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Nozhkin A.D. Late Proterozoic *A*-type granites of Chernorechenskii massif in the Yenisei Ridge: new geochemical and geochronological data // *Doklady Akademii Nauk* [Doklady Earth Sciences]. 2014b. V. 455. No. 1. pp. 82–86. In Russian

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Zinoviev S.V., Khiller V.V. *P-T-t* reconstructions of South Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to supercontinental cycles // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2015. V. 56. No. 6. pp. 1031–1056. In Russian

Likhanov I.I., Nozhkin A.D., Reverdatto V.V., Krylov A.A., Kozlov P.S., Khiller V.V. Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the South Yenisei Ridge and tectonic implications // *Petrologiya* [Petrology]. 2016. V. 24. No. 4. pp. 423–440.

Likhanov I.I., Nozhkin A.D., Savko K.A. Accretionary tectonics of rock complexes in the western margin of the Siberian Craton // Geotectonics. 2018. V. 52. No. 1. pp. 28–51. In Russian

Likhanov I.I., Kozlov P.S., Zinoviev S.V. Blastomylonite complexes of the western Yenisei Ridge (Eastern Siberia. Russia): geological position, metamorphic evolution, and geodynamic models // *Geotektonika* [Geotectonics]. 2021. V. 55. No. 1. pp. 41–65. In Russian

Metelkin D.V., Vernikovsky V.A., Kazansky A.Y. Tectonic evolution of the Siberian paleocontinent from the Neoproterozoic to the Late Mesozoic: paleomagnetic record and reconstructions // *Geologiya i geofizika* [Russian Geology and Geophysics]. 2012. V. 53. pp. 791–794. In Russian

Mitrofanov G.L., Mordovskaya T.V., Nikolskiy F.V. Struktury skuchivaniya kory nekotorykh okrainnykh chastey Sibirskoy platform [Structures of crustal crowding in some marginal parts of the Siberian Platform] // Tektonika platformennykh oblastey. [Tectonics of platform areas]. Novosibirsk: Nauka, 1988. pp. 169–173. In Russian

Nozhkin A.D., Likhanov I.I. Gold in the Precambrian rocks of the Yenisei Ridge (East Siberia) and geological and geochemical prerequisites for the formation of gold mineralization in the Central Metallogenic Belt of the region // Geosfernye Issledovaniya — Geosphere Research. 2023. No. 2. pp. 49–80. In Russian

Nozhkin A.D., Turkina O.M., Bibikova E.B., Terleev A.A., Khomentovskii V.V. Riphean granite-gneiss domes of the Yenisei Range: geologic structure and U–Pb isotopic age // *Geologiya i geofizika* [Russian Geology and Geophysics]. 1999. V. 40(9). pp. 1305–1313. In Russian

Nozhkin A.D., Turkina O.M., Sovetov Yu.K., Travin A.V. The Vendian accretionary event in the southwestern margin of the Siberian Craton // *Doklady Akademii Nauk* [Doklady Earth Sciences]. 2007. V. 415A. No. 6. pp. 782–787. In Russian

Nozhkin A.D., Borisenko A.S., Nevol'ko P.A. Stages of Late Proterozoic magmatism and periods of Au mineralization in the Yenisei Ridge. Russian // *Geologiya i geofizika* [Russian Geology and Geophysics]. 2011. V. 52(1). pp. 158–181. In Russian

Nozhkin A.D., Turkina O.M., Likhanov I.I., Dmitrieva N.V. Late Paleoproterozoic volcanic associations in the southwestern Siberian craton (Angara-Kan block) // Geologiya i geofizika [Russian Geology and Geophysics]. 2016a. V. 57. No. 2. pp. 312–332. In Russian

Nozhkin A.D., Dmitrieva N.V., Likhanov I.I., Serov P.A., Kozlov P.S. Geochemical, isotopic, and geochronological evidence for subsynchronous island-arc magmatism and terrigenous sedimentation (Predivinsk terrane of the Yenisei Ridge) // Geologiya i geofizika [Russian Geology and Geophysics]. 2016b. V. 57. No. 11. pp. 1992–2014. In Russian

Nozhkin A.D., Turkina O.M., Likhanov I.I., Savko K.A. Paleoproterozoic Metavolcanosedimentary Sequences of the Yenisey Metamorphic Complex, Southwestern Siberian Craton (Angara-Kan block): subdivision, composition, U-Pb zircon age // Geologiya i geofizika [Russian Geology and Geophysics]. 2019. V. 60. No. 10. pp. 1384–1406. In Russian

Nozhkin A.D., Kozlov P.S., Likhanov I.I., Zinoviev S.V., Krylov A.A. Early Neoproterozoic metapicrite-basalt association of the Angara region, Yenisei Ridge: petrogeochemical composition, tectonic settings, and Pb-Zn mineralization // *Geokhimiya* [Geochemistry International]. 2021a. V. 59. No. 5. pp. 387–406. In Russian

Nozhkin A.D., Kozlov P.S., Likhanov I.I., Reverdatto V.V., Krylov A.A. Geochemistry, formation settings, and ore potential of the volcano-sedimentary complexes of Pryangarya, Yenisei Ridge // Doklady Akademii Nauk [Doklady Earth Sciences]. 2021b. V. 501. No. 2. pp. 149–155. In Russian

Popov N.V., Likhanov I.I., Nozhkin A.D. Mesoproterozoic granitoid magmatism in the Trans-Angara Segment of the Yenisei Range: U-Pb evidence // Doklady Akademii Nauk [Doklady Earth Sciences]. 2010. V. 431. No. 4. pp. 509–515. In Russian

Popov N.V., Likhanov I.I., Reverdatto V.V., Savko K.A. Proterozoic granitoid magmatism at the southwestern margin of the Siberian platform in the tectonic history of the Angara-Kan block // Doklady Akademii Nauk [Doklady Earth Sciences]. 2020. V. 490. No. 2. pp. 39–44. In Russian

Reverdatto V.V., Likhanov I.I., Polyansky O.P., Sheplev V.S., Kolobov V.Y. *Priroda i modeli metamorfizma* [The Nature and Models of Metamorphism]. Novosibirsk: Siberan Branch of RAS Publ., 2017. 331 p. In Russian

Rosen O.M., Abbyasov A.A, The quantitative mineral composition of sedimentary rocks: calculation from chemical analyses and assessment of adequacy (MINLITH computer program // Lithology and Mineral Resources. 2003. V. 34. pp. 299–312. In Russian

Saraev S. V. *Litologiya i petrokhimiya glinistykh porod rifeya Yeniseyskogo kryazha* [Lithology and petrochemistry of clayey rocks of the Riphean Yenisei Ridge] // *Glinistyye mineraly v osadochnykh porodakh Sibiri* [Clay minerals in sedimentary rocks of Siberia]. Novosibirsk: IGIG SO AN SSSR Publ., 1986. pp. 78–85. In Russian

Kheraskova T.N., Kaplan S.A., Galuev V.I. Structure of the Siberian Platform and its western margin in the Riphean–Early Paleozoic // *Geotektonika* [Geotectonics]. 2009. V. 43. No. 2. pp. 37–56. In Russian

Chernykh A.I. Geologicheskoye stroyeniye i petrologo-geokhimicheskiye osobennosti dokembriyskikh ofiolitovykh i paleoostrovoduzhnykh kompleksov Yeniseyskogo kryazha [Geological structure and petrological-geochemical features of the Precambrian ophiolite and paleo-island-arc complexes of the Yenisei Ridge]: avtoref. kand. geol.-mineral. nauk. Novosibirsk: OIGGM SO RAN. 2000. 20 p. In Russian

Yudovich Ya.E., Ketris M.P. Osnovy litokhimii [Basics of lithochemistry]. St. Petersburg: Nauka Publ., 2000. 479 p. In Russian

Yarmolyuk V.V., Kovalenko V.I., Kovach V.P., Rytsk E.Yu., Kozakov I.K., Kotov A.B., Sal'nikova E.B. Early stages of the Paleoasian ocean formation: results of geochronological, isotopic, and geochemical investigations of Late Riphean and Vendian–Cambrian complexes in the Central Asian Foldbelt // Doklady Akademii Nauk [Doklady Earth Sciences]. 2006. V. 410. No. 5. pp. 657–663. In Russian

Ague J.J. Evidence for major mass transfer and volume strain during regional metamorphism of pelites // Geology. 1991. V. 19. pp. 855-858.

Anderson J.L., Smith D.R. The effects of temperature and fO₂ on the Al-in-hornblende barometer // American Mineralogist. 1995. V. 80. pp. 549–559.

Bhadra S., Bhattacharya A. The barometer tremolite + tschermakite + 2 albite = 2 pargasite + 8 quartz: constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages // American Mineralogist. 2007. V. 92. pp. 491–502.

Blundy J.D., Holland T.J.B. Calcic amphibole equilibria and new amphibole-plagioclase geothermometer // Contributions to Mineralogy and Petrology. 1990. V. 104. pp. 208–224.

Bogdanova S.V., Bingen B., Gorbatschev R., Kheraskova T.N., Kozlov V.I., Puchkov V.N., Volozh Yu.A. The Eastern European Craton (Baltica) before and during the assembly of Rodinia // Precambrian Research. 2008. V. 160. pp. 23–45.

Boynton W.V. Cosmochemistry of the rare earth elements: meteorite studies. / Ed. Henderson P. Rare earth element geochemistry. Amsterdam: Elsevier. 1984. pp. 63–114.

Buick R., Des Marais D. J., Knoll A. H. Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia // Chemical Geology. 1995. V. 123. pp. 153–171.

Cawood P.A., Nemchin A.A., Strachan R.A., Kinny P.D., Loewy S. Laurentian provenance and an intracratonic tectonic setting for the upper Moine Supergroup. Scotland, constrained by detrital zircons from the Loch Eil and Glen Urquhart successions // Journal of Geological Society of London. 2004. V. 161. pp. 861–874.

Cawood P.A., Strachan R., Cutts K., Kinny P.D., Hand M., Pisarevsky S. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen. North Atlantic // Geology. 2010. V. 38. pp. 99–102.

Cawood P.A., Strachan R.A., Pisarevsky S.A., Gladkochub D.P., Murphy J.B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles // Earth and Planetary Science Letters. 2016. V. 449. pp. 118–126.

Condie K. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? // Lithos. 2005. V. 79. pp. 491–504.

Corsini M., Bosse V., Feraud G., Demoux F., Crevola G. Exhumation processes during post-collisional stage in the Variscan belt revealed by detailed ⁴⁰Ar/³⁹Ar study (Tanneron Massif. SE France) // International Journal of Earth Sciences. 2010. V. 99. pp. 327–341.

Cox R., Lowe D.R., Cullers R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in southwesterm United States // Geochimica et Cosmochimica. Acta. 1995. V. 59. pp. 2919–2940.

Dalziel I.W.D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis and environmental speculation // Geological Society of America Bulletin. 1997. V. 109. pp. 16–42.

Ernst R.E., Hamilton M.A., Soderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S., Bleeker W., LeCheminant A.N., Buchan K.L., Chamberlain K.R., Didenko A.M. Long-lived connection between southern Siberia and northern Lavrentia in the Proterozoic // Nature Geoscience. 2016. V. 9. pp. 464–469.

Ernst R.E., Wingate M.T.D., Buchan K.L., Li Z.H. Global record of 1600–700 Ma Large Igneous Provinces (LIPs): implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents // Precambrian Research. 2008. V. 160. pp. 159–178.

Fedo C.M., Nesbitt H.W., Young G.M. Unraveling of the effects of potassium metasomatism in sedimentary rocks and paleosoils, with implications for paleoweathering conditions and provenance // Geology. 1995. V. 23. pp. 921–924.

Ferry J.M., Spear F.S. Experimental calibration of the partitioning of Fe and Mg between biotite and garnet // Contributions to Mineralogy and Petrology. 1978. V. 66. pp. 113–117.

Fitton J.G., Saunders A.D., Norry M.J., Hardarson B.S., Taylor R.N. Thermal and chemical structure of the Iceland plume // Earth and Planetary Science Letters. 1997. V. 153. pp. 197–208.

Ghent E.D., Stout M.Z. Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages // Contributions to Mineralogy and Petrology. 1981. V. 76. pp. 92–97.

Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabzov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A. Proterozoic mafic magmatism in Siberian craton: An overview and implications for paleocontinental reconstruction // Precambrian Research. 2010. V. 183 pp. 660–668.

Hammarstrom J.M., Zen E.-A. Aluminum in hornblende: an empirical igneous geobarometers // American Mineralogist. 1986. V. 71. pp. 1297–1313.

Harnois L. The CIW index: a new chemical index of weathering // Sedimentary Geology. 1988. V. 55. pp. 319–322.

Hodges K.V. Geochronology and Thermochronology in Orogenic System. In Treatise on Geochemistry (Eds. Holland H.D., Turekian K.K). Oxford, UK: Elsevier, 2004. pp. 263–292.

Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // American Mineralogist. 2000. V. 85. pp. 881–892.

Hollister L.S., Grissom G.C., Peters E.K., Stowell H.H., Sisson V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons // American Mineralogist. 1987. V. 72. pp. 231–239.

Hooper P.R. The Columbia River basalts // Science. 1982. V. 215. pp. 1463–1468.

Hoschek G. The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks // Contributions to Mineralogy and Petrology. 1969. V. 22. pp. 208–232.

Johansson Å. From Rodinia to Gondwana with the 'SAMBA' model—A distant view from Baltica towards Amazonia and beyond // Precambrian Research. 2014. V. 244. pp. 226–235.

Kohn M.J., Spear F.S. Error propagation for barometers // American Mineralogist. 1991. V. 76. pp. 138-147.

Li Z.-H., Bogdanova S.V.,. Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. Assembly, configuration, and break-up history of Rodinia: a synthesis // Precambrian Research. 2008. V. 160. pp. 179–210.

Likhanov I.I. Chloritoid, staurolite and gedrite of the high-alumina hornfelses of the Karatash pluton // International Geology Review. 1988a. V. 30(8). pp. 868–877.

Likhanov I.I. Evolution of chemical composition of metapelite minerals during low-temperature contact metamorphism at the Karatash pluton // International Geology Review. 1988b. V. 30(8). pp. 878–887.

Likhanov I.I. Mass-transfer and differential element mobility in metapelites during multistage metamorphism of Yenisei Ridge. Siberia / Eds. Ferrero S., Lanari P., Gonsalves P. and Grosch E. G. Metamorphic Geology: Microscale to Mountain Belts // Geological Society of London Special Publications. 2019. V. 478. pp. 89–115.

Likhanov I.I. Provenance, age and tectonic settings of rock complexes (Transangarian Yenisey Ridge. East Siberia): Geochemical and geochronological evidence // Geosciences. 2022. V. 12(11). pp. 402.

Likhanov I.I., Reverdatto V.V. Provenance of Precambrian Fe- and Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau. Siberia: geochemical signatures // Acta Geologica Sinica - English Edition. 2007. V. 81(3). pp. 409–423.

Likhanov I.I., Reverdatto V.V. Precambrian Fe- and Al-rich pelites from the Yenisey Ridge. Siberia: geochemical signatures for protolith origin and evolution during metamorphism // International Geology Review. 2008. V. 50(7). pp. 597–623.

Likhanov I.I., Reverdatto V.V. Neoproterozoic collisional metamorphism in overthrust terranes of the Trans-Angarian Yenisey Ridge. Siberia // International Geology Review. 2011a. V. 53(7). pp. 802–845.

Likhanov I.I., Reverdatto V.V. Precambrian P-T-t history of the Yenisey Ridge as a consequence of contrasting tectonic settings in the western margin of the Siberian craton // Mineralogical Magazine. 2011b. V. 75(3). pp. 1327.

Likhanov I.I., Santosh M. Neoproterozoic intraplate magmatism along the western margin of the Siberian Craton: implications for breakup of the Rodinia supercontinent // Precambrian Research. 2017. V. 300. pp. 315–331.

Likhanov I.I., Santosh M. A-type granites in the western margin of the Siberian Craton: implications for breakup of the Precambrian supercontinents Columbia/Nuna and Rodinia // Precambrian Research. 2019. V. 328. pp. 128–145.

Likhanov I.I., Santosh M. The "triple point" paradigm of aluminosilicates revisited // Geological Journal. 2020. V. 55(6). pp. 4772–4789.

Likhanov I.I., Reverdatto V.V., Memmi I. Short-range mobilization of elements in the biotite zone of contact aureole of the Kharlovo gabbro massif (Russia) // European Journal of Mineralogy. 1994. V. 6(1). pp. 133–144.

Likhanov I.I., Reverdatto V.V., Sheplev V.S., Verschinin A.E., Kozlov P.S. Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian Region of the Yenisey Ridge, eastern Siberia. Russia // Lithos. 2001. V. 58(1–2). pp. 55–80.

Likhanov I.I., Polyansky O.P., Reverdatto V.V., Memmi I. Evidence from Fe- and Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, eastern Siberia // Journal of Metamorphic Geology. 2004. V. 22(8). pp. 743–762.

Likhanov I.I., Reverdatto V.V., Kozlov P.S., Khiller V.V., Sukhorukov V.P. P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge. East Siberia: implications for Neoproterozoic paleocontinental reconstructions // Journal of Asian Earth Sciences. 2015. V. 113(1). pp. 391–410.

Likhanov I.I., Régnier J.-L., Santosh M. Blueschist facies fault tectonites from the western margin of the Siberian Craton: Implications for subduction and exhumation associated with early stages of the Paleo-Asian Ocean // Lithos. 2018. V. 304. pp. 468–488.

McCulloch M.T., Gamble J.A. Geochemical and geodynamial constrints on subduction zone magmatism // Earth and Planetary Science Letters. 1991. V. 102. pp. 358–374.

McLennan. S.M. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Lipin B.R., McKay G.A. (Eds.). Geochemistry and Mineralogy of Rare Earth Elements. Washington D.C.: Mineralogical Society of America. 1989. pp. 169–200

Meschide M.A. A method of discriminating between different types of mid ocean rigde basalts and continental tholeites with Nb-Zr-Y diagram // Chemical Geology. 1986. V. 56. pp. 207–218.

Mullen E.D. MnO/TiO₂/P₂O₅: a minor element discriminant for basaltic rocks of oceanic environments and its implication for petrogenesis // Earth and Planetary Science Letters. 1983. V. 62. pp. 53–62.

Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lulites // Nature. 1982. V. 299. pp. 715–717.

Pisarevsky S. Pre-Rodinian supercontinents: how "super" were they? In Rodinia 2013: Supercontinental Cycles and Geodynamics Symposium (Eds. Veselovskiy R., Lubnina N.). Moscow: PERO Press. 2013. p. 58.

Reverdatto V.V., Likhanov I.I., Polyansky O.P., Sheplev V.S., Kolobov V.Yu. The Nature and Models of Metamorphism. Chum: Springer. 2019. 330 p.

Rino S., Kon Y., Sato W., Maruyama S., Santosh M., Zhao D. The Grenvillian and Pan-African orogens: world's largest orogenies through geological time, and their implications on the origin of superplume // Gondwana Research. 2008. V. 14. pp. 51–72.

Rivers T. Assembly and preservation of lower, mid, and upper orogenic crust in the Grenville Province – Implications for the evolution of large hot long-duration orogens // Precambrian Research. 2008. V. 167. pp. 237–259.

Santosh M., Maruyama S., Yamamoto S. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere // Gondwana Research. 2009. V. 15. pp. 324–341.

Schmidt M.W. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer // Contributions to Mineralogy and Petrology. 1992. V. 110. pp. 304–310.

Stewart K., Rogers N. Mantle plume and lithosphere contributions to basalts from southern Ethiopia // Earth and Planetary Science Letters. 1996. V. 139. pp. 195–211.

Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Geological Society of London Special Publications. 1989. V. 42. pp. 313–345.

Symmes G.H., Ferry J.M. The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism // Journal of Metamorphic Geology 1992. V. 10. pp. 221–237.

Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 1985. 312 p.

Taylor S.R., McLennan S.M. The geochemical evolution of the continental crust. Review of Geophysics 1995. V. 33. pp. 241–265.

Thompson J.B. Jr. The graphical analysis of mineral assemblages in pelitic schists // American Mineralogist. 1957. V. 42. pp. 842–858.

Torsvik T.H. The Rodinia Jigsaw Puzzle // Science. 2003. V. 300. pp. 1379–1381.

Whitney D.L., Evans B.W. Abbreviations for names of rock-forming minerals // American Mineralogist. 2010. V. 95. pp. 185–18. Wolfram S. The Mathematica Book. 5th edn. Champaign IL: Wolfram Media Inc. 2003. 544 p.

Wood D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province // Earth and Planetary Science Letters. 1980. V. 50. pp. 11–30.

Wu C.M., Zhang J., Ren L.D. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium— to high–grade metapelites // Journal of Petrology. 2004. V. 45. pp. 1907–1921.

Wu C.M., Zhao G.C. Recalibration of the garnet – muscovite (GM) geothermometer and the garnet – muscovite – plagioclase – quartz (GMPQ) geobarometer for metapelitic assemblages // Journal of Petrology. 2006. V. 47. pp. 2357–2368.

Wu C.M., Zhao G.C. The metapelitic garnet – biotite – muscovite – aluminosilicate – quartz (GBMAQ) geobarometer // Lithos. 2007. V. 97. pp. 365–372.

Информация об авторах:

Лиханов И.И., доктор геолого-минералогических наук, ведущий научный сотрудник, лаборатория метаморфизма и магматизма, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: likh@igm.nsc.ru

Ревердатто В.В., академик РАН, доктор геолого-минералогических наук, главный научный сотрудник, лаборатория метаморфизма и метасоматоза, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: rever@igm.nsc.ru

Ножкин А.Д., доктор геолого-минералогических наук, ведущий научный сотрудник, лаборатория геодинамики и метасоматоза, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск. Россия.

E-mail: rever@igm.nsc.ru

Козлов П.С., доктор геолого-минералогических наук, старший научный сотрудник, лаборатория региональной геологии и тектоники, Институт геологии и геохимии им. А.Н. Заварицкого УрО РАН, Екатеринбург, Россия.

E-mail: kozlov@igg.uran.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации.

Авторы заявляют об отсутствии конфликта интересов.

Information about authors:

Likhanov I.I., Dr. Sci. (Geol.-Miner.), Principal Research Fellow, Laboratory of metamorphism and metasomatism, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: likh@igm.nsc.ru

Reverdatto V.V., Academician RAS, Dr. Sci. (Geol.-Miner.), Principal Research Fellow, Laboratory of metamorphism and metasomatism, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: rever@igm.nsc.ru

Nozhkin A.D., Dr. Sci. (Geol.-Miner.), Principal Research Fellow, Laboratory of geodynamics and magmatism, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: nozhkin@igm.nsc.ru

Kozlov P.S., Dr. Sci. (Geol.-Miner.), Senior Research Fellow, Laboratory of regional geology and tectonics, A.N. Zavaritsky Institute of Geology and Geochemistry UB RAS, Ekaterinburg, Russia.

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 01.07.2023; одобрена после рецензирования 10.11.2023; принята к публикации 03.06.2024

The article was submitted 01.07.2023; approved after reviewing 10.11.2023; accepted for publication 03.06.2024

ПЕТРОЛОГИЯ

Научная статья УДК 552.48;551.25 doi: 10.17223/25421379/31/2

АМФИБОЛИТЫ ХАРБЕЙСКОГО МЕТАМОРФИЧЕСКОГО КОМПЛЕКСА (ПОЛЯРНЫЙ УРАЛ): ГЕОХИМИЧЕСКИЕ И ГЕОХРОНОЛОГИЧЕСКИЕ ДАННЫЕ

Наталия Сергеевна Уляшева¹, Александр Сергеевич Шуйский², Валентин Борисович Хубанов³

Аннотация. Обобщены данные по геохимическому составу амфиболитов, выделяемых в составе ханмейхойской свиты харбейского метаморфического комплекса (Харбейский блок, Полярный Урал), и представлены результаты U-PB (LA-ICP-MS) датирования циркона из метабазита. Судя по возрастам циркона магматического генезиса (656–583 млн лет) и индикаторным геохимическим меткам пород, предложено рассматривать формирование протолита амфиболитов в тыловой части активной континентальной окраины, реконструируемой в Полярноуральском секторе в конце неопротерозоя. Наличие в метабазитах ксеногенного циркона с древними возрастами (2462–1023 млн лет) связано, повидимому, с процессами коровой контаминации.

Ключевые слова: циркон, неопротерозой, U-PB (LA-ICP-MS) метод датирования, ханмейхойская свита, амфиболит

Благодарности: авторы выражают благодарность К.В. Куликовой за консультацию.

Источник финансирования: работа выполнена в рамках темы государственного задания ИГ ФИЦ Коми НЦ УрО РАН «Глубинное строение, геодинамическая эволюция, взаимодействие геосфер, магматизм, метаморфизм и изотопная геохронология Тимано-Североуральского литосферного сегмента», номер государственного учета ЕГИСУ НИОКТР 122040600012-2.

Для ципирования: Уляшева Н.С., Шуйский А.С., Хубанов В.Б. Амфиболиты харбейского метаморфического комплекса (Полярный Урал): геохимические и геохронологические данные // Геосферные исследования. 2024. № 2. С. 37–52. doi: 10.17223/25421379/31/2

Original article

doi: 10.17223/25421379/31/2

AMPHIBOLITES OF THE KHARBEY METAMORPHIC COMPLEX (POLAR URALS): GEOCHEMICAL AND GEOCHRONOLOGICAL DATA

Natalia S. Ulyasheva¹, Alexander S. Shuyskiy², Valentin B. Khubanov³

Abstract. Data on the geochemical composition of amphibolites isolated from the Khanmeikhoy Formation of the Kharbey Block of the Kharbey Metamorphic Complex (Polar Urals) are summarized and the results of U-PB (LA-ICP-MS) dating of zircon from metabasite are presented. As a result of the geochemical and isotope-geochronological studies of amphibolites, it was established that they are represented by moderately titanitic barroisites; low-titanium high-magnesian and high-alumina, as well as moderate- and high-titanium chermakite metabasite, differing in the content of rare and rare earth elements, but having a genetic relationship. Moderate-titanium barroisite amphibolites are similar in tracer and rare-earth element contents to oceanic N- and E-

^{1, 2} Институт геологии ФИЦ Коми НЦ УРО РАН, Сыктывкар, Россия

³ Геологический институт СО РАН, Улан-Удэ, Россия

¹ nataliaulyashewa@yandex.ru

² self88@yandex.ru

³ khubanov@mail.ru

^{1, 2} Institute of Geology, ERC Komi SC, UB RAS, Syktyvkar, Russia

³ Geological Institute of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia

¹ nataliaulyashewa@yandex.ru

² self88@yandex.ru

³ khubanov@mail.ru

MORB basalts. They do not show signs of cow contamination. Melts of protoliths of low-Ti chermakite amphibolites were formed, most likely, from the depleted mantle. The rock composition is similar to that of tholeiitic island-arc basalts. Moderate- and high-Ti chermakite amphibolites are similar to volcanic rocks, the melts of which, apparently, were generated from a more enriched source. They, as well as low-titanium amphibolite chermakites, show signs of crustal contamination. U-Pb analysis of zircon from moderate-Titanium chermakite amphibolite of the central part of the Kharbey metamorphic complex showed that the predominant population of the mineral has a magmatic genesis, and the age of 656–583 Ma most likely corresponds to the time of formation of the amphibolite protolith. One of the probable geodynamic settings for the formation of the metamorphic protolith can be assumed to be the rear zone of the active continental margin, reconstructed at the end of the Neoproterozoic in the Polar Urals segment of the Earth's crust, where, possibly, the processes of extension of the thin continental crust and the formation of a back-arc basin with a crust close to oceanic took place. It has been established that zircon grains with Paleoproterozoic and Mesoproterozoic ages (2462–1023 Ma) are xenogenic, captured during crustal contamination. This could have happened both at the level of magma generation from the subduction-modified mantle, and, possibly, during the advancement of the melt through the crust.

Keywords: amphibolites, zircon, Neoproterozoic, U-PB (LA-ICP-MS) age

Acknowledgments: The authors are grateful to K.V. Kulikova for advice.

Source of funding: The work was carried out within the framework of the state task of the Institute of Research and Development of the Federal Research Center of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences "Deep structure, geodynamic evolution, interaction of geospheres, magmatism, metamorphism and isotopic geochronology of the Timan-Severoural lithospheric segment" state registration number of the EGISU NIOKTR 122040600012-2.

For citation: Ulyasheva N.S., Shuyskiy A.S., Khubanov V.B. (2024) Amphibolites of the Kharbey metamorphic complex (Polar Urals): geochemical and geochronological data. *Geosfernye issledovaniya – Geosphere Research*. 2. pp. 37–52. (In Russian). doi: 10.17223/25421379/31/2

Введение

В основании стратиграфического разреза Полярного Урала залегают породы, выделяемые в составе крупнейшего на севере Урала харбейского метаморфического комплекса, расположенного в восточной части Центрально-Уральской тектонической зоны выступа докембрийского фундамента. Породы комплекса обнажаются в пределах двух блоков (рис. 1) – Марункеуского (северного) и Харбейского (южного). Стратифицированные образования представлены (снизу вверх): марункеуской (эклогиты, амфиболиты, гнейсы), ханмейхойской (амфиболиты, гнейсы), лаптаюганской (амфиболиты, гнейсы, кварциты, мрамора) и париквасьшорской (кристаллические сланцы, плагиогнейсы) свитами. Возраст пород, согласно IV Уральскому межведомственному стратиграфическому совещанию [Стратиграфические..., 1993], принимается палеопротерозойским преимущественно благодаря датировкам циркона из двуслюдяных гнейсов Харбейского блока 2,2-1,73 млрд лет [Краснобаев, 1986; Пыстина, Пыстин, 2002], полученным методом термоионной эмиссии (206Pb/207Pb возраст). Древний возраст 2,2 млрд лет установлен по циркону гранулитового типа и фиксирует, по мнению авторов [Пыстина, Пыстин, 2002], время высокотемпературного метаморфизма, а интервалы 1,96–1,64; 1,18–0,9 и 0,67-0,55 млрд лет выявлены по цирконам мигматитового типа и соответствуют полиметаморфическим изменениям амфиболитовой фации. Породы Марункеуского блока, среди которых развиты высокобарические образования, некоторыми исследователями предложено рассматривать в качестве самостоятельного марункеуского метаморфического комплекса [Ленных, 1984; Удовкина, 1985; Пыстин, 1994]. Несмотря на то, что стратифицированные образования Марункеуского комплекса на госгеолкартах [Душин и др., 2007] относятся к палеопротерозойским отложениям, имеются надежные геохронологические данные о мезо- и неопротерозойском возрасте протолитов пород и палеозойском времени высокобарического метаморфизма [Glodny et al., 2003, 2004; Meng et al., 2020].

Новые данные по геохронологии пород Харбейского блока появились лишь в последнее десятилетие. В результате U-Pb анализа зерен циркона (SHRIMP II) из гранитизированных гранатсодержащих амфиболитов и плагиогнейсов ханмейхойской свиты западной части харбейского метаморфического комплекса минералы с палеопротерозойскими цифрами не выявлены, а полученные значения разделились на три кластера: 577-678; 502-556 и 412-425 млн лет соответственно [Коновалов и др., 2016]. Первый кластер, по мнению исследователей, соответствует возрасту протолита метаморфитов, а второй и третий – двум метаморфическим событиям. Sm/Nd- и ⁴⁰Ar/³⁹Ar-изотопно-геохронологические исследования амфиболитов ханмейхойской свиты показали, что современный метаморфический облик породы приобрели во время герцинского тектогенеза (367±40, 392±23, 346±5 млн лет) в результате метаморфизма, достигающего условий амфиболитовой и эпидот-амфиболитовой фаций повышенных и умеренных давлений (Т 575-680 °C, Р 6–13 кбар) [Уляшева и др., 2022].

Для уточнения возраста и конкретной геодинамической обстановки формирования протолита амфиболитов, выделяемых в составе ханмейхойской свиты харбейского метаморфического комплекса (Харбейский блок), проведены петрографические, петрогеохимические и изотопно-геохронологические исследования этих пород.

Методы исследования

Петрографический состав амфиболитов исследован под поляризационным микроскопом БиОптик СР–400.

Морфологические особенности циркона изучены с помощью бинокуляра и сканирующего электронного микроскопа TESCAN VEGA3 LMH с энергодисперсионной приставкой X-MAX 50 mm Oxford instruments при ускоряющем напряжении 20 кВ, диаметре зонда 180 нм и области возбуждения до 5 мкм и сканирующего электронного микроскопа JSM—6400

с энергетическим спектрометром Link, с ускоряющим напряжением и током на образцах $-20~\mathrm{kB}$ и $2\times10^{-9}~\mathrm{A}$ соответственно и сертифицированными стандартами фирмы Microspec.

Катодолюминесцентные изображения циркона получены на сканирующем электронном микроскопе ThermoFischer Scientific Axia ChemiSEM с выдвижным детектором катодолюминесценции RGB (цветная) с диапазоном обнаружения длин волн 350–850 нм. Исследования проводились в ЦКП «Геонаука» ИГ ФИЦ Коми НЦ УрО РАН (г. Сыктывкар).

U-Pb изотопный анализ 34 зерен циркона из амфиболитов выполнен на масс-спектрометре высокого разрешения Element XR (Thermo Fisher Scientific), соединенном с приставкой лазерного проботбора UP-213 (New Wave Research), в лаборатории инструментальных методов анализа Геологического института Сибирского отделения РАН (г. Улан-Удэ).

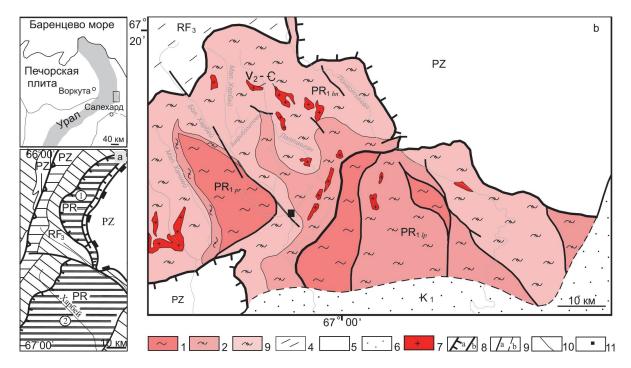
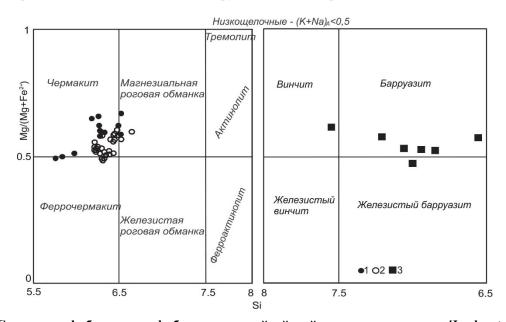


Рис. 1. Расположение Марункеуского и Харбейского блоков (а) и схематическая геологическая карта Харбейского блока (b), с использованием материалов [Зылёва и др., 2014]

Условные обозначения: А (цифры в кругах): 1 — Марункеуский блок, 2 — Харбейский блок. В: 1—3 — харбейский метаморфический комплекс: 1 — париквасышорская свита, 2 — лаптаюганская свита, 3 — ханмейхойская свита; 4 — верхнепротерозойские отложения западной тектонической зоны, 5 — палеозойские породы Тагило-Магнитогорской зоны; 6 — мезозойские отложения Западно-Сибирской платформы; 7 — гранито-гнейсы; 8, 9 — разрывные нарушения: 8 — главные (a — ГУР, 6 — шарьяж), 9 — второстепенные (a — надвиги, b — неустановленной морфологии); 10 — граница между свитами; 11 — точка отбора пробы для датирования

Fig. 1. Location of the Marunkeu and Kharbey blocks (a) and a schematic geological map of the Kharbey block (b), using materials from [Зылева и др., 2014])

Symbols: A (numbers in circles): 1 – Marunkeu block, 2 – Kharbey block. B: 1–3 – Kharbey metamorphic complex: 1– Parikvashor Formation, 2– Laptayugan Formation, 3– Khanmeykhoy Formation; 4 – Upper Proterozoic deposits of the western tectonic zone, 5 – Paleozoic rocks of the Tagil-Magnitogorsk zone; 6 – Mesozoic deposits of the West Siberian platform; 7 – granite-gneisses; 8, 9 – discontinuous faults: 8 – main (a – GUR, b – sharyazh), 9 – secondary (a – overthrusts, b – undetermined morphology); 10 – boundary between suites; 11 – sampling point for dating


Обработка данных анализа выполнена в программах Glitter [Griffin et al., 2008] и Microsoft Excel с надстройкой Isoplot [Ludwig et al., 2008]. Диаметр пучка лазера составляет 25 мкм. При этом в качестве внешнего стандарта использовались цирконы 91500 [Wiedenbeck et al., 1995], GJ [Jackson et al., 2004] и Plešovice [Slama et al., 2008], по которым получены конкордантные возрасты 1063±8; 601±5 и 339±3 млн лет соответственно. Подробное описание метода приведено в работе [Буянтуев и др., 2017].

Названия амфиболов даны согласно методу, рекомендованному IMA [Leake et al., 1997] для кальциевых амфиболов, известному как 13eCNK.

Петрографические и петрогеохимические особенности амфиболитов

Изучение амфиболитов ханмейхойской свиты показало, что в крайне западной части (бассейн руч. Скалистый) комплекса распространены гранат-барруазитовые амфиболиты, в центральной части (среднее и нижнее течение рек Б. Харбей, М. Харбей и их притоков) гранатсодержащие и безгранатовые чермакитовые амфиболиты (рис. 2). По объему выходов последние существенно преобладают.

Чермакитовые амфиболиты мощностью в среднем 1–10 м перемежаются с плагиогнейсами и гнейсами и представлены сланцеватыми, слабосланцеватыми и массивными разновидностями с лепидонематогранобластовой, порфиробластовой, пойкилитовой структурами. Породы состоят в основном из амфибола – чермакита и плагиоклаза (олигоклаз, редко андезин). В переменном количестве в породах содержатся (в об. %) клиноцоизит (0–2), гранат (0–5), биотит (0–10), кварц (1–5), мусковит (0–3). Акцесорные минералы представлены титанитом, рутилом, цирконом, апатитом, рудные – ильменитом, титаномагнетитом и пиритом.

Рис. 2. Составы амфиболов из амфиболитов ханмейхойской свиты на диаграмме [Leake et al., 1997] 1, 2 — центральной части комплекса (среднее и нижнее течение рек Б. Харбей, М. Харбей и их притоков: 1 — гранатсодержащих, 2 — безгранатовых); 3 — западной части комплекса (бассейн руч. Скалистый)

Fig. 2. Compositions of amphiboles from amphibolites of the Khanmeikhoy Formation on the diagram [Leake et al., 1997]

1, 2 – central part of the complex (middle and lower reaches of the B. Kharbey, M. Kharbey rivers and their tributaries, 1 – garnet-containing, 2 – garnet-free); 3 – western part of the complex (Skalisty Creek basin)

Гранат-барруазитовые амфиболиты (далее — барруазитовые амфиболиты) образуют толщи мощностью до 30 м, имеют слабо сланцеватую и сланцеватую текстуры, порфиробластовую и гранонематобластовую структуры и состоят из (в об. %) амфибола — барруазита (редко актинолита, магнезиальной роговой обманки) (50–70), альбита (15–20), клиноцоизита (до 10), кварца (до 1), граната (1–3), хлорита (1–5) и мусковита (0–3).

Акцессорные минералы представлены кальцитом, цирконом, флюоритом, апатитом и титанитом, рудные — ильменитом, титаномагнетитом и пиритом.

Местами породы гранитизированы и мигматизированы: вдоль и поперек сланцеватости в амфиболитах развиваются прожилки кварц-полевошпатового состава.

Согласно дискриминантной функции [Великославинский и др., 2013], амфиболиты реставрируются как ортопороды. На TAS диаграмме их точки составов располагаются в основном в областях базальтов и андезибазальтов нормальной щелочности (рис. 3, *a*).

Среди чермакитовых амфиболитов выделяются низкотитанистые ($TiO_2\ 0.19-1\ \text{мас.}\ \%$), умеренно- и высокотитанистые образования ($TiO_2\ 1.1-2.6\ \text{мас.}\ \%$).

Умеренно- и высокотитанистые образования образуют в основном низко-глиноземистую (Al 0,31–0,72) высок-железистую (Mg# 0,37–0,7) натриевую и калиево-натриевую толеитовую серию (рис. 3, b). С уменьшением в породах MgO в породах уменьшается CaO и накапливаются TiO₂ и SiO₂ (рис. 4). Породы имеют умеренные и повышенные содержания LILE (Ва 29–687 ррт, Rb 1,3–37 ррт, K₂O 0,22–0,99%) и LREE (La 10–17 ррт, Σ LREE 56–91 ррт). Они образуют слабо дифференцированные спектры ((La/Yb)_n – 2,3–3,8) содержания редкоземельных элементов без европиевой аномалии (Eu/Eu* 0,89–1,08). На спайдер-диаграмме наблюдаются отрицательные аномалии Nb, Sr, Zr, Hf и Y (рис. 5, a, b).

Среди низкотитанистых амфиболитов можно отметить высокомагнезиальную (Mg# 0,72–0,8) низкои умеренноглиноземистую (Al² 0,28–0,75) серии пород и умеренномагнезиальные (Mg# 0,38–0,7) образования с повышенной глиноземистостью (Al² 0,53–

2,06). Высокоглиноземистая серия образует известково-щелочной тренд дифференциации вещества (рис. 3, b).

Низкотитанистые амфиболиты имеют содержания LILE (Ва 14–173 ррт, Rb 0,6–3,8 ррт, K_2O 0,12–0,33 %) и LREE (La 2,8–4,4 – ррт, Σ LREE 24–33 ррт) ниже, чем в предыдущем типе амфиболитов. Породы имеют пологий недифференцированный спектр распределения REE в 10–20 раз выше хондритовых ((La/Yb)_n 0,61–1,32, Eu/Eu* 0,97–1,06). На спайдердиаграммах наблюдаются минимумами Th, Ta, Nb, Hf и Zr. Содержания этих элементов ниже, чем в базальте N-MORB (рис. 5, a, b).

Барруазитовые амфиболиты относятся к умереннотитанистым (TiO_2 1,31–1,51 мас. %), низко-глиноземистым (Al^2 0,37–0,42), высокожелезистым (Mg# 0,49–0,51), натриевым метабазитам толеитовой серии (рис. 2, b).

Они имеют низкие концентрации LILE (Ва 5—13 ppm, Rb 0,6—1,2 ppm, K_2O 0,10—0,22 %) и LREE (La 2—2,8 ppm, Σ LREE 19—26 ppm). Породы образуют характерный для базальтов N-MORB тренд (рис. 5, a) содержаний редкоземельных элементов с обеднением LREE ((La/Yb)_n 0,37—0,53).

На спайдер-диаграмме наблюдается пологий недифференцированный спектр распределения элементов с глубокими минимумами Zr и Hf (рис. 5, b).

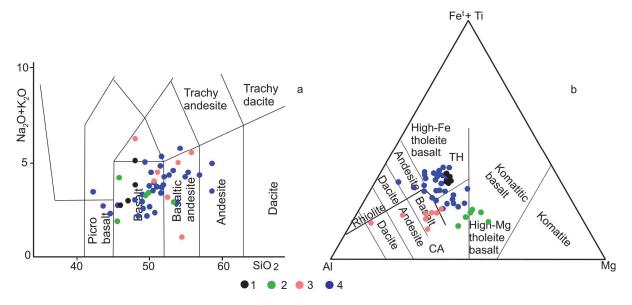


Рис. 3. Расположение точек составов амфиболитов харбейского метаморфического комплекса на диаграммах TAS [Middlemost, 1994] и Al-Fe^t+Ti-Mg [Jensen, 1976]

Точки составов амфиболитов: 1 — умеренно-титанистых барруазитовых; 2 — низкотитанистых высокомагнезиальных чермакитовых; 3 — низкотитанистых высокоглиноземистых чермакитовых; 4 — умеренно- и высокотитанистых чермакитовых

Fig. 3. Location of composition points for amphibolites of the Kharbey metamorphic complex on the TAS [Middlemost, 1994] and Al-Fe^t+Ti-Mg [Jensen, 1976] diagrams

Compositional points of amphibolites: 1 – moderately titanium barroisite; 2 – low-titanium high-magnesian chermakite; 3 – low-titanium high-alumina chermakite; 4 – moderately and high-titanium chermakites

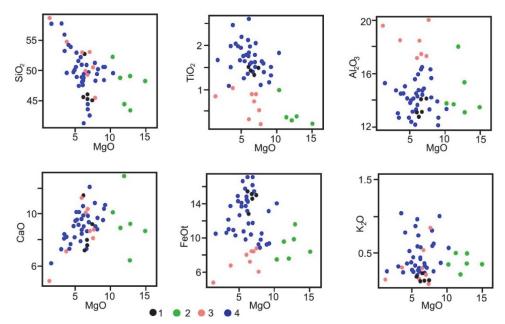


Рис. 4. Вариационные диаграммы MgO-породообразующие оксиды для амфиболитов харбейского метаморфического комплекса

Точки составов см. на рис. 3

Fig. 4. Variation diagrams of MgO-rock-forming oxides for amphibolites of the Kharbey metamorphic complex See the composition points in fig. 3

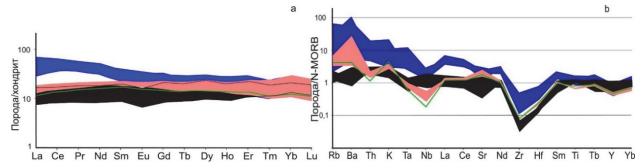


Рис. 5. Содержания REE и редких элементов в амфиболитах харбейского метаморфического комплекса, нормированные на состав хондрита и базальта N-MORB [Sun, McDonough, 1989] Цвета спектров соответствуют цветам точек составов пород на рис. 3

Fig. 5. Contents of REE and rare elements in amphibolites of the Kharbey metamorphic complex, normalized to the composition of chondrite and basalt N-MORB [Sun, McDonough, 1989]

The colors of the spectra correspond to the colors of the rock composition points in figs. 3

Морфологические особенности циркона из амфиболитов и результаты U-Pb датирования

Для установления возраста метабазитов изучены и отобраны зерна циркона из умереннотитанистых чермакитовых амфиболитов центральной части харбейского метаморфического комплекса (см. рис. 1). Амфиболит имеет массивную текстуру и не мигматизирован.

Минералы отличаются по морфологическим особенностям и внутреннему строению. Встречаются сильно резорбированные розовые и светло-коричневые (3–4 %), слабо резорбированные бледно-розовые и розовые (5–6 %) зерна и бледноокрашенные

почти бесцветные и желтоватые минералы с гладкой поверхностью (90 %). По морфологическим особенностям зерен и полученным возрастам выделены четыре типа циркона.

К I типу отнесены сильно резорбированные зерна циркона размером около 0,1 мм, имеющие сглаженные ребра, изометричную, эллипсоидальную формы и шероховатую ямчатую поверхность (рис. 6, a).

На катодолюминесцентных изображениях минералов, судя по прерыванию зональности, видно, что это обломки зерен циркона, которые претерпели последующее округление. Продатированные 4 зерна этого типа циркона показали древние возрасты — палеопротерозойские и мезопротерозойские (таблица).

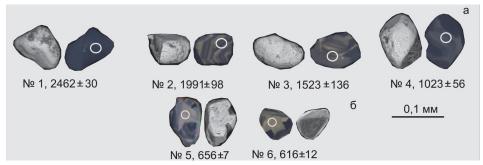


Рис. 6. Морфология, CL изображения с точками анализа, ²⁰⁷Pb/²⁰⁶Pb возраст (в млн лет) зерен циркона I типа (а) и ²⁰⁶Pb/²³⁸U возраст (в млн лет) зерен циркона II типа (b) из амфиболитов харбейского метаморфического комплекса

Цифры возле изображений соответствуют номерам по порядку в таблице

Fig. 6. Morphology, CL images with dating points, ²⁰⁷Pb/²⁰⁶Pb age (in Ma) of type I zircon grains (a) and ²⁰⁶Pb/²³⁸U age (in Ma) of type II zircon grains (b) from amphibolites of the Kharbey metamorphic complex The numbers next to the images correspond to the numbers in order in the table

Результаты U-Pb (LA-ICP-MS) изотопных исследований зерен циркона из амфиболита ханмейхойской свиты харбейского метаморфического комплекса

Results of U-Pb (LA-ICP-MS) isotopic studies of zircon grains from amphibolite of the Khanmeykhoy Formation of the Kharbey Metamorphic Complex

No	Тът дът Изотопные отношения±1σ, % Вът Возраст, млн лет±1σ									
п/п	Th/U	207 р b/235Ц	206 Pb /238U	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	206ph/238[]	207Pb/235U	²⁰⁷ PbCorr	D_1	D_2
11/11	0,56	9,9625±0,1708	0,4499±0,0044	0,2	2462±30	2395±20	2431±16	2377±26	2	3
2	0,36	$5,9496\pm0,3429$	0,4499±0,0044 0,353±0,0057	0,2	1991±98	2393±20 1949±27	1969±50	1942±35	1	2
3	0,40	$3,9490\pm0,3429$ $3,4464\pm0,2624$	0.264 ± 0.0052	0,2	1523±136	1949±27 1510±26	1909±30 1515±60	1942±33 1509±31	0	1
4	0,41	$3,4404\pm0,2024$ $1,7749\pm0.0497$	0.1757 ± 0.0019	0,2	1023±136 1023±56	1310±20 1043±11	1036±18	1309±31 1044±11	_1	-2
5	0,53	$0,9462\pm0,0334$	0.107 ± 0.0019 0.107 ± 0.0012	0,2	746±74	656±7	676±17	654±7	3	-2 14
6			$0,107\pm0,0012$ $0,1003\pm0,002$	0,1	688±157	616±12	631±37	615±12	2	12
7	0,48 0,94	0,8622±0,0673 0,7326±0,0724	0.091 ± 0.0022		544±204	562±13	558±42	562±14	_	-3
8	-)-	-)	$0,091\pm0,0022$ $0,0915\pm0,0021$	0,1			573±42	564±13	$-1 \\ 2$	-3 8
9	0,71	0,7588±0,0725		0,1	608±195	565±13			_	
-	1,02	$0,7931\pm0,0697$	0,0933±0,002	0,1	663±178	575±12	593±39	573±13	3	15
10	0,66	0,7616±0,0474	0,093±0,0016	0,2	583±128	574±9	575±27	573±10	~	2 9
11	0,65	$0,7876\pm0,0197$	0,0941±0,001	0,2	630±54	580±6	590±11	579±6	2	-
12	0,95	0,7708±0,0164	0,094±0,0009	0,2	586±47	579±6	580±9	579±6	0	1
13	0,76	0.7868 ± 0.0733	0,0942±0,0021	0,1	625±189	580±13	589±42	579±13	2	8
14	0,76	0.7821 ± 0.0159	0,0942±0,0009	0,2	613±45	580±5	587±9	579±6	1	6
15	0,72	$0,7695\pm0,0189$	0,0943±0,001	0,2	575±53	581±6	580±11	581±6	0	-1
16	0,82	0,8049±0,0492	0,0947±0,0015	0,2	665±125	583±9	600±28	582±10	3	14
17	0,7	$0,7505\pm0,0288$	0,0943±0,0012	0,2	522±82	581±7	569±17	582±7	-2	-10
18	0,73	$0,7915\pm0,0195$	$0,0948\pm0,001$	0,2	626±53	584±6	592±11	583±6	1	7
19	0,75	$0,766\pm0,054$	$0,0946\pm0,0017$	0,2	558±145	583±10	577±31	583±11	-1	-4
20	0,59	$0,7793\pm0,0364$	$0,0948\pm0,0013$	0,2	594±97	584±8	585±21	583±8	0	2
21	0,98	$0,8051\pm0,028$	$0,095\pm0,0011$	0,2	658±73	585±7	600±16	584±7	3	12
22	1,04	$0,7893\pm0,0716$	$0,095\pm0,0021$	0,1	613±185	585±12	591±41	585±13	1	5
23	0,83	$0,7481\pm0,0303$	0,0947±0,0012	0,2	505±87	583±7	567±18	585±7	-3	-14
24	0,78	$0,783\pm0,0208$	$0,0953\pm0,001$	0,2	590±57	587±6	587±12	587±6	0	1
25	1,39	$0,7561\pm0,0201$	$0,0951\pm0,001$	0,2	519±58	586±6	572±12	587±6	-2	-11
26	0,59	$0,7946\pm0,0405$	$0,0954\pm0,0014$	0,2	620±105	588±8	594±23	587±9	1	6
27	0,82	$0,7984\pm0,0338$	$0,0957\pm0,0013$	0,2	625±88	589±7	596±19	588±8	1	6
28	0,99	$0,797\pm0,0339$	$0,0957\pm0,0012$	0,1	621±90	589±7	595±19	588±7	1	5
29	0,79	$0,7983\pm0,0482$	$0,0958\pm0,0016$	0,2	623±124	590±9	596±27	589±10	1	6
30	0,84	$0,7744\pm0,0424$	$0,0957\pm0,0015$	0,2	559±114	589±9	582±24	590±9	-1	-5
31	0,69	$0,7857\pm0,0268$	$0,0961\pm0,0011$	0,2	581±72	591±7	589±15	592±7	0	-2
32	0,83	$0,6443\pm0,0278$	$0,0801\pm0,0011$	0,2	545±91	497±6	505±17	496±7	2	10
33	0,78	$0,6459\pm0,0466$	$0,0824\pm0,0016$	0,2	488±151	510±9	506±29	511±10	-1	-4
34	0,64	$0,6881\pm0,054$	$0,0841\pm0,0017$	0,2	580±161	521±10	532±32	520±11	2	11
7 - 3,000 - 3,										

Примечание. D – дискордантность: $D_1 = 100 \times \{[\text{возраст} (^{207}\text{Pb}/^{235}\text{U})] / [\text{возраст} (^{206}\text{Pb}/^{238}\text{U})] - 1\}$. $D_2 = 100 \times \{[\text{возраст} (^{207}\text{Pb}/^{206}\text{U})] / [\text{возраст} (^{206}\text{Pb}/^{238}\text{U})] - 1\}$. Rho – коэффициент корреляции между ошибками определения изотопных отношений $^{206}\text{Pb}/^{238}\text{U}$ и $^{207}\text{Pb}/^{235}\text{U}$. $^{207}\text{Pb}\text{Corr}$ – возраста по отношению $^{206}\text{Pb}/^{238}\text{U}$, корректированные на обыкновенный свинец ^{207}Pb -методом. Note. D – discordance: D1 = $100 \times \{[\text{age} (^{207}\text{Pb}/^{238}\text{U})] / [\text{age} (^{206}\text{Pb}/^{238}\text{U})] - 1\}$. D2 = $100 \times \{[\text{age} (^{207}\text{Pb}/^{206}\text{U})] / [\text{age} (^{206}\text{Pb}/^{238}\text{U})] - 1\}$.

Note. D – discordance: D1 = $100 \times \{[age(^{207}Pb/^{238}U)] / [age(^{206}Pb/^{238}U)] - 1\}$. D2 = $100 \times \{[age(^{207}Pb/^{206}U)] / [age(^{206}Pb/^{238}U)] - 1\}$. Rho is the correlation coefficient between the errors in determining the $^{206}Pb/^{238}U$ and $^{207}Pb/^{235}U$ isotope ratios. ^{207}PbC orr are ages relative to $^{206}Pb/^{238}U$, corrected for common lead by the ^{207}Pb method.

Циркон с самым древним возрастом 2462 ± 30 млн лет ($^{207}\text{Pb}/^{206}\text{Pb}$ возраст) на снимке в режиме СL имеет темную окраску, невысокие содержания Th (54~г/т) и U (89~г/т) при Th/U 0,56. Зерна циркона с возрастами 1991 ± 98 млн лет (Th 99~г/т и U 196~г/т) и 1523 ± 136 млн лет (Th 75~г/т и U 169~г/т) обладают концентрической зональностью роста, Th/U отношения составляют 0,46 и 0,41 соответственно. Циркон с возрастом 1023 ± 56 млн лет (Th 33~г/т и U 92~г/т, Th/U 0,33) имеет темную окраску на снимке в режиме CL и неравномерную зональность.

Два слабо резорбированных зерна циркона II типа с плохо выраженными кристаллографическими формами размерами около 0,1 мм с лоскутной и нарушенной концентрической зональностями показали

 206 Pb/ 238 U возраст, соответственно, 656 ± 7 , (Th 53 г/т и U 74 г/т, Th/U 0,67) и 616 ± 12 млн лет (Th 44 г/т и U 84 г/т, Th/U 0,48) (рис. 6, b), отвечающие неопротерозою. Одно зерно имеет гладкую поверхность граней, второе — слабо резорбированную поверхность и сглаженные ребра.

Преобладающие по количеству в породе зерна циркона с гладкой поверхностью отнесены к III типу.

Они имеют изометричную, призматическую, длиннопризматическую формы и коэффициент удлинения от 3 до 1. Размеры минерала варьируют от 0.05 до 0.2 мм. Грани призм часто неровные с углублениями, пирамидальные окончания зерен преимущественно округлые (рис. 7, a).

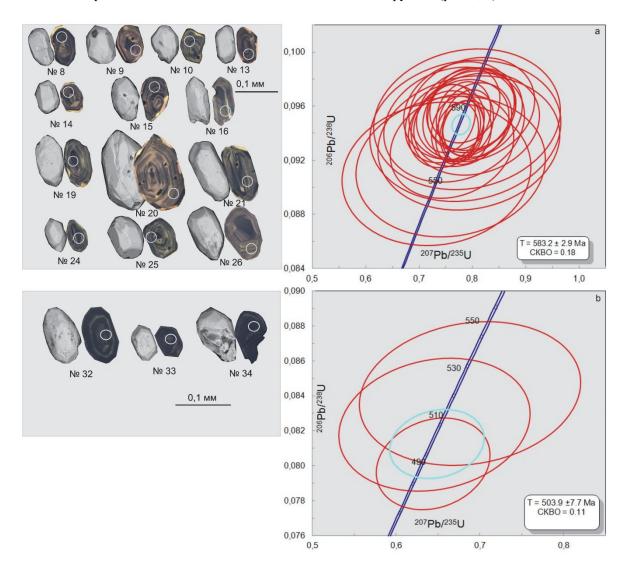


Рис. 7. Морфология, CL изображения с точками анализа и диаграммы с конкордиями зерен циркона III (а) и IV (b) типов из амфиболитов харбейского метаморфического комплекса

Цифры возле изображений соответствуют номерам по порядку в таблице

Fig. 7. Morphology, CL images with date points, and diagram with concordia of type III (a) and IV (b) zircon grains from amphibolites of the Kharbey metamorphic complex

The numbers next to the images correspond to the numbers in order in the table

В цирконе отмечаются включения кварца и идиоморфного апатита, на краю зерен — редко рутила. На изображениях циркона в режиме СL наблюдается тонкая концентрическая, изредка секториальная зональность. Часто минерал обрастает тонкой корочкой новообразованного циркона, имеющего на СL изображениях яркую окраску и залечивающего трещинки и углубления. Регенерационный циркон придает сглаженность ребрам минерала. Значения Th/U отношения составляют 0,6–1,4 (Th 84–798 г/т и U 94–518 г/т). Конкордантный возраст по 25 зернам циркона составил 583±3 млн лет при СКВО 0,18 (см. таблицу). Средневзвешенный ²⁰⁶Pb/²³⁸U изотопный возраст, корректированный на обыкновенный свинец ²⁰⁷Pb-методом, составил также 583±3 млн лет.

Слабо резорбированные зерна циркона IV типа с сохранившимися кристаллографическими формами и гладкими гранями, обладающие концентрической зональностью роста, представляют собой группу самых молодых зерен циркона (рис. 7, *b*). Они имеют призматическую форму и размеры до 0,15 мм. Значения Th/U отношения варьируют в пределах 0,64–0,83 (Th 347–527 г/т и U 412–750 г/т). Конкордантный возраст по трем зернам рассматриваемого циркона составляет 504±8 млн лет при СКВО 0,11 (рис. 7, *b*).

Обсуждение результатов

Коровая контаминация. Судя по залеганию, мощностям выходов и химическому составу, амфиболиты ханмейхойской свиты представляют собой метаморфизованные преимущественно вулканические (базальты и андезибазальты), а возможно, и гипабиссальные образования (силы долеритов). На вариационных диаграммах (см. рис. 4) точки составов амфиболитов разных геохимических групп не обнаруживают единой дифференциации, а образуют отдельные поля, что, по-видимому, связано с различными источниками магмогенерации. Считают, что на прогрессивном этапе метаморфизма химический состав пород не меняется, за исключением содержаний воды и углекислоты [Петров, Макрыгина, 1975]. На регрессивном этапе литофильные, щелочные и щелочноземельные элементы (Rb, Ba, Sr, K, Na), а также элементы с переменной валентностью (Eu и U) могут стать подвижными под воздействием флюида, привносимого в породу [Беляев и др., 2012]. Если интерпретировать содержания редких и редкоземельных элементов, то не мобильными или менее мобильными при процессах метаморфизма являются Ti, HFSE (Nb, Ta, Zr, Hf, Y), РЗЭ и Th [Туркина, Ножкин, 2008], и их содержания и соотношения можно использовать для характеристики магматических расплавов и мантийных источников. В барруазитовых амфиболитах Nb-аномалия не выражена (Nb/Nb* 0,7–1,1; Nb/Lа_{рт} 0,6–1), что, скорее всего, указывает на отсутствие коровой контаминации расплавом. Отрицательные аномалии Та, Nb (Nb/Nb* 0,2–0,6; Nb/Lа_{рт} 0,1–0,6), Ті в чермакитовых амфиболитах, а также значения отношения (Th/La)_{рт} 0,4–1,9, часто превышающие 1, могут свидетельствовать о влиянии корового материала на состав метабазитов. Это может происходить как в результате обогащения области магмогенерации субдукционной компонентой, так и при движении расплава в верхние горизонты коры. Процессы, связанные с коровой контаминацией, могли повлиять на ассимиляцию расплавом ксеногенных обломков циркона с древними палеопротерозойскими и мезопротерозойскими возрастами (2462–1023 млн лет).

Возраст протолита амфиболитов. По безгранатовому и гранатсодержащему амфиболитам ханмейхойской свиты установлены Sm-Nd модельные возрасты Т(DM2), соответствующие 1068 и 1126 млн лет [Уляшева и др., 2022], которые, скорее всего, ограничивают нижний предел формирования протолита амфиболитов. По характеру зональности, включениям идиоморфного апатита и Th/U отношениям преобладающая популяция циркона III типа (583 млн лет) обнаруживает магматическое происхождение и может оценивать время формирования протолита амфиболитов. Сглаженность пирамидальным окончаниям и ребрам минерала придает новообразованный регенерационный циркон. Схожие по морфологии и внутреннему строению зерна циркона характерны как для магматических вулканических, так и гипабиссальных пород основного состава [Иванов, Берзин, 2013; Моисеев и др., 2020]. Зерна циркона II типа (656 и 616 млн лет) с магматическими метками (целостность зерен, лоскутная зональность и Th/U отношения) могли кристаллизоваться как на ранних этапах формирования магматического расплава, так и быть захваченными поздними магмами из расплавов ранних фаз. Таким образом, судя по полученным данным, протолиты амфиболитов, выделяемые в составе ханмейхойской свиты, могли сформироваться в неопротерозое (656-583 млн лет).

Близкие значения возрастов получены по зернам циркона магматического генезиса из плагиогнейса и метамигматита Марункеуского блока U-Pb методом – 675, 623 [Зылева и др., 2014] и 591–643 млн лет [Glodny et al., 2004] соответственно, а также из гранитизированного амфиболита (577 млн лет) и плагиогнейса (582 млн лет) ханмейхойской свиты западной зоны Харбейского блока по руч. Широкому [Зылева и др., 2014]. По внутренним зонам циркона из метамагматических пород Марункеуского блока также установлены схожие значения возраста 570–588 млн лет (U-Pb метод [Glodny et al., 2004]).

Исходя из вышеизложенного, можно предположить, что либо протолиты амфиболитов представляли собой вулканические, субвулканические и гипабиссальные образования, внедрившиеся в позднем неопротерозое в более древние палеопротерозойские гнейсы, либо ксеногенные зерна циркона из гнейсов с палеопротерозойскими и мезопротерозойскими возрастами предшественниками ошибочно были приняты за метаморфические минералы, следовательно, ханмейхойскую свиту можно рассматривать как неопротерозойский стратон. Видимо, условия для роста метаморфического циркона в анализированной породе были неблагоприятные и изменения проявились лишь в формировании тонкой корочки вокруг циркона магматического генезиса.

Предполагаемая геодинамическая обстановка формирования протолита амфиболитов. По литературным данным, опирающимся на петрохимические особенности пород, протолиты амфиболитов ханмейхойской свиты Харбейского блока схожи с траппами древних платформ, в частности с базальтами и долеритами Сибирской платформы, и образовались в платформенной обстановке [Душин и др., 1983].

Есть мнение об островодужной природе метабазитов [Голубева, Афонькин, 2006].

На идентификационной диаграмме MgO–FeO– Al₂O₃ [Pearce et al., 1977] точки составов высоко- и умеренотитанистых чермакитовых амфиболитов располагаются в основном в области континентальных рифтов, траппов и океанических островов, низкотитанистых высокомагнезиальных чермакитовых амфиболитов — в области срединно-океанических хребтов, низко-титанистых высокоглиноземистых — в поле островных дуг, а умеренн-титанистых барруазитовых амфиболитов — в области океанических островов (рис. 8).

На тройной диаграмме La—Y—Nb [Cabanis, Lecolle, 1989] высоко- и умеренотитанистые чермакитовые амфиболиты обнаруживают сходство с континентальными и известково-щелочными базальтами, низкотитанистые амфиболиты — с островодужными толеитами, умереннотитанистые барруазитовые амфиболиты — с обогащенными и примитивными базальтами океанических хребтов (рис. 9, *a*).

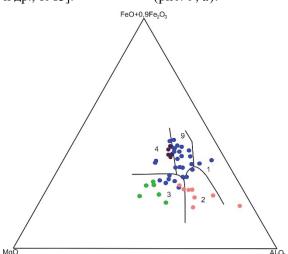
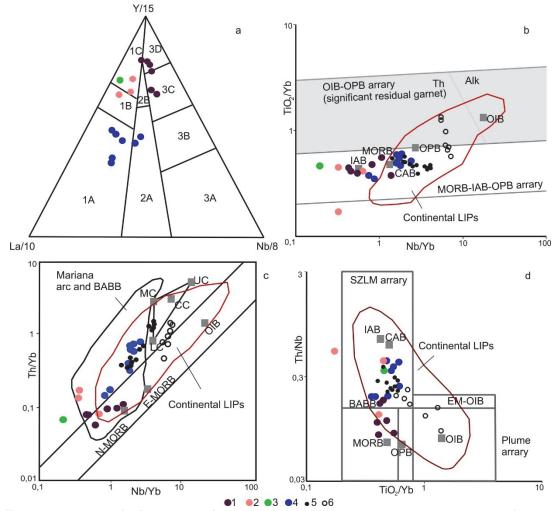


Рис. 8. Точки составов амфиболитов на диаграмме [Pearce et al., 1977]

Условные обозначения: 1 — океанических островов в зоне спрединга, 2 — островных дуг, 3 — срединно-океанических хребтов, 4 — океанических островов, 5 — континентальных рифтов и траппов. Точки составов пород см. на рис. 3

Fig. 8. Amphibolite composition points on the [Pearce et al., 1977]

Symbols: 1 – oceanic islands in the spreading zone, 2 – island arcs, 3 – mid-ocean ridges, 4 – oceanic islands, 5 – continental rifts and traps. The rock composition points are shown in fig. 3


Для всех типов изучаемых метабазитов характерна глубокая Zr-Hf отрицательная аномалия, что может указывать косвенно на их одновозрастность и генетическое родство, а также формирование в одной геодинамической обстановке. Известно, что высокотитанистые и низкотитанистые толеиты основного состава, близкие по геохимическим характеристикам к континентальным, островодужным и океаническим образованиям, встречаются как в задуговых бассей-

нах [Фролова, Бурикова, 1997], так и крупных магматических провинциях (LIPs), в том числе и трапповых [Lightfoot et al, 1993; Pearce et al., 2021].

Дж. Пирсом [Pearce et al., 2021] предложено охарактеризовать мантийный источник (состав, влияние остаточного граната, глубина и степень плавления) и влияние корового материала (субдукционный метасоматоз мантии, ассимиляция земной коры) на расплав, соответственно, соотношениями Ti/Yb (Nb/Yb)

и Th/Nb. Высоко- и умереннотитанистые чермакитовые амфиболиты сформировались из более обогащенного источника (Nb/Yb 0,77–2,31, область между MORB и OPB), чем низкотитанистые чермакитовые и умереннотитанистые барруазитовые амфиболиты (Nb/Yb 0,20–1,13, область между IAB и MORB), что хорошо представлено на диаграмме Nb/Yb–TiO₂/Yb (рис. 9, *b*). На диаграмме Nb/Yb и

Тh/Yb (рис. 9, c) точки составов высоко-, умеренно- и низкотитанистых чермакитовых амфиболитов выходят за рамки мантийных источников (N-MORB и E-MORB) в область влияния субдукционного или корового материала и располагаются в поле вулканитов марианской островодужной системы (островная дуга и задуговый бассейн) [Pearce, Stern, 2006].

Puc. 9. Точки составов амфиболитов харбейского метаморфического комплекса на идентификационных диаграммах La/10-Y/15-Nb/8 [Cabanis, Lecolle, 1989] (a), Nb/Yb-TiO₂ (b), Nb/Yb-Th/Yb (c), TiO₂/Yb-Th/Nb (d) [Pearce et al., 2021]

Условные обозначения: 1А – САВ (известково-щелочные базальты); 1В – САВ (известково-щелочные породы)+ІАТ (ІАВ) (островодужные толеиты); 1С – ІАТ, 2А – континентальные базальты; 2В – ВАВВ (базальты задугового бассейна); 3А – щелочные базальты континентальных рифтов; 3 В, С – Е-МОRВ (обогащенные базальты срединно-океанических хребтов); 3D – N-МОRВ (примитивные базальты срединно-океанических хребтов); ОІВ – базальты океанических островов; ОРВ – платобазальты; UС, МС, LС – состав, соответственно, верхней, средней и нижней континетальной коры (СС). Точки составов: 1—4 – амфиболитов ханмейхойской свиты (см. на рис. 3); 5 – низкотитанистых базальтов траппов Сибирской платформы; 6 – высокотитанистых базальтов траппов Сибирской платформы

Fig. 9. Composition points of amphibolites of the Kharbey metamorphic complex on identification diagrams La/10-Y/15-Nb/8 [Cabanis and Lecolle, 1989] (a), Nb/Yb-TiO2 (b), Nb/Yb-Th/Yb (c), TiO2/Yb-Th/Nb (d) [Pearce et al., 2021]

Symbols: 1A – CAB (calc-alkaline basalts); 1B – CAB (calc-alkaline rocks) + IAT (IAB) (island-arc tholeites); 1C – IAT, 2A – continental basalts; 2B, BABB (back-arc basin basalts); 3A – alkaline basalts of continental rifts; 3 B, C, E-MORB (enriched mid-ocean ridge basalts); 3D, N-MORB (primitive mid-ocean ridge basalts); OIB, basalts of oceanic islands; OPB, plateau basalts; UC, MC, LC are the compositions of the upper, middle, and lower continental crust (CC), respectively. Composition points: 1–4, amphibolites of the Khanmeikhoi Formation (see fig. 2); 5 – low-Ti basalts from traps of the Siberian Platform

Для всех типов пород характерно отсутствие влияния остаточного граната в мантийном источнике. На графике $TiO_2/Yb-Th/Nb$ точки составов высоко-, умеренно- и низкотитанистых чермакитовых амфиболитов располагаются в области SZLM (субдукционно-модифицированная литосферная мантия), что свидетельствует о значительном влиянии корового и субдукционного компонентов и отсутствии плюмовой составляющей (см. рис. 9, d). Точки составов амфиболитов образуют тренд взаимодействия SZLM-MORB.

Для сравнения на вышеперечисленных графиках приведены области составов базальтов крупных континентальных магматических провинций (LIPs), а также точки составов высокотитанистых и низкотитанистых базальтов траппов Сибирской платформы [Lightfoot et al, 1993; Pearse et al, 2021]. Точки составов низкотитанистых вулканитов траппов Сибирской платформы занимают схожие области распределения с точками составов высоко- и умереннотитанистых чермакитовых амфиболитов ханмейхойской свиты. Высокотитанистые породы LIPs характеризуются обогащенным составом мантийных источников (область между E-MORB, OPB и OIB) и большей глубиной магмогенерации с участием остаточного граната по сравнению с метабазитами харбейского комплекса (рис. 9, b). На диаграмме $TiO_2/Yb-Th/Nb$ для них наблюдается тренд взаимодействия плюмового компонета и SZLM (рис. 9, c). Точки составов высокотитанистых базальтов LIPs располагаются вне поля задуговых и островодужных образований.

Таким образом, амфиболиты харбейского комплекса отличаются от вулканитов LIPs. По-всей видимости, они образовались без участия плюмового влияния, возможно, в результате растяжения континентальной коры (высоко-, умеренно- и низкотитанистые чермакитовые амфиболиты) и формирования моря с корой, близкой к океанической (умереннотитанистые барруазитовые амфиболиты). Изначально удаленные друг от друга породы в дальнейшем, повидимому, были совмещены латерально.

В неопротерозое (670–560 млн лет) Полярноуральский сектор развивался в геодинамической обстановке активной континентальной окраины [Моргунова, Соболева, 2007; Пучков, 2010; Минерагенический потенциал..., 2013]. Согласно разным источникам, это могла быть Большеземельская континентальная окраина континента Арктида [Кузнецов и др., 2005] или Печоро-Полярноуральская вулканоплутоническая окраина Сибирского кратона [Минерагенический потенциал..., 2013].

Если учесть, что харбейский метаморфический комплекс находится восточнее (в современных коор-

динатах) от рифей-вендских островодужных образований Полярного Урала, то одной из вероятных геодинамических обстановок формирования протолита амфиболитов можно рассматривать образование их в тыловом прогибе этой активной континентальной окраины.

Цирконы IV типа с кембрийским возрастом (504±8 млн лет) соответствуют времени проявления в регионе эндогенной активности, связанной с рифтогенными процессами и воздействием (прожилки гранитного составов в амфиболитах) на породы гранитных интрузий. Близкие возрасты 497 и 487 млн лет имеют гнейсограниты, залегающие среди амфиболитов Харбейского блока [Голубева, 2011].

Заключение

В результате проведенных петрографических и геохимических исследований амфиболитов, выделяемых в составе ханмейхойской свиты харбейского метаморфического комплекса, установлено, что они представлены умереннотитанистыми барруазитовыми; низкотитанистыми высокомагнезиальными и высокоглиноземистыми, а также умеренно- и высокотитанистыми чермакитовыми образованиями, образовашимися, судя по всему, по вулканитам (базальтам и андезибазальтам) и гипабиссальным телам (долеритам). Они отличаются по содержаниям редких и редкоземельных элементов, но имеют генетическое родство (глубокие Zr-Hf отрицательные аномалии). Умереннотитанистые барруазитовые амфиболиты по содержаниям индикаторных редких и редкоземельных элементов схожи с океаническими базальтами Nи E-MORB. В них отсутствуют признаки коровой контаминации. Расплавы протолитов низко-титанистых чермакитовых амфиболитов имеют, скорее всего, гетерогенный источник (мантийная составляющая, субдукционная компонента или коровый материал). По составу породы схожи с толеитовыми островодужными базальтами. Умерено- и высокотитанистые чермакитовые амфиболиты схожи с вулканитами, расплавы которых, по-видимому, генерировались из более обогащенной мантии, чем у двух предыдущих типов метабазитов. Они, так же как и низкотитанистые чермакитовые амфиболиты, обнаруживают признаки коровой контаминации. U-Pb (La-ICP-MS) анализ циркона из умереннотитанистого чермакитового амфиболита центральной харбейского метаморфического комплекса показал, что преобладающая популяция минерала имеет магматический генезис, а возрасты 656-583 млн лет соответствуют, скорее всего, времени формировании протолита амфиболитов.

Одной из вероятных геодинамических обстановок формирования метабазитов можно предположить тыловую зону активной континентальной окраины, реконструируемой в конце неопротерозоя в Полярноуральском сегменте, где, возможно, происходили процессы растяжения тонкой континентальной коры и формирования задугового бассейна с корой, близкой к океаниче-

ской. Установлено, что зерна циркона с палеопротерозойскими и мезопротерозойскими возрастами (2462— 1023 млн лет) являются ксеногенными, захваченными в процессе коровой контаминации как на уровне магмогенерации из субдукционно-модифицированной мантии, так и, возможно, при продвижении расплава через кору.

Список источников

Беляев В.А., Горнова М.А., Медведев А.Я., Пахомова Н.Н. Геохимические особенности включений метабазитов в «серых» гнейсах Байдарикского блока (Центральная Монголия) // Геология и геофизика. 2012. Т. 53, № 4. С. 419–434.

Буянтуев М.Д., Хубанов В.Б., Врублевская Т.Т. U-Pb LA-ICP-MS датирование цирконов из субвулканитов бимодальной дайковой серии Западного Забайкалья: методика, свидетельства позднепалеозойского растяжения земной коры // Геодинамика и тектонофизика, 2017. Т. 8, № 2. С. 369–384. doi: 10.5800/GT-2017-8-2-0246

Великославинский С.Д., Глебовицкий В.А., Крылов Д.П. Разделение силикатных осадочных и магматических пород по содержанию петрогенных элементов с помощью дискриминантного анализа // Доклады РАН. 2013. Т. 453, № 3. С. 310–313.

Голубева И.И., Афонькин М.М. Амфиболиты париквасьшорской свиты как индикатор наличия докембрийской островной дуги на Полярном Урале // Петрология и минералогия севера Урала и Тимана : сб. ст. (Труды Института геологии. Вып. 119). № 4. Сыктывкар, 2006. С. 22–38.

Голубева И.И. Первые результаты U-Рb датирования цирконов гнейсогранитов харбейского комплекса Полярного Урала // Доклады Академии наук. 2011. Т. 439, № 4. С. 508–513.

Душин В.А., Макаров А.Б., Сычева Э.А., Исхаков Р.А. О формационной принадлежности метаморфитов харбейского гнейсо-амфиболитового комплекса // Геология метаморфических комплексов : межвуз. тематический сб. Свердловск : СГИ, 1983. С. 83–90.

Душин В.А., Сердюкова О.П., Малюгин А.А. и др. Государственная геологическая карта Российской Федерации масштаба 1:200000. 2-е изд. Серия Полярно-Уральская. Листы Q-42-I, II. Объяснительная записка. СПб. : ВСЕГЕИ, 2007. 340 с.

Зылёва Л.И., Коновалов А.Л., Казак А.П., Жданов А.В. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000000 (третье поколение). Серия Западно-Сибирская. Лист Q-42 — Салехард. Объяснительная записка. СПб. : ВСЕГЕИ, 2014. 396 с.

Иванов К.С., Берзин С.В. Первые данные о U-Pb возрасте цирконов из долеритов реликтовой зоны задугового спрединга горы Азов (Средний Урал) // Литосфера. 2013. № 2. С. 92–104.

Коновалов А.Л., Лохов К.И., Черкашин А.В., Вакуленко О.В. О тектонической границе между метаморфическими сланцевыми и кристаллическими образованиями позднего протерозоя Харбейского антиклинория (Полярный Урал) // Региональная геология. 2016. № 68. С. 6–20.

Краснобаев А.А. Циркон как индикатор геологических процессов. М.: Наука, 1986. 152 с.

Кузнецов Н.Б., Соболева А.А., Удоратина О.В., Герцева М.В. Доордовикские гранитоиды Тимано-Уральского региона и эволюция протоуралид-тиманид. Сыктывкар : Геопринт, 2005. 100 с.

Ленных В.И. Доуралиды зоны сочленения Восточно-Европейской платформы и Урала // Метаморфизм и тектоника западных зон Урала : сб. ст. Свердловск : УНЦ АН СССР, 1984. С. 21—41.

Моисеев А.В., Лучицкая М.В., Соколов С.Д. Вулканиты и гранитоиды мыса Святой Нос (Восточная Арктика): состав, возраст и палеотектонические реконструкции // Доклады Академии наук. 2020. Т. 492, № 2. С. 1–5. doi: 10.31857/S2686739720060122

Минерагенический потенциал недр России. Вып. 2: Уральская покровно-складчатая область : в 3 т. Т. 1: Полярный и Северный Урал. М. : Геокарт: геос, 2013.

Моргунова А.А., Соболева А.А. Реликты корневой части позднерифейской примитивной островной дуги на севере поднятия Енганепэ (Полярный Урал) // Вестник Института геологии Коми НЦ УрО РАН. 2007. № 12. С. 13–18.

Петров Б.В., Макрыгина В.А. Геохимия регионального метаморфизма и ультраметаморфизма. Новосибирск : Наука, 1975. 342 с.

Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.

Пыстин А.М. Полиметаморфические комплексы западного склона Урала. СПб. : Наука, 1994. 208 с.

Пыстина Ю.И., Пыстин А.М. Цирконовая летопись уральского докембрия. Екатеринбург: УрО РАН, 2002. 168 с.

Стратиграфические схемы Урала (докембрий, палеозой). Екатеринбург: Уралгеолком, 1993. 152 с.

Туркина О.М., Ножкин А.Д. Океанические и рифтогенные метавулканические ассоциации зеленокаменных поясов северозападной части Шарыжалгайского выступа, Прибайкалье // Петрология. 2008. Т. 16, № 5. С. 501–526.

Удовкина Н.Г. Эклогиты СССР. М.: Наука, 1985. 286 с.

Уляшева Н.С., Серов В.П., Травин А.В. SM-ND И ⁴⁰AR/³⁹AR изотопно-геохронологические исследования амфиболитов ханмейхойской свиты харбейского метаморфического комплекса (Полярный Урал) // Доклады Российской академии наук. Науки о Земле. 2022. Т. 506, № 2. С. 194–201.

Фролова Т.И., Бурикова И.А. Магматические формации современных геотектонических обстановок. М.: Изд-во МГУ, 1997. 320 с.

Cabanis B., Lecolle M. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et / ou de contamination crustale // Comptes Rendus de l'Academie des Sciences. 1989. V. 309. P. 2023–2029.

Glodny J., Pease V., Austreim H. et al. Rb-Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia // Geochimica et Cosmochimica Acta. 2003. V. 67. P. 4353–4371.

- Glodny J., Pease V., Montero P., Austrheim H., Rusin A.I. Protolith ages of eclogites, Marum-Keu Complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northern European continental margin // The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Soc., London, Memoirs, 2004. V. 30. P. 87–105.
- **Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y.** GLITTER: data reduction software for laser ablation ICP-MS // Laser ablation ICP-MS in the Earth sciences: current practices and outstanding issues. Mineralogical association of Canada short course series. 2008. V. 40. P. 204–207.
- **Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A.** The application of laser ablation—inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.
 - Jensen L.S. A new cation plot for classifying subalcalic volcanic rocks // Ontario Div. Mines. Misc. Pap., 1976. 66 p.
- Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W., Guo Y. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names // Canadian Mineralogist. 1997. V. 35. P. 219–246.
- Lightfoot P.C., Hawkesworth C.J., Hergt J., Naldrett A.J., Gorbachev N.S., Fedorenko V.A., Doherty W. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element and Sr-, Nd-, Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District // Contrib. Mineral. Petrol. 1993. V. 114. P. 171–188.
- **Ludwig K.R.** User's Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, 2008. 76 p.
- Meng F., Fan Y., Shmelev V.R., Kulikova K.V. Constraintsof eclogites from the Marun-Keu metamorphic complex on the tectonic history of the Polar Urals (Russia) // Journal of Asian Earth Sciences. 2020. V. 187. P. 104087. doi: 10.1016/j.jseaes.2019.104087
 - Middlemost E.A.K. Naming materials in the magma/igneous rock system // Earth Sci. Rev. 1994. V. 37, No. 3–4. P. 215–224.
- **Pearce J.A., Stern R.J.** Origin Back-Arc Basin Magmas: Trace Elements and Isotope perspectives // Back-Arc Spreding Systems: Geological, Biological, Chemical, and Physical Interactions / David M. Christie, Charles R. Fisher, Sang-Mook Lee, Sharon Givens (eds). Geophisycal Monograph Series 166. American Geological Union. 2006. P. 63–86.
- **Pearce J.A., Ernst R.E., Peate D.W., Rogers C.** LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record // Lithos. 2021. V. 392–393. P. 1–28. doi: 10.1016/j.lithos.2021.106068
- Pearce T.H., Gorman B.E., Birkett T.C. The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks // Earth and Planetary Science Letters. 1977. V. 36. P. 121–132.
- Sláma J., Košler J., Condon D.J. et al. Plešovice zircon A new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249 (1–2). P. 1–35. doi: 10.1016/j.chemgeo.2007.11.005
- Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the oceanic basins // Geol. Soc. Spec. Publ. 1989. No. 42. P. 313–345. doi: 10.1144/GSL.SP.1989.042.01.19
- Wiedenbeck M., Allé P., Corfu F. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis // Geostandards Newsletter. 1995. V. 19 (1). P. 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x

References

Belyaev V.A., Gornova M.A., Medvedev A.Ya., Pakhomova N.N. *Geokhimicheskie osobennosti vklyucheniy metabazitov v «serykh» gneysakh Baydarikskogo bloka (Tsentral'naya Mongoliya)* [Geochemical features of metabasic inclusions in the "gray" gneisses of the Baidarik block (Central Mongolia)] // *Geologiya i geofizika* [Geology and geophysics]. 2012. V. 53. No. 4. pp. 419–434. In Russian

Buyantuev M.D, Khubanov V.B, Vrublevskaya T.T., U-Pb La-ICP-MS dating of zircons from subvolcanics of the bimodal dyke series of the western transbaikalia: Technique, and evidence of the late paleozoic extension of the crust // Geodynamics & Tectonophysics. V. 8(2). pp. 369–384. In Russian. doi: 10.5800/GT-2017-8-2-0246

Velikoslavinskii S.D., Glebovitskii V.A., Krylov D.P. Separation between sedimentary and magmatic silicate rocks by discriminant analysis of major element contents // Doklady Akademii Nauk [Doklady Earth Sciences]. 2013. V. 453. No. 1. p. 310–313. In Russian

Golubeva I.I., Afonkin M.M. Amfibolity parikvas'shorskoy svity kak indikator nalichiya dokembriyskoy ostrovnoy dugi na Polyarnom Urale [Amphibolites of the Parikvasshor Formation as an Indicator of the Precambrian Island Arc in the Polar Urals] // Petrologiya i mineralogiya severa Urala i Timana: Sbornik statey (Trudy Instituta geologii. Vyp. 119) [Petrology and Mineralogy of the North of the Urals and Timan: Collection of Articles (Proceedings of the Institute of Geology. Issue 119)]. No. 4. Syktyvkar, 2006. pp. 22–38. In Russian

Golubeva I.I., The first results of U-Pb dating of zircons from gneissic granites of the Kharbei Complex (Polar Urals) // Doklady Akademii Nauk [Doklady Earth Sciences]. 2011. V. 439. pp. 1048–1053. In Russian

Dushin V.A., Makarov A.B., Sycheva E.A., Iskhakov R.A. O formatsionnoy prinadlezhnosti metamorfitov kharbeyskogo gneyso-amfibolitovogo kompleksa [On the formation affiliation of metamorphites of the Kharbey gneiss-amphibolite complex] // Geologiya metamorficheskikh kompleksov. Mezhvuz. temat. sb. [Geology of Metamorphic Complexes. Interuniversity. subject. Sat.]. Sverdlovsk: SGI. 1983. pp. 83–90. In Russian

Dushin V.A., Serdyukova O.P., Malyugin A.A. etc. Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii masshtaba 1:200000. Izdanie vtoroe. Seriya Polyarno-Ural'skaya. Listy Q-42-I, II. Ob"yasnitel'naya zapiska. [State geological map of the Russian Federation, scale 1:200000. Second edition. Series Polar-Ural. Sheets Q-42-I, II. Explanatory letter]. St. Petersburg: VSEGEI. 2007. 340 p. In Russian

Zyleva L.I., Konovalov A.L., Kazak A.P., Zhdanov A.V., 2014. *Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1 : 1 000000 (tret'e pokolenie). Seriya Zapadno-Sibirskaya. List Q-42 – Salekhard. Ob"yasnitel'naya zapiska.* [State geological map of the Russian Federation. Scale 1 : 1 000000 (third generation). Series West Siberian. Sheet Q-42 - Salekhard. Explanatory note]. St. Petersburg: VSEGEI. 396 p. In Russian

Ivanov K.S., Berzin S.V. *Pervye dannye o U-Pb vozraste tsirkonov iz doleritov reliktovoy zony zadugovogo spredinga gory Azov (Sredniy Ural)* [First data on the U-Pb age of zircons from dolerites of the relict zone of the back-arc spreading of Mount Azov (Middle Urals)] // Lithosphere(Russian Federation) [Litosfera]. 2013. No. 2. pp. 92–104. In Russian

Konovalov A.L., Lokhov K.I., Cherkashin A.V., Vakulenko O.V., O tektonicheskoy granitse mezhdu metamorficheskimi slantsevymi i kristallicheskimi obrazovaniyami pozdnego proterozoya Kharbeyskogo antiklinoriya (Polyarnyy Ural) [On the tectonic boundary between metamorphic shale and crystalline formations of the Late Proterozoic of the Kharbey anticlinorium (Polar Urals)] // Regional'naya geologiya [Regional Geology]. 2016. V. 68. pp. 6–20. In Russian

Krasnobaev A.A. *Tsirkon kak indikator geologicheskikh protsessov* [Zircon as an indicator of geological processes]. Moscow: Nauka. 1986. 152 p. In Russian

Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Gertseva M.V. *Doordovikskie granitoidy Timano-Ural'skogo regiona i evolyutsiya protouralid-timanid* [Pre-Ordovician granitoids of the Timan-Ural region and the evolution of protouralide-timanides]. Syktyvkar: Geoprint. 2005. 100 p. In Russian

Lennykh V.I. Douralidy zony sochleneniya Vostochno-Evropeyskoy platformy i Urala [Douralides of the junction zone of the East European Platform and the Urals] // Metamorfizm i tektonika zapadnykh zon Urala [Metamorphism and tectonics of the western zones of the Urals: Sat. articles]. Sverdlovsk, 1984. pp. 21–41. In Russian

Moiseev A.V., Luchitskaya M.V. and Sokolov, S.D. Volcanic rocks and granitoids from Cape Svyatoy Nos (Eastern Arctic): their age, composition, and paleotectonic reconstructions // Doklady Akademii Nauk [Doklady Earth Sciences]. 2020. V. 492 (2). pp. 1–5. In Russian. doi: 10.31857/S2686739720060122.

Mineragenicheskiy potentsial nedr Rossii. Vyl. 2: Ural'skaya pokrovno-skladchataya oblast': V 3 t. T. 1: Polyarnyy i Severnyy Ural. [Minerogenic potential of the subsoil of Russia. Out. 2: Ural folded region: In 3 vols. Vol. 1: Polar and Northern Urals]. Moscow: geokart: geos, 2013. In Russian

Morgunova A.A., Soboleva A.A. Relikty kornevoy chasti pozdnerifeyskoy primitivnoy ostrovnoy dugi na severe podnyatiya Enganepe (Polyarnyy Ural) [Relics of the root part of the late Riphean primitive island arc in the north of the Enganepe uplift (Polar Urals)] // Vestnik Instituta geologii Komi NTs UrO RAN [Bulletin of the Institute of Geology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences]. 2007. No. 12. pp. 13–18. In Russian

Petrov B.V., Makrygina V.A. *Geokhimiya regional'nogo metamorfizma i ul'trametamorfizma* [Geochemistry of regional metamorphism and ultrametamorphism]. Novosibirsk: Nauka. 1975. 342 p. In Russian

Puchkov V.N. Geologiya Urala i Priural'ya (aktu-al'nye voprosy stratigrafii, tektoniki, geodina-miki i metallogenii) [Geology of the Urals and Cis-Urals (topical issues of stratigraphy, tectonics, geodynamics and metallogeny)]. Ufa: DizaynPoligrafServis, 2010. 280 p. In Russian

Pystin A. M. *Polimetamorficheskie kompleksy zapadnogo sklona Urala* [Polymetamorphic complexes of the western slope of the Urals]. St. Petersburg: Nauka. 1994. 208 p. In Russian

Pystina Yu.I., Pystin A.M. *Tsirkonovaya letopis' ural'skogo dokembriya* [Zircon Chronicle of the Ural Precambrian]. Ekaterinburg: Ural Branch of the Russian Academy of Sciences. 2002. 168 p. In Russian

Stratigraficheskie skhemy Urala (dokembriy, paleozoy) [Stratigraphic schemes of the Urals (Precambrian, Paleozoic)]. Yekaterinburg: Uralgeolkom. 1993. 152 p. In Russian

Turkina O.M., Nozhkin A.D. Okeanicheskie i riftogennye metavulkaniche-skie assotsiatsii zelenokamennykh poyasov severozapadnoy chasti Sharyzhalgayskogo vystupa, Pribaykal'e [Oceanic and riftogenic metavolcanic associations of greenstone belts in the northwestern part of the Sharyzhalgai ledge, Cisbaikalia] // Petrologiya [Petrology]. 2008. V. 16. No. 5. pp. 501–526. In Russian

Udovkina N.G., Eklogity SSSR. [Eclogites of the USSR]. Moscow: Nauka, 1985. 286 p. In Russian

Ulyasheva N.S., Serov P.A., Travin A.V. Sm-Nd and ⁴⁰Ar/³⁹Ar isotope-geochronological investigations of amphibolites of the Khanmeykhoy Formation of the Kharbey metamorphic complex (Polarius Urals) // Doklady Akademii Nauk [Doklady Earth Sciences]. 2022. V. 506, Part 2. pp. 194–201. In Russian

Frolova T.I., Burikova I.A. Magmaticheskie formatsii sovremennykh geotektonicheskikh obstanovok [Igneous formations of modern geotectonic settings]. Moscow: Publishing House of Moscow State University. 1997. 320 p. In Russian

Cabanis B., Lecolle M. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et / ou de contamination crustale. Comptes Rendus de l'Academie des Sciences. 1989. V. 309. pp. 2023–2029. Glodny J., Pease V., Austreim H. et al. Rb-Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia // Geochimica et Cosmochimica Acta. 2003. V. 67. pp. 4353–4371.

Glodny J., Pease V., Montero P., Austrheim H. Rusin A.I. Protolith ages of eclogites, Marum-Keu Complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northern European continental margin. In: Gee, D.G., Pease V. (Eds.), The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Soc., London, Memoirs, 2004. V. 30. pp. 87–105.

Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. GLITTER: data reduction software for laser ablation ICP-MS. In: P.J. Sylvester (Ed.), Laser ablation ICP-MS in the Earth sciences: current practices and outstanding issues. Mineralogical association of Canada short course series. 2008. V. 40. pp. 204–207.

Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology // Chem. Geol. 2004. V. 211. pp. 47–69.

Jensen L.S. A new cation plot for classifying subalcalic volcanic rocks / L. S. Jensen // Ontario Div. Mines. Misc. Pap., 1976. 66 p.

Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorne F.C., Kato A., Kisch H.J., Krivovichev V.G., Linthout K., Laird J., Mandarino J.A., Maresch W.V., Nickel E.H., Rock N.M.S., Schumacher J.C., Smith D.C., Stephenson N.C.N., Ungaretti L., Whittaker E.J.W. and Guo Y. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Canadian Mineralogist, 1997. V. 35. pp. 219–246.

Lightfoot P.C., Hawkesworth C.J., Hergt J., Naldrett A.J., Gorbachev N.S., Fedorenko V.A., Doherty W. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element and Sr-, Nd-, Pb-isotope evidence from picritic and tholeiitic lavas of the Noril'sk District. Contrib. Mineral. Petrol. 1993. V. 114. pp. 171–188.

Ludwig K.R. User's Manual for Isoplot 3.70: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. 2008. 76 p.

Meng F., Fan Y, Shmelev V.R., Kulikova K.V. Constraintsof eclogites from the Marun-Keu metamorphic complex on the tectonic history of the Polar Urals (Russia) // Journal of Asian Earth Sciences, 2020. V. 187. p. 104087. doi: 10.1016/j.jseaes.2019.104087

Middlemost E.A.K. Naming materials in the magma/igneous rock system // Earth Sci. Rev. 1994. V. 37. No. 3-4. pp. 215–224

Pearce J.A., Stern R.J. Origin Back-Arc Basin Magmas: Trace Elements and Isotope perspectives // Back-Arc Spreding Systems: Geological, Biological, Chemical, and Physical Interactions / David M. Christie, Charles R. Fisher, Sang-Mook Lee, Sharon Givens(eds). Geophisycal Monograph Series 166. American Geological Union. 2006. pp. 63–86.

Pearce J.A., Ernst R.E., Peate D.W., Rogers C. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record //Lithos. 2021. V. 392–393. pp. 1–28. doi: 10.1016/j.lithos.2021.106068

Pearce T.H., Gorman B.E. & Birkett T.C. The relationship between major element geochemistry and tectonic environment of basic and intermediate volcanic rocks. Earth and Planetary Science Letters, 1977. 36. pp. 121–132.

Sláma J., Košler J., Condon D.J. et al. Plešovice zircon – A new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249 (1–2). pp. 1–35. doi: 10.1016/j.chemgeo.2007.11.005.

Sun S. S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Magmatism in the oceanic basins // Geol. Soc. Spec. Publ. 1989. No 42. pp. 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

Wiedenbeck M., Allé P., Corfu F. et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analysis // Geostandards Newsletter. 1995. V. 19 (1). pp. 1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x.

Информация об авторах:

Уляшева Н.С., кандидат геолого-минералогических наук, старший научный сотрудник, лаборатория региональной геологии, Институт геологии ФИЦ Коми НЦ УрО РАН, Сыктывкар, Россия.

E-mail: nataliaulyashewa@yandex.ru

Шуйский А.С., младший научный сотрудник, лаборатория петрографии, Институт геологии ФИЦ Коми НЦ УрО РАН, Сыктывкар, Россия.

E-mail: self88@yandex.ru

Хубанов В.Б., кандидат геолого-минералогических наук, заведующий лабораторией геохронологии и геохимии окружающей среды, Геологический институт СО РАН, Улан-Удэ, Россия.

E-mail: khubanov@mail.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Ulyasheva N.S., Cand. Sci.(Geol.-Miner), Senior Researcher, Laboratory of Regional Geology, Institute of Geology ERG Komi SC UB RAS, Syktyvkar, Russia.

E-mail: nataliaulyashewa@yandex.ru

Shuysky A.S., Junior Researcher, Laboratory of Petrography, Institute of Geology ERG Komi SC UB RAS, Syktyvkar, Russia. E-mail: self88@yandex.ru

Khubanov V.B., Cand. Sci.(Geol.-Miner), Head of the Laboratory of Geochronology and Geochemistry of the Environment, Geological Institute SB RAS, Ulan-Ude, Russia.

E-mail: khubanov@mail.ru

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 28.03.2023; одобрена после рецензирования 28.03.2024; принята к публикации 03.06.2024

The article was submitted 28.03.2023; approved after reviewing 28.03.2024; accepted for publication 03.06.2024

Научная статья УДК 552.164

doi: 10.17223/25421379/31/3

ДЕФОРМАЦИИ ИЗЛОМОМ В ПОРОДАХ ХОПСЕКСКОГО УЛЬТРАМАФИТОВОГО МАССИВА (ЗАПАДНАЯ ТЫВА)

GSR TELEVIS

Алексей Иванович Чернышов¹, Алексей Николаевич Юричев²

Аннотация. Объектом изучения является Хопсекский ультрамафитовый массив, располагающийся в западном окончании Западно-Тувинского офиолитового пояса (Республика Тыва). Рассматриваются результаты исследования деформаций изломом дайки микрогаббро, интрудированной в серпентинитах, и порфирокластового зерна клинопироксена из верлита. Геометрическим анализом установлены динамические условия и количественные оценки продольной и поперечной деформации дайки на макроуровне и зерна клинопироксена на микроуровне. Установленные закономерности деформирования пород и минералов связываются авторами с завершающим этапом пластических деформаций тела массива и фиксируют их переход к хрупким деформациям.

Ключевые слова: Республика Тыва, Хопсекский массив, Западно-Тувинский офиолитовый пояс, ультрамафиты, деформации изломом, геометрический анализ, микроструктурный анализ

Для цитирования: Чернышов А.И., Юричев А.Н. Деформации изломом в породах Хопсекского ультрамафитового массива (Западная Тыва) // Геосферные исследования. 2024. № 2. С. 53–60. doi: 10.17223/25421379/31/3

Original article

doi: 10.17223/25421379/31/3

FRACTURE DEFORMATIONS IN ROCKS OF THE HOPSEKSKY ULTRAMAFIC MASSIF (WESTERN TYVA)

Alexey I. Chernyshov¹, Alexey N. Yurichev²

^{1, 2} National Research Tomsk National Research State University, Tomsk, Russia

Abstract. The object of study is the Hopseksky ultramafic massif, which is located in Western Tyva and is fragment of the Aktovrak branch of the West-Tuva ophiolite belt. As is known, appearance of rocks of ophiolite association in structures of earth's crust at modern erosional level is associated with their long-term transportation and complex evolutionary history, reflecting specific geological and geodynamic conditions of their formation. The currently observed internal structure and composition of ultramafic massifs are result of superposition of several events that are far apart in time and are caused by different petrological processes. Transportation of ophiolites to surface was carried out in collisional stages, which were accompanied by convergent regime of active oceanic margins with formation of island arcs and accretionary wedges. At these stages, ophiolite sections are intensively reduced, pulled apart, and form large thrust structures, serpentinite mélange, and olistostromes. In modern folded structures, ophiolites are recorded in form of extended belts, structurally controlled by zones of deep faults, which emphasize the collision seams of closure of large paleooceans in folded areas and represent fragments of ancient oceanic crust. West-Tuva ophiolite belt is closely associated with Vendian-Lower Cambrian sedimentary-volcanogenic sequence, together with which it forms island-arc-type ophiolites. The ultramafic and mafic-ultramafic massifs of this belt are fragments of disintegrated ophiolite association and occur as allochthons, tectonic plates, olistoliths, and horizons of ophiolithoclastic conglomerates among melange-olistostrom horizons. They were involved in intense folding, which was accompanied by subhorizontal strike-slips, normal faults, and reverse faults. As result, rocks that make up the ultramafic and mafic-ultramafic massifs, together with rocks of framing, underwent syntectonic deformations, were sheared, and crumpled into folds. Often, along faults, they are divided into blocks, accompanied by shear movements. The article discusses the results of the study fracture deformations of microgabbo dike intruded in serpentinites and porphyroclastic grain of clinopyroxene from wehrlite are considered. Geometrical analysis established dynamic conditions and quantitative estimates of longitudinal and transverse deformations of dike at the macrolevel and clinopyroxene grains at the microlevel. Such deformation of rocks and minerals is associated by authors with final stage of plastic deformations of body of massif and fixes their transition to brittle deformations.

 $^{^{1,2}}$ Национальный исследовательский Томский государственный университет, Томск, Россия

¹ aich 1953@mail.ru

² juratur@yandex.ru

¹ aich1953@mail.ru

² juratur@yandex.ru

Keywords: Republic of Tyva, Hopseksky massif, Western Tyva ophiolite belt, ultramafites, fracture deformations, geometric analysis, microstructural analysis

For citation: Chernyshov A.I., Yurichev A.N. (2024) Fracture deformations in rocks of the Hopseksky ultramafic massif (Western Tyva). Geosfernye issledovaniya – Geosphere Research. 2. pp. 53–60. (In Russian). doi: 10.17223/25421379/31/3

Введение

Хопсекский ультрамафитовый массив расположен в восточной части урочища Хопсек в Западной Тыве и является фрагментом Актовракской ветви Западно-Тувинского офиолитового пояса. Этот пояс тесно ассоциирует с осадочно-вулканогенной толщей венд-нижнекембрийского возраста, совместно с которой формирует офиолиты островодужного типа [Кузнецов, 1991; Зальцман и др., 1996]. Ультрамафитовые и мафит-ультрамафитовые массивы этого пояса представляют собой фрагменты дизинтегрированной офиолитовой ассоциации и залегают в виде аллохтонов, тектонических пластин, олистолитов и горизонтов офиолитокластовых конгломератов среди меланжево-олистостромовых горизонтов [Коробейников, 1981; Перфильев и др., 1987; Щербаков, 1991]. Они вовлекались в интенсивную складчатость, которая субгоризонтальными сдвигами, сопровождалась сбросами и взбросами [Берзин, 1979]. В результате породы, слагающие ультрамафитовые и мафит-ультрамафитовые массивы, совместно с породами обрамления претерпели деформации, были рассланцованы и смяты в складки [Александров, 1979].

В работе рассматриваются результаты исследования деформаций изломом дайки микрогаббро, интрудированной в серпентинитах, и порфирокластового зерна клинопироксена из верлита. С использованием геометрического анализа выполнена реконструкция динамических условий и количественная оценка продольной и поперечной деформации на макро- и микроуровнях.

Краткая геологическая характеристика и внутренняя структура исследуемого массива

Хопсекский массив располагается в западном окончании Западно-Тувинского офиолитового пояса. Он залегает среди вулканогенно-осадочных образований нижнего кембрия. В плане его обнаженная часть имеет изометричную форму площадью около 4,3 км². Однако с юга, запада и востока массив перекрывают четвертичные отложения мощностью до 100 м, которые не позволяют установить его истинную форму и размеры. По данным магниторазведки предполагается, что его площадь на глубине составляет ~10–12 км² [Агафонов и др., 2005; Государственная..., 2008].

Внутренняя структура Хопсекского массива характеризуется сложным субслоистым строением (рис. 1) и представлена тектонически сочлененными интенсивно рассланцованными аподунитовыми серпентинитами и породами полосчатого верлит-клинопироксенитового комплекса. Свежие дуниты в массиве не встречены. Кроме пород, формирующих субслоистость, здесь также широко представлены жильные разности габбро-диабазов, прорывающие в различных частях массива серпентиниты.

В Хопсекском массиве отмечены сплошные (крайне редко) и различной густоты вкрапленные руды, среди которых отмечаются маковые и рябчиковые полосчатой структуры разности хромититов. Зафиксированы также нодулярные и такситовые разновидности руд. Однако качество руд низкое, и в обнаженной части массива все проявления имеют лишь минералогическое значение [Агафонов и др., 2005].

Распределение минеральной уплощенности в серпентинитах, верлитах и клинопироксенитах массива позволяет выявить два преимущественных направления — субширотное и северо-восточное, отражающие последовательно проявившиеся этапы деформации. Наиболее ранней является субширотная система (S_0), субсогласная с расслоенностью офиолитового разреза, которая подчеркивается уплощенностью зерен клинопироксена (рис. 1). Более поздней, наложенной является минеральная уплощенность северо-восточного простирания S_1 (рис. 1), которая подчеркивается интенсивным рассланцеванием в серпентинитах и зонками хромитовой минерализации и контролирует залегание дайки микрогаббро.

Деформации изломом

В породах массива на макро- и микроуровнях установлены деформации изломом, которые являются объектом нашего исследования [Чернышов, 1999]. В серпентинитах на макроуровне фиксируются структурные формы типа «кинк-бенд» [Родыгин, 1991], которые проявляются в деформации изломом дайковых тел микрогаббро (рис. 1). Геометрический анализ позволил идентифицировать главные элементы изучаемой структуры. Исходное залегание дайки представляется широтным согласно расслоенности офиолитового разреза и минеральной уплощенности S₀ в ультрамафитах. Границы полос излома соответствуют широко представленной в ультрама-

фитах минеральной уплощенности S_1 северо-восточного простирания. Внутри зоны пластического излома простирание дайки северо-западное (115–150°) с вертикальным падением. Ось внешнего вращения

«в» ориентирована вертикально, а ось главного нормального сжимающего стресса σ_3 = «с» имеет широтное простирание и субгоризонтальную ориентировку (рис. 1).

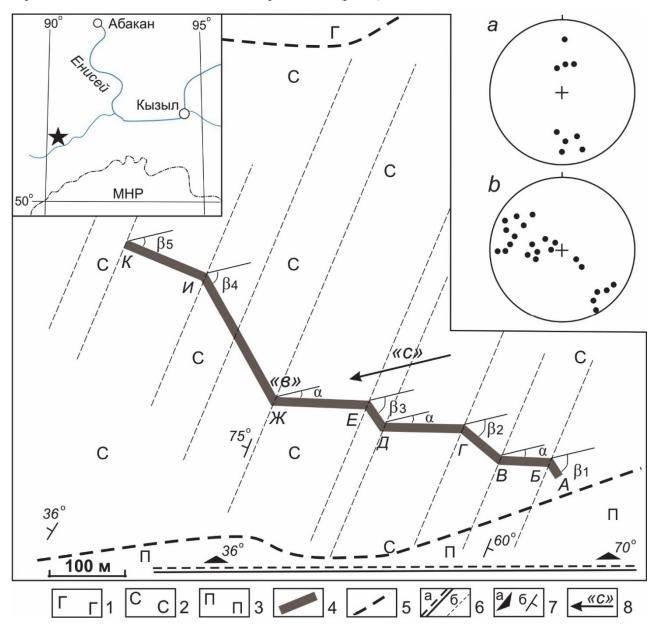


Рис. 1. Деформация изломом дайки микрогаббро, локализованной в серпентинитах Хопсекского ультрамафитового массива Западной Тывы

1 — габброиды; 2 — серпентиниты; 3 — верлиты, клинопироксениты; 4 — микрогаббро; 5 — тектонические границы; 6 — контуры структур: $S_0(a)$ и $S_1(b)$; 7 — элементы залегания минеральной уплощенности $S_0(a)$ и $S_1(b)$; 8 — ось сжатия «с». На рисунке: «в» — ось внешнего вращения; α — угол вращения между осью сжатия и исходной плоскостью залегания дайки; β — углы между осью сжатия и плоскостями залегания дайки внутри полосы излома. На диаграммах: проекции полюсов минеральной уплощенности $S_0(a)$ и $S_1(b)$ на верхнюю полусферу на стереографической (равноугольной) сетке Вульфа. Количество наблюдений: для S_0 — 9, для S_1 — 23. Пространственная ориентация — по сторонам света

Fig. 1. Fracture deformation of microgabbro dike localized in serpentinites of the Hopseksky ultramafic massif of Western Tuva

1- gabbroides; 2- serpentinites; 3- wehrlites, clinopyroxenites; 4- microgabbros; 5- tectonic boundaries; 6- contours of structures: S_0 (a) and S_1 (6); 7- occurrence elements of mineral flatness S_0 (a) and S_1 (6); 8- compression axis «c». In figure: «B» – axis of external rotation; $\alpha-$ angle of rotation between axis of compression and initial plane of dike; $\beta-$ are angles between compression axis and dike occurrence planes inside the fracture band. On diagrams: projections of the poles of mineral flattening S_0 (a) and S_1 (b) onto the upper hemisphere on stereographic (equiangular) Wulff grid. Number of observations: for S_0-9 , for S_1-23 . Spatial orientation – to cardinal points

По результатам геометрического анализа выявлены величины продольной и поперечной деформации, которые определяются по формулам [Громин, 1976]:

$$E_1 = a \left(\cos \alpha - \cos \beta\right) / \left[(a + b) \cos \alpha \right] \times 100 \%, \quad (1)$$

$$E_S = a \left(\sin \beta - \sin \alpha \right) / \left[(a+b) \sin \alpha \right] \times 100 \%, \quad (2)$$

где E_l и E_s — величины продольной и поперечной деформации соответственно; « α » и « β » — углы между главным нормальным напряжением, вызывающим сжатие, и плоскостью слоистости вне полосы излома и внутри этой полосы соответственно; « α » и « α » — величины отрезков слоистости внутри полосы сброса и за ее пределами соответственно.

В нашем случае «а» определяется между осью сжатия «с» и S_1 и соответствует 15° при условии постоянства этой величины во время деформации. Угол «β» изменяется, соответственно, для каждой полосы излома: $\beta_1 = 72^\circ$, $\beta_2 = 55^\circ$, $\beta_3 = 72^\circ$, $\beta_4 = 72^\circ$, $\beta_5 = 37^\circ$. Величина «а» слагается из следующих отрезков: A = d = 20 м, B = g = 50 м, D = i = 30 м, D = i =

$$\begin{split} E_{l} &= \left[d \left(\cos \alpha - \cos \beta_{1} \right) + g \left(\cos \alpha - \cos \beta_{2} \right) + \right. \\ & i \left(\cos \alpha - \cos \beta_{3} \right) + l \left(\cos \alpha + \cos \beta_{4} \right) + \\ & \left. m \left(\cos \alpha - \cos \beta_{5} \right) \right] / \\ \left[\left(d + f + g + h + i + k + l + m \right) \cos \alpha \right] \times 100 \,\%, \quad (3) \\ E_{S} &= \left[d \left(\sin \beta_{1} - \sin \alpha \right) + g \left(\sin \beta_{2} - \sin \alpha \right) + \right. \\ & \left. i \left(\sin \beta_{3} - \sin \alpha \right) + l \left(\sin \beta_{4} - \sin \alpha \right) + \right. \\ & \left. m \left(\sin \beta_{5} - \sin \alpha \right) \right] / \\ \left[d + f + g + h + i + k + l + m \right) \sin \alpha \right] \times 100 \,\%, \quad (4) \end{split}$$

Затем, подставляя в полученные формулы необходимые количественные параметры, получаем количественные характеристики продольной деформации $E_1 = 28.9 \%$, а поперечной — $E_8 = 128.2 \%$ дайки в зоне серпентинитового меланжа Хопсекского массива.

В южной части массива серпентиниты сменяются породами верлит-клинопироксенитовой ассоциации, в которой устанавливаются две системы минеральной уплощенности. Ранняя система (S_0) имеет широтное простирание и совпадает с расслоенностью массива (см. рис. 1, a), а более поздняя пространственно совмещена с уплощенностью псевдоморфоз бастита и струйчатостью хромшпинелида в серпентинитах, имеющей северо-восточное направление (рис. 1, b).

Верлиты и клинопироксениты обнаруживают преимущественно порфирокластовую структуру. Зерна клинопироксена обычно интенсивно пластически деформированы, что проявляется в их неоднородном погасании и появлении полос пластического излома («кинк-бенд»).

Детальный анализ полос излома в зерне порфирокластового клинопироксена позволил установить динамику их образования (рис. 2).

Как видно из представленных данных, плоскости границ полос излома пространственно совпадают с минеральной уплощенностью S₂, а ось внешнего вращения («b» = σ_2) совмещается с осью Nm клинопироксена в полосе излома. Ось сжатия «с» = σ_3 определяется как биссектриса угла между плоскостью границы полосы излома и плоскостью скольжения в ней [Родыгин, 1991] и имеет широтное направление, совпадающее с направлением S2, установленным на мезомасштабном уровне в серпентинитах по дайке микрогаббро, деформированной изломом (см. выше). Выявленная ось сжатия на микрои мезомасштабном уровне ориентирована в субширотном направлении вдоль зоны глубинного надвига. Плоскость скольжения в полосах максимального пластического излома индивидов клинопироксена идентифицируется как (001), а направление скольжения – [100], что указывает на действие механизма внутрикристаллического трансляционного скольжения по системе (001)[100] при низкой температуре (T = 500°) и высокой скорости деформации ($\varepsilon = 10^{-5} \,\mathrm{c}^{-1}$) [Raleigh, Talbot, 1967].

Геометрический анализ полос излома в индивиде клинопироксена (рис. 2) позволяет выявить величины его продольной и поперечной деформаций по следующим формулам [Громин, 1976]:

$$E_l = a \left(\cos \alpha - \cos \beta\right) / \left[(a + b) \cos \alpha \right] \times 100 \%, \quad (5)$$

$$E_S = a \left(\sin \beta - \sin \alpha \right) / \left[(a + b) \sin \alpha \right] \times 100 \%, \quad (6)$$

где E_1 и E_S — величины продольной и поперечной деформации соответственно; « α » и « β » — углы между главным нормальным напряжением, вызывающим сжатие, и плоскостью слоистости вне полосы излома и внутри этой полосы соответственно; « α » и « α » — величины отрезков слоистости внутри полосы сброса и за ее пределами соответственно.

В рассматриваемом примере значение «а» определяется между осью сжатия «с» и спайностью клинопироксена S_1 , S_2 , S_3 и составляет 10° при условии постоянства этой величины во время деформации. Угол «β» изменяется, соответственно, для каждой полосы излома: $\beta_1 = 62^\circ$, $\beta_2 = 60^\circ$, $\beta_3 = 54^\circ$, $\beta_4 = 40^\circ$. Величина «а» слагается из следующих отрезков спайности: $\delta B = d = 0.48$ мм, $\Gamma \Pi = f = 0.22$ мм, $\Pi = g = 0.20$ мм, $\Pi = 0.2$

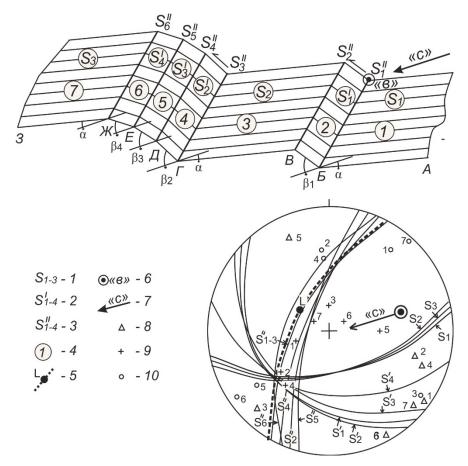


Рис. 2. Стереографическая (равноугольная) проекция на верхнюю полусферу (сетка Вульфа) порфирокластового зерна клинопироксена из верлита, деформированного пластическим изломом

1 — исходная ориентировка системы спайности (110) (S_{1-3}); 2 — плоскости спайности (011) внутри полосы излома (S'_{1-4}); 3 — плоскости пластического излома S''_{1-4} ; 4 — домены зерна; 5 — плоскость уплощенности зерен клинопироксена S и линейность L; 6 — ось внешнего вращения «в»; 7 — ось сжатия «с»; 8—10 — кристаллооптические оси: 8 — Ng, 9 — Nm, 10 — Np. На рисунке: α — угол между осью сжатия «с» и исходной плоскостью спайности S; β — углы между осью сжатия «с» и плоскостями спайности внутри полосы излома S'. Параметры: AB = k, BB = d, $B\Gamma = e$, $\Gamma \mathcal{I} = f$, $\Gamma \mathcal{I} = g$, $E \mathcal{I} = h$, $\mathcal{I} = g$

Fig. 2. Stereographic (equiangular) projection onto the upper hemisphere (Wulff grid) of porphyroclastic grain of clinopyroxene from wehrlite deformed by plastic fracture

1- initial orientation of cleavage system (110) (S_{1-3}); 2- cleavage planes (011) inside fracture band (S'_{1-4}); 3- planes of plastic fracture S''_{1-4} ; 4- domains of grain; 5- flatness plane of clinopyroxene grains S and linearity L; 6- axis of external rotation «B»; 7- compression axis «c»; 8-10 - crystal optical axes: 8-Ng, 9-Nm, 10-Np. In figure: $\alpha-$ angle between compression axis «c» and initial cleavage plane S; $\beta-$ angles between compression axis «c» and cleavage planes inside fracture band S'. Parameters: AB=k, BB=d, BF=e, FJ=f, FJ=g, FJ=g,

Преобразуя формулы (5) и (6) применительно к полученным результатам геометрического анализа, получаем:

$$\begin{split} E_{l} &= \left[d \left(\cos \alpha - \cos \beta_{1} \right) + f \left(\cos \alpha - \cos \beta_{2} \right) + \right. \\ &\left. g \left(\cos \alpha - \cos \beta_{3} \right) + h \left(\cos \alpha + \cos \beta_{4} \right) / \right. \\ &\left. \left[\left(d + f + g + h + k + e + i \right) \cos \alpha \right] \times 100 \%, \end{split} \tag{7} \\ E_{S} &= \left[d \left(\sin \beta_{1} - \sin \alpha \right) + f \left(\sin \beta_{2} - \sin \alpha \right) + \right. \end{split}$$

Es =
$$[d (\sin \beta_1 - \sin \alpha) + f (\sin \beta_2 - \sin \alpha) +$$

 $g (\sin \beta_3 - \sin \alpha) + h (\sin \beta_4 - \sin \alpha) /$
 $[d+f+g+h+k+e+i) \sin \alpha] \times 100 \%,$ (8)

Таким образом, вычисленные характеристики продольной деформации E_l составляют 5,7 %, а поперечной $E_s=47,7$ %.

Петроструктурный анализ клинопироксена из верлита

Детальный анализ оптической ориентировки зерен клинопироксена, интенсивно деформированных пластическим изломом (рис. 3), позволяет установить два типа петроструктурных узоров, последовательно наложенных друг на друга. Первый тип характеризуется наличием локального максимума Nm, расположенного нормально к минеральной уплощенности S₁, а оси Ng, Np концентрируются в этой плоскости. Аналогичный тип ориентировки клинопироксена установлен экспериментально [Carter, 1976] в условиях,

когда максимум Nm совмещен с σ_3 , а две другие оси концентрируются в плоскости $\sigma_1 - \sigma_2$. Такая ориентировка создавалась под действием высокотемпературного внутрикристаллического скольжения, сопровождаемого рекристаллизацией отжига, с образованием крупных недеформированных зерен с большеугловыми и плавными границами [Вернон, 1980].

Оптическая ориентировка второго типа возникла на этапе сдвиговых деформаций в плоскости скольжения S_1 и обусловлена высокотемпературным трансляционным скольжением по (100) [001]. Этот тип петроструктуры выражен в трех пространственно совмещенных между собой максимумах осей Ng, Nm, Np и соответствующих им поясах концентраций. Максимумы этих осей, очевидно, ориентированы параллельно оси внешнего вращения, являющейся осью σ_2 эллипсоида деформации. В условиях понижающейся температуры и увеличения скорости, деформации становятся неоднородными, что

способствовало возникновению многочисленных полос пластического излома и осложнению петроструктурного узора. Образование полос излома в результате неравномерного трансляционного скольжения по (100) [001] в плоскости пластического течения S_1 сопровождалось образованием плоскостей скола, контролирующих минеральную уплощенность S_2 .

На заключительной стадии этого этапа сформировалась минеральная уплощенность S_3 , контролируемая границами полос излома. На протяжении этого этапа ось внешнего вращения σ_2 контролировала распределение осей Nm, что нашло отражение в концентрации их в сильный максимум, совмещенный с минеральной линейностью, являющейся линейностью вращения. Трансляционное скольжение сопровождалось механизмом синтектонической рекристаллизации, что фиксируется появлением двух максимумов Np, нормальных к S_2 и S_3 .

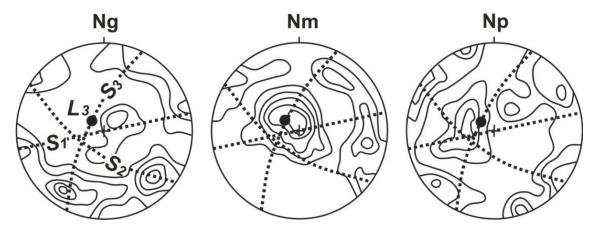


Рис. 3. Диаграммы ориентировки кристаллооптических осей клинопироксена в верлите Хопсекского массива

Изолинии: 1–2–4–6–8–10 на 1 % сетки Шмидта. Проекция на верхнюю полусферу. Диаграммы построены по 100 замерам. Точечные линии – плоскости минеральной уплощенности, L – линейность. Образец X-12/1

Fig. 3. Orientation diagrams of crystal optical axes of clinopyroxene in wehrlite of the Hopseksky massif Contours: 1–2–4–6–8–10 per 1 % Schmidt grid. Projection on upper hemisphere. Diagrams were built on 100 measurements. Dotted lines – planes of mineral flattening, L – linearity. Sample X-12/1

Заключение

Полученная ориентировка клинопироксена из верлита, очевидно, возникла в результате смены высокотемпературного трансляционного скольжения по системе (100)[001] на низкотемпературное (001)[100], а также синтектонической рекристаллизации [Carter, 1976]. Геометрический анализ полос излома на макрои микроуровнях в породах Хопсекского массива позволил установить субширотную ориентировку оси макси-

мального сжимающего стресса σ₃, который способствовал интенсивным горизонтальным сдвиговым перемещениям в структурной плоскости S₁ разреза офиолитов Западной Тувы. Оптическая ориентировка клинопироксена на завершающем этапе деформации формировалась в условиях сдвига. При этом с осью внешнего вращения совмещается субвертикально ось вращения полос пластического излома, проявившихся, по-видимому, на завершающем этапе пластических деформаций и фиксирующих их переход к хрупким деформациям.

Список источников

Агафонов Л.В., Лхамсурэн Ж., Кужугет К.С., Ойдуп Ч.К. Платиноносность ультрамафит-мафитов Монголии и Тувы. Улан-Батор : Монгольский государственный университет науки и технологии, 2005. 224 с.

Александров Г.П. Структурно-фациальное районирование и история развития зоны сочленения Тувы и Западного Саяна // Материалы по геологии Тувинской АССР. Кызыл, 1979. С. 3–38.

Берзин Н.А. Меланжево-олистостромовый комплекс в кембрийских отложениях Тувы и Западного Саяна // Главные тектонические комплексы Сибири. Новосибирск, 1979. С. 104—127.

Вернон Р.Х. Метаморфические процессы. М.: Недра. 1980. 226 с.

Государственная геологическая карта Российской Федерации. Масштаб 1 : 1000000 (третье поколение). Серия Алтае-Саянская Лист М-46 — Кызыл. Объяснительная записка. СПб. : Картографическая фабрика ВСЕГЕИ, 2008. 349 с.

Громин В.И. Полосы излома и их значение в структурной геологии // Геология и геофизика. 1976. № 3. С. 57–65.

Зальцман В.Д., Кокодзеев И.К., Единцев Е.С., Хомичев В.Л., Митинская Т.С., Бабкин А.Н. Рабочая корреляционная схема магматических и метаморфических комплексов Западного Саяна. Новосибирск: СНИИГГиМС, 1996. 17 с.

Коробейников В.П. Структура и модель развития Барлыкского офиолитового комплекса Тувы // Геология и геофизика. 1981. № 2. С. 62–71.

Кузнецов П.П. Тектогенез внутриконтинентальных офиолитов (на примере Алтае-Саянской складчатой области). Новосибирск, 1991. 28 с.

Перфильев А.С., Симонов В.А., Куренков С.А. и др. Геологическое строение Шатского офиолитового массива // Комплексные геологические исследования Сангилена (Юго-Восточная Тува). Новосибирск : Изд-во ИГГиГ СО АН СССР, 1987. С. 97–107.

Родыгин А.И. Признаки направления смещения при деформации сдвига. Томск: Изд-во ТГУ, 1991. 100 с.

Щербаков С.А. Офиолиты Западной Тувы и их структурная позиция // Геотектоника. 1991. № 4. С. 88–101.

Чернышов А.И. Петроструктурный анализ и петрология ультрамафитов различных формационных типов : дис. ... д-ра геол.-минерал. наук. Томск, 1999. 528 с.

Carter N.L. Cteady state flow of rocks // Rav. Geophys. and Space Physics. 1976. V. 14. P. 301–360.

Raleigh C.B., Talbot J.L. Mechanical twinning in naturally and experimentally deformed diopside // Amer. J. Sol. 1967. V. 265. P. 151–165.

References

Agafonov L.V., Lkhamsuren Zh., Kuzhuget K.S., Oidup Ch.K. *Platinonosnost' ul'tramafit-mafitov Mongolii i Tuvy* [Platinum content of ultramafic-mafic rocks of Mongolia and Tuva]. Ulaanbaatar: Mongolian State University of Science and Technology, 2005. 224 p. In Russian

Aleksandrov G.P. Strukturno-fatsial'noe rayonirovanie i istoriya razvitiya zony sochleneniya Tuvy i Zapadnogo Sayana [Structural-facies zoning and history of the development of junction zone of Tuva and the Western Sayan] // Materials on the geology of Tuvunian ASSR. Kyzyl. 1979. pp. 3–38. In Russian

Berzin N.A. Melanzhevo-olistostromovyy kompleks v kembriyskikh otlozheniyakh Tuvy i Zapadnogo Sayana [Melange-olistostrome complex in Cambrian deposits of Tuva and Western Sayan] // Glavnyye tektonicheskiye kompleksy Sibiri [Main tectonic complexes of Siberia]. Novosibirsk, 1979. pp. 104–127.

Vernon R.H. Metamorficheskie protsessy [Metamorphic processes]. Moscow: Nedra. 1980. 226 p. In Russian

Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii. Masshtab 1 : 1000000 (tret'ye pokoleniye). Seriya Altaye-Sayanskaya List M-46 – Kyzyl. Ob''yasnitel'naya zapiska. [State geological map of the Russian Federation. Scale 1 : 1000000 (third generation). Series Altai-Sayan Sheet M-46 - Kyzyl. Explanatory note]. St. Petersburg: Cartographic factory of VSEGEI. 2008. 349 p. In Russian

Gromin V.I. *Polosy izloma i ikh znachenie v strukturnoy geologii* [Fracture bands and their significance in structural geology] // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 1976. No. 3. pp. 57–65. In Russian

Zaltsman V.D., Kokodzeev I.K., Edintsev E.S., Khomichev V.L., Mitinskaya T.S., Babkin A.N. *Rabochaya korrelyatsionnaya skhema magmaticheskikh i metamorficheskikh kompleksov Zapadnogo Sayana* [Working correlation scheme of igneous and metamorphic complexes of the Western Sayan]. Novosibirsk: SNIIGGiMS.1996. 17 p. In Russian

Korobeinikov V.P. Struktura i model' razvitiya Barlykskogo ofiolitovogo kompleksa Tuvy [Structure and development model of the Barlyk ophiolite complex in Tuva] // Geologiya i Geofizika [Russian Geology and Geophysics]. 1981. No. 2. pp. 62–71. In Russian

Kuznetsov P.P. Tektogenez vnutrikontinental'nykh ofiolitov (na primere Altae-Sayanskoy skladchatoy oblasti) [Tectogenesis of intracontinental ophiolites (on the example of Altai-Sayan folded region)]. Novosibirsk. 1991. 28 p. In Russian

Perfiliev A.S., Simonov V.A., Kurenkov S.A. *Geologicheskoe stroenie Shatskogo ofiolitovogo massiva* [Geological structure of the Shatsky ophiolite massif] // Comprehensive geological research of Sangilen (South-Eastern Tuva). Novosibirsk: Izd. IGGiG SO AN SSSR. 1987. pp. 97–107. In Russian

Rodygin A.I. Priznaki napravleniya smeshcheniya pri deformatsii sdviga [Signs of the direction of displacement during shear deformation]. Tomsk: Publishing House of TSU. 1991. 100 p. In Russian

Shcherbakov S.A. *Oficity Žapadnoy Tuvy i ikh strukturnaya pozitsiya* [Ophicities of Western Tuva and their structural position] // *Geotektonika* [Geotectonics]. 1991. No. 4. pp. 88–101. In Russian

Chernyshov A.I. Petrostrukturnyy analiz i petrologiya ul'tramafitov razlichnykh formatsionnykh tipov [Petrostructural analysis and petrology of ultramafic rocks of various formation types]. Dis. ... doc. geol-mineral. Sciences. Tomsk. 1999. 528 p. In Russian

Carter N.L. Cteady state flow of rocks // Rav. Geophys. and Space Physics. 1976. V. 14. pp. 301–360.

Raleigh C.B., Talbot J.L. Mechanical twinning in naturally and experimentally deformed diopside // Amer. J. Sol. 1967. V. 265. pp. 151–165.

Информация об авторах:

Чернышов Алексей Иванович, доктор геолого-минералогических наук, профессор, заведующий кафедрой петрографии, геолого-географический факультет, Национальный исследовательский Томский государственный университет, Томск, Россия. E-mail: aich1953@mail.ru

Юричев Алексей Николаевич, кандидат геолого-минералогических наук, доцент, кафедра петрографии, геолого-географический факультет, Национальный исследовательский Томский государственный университет, Томск, Россия. E-mail: juratur@yandex.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Chernyshov Alexey Iv., Dr. Sci. (Geol.-Miner.), Professor, Head at the Department of Petrography, Geology and Geography Faculty National Research Tomsk State University, Tomsk, Russia.

E-mail: aich1953@mail.ru

Yurichev Alexey N., Cand. Sci. (Geol.-Miner.), Associate Professor, Department of Petrography, Geology and Geography Faculty, National Research Tomsk State University, Tomsk, Russia.

E-mail: juratur@yandex.ru

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Статья поступила в редакцию 14.11.2022; одобрена после рецензирования 01.03.2023; принята к публикации 03.06.2024

The article was submitted 14.11.2022; approved after reviewing 01.03.2023; accepted for publication 03.06.2024

ГЕОЛОГИЯ МЕСТОРОЖДЕНИЙ

Научная статья УДК 553.411 (571.1) doi: 10.17223/25421379/31/4

МИНЕРАЛОГО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА И ВЕРОЯТНЫЕ КОРЕННЫЕ ИСТОЧНИКИ САМОРОДНОГО ЗОЛОТА РОССЫПЕЙ РАЙОНА ШАХТАМИНСКОГО МО-ПОРФИРОВОГО МЕСТОРОЖДЕНИЯ (ВОСТОЧНОЕ ЗАБАЙКАЛЬЕ)

Владислав Владимирович Колпаков¹, Пётр Александрович Неволько¹, Павел Андреевич Фоминых¹, Никита Сергеевич Похмелкин¹

Аннотация. Золото автохтонных россыпей рек Синяха и Шахтама, источники которых приурочены к периферической и центральной частям Шахтаминского месторождения, довольно контрастно различается по морфологии, химическому составу и минеральным ассоциациям. Различия отражают зональность размещения и уровень эрозионного среза золотого оруденения. Коренным источником россыпей явилось Аи-полиметаллическое оруденение, для россыпи р. Шахтама — более глубокого уровня. Россыпеобразующее золотое оруденение наложено на Аи-полиметаллическое.

Ключевые слова: самородное золото, пробность золота, минералы-включения в золоте, внутренняя структура золотин, золотое оруденение

Источник финансирования: работа выполнена по государственному заданию ИГМ СО РАН № 122041400237-8.

Для цитирования: Колпаков В.В., Неволько П.А., Фоминых П.А., Похмелкин Н.С. Минералого-геохимическая характеристика и вероятные коренные источники самородного золота россыпей района Шахтаминского Мо-порфирового месторождения (восточное Забайкалье) // Геосферные исследования. 2024. № 2. С. 61–76. doi: 10.17223/25421379/31/4

Original article

doi: 10.17223/25421379/31/4

MINERALOGICAL-GEOCHEMICAL CHARACTERISTIC AND THE POTENTIAL ORE SOURCES OF PLACER NATIVE GOLD IN THE AREA OF THE SHAKHTAMINSKY MO-PORPHYRY DEPOSIT (EASTERN TRANSBAIKALIA)

Vladislav V. Kolpakov¹, Petr A. Nevolko¹, Pavel A. Fominykh¹, Nikita S. Pokhmelkin¹

Abstract. At the Shakhtama deposit, veined gold-polymetallic (Au-galena-sphalerite-chalcopyrite-sulfosalt) mineralization is manifested. Forecastics resources of ore gold are estimated highly. Much more gold was mined from placers than from ores, and the placer of gold along the Shakhtama River is one of the largest in eastern Transbaikalia. Despite the comprehensive study of the Shakhtama deposit, there are very few data on gold in ores and placers in the published sources. Similar imbalance are observed for many ore-placer regions of Transbaikalia. The primary gold sources of the Shakhtama River placer are spatially confined to the central part of the granodiorite intrusion which contains the deposit, and the gold sources of the Sinyakha River placer are confined to its periphery. The morphology, chemical composition, and mineral associations of native gold from these placers, as well as ore gold from the Shakhtama factory, differ significantly from each other. The internal structure of some gold particles from placers indicates thermal metamorphism of Au.

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия

¹ vladk@igm.nsc.ru

¹ nevolko@igm.nsc.ru

¹ fominykh@igm.nsc.ru

¹ pokhmelkinns@jgm.nsc.ru

¹ V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia

¹vladk@igm.nsc.ru

¹ nevolko@igm.nsc.ru

¹ fominykh@igm.nsc.ru

¹pokhmelkinns@igm.nsc.ru

The purpose of this work is to identification the possible primary sources of alluvial gold based on the study of its typomorphic properties and mineral associations. For this, the methods of optical and electron microscopy, microprobe analysis, and EBSD study of the internal structure of gold particles were used. Native gold was obtained from mining dumps and primary sections of autochthonous placers.

The gold of the Sinyakha river placer is larger, the predominant size of gold particles is 0.25–0.5 mm, and the maximum is 1.8 mm. It is characterized by idiomorphic, massive morphology, relatively low fineness (max=850–900 ‰), and a small admixture of copper. The content of Cu in Au directly correlates with the fineness of gold. The most common mineral inclusions in Au are pyrite, Bi sulfosalts, and galena forming an association. In ten gold particles (0.4–1 mm size), the internal structures of the diffusion redistribution of silver are observed. In the placer of the Shakhtama River, gold particles smaller than 0.25 mm (max=1.2 mm) predominate. The morphology of gold is xenomorphic, flattened, similar to the morphology of ore gold from the Shakhtama factory. The fineness of Au is generally high (more than 900 ‰), 15 % of the analyzes showed an admixture of mercury, inclusion minerals in gold particles are represented by pyrite and single particles of fahlore, galena, and arsenopyrite. The heterogeneity of the internal structure of gold is probably also caused by the diffusion of silver.

The main source of native gold in placers was the Au-polymetallic mineralization of the Shakhtama deposit, for the placer of the Shakhtama River – a deeper level. Placer-forming gold mineralization is superimposed on mineralization of the Au-polymetallic stage. This is confirmed by the higher fineness and, probably, size of placer gold particles than ore gold, and by the presence of inclusions of minerals of the late stage of mineralization in high-finenesses gold. The redeposited gold underwent thermal metamorphism, which indicates the spatial combination and multi-stage gold mineralization. Probably, the epithermal stage of gold mineralization is more pronounced in the ore sources of the Sinyakha placer.

Differences in the chemical composition of native placer gold and its mineral associations reflect the zoning of the location and the level of the erosional cut of the gold mineralization of the Shakhtama deposit, which is greater for the primary sources of gold in the placer of the Shakhtama River.

Keywords: native gold, fineness of gold, inclusion minerals in gold, internal structure of gold particles, gold mineralization

Source of financing: This research was supported by state assignment projects of IGM SB RAS № 122041400237-8.

For citation: Kolpakov V.V., Nevolko P.A., Fominykh P.A., Pokhmelkin N.S. (2024) Mineralogical-geochemical characteristic and the potential ore sources of placer native gold in the area of the Shakhtaminsky Mo-porphyry deposit (Eastern Transbaikalia). *Geosfernye issledovaniya – Geosphere Research.* 2. pp. 61–76. doi: 10.17223/25421379/31/4

Введение

Шахтаминское месторождение приурочено к одноименной крупной монцодиорит-гранодиоритовой интрузии (J₂₋₃), слагающей вытянутое в субширотном направлении поднятие. Месторождение относится к жильному типу формации, переходной от Мо-Си-порфировой к Аи-молибденит-кварцевой [Юргенсон, 2020]. Кроме основного, молибденового, проявлены также полиметаллическое (Pb, Zn, Си) и золотое оруденения. Золото связано, прежде всего, с кварц-полиметаллическими жилами. Количество добытого коренного Аи и его учтенные запасы невелики, но прогнозные ресурсы рудного золота оцениваются очень высоко [Государственная..., 2010; Корчагина, Агибалов, 2020], а почти по всем водотокам, дренирующим район месторождения, известны россыпи золота, в том числе и одна из крупнейших в Восточном Забайкалье россыпь р. Шахтама. Несмотря на разностороннюю хорошую изученность Шахтаминского месторождения, открытого в 1930-х гг., минералого-геохимические характеристики самородного золота руд и россыпей целенаправленно почти не изучались [Юргенсон, 2020]. Коренные источники золота рассматриваемых россыпей рек Шахтама, Синяха, Кулинда приурочены как к центральной зоне Шахтаминского рудного узла, так и к его периферии и могут различаться. Согласно зональности размещения оруденения золотоносных порфирово-эпитермальных систем, Мо-(Си) руды с высокопробным Аи находятся на нижних горизонтах месторождений, а полиметаллические и эпитермальные, содержащие низкопробное золото — на вышерасположенных. Эта зональность, особенно на крупных объектах, часто осложняется из-за пространственной совмещенности золотого оруденения разных стадий [Коваленкер и др., 2006], а одни и те же руды, находящиеся на разных горизонтах, могут иметь разную продуктивность.

Важным инструментом для установления вероятных коренных источников самородного золота россыпей, оценки уровня эрозионного среза и прогнозирования золотого оруденения является изучение типоморфных свойств и минеральных ассоциаций россыпного золота. Таких исследований, применительно к конкретным рудно-россыпным районам Забайкалья, пока мало и они остаются актуальными, тем более что известно много россыпных районов, в которых коренные источники золота не установлены или не соответствуют по масштабу россыпям. Это может быть обусловлено эрозионным срезом, особенностями размещения, характером золотого оруденения [Корчагина, Агибалов, 2020] и, возможно, какими-то другими причинами.

Краткие сведения о геологическом строении и золотоносности района

Шахтаминское Мо-(Cu)-порфировое золотоносное месторождение расположено в тектонической зоне регионального Газимурского глубинного разлома Ага-Борзинской структурно-формационной зоны Монголо-Охотского складчатого пояса. К этой разломной зоне приурочены также крупные Бугдаинское W-Мо-порфировое с Au, Быстринское, Култу-

минское, Лугоканское Au-Cu-Fe скарновые, Новоширокинское Au-полиметаллическое и ряд других комплексных золотоносных месторождений. Месторождения пространственно и генетически связаны с породами шахтаминского диорит-гранодиоритового комплекса (J_{2-3}). Шахтаминское месторождение локализовано внутри крупной интрузии этого комплекса, расположенной среди пермских гранитоидов ундинского комплекса и нижнеюрских морских терригенных отложений (рис. 1).

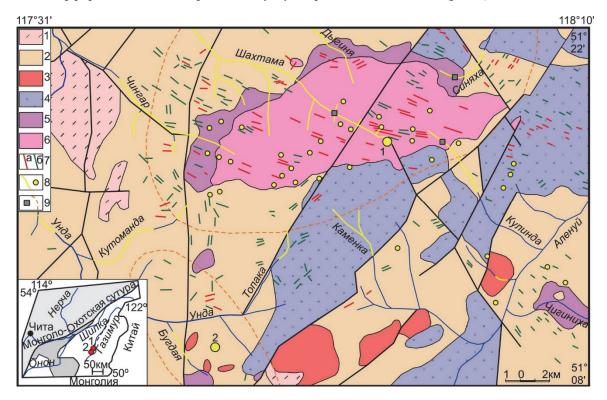


Рис. 1. Схема геологического строения района Шахтаминского и Бугдаинского месторождений (на основе ГГК РФ, листы M-50-X, M-50-XI, M-50-IV, M-50-V)

1 — белетуйская свита (Vbl?): сланцы, песчаники, алевролиты, конгломераты; 2 — ундинский комплекс (P_1 u): граниты, гранодиориты; 3 — лубиинский комплекс (T_1 ?l): лейкократовые граниты, риолиты, риодациты; 4 — таменгинская свита (J_1 tm): песчаники, алевролиты, аргиллиты, конгломераты, брекчии; 5, 6 — шахтаминский комплекс (J_2 - $_3$ s): кварцевые монцодиориты I фазы (5) и гранодиориты, кварцевые монцодиориты II фазы (6); 7 — нерчинскозаводский комплекс (J_3 nz): дайки гранит-порфиров, гранодиорит-порфиров (a) и диоритовых-порфиритов, лампрофиров (a); a0 — россыпи и рудопроявления золота; a0 — пункты опробования и границы Шахтаминского и Бугдаинского рудных узлов. На врезке и на карте: a1 — Шахтаминское Мо, a3 — Бугдаинское W-Мо золотоносные порфировые месторождения

Fig 1. Scheme of the geological structure of the Shakhtaminsky and Bugdainsky deposits area (according to State geological maps of the Russian Federation, sheets M-50-X, M-50-XI, M-50-IV, M-50-V)

1 – beletui formation (Vbl?): shales, sandstones, siltstones, conglomerates; 2 – unda complex (P₁u): granites, granodiorites; 3 – lubiinsky complex (T₁?1): leucocratic granites, rhyolites, rhyodacites; 4 – tamenga formation (J₁tm): sandstones, siltstones, mudstones, conglomerates, breccias; 5, 6 – shakhtama complex (J₂₋₃s): quartz monzodiorites of phase I (5) and granodiorites, quartz monzodiorites of phase II (6); (7) nerchinskozavodsky complex (J₃nz): dikes of granite-porphyry, granodiorite-porphyry (a) and dioritic-porphyrite, lamprophyre (b); 8 – placers and ore occurrences of gold; 9 – sampling points and borders of the Shakhtaminsky and Bugdainsky ore clusters. Inset and map: 1 – Shakhtaminsky Mo, 2 – Bugdainsky W-Mo gold-bearing porphyry deposits

Интрузия сложена монцодиоритами, гранодиоритами, гранитами двух фаз и насыщена крутопадающими секущими дайками гранит-порфиров, граноди-

орит-порфиров, монцодиорит-порфиритов, диоритовых порфиритов, лампрофиров нерчинскозаводского комплекса (J₃). С дайками (рудоносного порфирового

комплекса) связаны основные молибденовое, полиметаллическое и золотое оруденения Шахтаминского месторождения [Берзина и др., 2013; Позднякова, 2015]. Самыми распространенными минеральными типами руд являются: молибденит-шеелитовый, магнетит-(гематит)-шеелитовый, галенит-сфалеритовый, галенит-сфалеритовый, сульфидно-сульфосольный. Основное количество золота приурочено к двум последним типам [Государственная..., 2002].

Для Шахтаминского рудного района характерны большая концентрация рудопроявлений Мо, Au, Pb и Zn, Cu, W, Bi, многостадийность и значительный вертикальный размах оруденения (шахты пройдены до 400 м), интенсивные гидротермально-метасоматические изменения вмещающих пород (от скарнов до пропилитов, аргиллизитов). Преобладающий тип оруденения – жильный. Главные рудные минералы – пирит, молибденит, галенит, сфалерит, халькопирит; второстепенные – шеелит, вольфрамит, тетрадимит, бурнонит, висмутин, гематит, магнетит; редкие - висмут, станнин, алтаит, касситерит, айкинит, антимонит, арсенопирит [Манзырев, Лавров, 2016]. Количество сульфидов в рудах редко превышает 10 %. Свинцово-цинковое оруденение сосредоточено в основном в западной части интрузии и по ее периферии, а молибденовое – в южной и центральной частях. В рудном поле месторождения известно более 20 рудопроявлений золота, это сульфидизированные кварцевые, кварц-турмалиновые, кварц-карбонатные жилы и, реже, зоны прожилкования, относимые к поздней, Аиполиметаллической стадии оруденения. Жилы имеют мощность до 1,5 м, прожилковые зоны – до 15 м. Протяженность рудных жил и зон составляет первые сотни метров. Содержания золота обычно не превышают 4 г/т, иногда достигают 17-37 г/т. Для богатых золотом рудных тел характерны повышенные содержания Pb, Cu, W, Bi. Кварц-молибденитовые жилы находятся на нижнем-среднем уровне оруденения и почти не содержат золота [Киселева и др., 2020], но молибденит обычен и в более поздних, золотоносных квари-сульфидных жилах, а полиметаллическая ассоциация может быть совмещена с молибденовыми рудами [Государственная..., 2002]. Данных по минералогическим особенностям самородного золота Шахтаминского месторождения и его химическому составу в опубликованной литературе почти нет. Г.А. Юргенсон [2020] отмечает, что в эпитермальных кварц-сульфидно-доломитовых жилах участка Кулинда, кроме обычных для полиметаллической ассоциации сфалерита, галенита, халькопирита, пирита, установлен также серебросодержащий тетраэдрит. В нем находятся вкрапления (0,01-0,02 мм) золота низкой (444 %) и средней (820 %) пробности.

Долины почти всех рек, берущих начало с Шахтаминской интрузии, золотоносны [Корчагина, Агибалов, 2020]. Из самой крупной россыпи р. Шахтама (с притоками) добыто более 25 тонн золота. Протяженность ее - около 20 км. Промышленные, средние и мелкие по масштабам россыпи золота известны также по рекам Кулинда, Дыгиня, Синяха и др. Добыча золота на некоторых из них продолжается. Россыпи относятся в основном к долинному аллювиальному типу, мелкозалегающие, четвертичного возраста, мощность торфов в верхних-средних по течению их частях не превышает 6 м. Золото в россыпях преимущественно мелкое (до 1 мм, чаще даже до 0,25 мм) и имеет пробность 827-875 ‰ [Государственная..., 2002], в шлихах ему сопутствуют магнетит, ильменит, гематит, шеелит.

Методика работ

В основу работы положен фактический материал, отобранный при участии авторов в результате полевых работ последних лет. Самородное золото получено из отвалов отработки и целиковых участков автохтонных россыпей рек Шахтама, Синяха, Кулинда, находящихся в контуре Шахтаминского рудного узла, и из лежалых хвостов обогащения руд на Шахтаминской фабрике. В процессе минералогического анализа шлихов отбирались монофракции золота, из которых были изготовлены полированные шашки-аншлифы на эпоксидной основе. Для поиска включений минералов в золотинах использовался рудный микроскоп AxioScope A.1 (Carl Zeiss). Минералы определялись при помощи сканирующего электронного микроскопа (SEM) MIRA 3 LMU (Tescan Ltd.) с системой микроанализа INCA Energy 450 XMax 80 (Oxford Instruments Ltd-NanoAnalysis Ltd.) с термополевой эмиссией. Химический состав зерен самородного золота определялся на электронном микрозонде JEOL JXA-8100 с использованием волнового дисперсионного спектрометра (WDS) с тонко сфокусированным пучком (< 2 мкм). Пределы обнаружения основных компонентов макросостава самородного золота (Аи, Ад, Нд, Си) составили 0,05-0,1 мас. %.

В случае если в разных местах одной и той же золотины определения химического состава показывали близкие значения, в расчет принималось только одно из них. При микрозондовом картировании участков золотин шаг составлял 0,3 мк, время одного анализа -0,3 с.

Микрозондовый и SEM анализы выполнены в ЦКП многоэлементных и изотопных исследований ИГМ СО РАН. Исследование внутреннего строения золотин методом дифракции обратно рассеянных электронов (EBSD) проводилось в ресурсном центре

«Геомодель» СПбГУ на сканирующем электронном микроскопе Hitachi S-3400N с термополевой эмиссией и приставками EDX, WDX, EBSD. Метод дает информацию об элементном составе и кристаллической структуре образцов.

Минералого-геохимическая характеристика самородного золота

Морфология золота достаточно разнообразна (рис. 2). В россыпи р. Шахтама преобладают уплощенные, неправильной формы окатанные лепешковидные золотины (со слабо выраженным рельефом поверхности) и уплощенные, слабоокатанные и неокатанные жилковидно-пластинчатые (с ксеноморфным рельефом).

Присутствуют также золотины кристаллоподобной формы. Золото россыпи р. Синяха в большинстве

своем слабоокатанное, неуплощенное, массивной и комковато-массивной морфологии, распространены также кристаллы и таблички (уплощенные кристаллы). Ксеноморфные и лепешковидные формы встречаются реже.

Отмечаются отпечатки минералов на поверхности золотин и единичные сростки с кварцем. Самые крупные золотины из россыпи р. Кулинда имеют окатанную проволочковидную, овальную и слабо окатанную таблитчатую (с отпечатками на поверхности) формы, мелкие представлены неокатанными табличкой и кристалликом. Рудное золото из отвалов Шахтаминской фабрики характеризуется причудливой, часто удлиненной, ксеноморфной морфологией и, как правило, уплощено. Размеры золотин из россыпей составляют от менее 0,1 до 1,8 мм (р. Синяха), рудного — не превышают 0,5 мм (табл. 1).

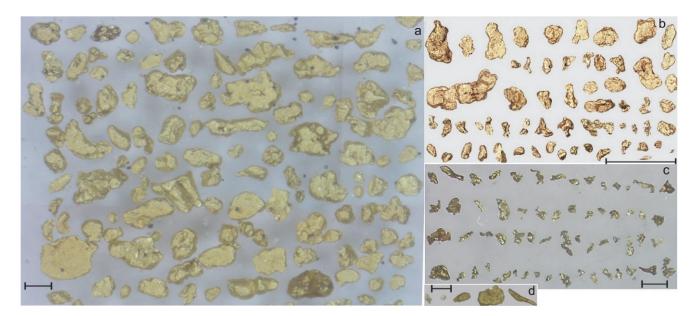


Рис. 2. Фотографии золотин под бинокулярным микроскопом

a — россыпь р. Синяха; b — россыпь р. Шахтама; c — отвалы Шахтаминской фабрики; d — россыпь р. Кулинда. Линейка соответствует $0.5\,\mathrm{mm}$

Fig. 2. Photos of gold particles using a binocular microscope

a – placer of the Sinyakha River; b – placer of the Shakhtama River; c – dumps of the Shakhtama factory; d – placer of the Kulinda river. The ruler is 0.5 mm

Таблица 1

Гранулометрия золота

Granulometry of gold particles

Table 1

Объект	a. A.:	Выход золотин (% по штукам) по фракциям крупности, мм						
Ооъект	n Au	< 0,1	0,1-0,25	0,25-0,5	0,5–1	1–2		
Россыпь р. Шахтама	78	10,3	52,6	30,8	5,1	1,3		
Россыпь р. Синяха	230	5,2	14,4	57,8	18,3	4,3		
Россыпь р. Кулинда	5	20	20	20	40	_		
Шаутаминская фабрика	63	3.2	66.7	30.1		_		

Химический состав самородного золота россыпей довольно сильно варьирует, но основными его компонентами являются Au и Ag, а гипергенные преобразования золотин проявлены слабо и выражаются в наличии на некоторых из них тонких и прерывистых высокопробных оторочек.

В россыпи р. Шахтама пробность золота составляет 663–999 ‰ (среднее 903 ‰), медь в составе Au или отсутствует, или находится в следовых количествах (до 0,12 мас. %). Примесь ртути показало 15 % анализов, в двух случаях содержания Hg в Au составили 3,1 и 0,9 мас. %, в остальных – 0,25 мас. % и менее. Распределение пробности Au внутри золотин довольно неравномерно (рис. 3).

У некоторых из них наблюдаются высокопробные гипергенные каймы, у многих — низкопробные участки различного размера (см. рис. 3, c, d), низкопробные прожилки (см. рис. 3, b, d) и отдельные зерна (см. рис. 3, a). Границы низкопробных участков и прожилков, как правило, нечеткие. На графике также обозначены золотины с включениями минералов, они будут рассмотрены ниже. В россыпи р. Синяха вариация пробности золота более значительная — 478—994 % (850 %), содержания Си в Аи также следовые (до 0,09 мас. %), лишь в одном случае

0,53 мас. % (пробность Au 937 ‰), ртуть в составе золота не обнаружена. Вариация пробности в пределах отдельных золотин обычно не превышает 20 ‰, иногда составляет 30–60 ‰, изредка — более 100 ‰. Десять золотин (их размеры 0,4–1 мм) имеют неоднородное внутреннее строение (рис. 4) двух типов с вариацией содержаний Ag в Au — до 20 мас. % и более. Первый тип представлен одной золотиной (см. рис. 4, *a*).

В высокопробной матрице (994 ‰) выделяются участки с в разной степени повышенными содержаниями серебра (до 47,6 мас. % Ag). Границы участков разного состава резкие, а внутри самых низкопробных наблюдается зональность. Это либо геометрически правильное чередование зон с различным содержанием Ag, сходное с ростовой зональностью, либо постепенное увеличение содержания Ag от центра участка к его краю.

Также наблюдаются прожилки низкопробного Au в более высокопробном. На EBSD-изображении видно, что золото с пробностью около 880 ‰ имеет крупнозернистое, двойниковое строение, с пробностью 994 ‰ — структуру перекристаллизации, а низкопробные участки и прожилки в структуре Au не выражаются.

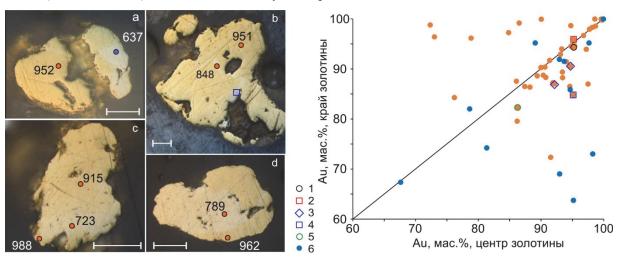


Рис. 3. Неоднородность химического состава золотин из россыпи р. Шахтама

Цифрами на фотографиях обозначена пробность золота, ∞ . Линейка соответствует 0,05 мм. На графике: 1-6-3 олотины с включениями ильменита (1), минерала состава TiO_2 (2), блеклой руды (3), галенита (4), арсенопирита (5) и с содержаниями Hg > 0,1 мас. ∞ (6)

Fig. 3. Heterogeneity of the chemical composition of gold particles from the placer of the Shakhtama River The numbers in the photos indicate the fineness of gold, ‰. The ruler is 0,05 mm. On the graph: 1–6 – gold particles with inclusions of ilmenite (1), a mineral of composition TiO₂ (2), fahlore (3), galena (4), arsenopyrite (5) and with Hg content > 0,1 wt. % (6)

Второй тип (см. рис. 4, b). Более низкопробное золото образует межзерновые прожилки с нечеткими границами в матрице, имеющей зернистое строение. Максимальная пробность Au внутри зерен составляет 810 ‰ и 852–933 ‰. Содержания серебра постепенно увеличиваются от центра зерен к их краям, достигая

наибольших значений в центре прожилков. Эта зональность может нарушаться присутствием слойков и линз, сложенных относительно высокопробным золотом.

Межзерновые прожилки, обогащенные Ag, в разнозернистой, двойниковой структуре Au также не отображаются.

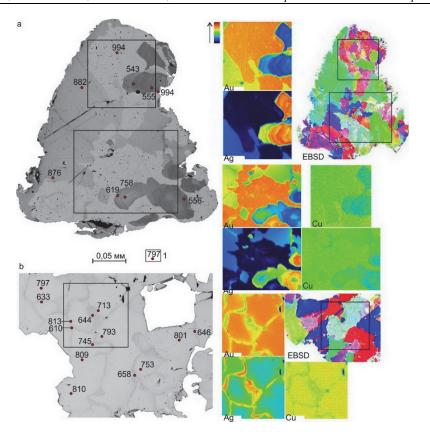


Рис. 4. Неоднородные по химическому составу золотины из россыпи р. Синяха

SEM- и EBSD-изображения (цвет X) полированных золотин и результаты микрозондового картирования по содержаниям Au, Ag, Hg, Cu. Пределы содержаний, мас. %: Au – 52,4–99,4; Ag – 0,6–47,6; Hg – не обнаружена; Cu – 0–0,06. 1 – пробность Au (‰) по данным точечных микрозондовых определений. Полные размеры золотин составляют 0,4 мм (а) и 0,5 мм (b)

Fig. 4. Chemically heterogeneous gold particles from the placer of the Sinyakha River

SEM- and EBSD-images (X color) of polished gold particles and results of microprobe mapping on the contents of Au, Ag, Hg, Cu. Content limits, wt.%: Au - 52.4-99.4; Ag - 0.6-47.6; Hg - not detected; Cu - 0-0.06. 1 - fineness of Au (%) according to point microprobe analysis. The full sizes of gold particles are 0.4 mm (a) and 0.5 mm (b)

Картина распределения содержаний Си в Аи менее отчетливая (из-за следовых количеств Си), сходная с распределением пробности золота. Эндогенный характер неоднородности внутреннего строения золотин косвенно подтверждается присутствием на некоторых из них тонких высокопробных гипергенных кайм. Золотины из россыпи р. Кулинда имеют однородное внутреннее строение, лишь в одной выделяется пересекающий ее прожилок с пробностью 880 ‰, что на 100 ‰ меньше, чем в матрице. Пробность Аи составляет 569—990 ‰ (836 ‰) при содержаниях Си в Аи до 0,11 мас. %. Ртуть обнаружена в двух золотинах с пробностью 569 ‰ и 881 ‰ в количествах 0,09 и 0,21 мас. % соответственно.

Распределение содержаний в золоте примесей меди и ртути, в зависимости от его пробности, иллюстрирует рис. 5. Для меди наблюдается тенденция к прямой корреляции с пробностью Au, более четкая для золота россыпи р. Синяха, а для ртути, в значимых количествах присутствующей в золоте

россыпи р. Шахтама, — обратная зависимость между содержаниями Au и Hg. Эта зависимость определяется наличием лишь нескольких обогащенных ртутью относительно низкопробных золотин (рис. 5, c, d).

Золото из хвостов обогащения руд на Шахтаминской фабрике имеет пробность 742–974 ‰ (821 ‰), вариация ее в пределах отдельных золотин небольшая – до 40 ‰. Содержания Си в Аи ниже предела обнаружения, до 0,05 мас. %, Нд в Аи нет. В четырех золотинах присутствуют включения халькопирита (пробность этих золотин 800–825 ‰), в трех – галенита (783–824 ‰), в одной (784 ‰) – арсенопирита и в пяти (742–804 ‰ и 879 ‰) – пирита, есть также включения кварца.

В одном случае пирит находится в Au вместе с халькопиритом, в двух – с галенитом. В шлиховом концентрате преобладают пирит и галенит, присутствуют халькопирит, шеелит, сфалерит, молибденит, арсенопирит, вольфрамит.

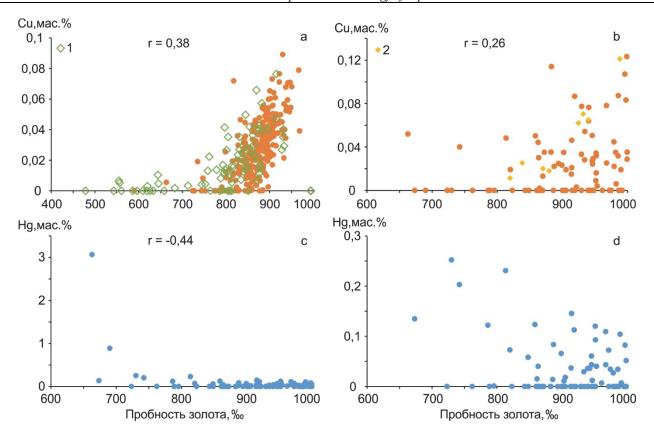


Рис. 5. Графики зависимости содержаний Си, Нд в золоте от его пробности

а — россыпь р. Синяха, n = 325 (1 — золотины с неоднородным внутренним строением), на графике не показана точка с пробностью Au 937 ‰ и содержанием Cu 0,53 мас. %; b — россыпь р. Шахтама, n = 86 (2 — россыпь р. Кулинда, n = 8); c, d — россыпь р. Шахтама, n = 86 (d — фрагмент c). г — коэффициент корреляции между содержаниями Au и Cu, Hg

Fig. 5. Graphs of the dependency of the contents of Cu, Hg in gold on its fineness

a – Sinyakha River placer, n = 325 (1 – gold particles with heterogeneous internal structure), the graph does not show a point with a fineness of Au 937 ‰ and a Cu content of 0.53 wt. %; b – placer of the Shakhtama River, n = 86 (2 – placer of the Kulinda River, n = 86); c, d – placer of the Shakhtama River, n = 86 (d – fragment c). r – the correlation coefficient between the contents of Au and Cu, Hg

По россыпи р. Синяха, более чем в 50 золотинах из 230 присутствуют включения рудных минералов (рис. 6). Это пирит, галенит, халькопирит, минерал состава TiO2, сульфосоли Bi составов BiCuS, BiPbCuS, BiPbAgS, BiPbAgCuS, арсенопирит, борнит, ильменит. Кроме того, в одной золотине найдено включение висмутина. Нерудные минералы представлены кварцем, мусковитом, сидеритом, хлоритом, эпидотом. Ассоциации минералов-включений в следующие: сульфосоли Ві-галенит-пирит (рис. 6, e, f); висмутин-пирит (рис. 6, c); халькопиритпирит (рис. 6, g); халькопирит-ТіО₂-кварц-хлорит (рис. 6, b); халькопирит-арсенопирит; борнит-кварц (рис. 6, a); галенит-пирит-эпидот; пирит-кварц-хлорит; пирит- TiO_2 -мусковит (рис. 6, k); TiO_2 -кварц (см. рис. 6, l), TiO_2 -ильменит (рис. 6, i). В неоднородных по содержанию Ад золотинах (2-го типа) присутствуют включения пирита, сульфосолей Ві, галенита (рис. 6, f, h), минерала состава TiO_2 .

Минерал состава TiO₂ (вероятно, рутил) обнаружен в пяти золотинах, он образует линейно расположенные или отдельные вкрапления в Au, без явной связи с ильменитом (рис. 6, *i*), и срастается с мусковитом или кварцем. Во всех рутилах содержится примесь Fe (0,5–1,5 мас. %), в 4 случаях V (около 0,5 мас. %), в двух случаях W (1–2 мас. %) и еще в одном Nb (1 мас. %). В двух из трех включений ильменита марганца больше чем железа (около 20 мас. % Mn-манганоильменит), в одном из них также присутствует Nb (2 мас. %), в третьем примеси отсутствуют. Это включение находится у самого края золотины, зерно ильменита наполовину замещено гетитом (с 1 мас. % Ti).

Частота встречаемости минералов-включений и пробность содержащих их золотин отображены на рис. 7. В случае нахождения включений минералов в золотинах, неоднородных по химическому составу, в расчет принималась пробность того участка золотины, в котором находится включение.

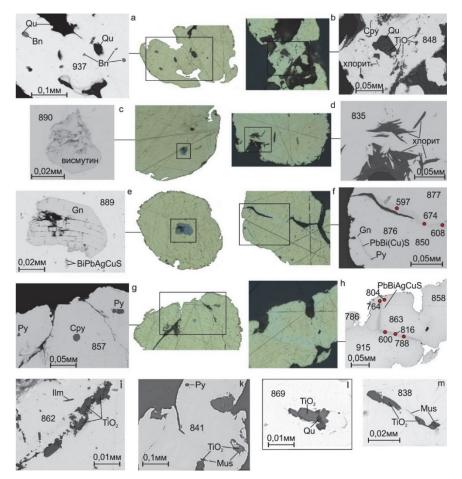


Рис. 6. Включения минералов в золотинах из россыпи р. Синяха

Фотографии под рудным микроскопом и SEM-изображения полированных золотин. Минералы: Qu – кварц; Bn – борнит; Ру – пирит; Сру – халькопирит; Gn – галенит; Mus – мусковит. Цифрами обозначена пробность золота, ‰

Fig. 6. Inclusions of minerals in gold particles of the Sinyakha placer

Photos using a ore microscope and SEM-images of polished gold particles. Minerals: Qu – quartz; Bn – bornite; Py – pyrite; Cpy – chalcopyrite; Gn – galena; Mus – muscovite. The numbers indicate the fineness of gold, ‰

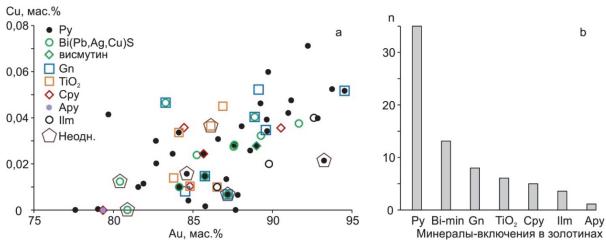


Рис. 7. Состав золотин с включениями рудных минералов (a) и частота встречаемости различных минералов-включений в золотинах (b) из россыпи р. Синяха

Минералы: Py – пирит; Gn – галенит; Cpy – халькопирит; Apy – арсенопирит; Ilm – ильменит. B пятиугольниках – включения, находящиеся в неоднородных по содержанию Ag золотинах

Fig. 7. The composition of gold particles with inclusions of ore minerals (a) and the frequency of presence of inclusions various minerals in gold particles (b) of the Sinyakha placer

Minerals: Py – pyrite; Gn – galena; Cpy – chalcopyrite; Apy – arsenopyrite; Ilm – ilmenite. In pentagons – inclusions that are in heterogeneous of the Ag content of gold

Среди включений преобладают пирит, минералы Ві и галенит, иногда находящиеся в золотинах совместно, даже выполняя один прожилок (см. рис. 6, f). Диапазон пробности золота, содержащего включения сульфосолей Ві или (и) галенита, составляет 800-950 %. В этот диапазон укладывается пробность почти всех золотин россыпи р. Синяха. Включения минерала состава ТіО2 и халькопирита чаще встречаются в золоте с пробностью около 850 %, включение арсенопирита находится в относительно низкопробном золоте (790 ‰), а включения ильменита – в золоте с пробностью 862 ‰, 897 ‰, 932 ‰.

Среди минералов-включений в золотинах из россыпей рек Шахтама и Кулинда также преобладает пирит (табл. 2).

Пирит находится в золоте разной пробности, арсенопирит, галенит и блеклая руда в относительно низ-

Россыпь

копробном, но эти золотины неоднородны по содержанию Ag, а халькопирит, ильменит и минерал состава ТіО2 (без примесей) - в высокопробном Аи. Присутствуют также включения кварца, гетита.

Минеральный состав золотосодержащих шлиховых концентратов в россыпях рек Шахтама, Синяха, Кулинда сходен. Преобладает магнетит, составляющий, соответственно, 60-80, 40-50 и 80-90 мас. % шлихов. Следующими по распространенности минералами являются циркон, сфен, ильменит, амфиболы, пироксены, гематит, далее – шеелит, эпидот, апатит. В россыпи р. Синяха присутствуют также псевдоморфозы лимонита (или гетита) по пириту, свежий пирит, турмалин и единичные знаки киновари. Весовой выход шлиха в пробах по россыпям составил 0,4- 2 KF/M^3 .

Минералы-включения в золотинах из россыпей рек Шахтама и Кулинда

Table 2

Таблица 2

Minerals-inclusions in the gold particles of the Shakhtama and Kulinda placers								
		Ризионовия						
	Au	Cu	Hg	Ag	Включения			
	86,26	0,04	-	13,70	Py, Apy			
	86,52	_	_	13,48	Py			
	91,44	0,02	0,04	8,50	Py			
	93,69	_	0,09	6,22	Py			
	95,35	_	0,04	4,61	Py			

	Au	Cu	Hg	Ag	
Шахтама	86,26	0,04	_	13,70	Py, Apy
Шахтама	86,52	_	_	13,48	Py
Шахтама	91,44	0,02	0,04	8,50	Py
Шахтама	93,69	_	0,09	6,22	Py
Шахтама	95,35	_	0,04	4,61	Py
Шахтама	97,22	_	0,07	2,71	Py
Шахтама	99,95	0,02	0,03	_	Py
Шахтама	95,22	_	_	4,78	Ilm
Шахтама	84,82	_	0,06	15,12	Gn
Шахтама	95,19	0,03	_	4,77	TiO ₂
Шахтама	90,55	_	_	9,45	Fh
Шахтама	86,98	_	_	13,02	Fh
Кулинда	56,88	_	0,09	43,02	Py
Кулинда	94,16	0,06	0,00	5,78	Сру

Примечание. Ру – пирит; Сру – халькопирит; Ару – арсенопирит; Gn – галенит; Fh – блеклая руда; Ilm – ильменит. Жирным шрифтом выделены включения, находящиеся в неоднородных по содержанию Ад золотинах.

Note. Py - pyrite; Cpy - chalcopyrite; Apy - arsenopyrite; Gn - galena; Fh - fahlore; Ilm - ilmenite. Bold font - inclusions that are in heterogeneous of the Ag content of gold.

Обсуждение результатов

Самородное золото россыпей рек Синяха и Шахтама различается по минералого-геохимическим признакам. В россыпи р. Синяха оно несколько более крупное (см. табл. 1), массивное, слабо окатанное и, как и в россыпи р. Кулинда, в основном идиоморфной морфологии. Уплощенные, в том числе и ксеноморфные, слабо- и неокатанные золотины характерны для россыпи р. Шахтама, по гранулометрии и морфологии это золото походит на рудное золото Шахтаминской фабрики (см. рис. 2), за исключением наличия золотин крупнее 0,5 мм. В золоте россыпи р. Синяха отсутствует примесь ртути, а прямая корреляция между содержаниями Аи и Си выражена более четко, чем в россыпи р. Шахтама (см. рис. 5). Различается золото этих россыпей и по пробности (рис. 8).

Первое более низкопробно и по этому признаку ближе к рудному (см. рис. 8, 4) и особенно к золоту россыпи р. Кутоманда (см. рис. 8, 5), приуроченной к западному флангу Шахтаминского рудного узла (см. рис. 1) и изученной Н.Н. Поздняковой [2015]. Россыпь состоит из двух пластов, коренные источники золота которых находятся на разном уровне эрозионного среза: в верхнем пласте (Q_{3-4}) золото имеет пробность 963 ‰ (n=4, см. рис. 8) и содержит около 2 мас. % Си и около 0,5 мас. % Нg, включения магнетита, образуют сростки с ильменитом, пироксеном (Au-2). Внутреннее строение этого золота разнозернистое, двойниковое, перекристаллизованное, морфология — ксеноморфная, псевдорудная; в нижнем (N-Q₁) пробность Au 751–925 ‰ (847 ‰), примесь Hg также составляет в основном до 0,5 мас. %, примесь

Си в Аи небольшая, но постоянная, в золоте есть включения магнетита, турмалина, молибденита (Au-1). Это золото слабоокатанное и имеет массивную, идиоморфную морфологию. Вследствии эндогенной перекристаллизации, вызванной метаморфизмом золота, у Au-1 наблюдаются структуры замещения высокопробного золота более низкопробным, структуры грануляции, зональные структуры низкопробного золота. В верховьях россыпи 70 мас. % золотин имеют размер менее 0,5 мм (в основном 0,25–0,5 мм). В шлихах преобладают магнетит (75–80%) и ильменит (до 28 %), присутствуют шеелит (до 4 %), сульфиды.

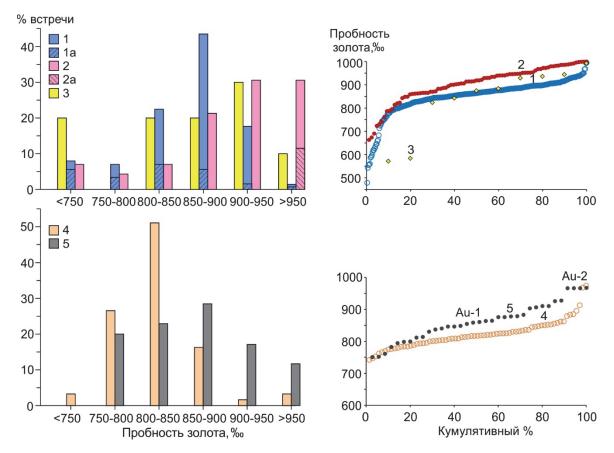


Рис. 8. Гистограммы и кумулятивные графики пробности золота

1 — россыпь р. Синяха, n = 325, в том числе 1a — неоднородные по химическому составу золотины; 2 — россыпь р. Шахтама, n = 86, в том числе 2a — гипергенные каймы на золотинах; 3 — россыпь р. Кулинда, n = 10; 4 — рудное золото Шахтаминской фабрики, n = 69; 5 — россыпь р. Кутоманда, n = 35, по данным [Позднякова, 2015]

Fig. 8. Histograms and cumulative graphs of gold fineness

1 – placer of the Sinyakha River, n = 325, incluse 1a – heterogeneous of the chemical composition of gold particles; 2 – placer of the Shakhtama River, n = 86, incluse 2a – hypergene rims on gold particles; 3 – placer of the Kulinda River, n = 10; 4 – ore gold of the Shakhtama factory, n = 69; 5 – placer of the Kutomanda River, n = 35, according to [Pozdnyakova, 2015]

Аu-2 р. Кутоманда параллелизуется Н.Н. Поздняковой [2015] с золотом-1 Бугдаинского месторождения, а Au-1 р. Кутоманда – с золотом-2 и 3 его же. Источником Au-1 россыпи р. Кутоманда предполагаются золото-полисульфидные руды верхних горизонтов Шахтаминского месторождения, а Au-2 – более

глубоких, что подтверждается и результатами ICP MS анализа. В Au-1, относительно Au-2, повышены содержания Ag, Zn, Sb и понижены Pd, Cu, Mo. Бугдаинское месторождение по масштабам крупнее Шахтаминского и относится не к жильному, а к штокверковому типу, но золото встречается только в

кварц-полиметаллических жилах и прожилках, пространственно и структурно обособленных от штокверковых руд [Коваленкер и др., 2011]. Масштабность золотого оруденения прямо коррелирует с интенсивностью проявления березитизации пород. Золото-1 заключено в пирите и имеет пробность 860-962 ‰. Золото-2 резко преобладает в рудах, оно самое крупное по размеру выделений (до десятых долей мм) и ассоциирует почти со всеми минералами кварцполиметаллических жил, его пробность составляет 700-820‰. Золото-3 наименее распространено, более низкопробно (вплоть до < 600 %) и находится в ассоциации с поздними халцедоном, ковеллином, халькозином. В золоте (1-3) присутствуют примеси меди (до 2 мас. %, среднее – 0,33 мас. %) и, редко, ртути (до 0,68 мас. %). В верхней по течению части россыпи рч. Бугдая золото крупнее, чем в рудах (80 % приходится на фракцию 1-6 мм) и имеет пробность 791-932 ‰. Присутствуют золотины с такими же как у Au-1 россыпи р. Кутоманда внутренними структурами [Позднякова, 2015].

Золото россыпи р. Синяха по пробности и морфологии сходно с Au-1 россыпи р. Кутоманда, но внутренние структуры зерен Аи, также образованные при эндогенном термальном метаморфизме золота, другие. Результаты EBSD-изучения кристаллической структуры золотин и микрозондового картирования указывают на диффузионный механизм перераспределения серебра. Низкопробные прожилки и участки не выражены в структуре золота. Границы прожилков нечеткие, постепенное или зональное изменение содержаний Ад наблюдается и в пределах низкопробных участков. Структура 1-го типа (см. рис. 4, a) могла возникнуть при перекристаллизации золота с пробностью около 880 % с частичным замещением его золотом с пробностью 994 ‰. Первичная крупная зернистость Аи нарушилась, излишки серебра отгонялись к краю зерна и сконцентрировались в пределах нескольких участков. В одном из них, вероятно, произошла повторная диффузия серебра с уменьшением содержания Ад в центре участка. В исходном золоте (≈880 ‰) также наблюдается небольшое обогащение серебром двойникового шва. Структура 2-го типа (см. рис. 4, b) является результатом диффузии серебра от внутренних частей зерен к межзерновым прожилкам.

Ассоциация минералов-включений в золоте россыпи р. Синяха согласуется с сульфидно-сульфосольным и галенит-(сфалерит)-халькопиритовым минеральными типами золотого оруденения, присутствуют также включения минералов метасоматитов (мусковит, сидерит, хлорит, эпидот). На Бугдаинском месторождении минералы Bi (BiPbAgCuS состава,

висмутин) в золото-полиметаллических жилах ассоциируют с халькопиритом, галенитом, реже - с пиритом, являются одними из самых поздних и особенно характерны для обогащенных золотом участков жил [Коваленкер и др., 2011]. Находящийся во включениях в Аи россыпи р. Синяха минерал состава ТіО2 образован не по ильмениту, а, судя по сросткам с мусковитом и кварцем, является, скорее всего, минералом метасоматитов. Примеси W, Nb, Fe, V характерны для рутила месторождений золота, он находится как в кварцевых жилах, так и в золотоносных метасоматитах. Рутил, развивающийся по ильмениту, содержит только небольшое количество Fe. Примеси W и Nb в рутиле – косвенные признаки связи золотого оруденения с гранитоидным магматизмом [Максаров и др., 2020]. Таковыми же признаками являются наличие включений минералов Ві и небольшие содержания Си в россыпном золоте, прямо коррелирующие с его пробностью [Chapman et al., 2018]. Манганоильменит может быть приурочен к аплитам. Включения рудных минералов находятся примерно в 25 % золотин россыпи р. Синяха, такая большая частота встречаемости включений характерна для россыпного золота, источником которого является эпитермальное оруденение [Chapman et al., 2021].

Золото россыпи р. Шахтама по своей высокой пробности и морфологии сопоставимо с Au-2 россыпи р. Кутоманда. Источником его, вероятно, являются Аи-полиметаллические руды (включения в Аи галенита и блеклой руды) более глубоких горизонтов месторождения. Больший эрозионный срез косвенно подтверждается богатством и масштабностью россыпи р. Шахтама. Внутренняя неоднородность золота (низкопробные участки, зерна, прожилки с нечеткими границами в высокопробном золоте) также, вероятно, является результатом диффузионного перераспределения серебра. Высокопробное золото с подобными внутренними структурами встречается в россыпи р. Быстрая, сформированной в основном за счет золото-скарнового оруденения [Savichev et al., 2021] и в аллювиальных отложениях некоторых рек неподалеку от Шахтаминского рудного узла. Размер неоднородных по содержанию Ад золотин в россыпи р. Шахтама (0,15-0,5 мм) меньше, чем в россыпи р. Синяха (0,4–1 мм). Золото россыпи р. Кулинда по пробности и наличию примеси Нд походит на таковое р. Шахтама, но объем выборки очень мал. Рудное золото Шахтаминского (с фабрики) и Бугдаинского месторождений более низкопробно, чем золото связанных с этими месторождениями россыпей. В первом, в отличие от золота россыпи р. Шахтама, все включения рудных минералов (кроме одного, пирита) находятся в относительно низкопробном золоте (742825 ‰). В этот диапазон укладывается пробность 60 % золотин.

Включения одних и тех же минералов присутствуют в россыпном золоте разной пробности, они могут относиться к разным генерациям (пирит, халькопирит). Обнаруженные в преобразованных золотинах россыпи р. Синяха включения минералов (см. рис. 7) изначально могли находиться в более низкопробном золоте, а россыпи р. Шахтама (см. табл. 2) – в более высокопробном, но это не нарушает общей картины. Включения минералов поздней стадии оруденения, таких как сульфосоли Ві, галенит, блеклая руда, есть и в высокопробном золоте, что может быть следствием наложенного характера россыпеобразующего золотого оруденения. Подобные закономерности нахождения минералов-включений в самородном золоте характерны и для россыпей Быстринского и Лугиинского районов [Колпаков и др., 2022], Култуминского месторождений, несмотря на все их различия. В сульфидных рудах золотосодержащих скарновых, порфировых, полиметаллических и других месторождений обычно преобладает или значительно присутствует очень мелкое, редко достигающее размера 0,1 мм золото, часто заключенное в сульфидах, тем не менее, месторождения сопровождаются россыпями золота. На постсульфидной стадии оруденения происходит мобилизация золота из существующих золотоносных образований и его переотложение с укрупнением и повышением пробности [Александров, 2007; Chapman et al., 2018]. Причиной этого является, скорее всего, наложение поздних стадий гидротермального процесса. В переотложенном золоте могут находиться включения ранее или одновременно с ним образованных минералов. Вполне вероятно, что его пробность может коррелировать с пробностью переотлагаемого Аи. Термальный метаморфизм типичен для золота, находящегося в ореолах гранитоидных массивов, и приводит также к дезинтеграции зернистых внутренних структур Au с замещением золота средней пробности весьма высокопробным золотом и диффузией Ад к границам зерен, к замещению высокопробного золота более низкопробным по периферии зерен и внутренним участкам их деформации, к образованию структур грануляции, зональных структур низкопробного золота и к другим эндогенным преобразованиям золота [Савва, Прейс, 1990; Николаева, Яблокова, 2007; Яблокова и др., 2020; Chapman et al., 2021]. Сохранность в россыпях самородного золота с такими структурами свидетельствует о близости коренных источников, что подчеркивается морфологией и слабой степенью гипергенной преобразованности золота [Глушкова, Никифорова, 2011; Глушкова, 2017].

Заключение

Самородное золото автохтонных россыпей рек Синяха и Шахтама, источники которых приурочены к периферической и центральной зонам Шахтаминского рудного узла (интрузии), довольно контрастно различается по морфологии и химическому составу. Первое более крупное, идиоморфной морфологии, массивное («весовое»), относительно низкопробное. Для него характерны прямая зависимость между содержаниями Аи и Си, наличие включений сульфосолей Ві (в том числе в ассоциации с галенитом и пиритом), халькопирита в золоте разной пробности. У некоторых золотин проявлены внутренние структуры диффузионного концентрирования серебра в межзерновых прожилках и отдельных участках, структура перекристаллизации с замещением среднепробного золота очень высокоопробным. Второе представлено ксеноморфными, уплощенными выделениями, по морфологии и гранулометрии близкими к рудному золоту Шахтаминской фабрики.

Пробность золота россыпи р. Шахтама заметно выше, в нем изредка присутствуют примесь ртути и включения блеклой руды, галенита. Внутренние структуры золотин, вероятно, также диффузионного происхождения, выражаются в наличии участков, отдельных зерен, прожилков низкопробного золота в высокопробном. Россыпи золота сформированы за счет позднего оруденения, наложенного на золотополиметаллическое (для россыпи р. Шахтама — более глубокого уровня).

Часть золота после переотложения, приведшего к повышению его крупности и пробности, вновь подвергалась термальному метаморфизму, что вызвало диффузионное перераспределение серебра в зернах Аи. Все это указывает на пространственную совмещенность и многостадийность золотого оруденения. Ассоциация минералов-включений в золотинах соответствует сульфидно-сульфосольному типу руд и метасоматитам (березиты, пропилиты).

Можно предположить, что в коренных источниках россыпи р. Синяха более проявлена эпитермальная стадия золотого оруденения. На это указывают относительно низкая пробность россыпного золота, преобладающая ассоциация рудных минералов-включений в золотинах (сульфосоли Ві, галенит) и, косвенно, присутствие в шлиховом концентрате киновари. Различия в химическом составе самородного золота россыпей и его минеральные ассоциации отражают зональность размещения и уровень эрозионного среза золотого оруденения Шахтаминского месторождения, больший для коренных источников золота россыпи р. Шахтама.

Список источников

Александров С.М. Золото в процессах эндогенного и гипергенного изменения сульфидов в магнезиальных скарнах // Геохимия. 2007. № 2. С. 180–198.

Берзина А.П., Берзина А.Н., Гимон В.О., Крымский Р.Ш., Ларионов А.Н., Николаева И.В., Серов П.А. Шахтаминская Мо-порфировая рудно-магматическая система (Восточное Забайкалье): возраст, источники, генетические особенности // Геология и геофизика. 2013. Т. 54, № 6. С. 764–786.

Глушкова Е.Г. Золото Чочимбальского рудно-россыпного узла (Западное Верхоянье) // Наука и образование. 2017. № 1. С. 46–52.

Глушкова Е.Г., Никифорова З.С. Внутреннее строение россыпного золота бассейна средней Лены (юго-восток Сибирской платформы) // Записки Российского минералогического общества. 2011. Т. 140, № 1. С. 76–83.

Государственная геологическая карта Российской Федерации // Лист М-50-X (издание второе). Объяснительная записка. СПб. : Картографическая фабрика ВСЕГЕИ, 2002. 150 с.

Государственная геологическая карта Российской Федерации // Лист М-50 (третье поколение). Объяснительная записка. СПб. : Картографическая фабрика ВСЕГЕИ, 2010. 553 с.

Колпаков В.В., Неволько П.А., Фоминых П.А. Типохимизм и минеральные ассоциации самородного золота автохтонных россыпей районов Быстринского Au-Cu-Fe скарново-порфирового и Лугиинского Au-полиметаллического месторождений (восточное Забайкалье) // Разведка и охрана недр. 2022. № 6. С. 9–21.

Коваленкер В.А., Борисенко А.С, Прокофьев В.Ю., Сотников В.И., Боровиков А.А., Плотинская О.Ю. Золотоносные порфирово-эпитермальные рудообразующие системы: особенности минералогии руд, флюидный режим, факторы крупномасштабного концентрирования золота // Актуальные проблемы рудообразования и металлогении. Новосибирск : Гео, 2006. С. 103—104.

Коваленкер В.А., Киселева Г.Д., Крылова Т.Л., Андреева О.В. Минералогия и условия формирования руд золотоносного W-Мо-порфирового Бугдаинского месторождения (Восточное Забайкалье, Россия) // Геология рудных месторождений. 2011. Т. 53, № 2. С. 107–142.

Киселева Г.Д., Языкова Ю.И., Коваленкер В.А., Трубкин Н.В., Борисовский С.Е. Типоморфизм самородного золота как индикатор различных типов оруденения крупного скарново-порфирового Au-Fe-Cu месторождения Быстринское, восточное Забайкалье // Руды и металлы. 2020. № 1. С. 51–68.

Корчагина Д.А., Агибалов О.А. Опыт прогнозирования перспективных на золотое оруденение площадей на основе проведения комплексного анализа рудной и россыпной золотоносности (Забайкальский край) // Отечественная геология. 2020. № 1. С. 29–51.

Максаров Р.А., Дорошкевич А.Г., Прокопьев И.Р., Редин Ю.О., Потапов В.В. V-Nb-W-содержащий рутил золоторудного месторождения Каральвеем как потенциальный индикатор рудоносности // Геосферные исследования. 2020. № 3. С. 50–59.

Манзырев Д.В., Лавров А.Ю. Вещественный состав и строение лежалых хвостов обогащения руд месторождения Шахтаминское // Вестник ЗабГУ. 2016. Т. 22, № 1. С. 17–27.

Николаева Л.А., Яблокова С.В. Типоморфные особенности самородного золота и их использование при геологоразведочных работах // Руды и металлы. 2007. № 6. С. 41–57.

Позднякова Н.Н. Использование типоморфных признаков россыпного золота при прогнозировании и поисках рудных месторождений (на примере россыпей Шахтаминского района Забайкалья и россыпи р. Чай-Юрья Магаданской области) : дис. ... канд. геол.-минерал. наук. М. : ЦНИГРИ, 2015. 140 с.

Савва Н.Е., Прейс В.К. Атлас самородного золота Северо-Востока СССР. М.: Наука, 1990. 292 с.

Юргенсон Г.А. Золотосеребряная минеральная ассоциация в Шахтаминском рудном поле // Вестник ЗабГУ. 2020. Т. 26, № 6. С. 54–63

Яблокова С.В., Самосоров Г.Г., Позднякова Н.Н. Типоморфные особенности золота как критерии связи россыпей с коренными источниками золото-серебряного типа (на примере рудно-россыпного узла Многовершинное) // Отечественная геология. 2020. № 4-5. С. 24–38.

Chapman R.J., Allan M.M., Mortensen J.K., Wrighton T.M., Grimshaw M.R. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada // Mineralium Deposita. 2018. V. 53. P. 815–834.

Chapman R.J., Banks D.A., Styles M.T., Walshaw R.D., Piazolo S., Morgan D.J., Grimshaw M.R., Spence-Jones C.P., Thomas James Matthews T.J., Borovinskaya O. Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies // Mineralium Deposita. 2021. V. 56. P. 1563–1588.

Savichev A.A., Nevolko P.A., Kolpakov V.V., Redin Yu.O., Mokrushnikov V.P., Svetlitskaya T.V., Sukhorukov V.P. Typomorphic features of placer gold from the Bystrinsky ore field with Fe-Cu-Au skarn and Mo-Cu-Au porphyry mineralization (eastern Transbaikalia, Russia) // Ore Geology Reviews. 2021. V. 129. doi: 10.1016/j.oregeorev.2020.103948

References

Aleksandrov S.M. *Zoloto v processach endogennogo i gipergennogo izmeneniya sulfidov v magnesial'nych skarnach* [Gold behavior during endogenic and supergene alterations of sulfides in magnesian skarns] // *Geochimiya* [Geochemistry International]. 2007. 45 (2). pp. 152–169. In Russian. doi: 10.1134/S0016702907020048

Berzina A.P., Berzina A.N., Gimon V.O., Nikolaeva I.V., Krymskii R.S., Larionov A.N., Serov P.A. (2013) Shakhtaminskaya Moporfirovaya rudno-magmatitsheskaya sistema (vostotshnoye Zabaikal'e): vosrast, istotshniki, genetitsheskie osobennosti [The Shakhtama porphyry Mo ore-magmatic system (eastern Transbaikalia): age, sources and genetic features] // Geologiya i geofisika [Russian Geology and Geophysics]. V. 54 (6). pp. 587–605. In Russian. doi: 10.1016/j.rgg.2013.04.009

Glushkova E.G. Zoloto Tshotshimbal'skogo rudno-rossypnogo uzla (zapadnoye Verchoyan'e) [Gold of the Chochimbal ore-placer node (Western Verkhoyansk region)] // Nauka i obrazovanie [Science and education]. 2017. 1. pp. 46–52. In Russian

Gosudarstvennaya geologitsheskaya karta Rossiiskoi Federacii [State Geological Map of the Russian Federation]: Sheet M-50-X (second edition). Explanatory note. St. Petersburg: Cartographic factory VSEGEI. 2002. 150 p. In Russian

Gosudarstvennaya geologitsheskaya karta Rossiiskoi Federacii [State Geological Map of the Russian Federation]: Sheet M-50 (second edition). Explanatory note. St. Petersburg: Cartographic factory VSEGEI. 2010. 553 p. In Russian

Kolpakov V.V., Nevolko P.A., Fominykh P.A. *Typochimizm i mineral'nye associacii samorodnogo zolota avtochtonnych rossypei raionov Bystrinskogo Au-Cu-Fe skarnovo-porfirovogo i Lugiinskogo Au-polimetallitsheskogo mestorogdenii (vostotshnoe Zabaikal'e)* [Typochemistry and mineral associations of native gold from autochthonous placers in the areas of the Bystrinsky Au-Cu-Fe skarn-porphyry and Lugiinsky Au-polymetallic deposits (eastern Transbaikalia)] // *Razvedka i ochrana nedr* [Exploration and protection of mineral resources]. 2022. 6. pp. 9–21. In Russian. doi: 10.53085/0034-026X 2022 06 09

Kovalenker V.A., Borisenko A.S. Prokof'ev V.Yu., Sotnikov V.I., Borovikov A.A., Plotinskaya O.Yu. *Zolotonosnye porfirovo-epitermal'nye rudoobrazuyushie sistemy: osobennosti mineralogii rud, flyuidnyi regim, faktory krupnomasshtabnogo koncentrirovaniya zolota* [Gold-bearing porphyry-epithermal ore-forming systems: features of ore mineralogy, fluid regime, factors of large-scale gold concentration]: Actual problems of ore formation and metallogeny. Novosibirsk: Academic publishing house "Geo". 2006. pp. 103–104. In Russian

Kovalenker V.A., Kiseleva G.D., Krylova T.L., Andreeva O.V. *Mineralogiya I usloviya formirovaniya rud zolotonosnogo W-Mo-porfirovogo Bugdainskogo mestorozhdeniya (vostotshnoye Zabaikal'e, Rossiya)* [Mineralogy and formation conditions of ores of the goldbearing W-Mo-porphyry Bugdainskoye deposit (Eastern Transbaikalia, Russia)] // *Geologiya rudnych mestorogdenii* [Geology of Ore Deposits]. 2011. 53 (2). pp. 93–125. In Russian. doi: 10.1134/S1075701511020048

Kiseleva G.D., Yazykova Yu.I., Kovalenker V.A., Trubkin N.V., Borisovskii S.E. *Tipomorfism samorodnogo zolota kak indicator raslitshnych tipov orudeneniya krupnogo skarnovo-porfirovogo Au-Fe-Cu mestorogdeniya Bystrinskoe, vostotshnoye Zabaikal'e* [Typomorphism of native gold as an indicator of various types of mineralization of large skarn-porphyry Au-Fe-Cu deposit Bystrinskoe, eastern Transbaikalia] // *Rudy i metally* [Ores and Metals]. 2020. 1. pp. 51–68. In Russian. doi: 10.24411/0869-5997-2020-10005

Kortshagina D.A. Agibalov O.A. Opyt prognosirovaniya perspektivnych na zolotoe orudenenie ploshadei na osnove provedeniya kompleksnogo analiza rudnoi I rossypnoi zolotonosnosti (Zabaikalskii krai) [Experience in forecasting of perspective areas for gold mineralization based on a complex analysis of ore and placer gold content (Transbaikal area)]. Otetshestvennaya geologiya [National Geology]. 2020. 1. pp. 29–51. In Russian

Maksarov R.A., Doroshkevich A.G., Prokopyev I.R., Redin Yu.O., Potapov V.V. *V-Nb-W-soderzhatshii rutil zolotorudnogo mestorozhdeniya Karalveem kak potencialnyi indicator rudonosnosti* [V-Nb-W-bearing rutile from Karalveem gold deposit as a potential indicator for ore deposits]. *Geosfernye issledovaniya* — Geosphere research. 2020. 3. pp. 50–59. In Russian. doi: 10.17223/25421379/16/4

Manzyrev D.V., Lavrov A.Yu. Veshestvennyi sostav i stroenie lezhalych chvostov obogasheniya rud mestorogdeniya Shakhtaminskoye [The material composition and structure of old dumps of ore dressing at the Shakhtama deposit] // Vestnik ZabGU [Bulletin of the Transbaikalian State University]. 2016. 22 (1). pp. 17–27. In Russian

Nikolaeva L.A., Yablokova S.V. *Tipomorfnye osobennosti samorodnogo zolota i ih ispolzovanie pri geologorasvedotshnych rabotach* [Typomorphic features of native gold and their use in geological exploration] // *Rudy i metally* [Ores and Metals]. 2007. 6. pp. 41–57. In Russian

Pozdnyakova N.N. Ispol'zovanie tipomorfnych priznakov rossypnogo zolota pri prognozirovanii i poiskach rudnych mestorozhdenii (na primere rossypei Shakhtaminskogo raiona Zabaikal'ya i rossypi r.Tshai-Yur'ya Magadanskoi oblasti) [The use of placer gold typomorphic features in prognostication and searching for ore deposits (on the example of placers in the Shakhtaminsky district of Transbaikalia and placers of the Chai-Yurya River in Magadan region)]: Dissertation of candidate of geological and mineralogical sciences, specialty 25.00.11 – geology, prospecting and exploration of solid minerals, minerageny. Moscow. 2015. 140 p. In Russian

Savva N.E., Preis V.K. *Atlas samorodnogo zolota severo-vostoka SSSR* [Atlas of native gold of the North-East of the USSR]. Moscow: Publishing house "Nauka".1990. 292 p. In Russian

Yurgenson G.A. *Zolotoserebryanaya mineral'naya associaciya v Shakhtaminskom rudnom pole* [Gold-silver mineral association in the Shakhtama ore field] // *Vestnik ZabGU* [Bulletin of the Transbaikalian State University].2020. 26 (6). pp. 54–63. In Russian

Yablokova S.V., Samosorov G.G., Pozdnyakova N.N. *Tipomorfnye osobennosti zolota kak kriterii svyazi rossypei s korennymi istotchnikami zoloto-serebryanogo tipa (na primere rudno-rossypnogo uzla Mnogovershinnoe)* [Typomorphic gold features as criteria of placer association with primary gold-silver-type sources (example from Mnogovershinnoye ore placer cluster)]. *Otetchestvennaya geologiya* [National Geology]. 2020. 4–5. pp. 24–38. In Russian. doi: 10.47765/0869-7175-2020-10021

Chapman R.J., Allan M.M., Mortensen J.K., Wrighton T.M., Grimshaw M.R. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada. Mineralium Deposita. 2018. 53. pp. 815–834. doi: 10.1007/s00126-017-0782-0

Chapman R.J., Banks D.A., Styles M.T., Walshaw R.D., Piazolo S., Morgan D.J., Grimshaw M.R., Spence-Jones C.P., Thomas James Matthews T.J., Borovinskaya O. Chemical and physical heterogeneity within native gold: implications for the design of gold particle studies. Mineralium Deposita. 2021. 56. pp. 1563–1588. doi: 10.1007/s00126-020-01036-x.

Savichev A.A., Nevolko P.A., Kolpakov V.V., Redin Yu.O., Mokrushnikov V.P., Svetlitskaya T.V., Sukhorukov V.P. Typomorphic features of placer gold from the Bystrinsky ore field with Fe-Cu-Au skarn and Mo-Cu-Au porphyry mineralization (eastern Transbaikalia, Russia). Ore Geology Reviews. 2021. 129. doi: 10.1016/j.oregeorev.2020.103948

Информация об авторах:

Колпаков В.В., кандидат геолого-минералогических наук, старший научный сотрудник, лаборатория рудообразующих систем, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: vladk@igm.nsc.ru

Неволько П.А., кандидат геолого-минералогических наук, старший научный сотрудник, лаборатория рудообразующих систем, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: nevolko@igm.nsc.ru

Фоминых П.А., младший научный сотрудник, лаборатория рудообразующих систем, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: fominykh@igm.nsc.ru

Похмелкин Н.С., лаборант, лаборатория рудообразующих систем, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: pokhmelkinns@igm.nsc.ru

Все авторы сделали эквивалентный вклад в подготовку публикации.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Kolpakov V.V., Cand. Sci. (Geol.-Miner.), Senior Researcher, Laboratory of ore-forming systems, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: vladk@igm.nsc.ru

Nevolko P.A., Cand. Sci. (Geol.-Miner.), Senior Researcher, laboratory of ore-forming systems, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: nevolko@igm.nsc.ru

Fominykh P.A., Junior Researcher, Laboratory of ore-forming systems, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: fominykh@igm.nsc.ru

Pokhmelkin N.S., Laboratory Assistant, Laboratory of ore-forming systems, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: pokhmelkinns@igm.nsc.ru

The authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 25.02.2023; одобрена после рецензирования 11.09.2023; принята к публикации 03.06.2024

The article was submitted 25.02.2023; approved after reviewing 11.09.2023; accepted for publication 03.06.2024

Научная статья УДК 553.3

doi: 10.17223/25421379/31/5

ОСНОВНЫЕ ЭТАПЫ ФОРМИРОВАНИЯ ЗОЛОТОГО И РЕДКОМЕТАЛЛЬНОГО ОРУДЕНЕНИЯ ВОСТОЧНОГО ЗАБАЙКАЛЬЯ И СВЯЗАННОГО С НИМ МАГМАТИЗМА: НОВЫЕ U-Pb и Ar-Ar ДАННЫЕ

Юрий Олегович Редин¹, Александр Сергеевич Борисенко², Анна Андреевна Редина³, Александра Владиславовна Малютина⁴, Владислав Федорович Дульцев⁵

^{1, 2, 3, 4, 5} Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия

Аннотация. Приведены новые данные о возрасте рудоносного магматизма и ассоциирующего с ним оруденения, а также выделены основные этапы и стадии золотого и редкометалльного оруденения в Восточном Забайкалье: Этап I (среднетриасовый) — Аи оруденение → Этап II (средне-позднеюрский, коллизионный): первая стадия — Мо-, Fе-скарновое, Аи-Аs, Au-Cu оруденение и ранние «импульсы» или фазы шахтаминского и амуджикано-сретенского комплекса → вторая стадия W-, Au-полиметаллическое, Au-Bi-оруденения и поздние «импульсы» или фазы шахтаминского и амуджикано-сретенского комплекса → Этап III (раннемеловой, рифтогенный) Au-Ag, Sb-Hg и Au-As оруденение, а также W-оруденение, связанное с магматическими породами кукульбейского интрузивного комплекса.

Ключевые слова: геохронология, магматизм, оруденение, Восточное Забайкалье, золоторудные месторождения, редкометалльные месторождения

Источник финансирования: определение возраста Ar-Ar методом проведено в рамках государственного задания ИГМ СО РАН (№ 122041400237-8). Исследование цирконов методом LA-ICP-MS выполнено при финансовой поддержке проекта Министерства науки и высшего образования Российской Федерации № 13.1902.21.0018 (договор 075-15-2020-802).

Для цитирования: Редин Ю.О., Борисенко А.С., Редина А.А., Малютина А.В., Дульцев В.Ф. Основные этапы формирования золотого и редкометалльного оруденения Восточного Забайкалья и связанного с ним магматизма: новые U-Pb и Ar-Ar данные// Геосферные исследования. 2024. № 2. С. 77–100. doi: 10.17223/25421379/31/5

Original article

doi: 10.17223/25421379/31/5

THE MAIN STAGES OF THE FORMATION OF THE GOLD AND RARE-METAL MINERALIZATION OF THE EASTERN TRANSBAIKALIA AND ASSOCIATED MAGMATISM: NEW U-Pb AND Ar-Ar DATA

Yury O. Redin¹, Alexandr S. Borisenko², Anna A. Redina³, Alexandra V. Malyutina⁴, Vladislav F. Dultsev⁵

^{1, 2, 3, 4, 5} V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia

Abstract. The article presents new data on the age of ore-bearing magmatism and associated ore mineralization on the example of large gold, gold-bearing (Lugokan, Kultuma, Bystrinskoye, Bugdainskoye, Lugiinskoye, Antiinskoye) and rare-metal (Belukha, Bukuka, Antonovogorskoye) deposits located within the Aginskaya and Argunskaya structural-formational zones of the Mongol-

¹ redin@igm.nsc.ru

² borisenko@igm.nsc.ru

³ redina@igm.nsc.ru

⁴ malyutina@igm.nsc.ru

⁵ dultsev@igm.nsc.ru

¹ redin@igm.nsc.ru

² borisenko@igm.nsc.ru

³ redina@igm.nsc.ru

⁴ malyutina@igm.nsc.ru

⁵ dultsev@igm.nsc.ru

Okhotsk fold belt. The LA-ICP-MS and Ar-Ar methods were used to determine the age of the igneous rocks, and the age of the ore mineralization was determined using the Ar-Ar dating method. The obtained new geochronological data, together with the published data, made it possible to identify new stages and phases, as well as to supplement and expand our understanding of the age of various mineralization and its relationship with magmatism. Stage I (Middle Triassic) – Au mineralization \rightarrow Stage II (Middle-Late Jurassic, collision): first phase – Mo-, Fe-skarn, Au-As, Au-Cu mineralization and early "impulses" or phases of the Shakhtama and Amujikan-Sretensky complex \rightarrow Stage III (Early Cretaceous, riftogenic) Au-Ag, Sb-Hg and Au-As mineralization, and also W-mineralization associated with igneous rocks of the Kukulbey intrusive complex. A favorable factor for the formation of large complex deposits is the "variegation" of magmatism and its wide intrusion interval, one example of which is the Bystrinskoye deposit. The obtained data on the age of ore mineralization and magmatism at the Bystrinskoye deposit show that the formation of the Bystrinskaya ore-magmatic system proceeded for a long time and is associated with both Late Jurassic magmatism and later processes.

Keywords: : geochronology, magmatism, mineralization, Eastern Transbaikalia

Source of financing: Determining the age of the Ar-Ar method was supported by state assignment of the VS Sobolev Institute of Geology and Mineralogy SB RAS (№ 122041400237-8). The LA-ICP-MS study of zircons was carried out with the financial support of the project of the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation No. 13.1902.21.0018 (agreement 075-15-2020-802).

For citation: Redin Yu.O., Borisenko A.S., Redina A.A., Malyutina A.V., Dultsev V.F. (2024) The main stages of the formation of the gold and rare-metal mineralization of the Eastern Transbaikalia and associated magmatism: new U-Pb and Ar-Ar data. Geosfernye issledovaniya – Geosphere Research. 2. pp. 77–100. (In Russian). doi: 10.17223/25421379/31/5

Введение

Восточное Забайкалье является одним из старейших золотодобывающих регионов России. В его пределах известно большое количество золоторудных, золотосодержащих, полиметаллических, редкометалльных и других месторождений и рудопроявлений. Особенности металлогении, проблемы генезиса различных типов месторождений этого региона изложены во многих монографиях, статьях и фондовых материалах. Однако до сих пор существует пробел в вопросе возраста продуктивного магматизма и сопутствующего оруденения, который могут восполнить надежные изотопно-геохронологические данные. Имевшиеся к настоящему времени геологические и изотопно-геохронологические (в основном K-Ar метод) данные позволили обосновать выделение двух этапов формирования месторождений золота: среднепозднеюрский коллизионный и позднеюрский – раннемеловой рифтогенный [Спиридонов и др., 2006].

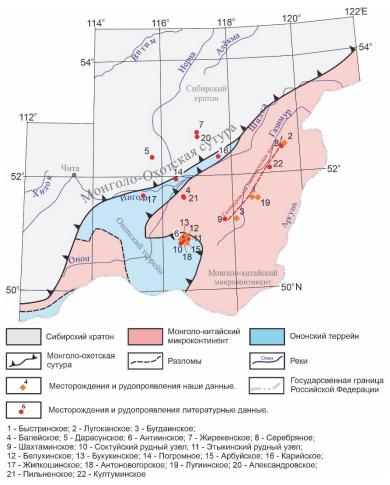
В последнее время в литературе стало появляться больше публикаций, касающихся возраста как магматических пород, так и оруденения на примере отдельных месторождений. В настоящей статье приведены новые данные о возрасте оруденения и магматизма, а также предпринята попытка систематизировать уже имеющиеся опубликованные данные. Это требуется в том числе для построения детальной временной шкалы магматических и рудообразующих процессов в Восточном Забайкалье. В этой связи необходимо с помощью комплекса современных вариантов методов изотопной геологии провести изучение целого ряда месторождений и рудопроявлений. Нами рассматривались крупные золоторудные, золотосодержащие (Лугоканское, Култуминское, Быстринское,

Бугдаинское, Лугиинское, Антиинское) и редкометалльные (Белухинское, Букукинское, Антоновогорское) месторождения, расположенные в пределах Агинской и Аргунской структурно-формационных зон Монголо-Охотского складчатого пояса. Проведенные исследования, в дополнении к имевшимся ранее данным, позволили получить новые результаты, существенно уточняющие представления о возрасте различного оруденения и его соотношении с магматизмом.

Основные черты геодинамики западной части Монголо-Охотского складчатого пояса и металлогения

В истории становления пояса отчетливо выделяются два крупных этапа: палеозойский и мезозойский. В палеозойский этап сформировались основные слагающие его структурные элементы: фрагменты раннепалеозойских океанических блоков, среднепалеозойские субдукционные островодужные вулканические пояса и позднепалеозойские окраинно-континентальные вулканические пояса, ареалы орогенного гранитного магматизма [Горячев и др., 2014]. Закрытие Монголо-Охотского океана и коллизия окраинноконтинентальных комплексов Сибирского и Северо-Монголо-Китайского континентов произошли на рубеже ранней и средней юры. Процессы, связанные с коллизией, к которым относятся надвигообразования, складчатость, метаморфизм и магматизм, происходили на протяжении средней и большей части поздней юры. Переход к процессам растяжения, сопровождающихся формированием метаморфических ядер и осадочных впадин, относится к концу поздней юры – раннему мелу [Зорин и др., 1998; Zorin et al., 2001; Спиридонов и др., 2006].

К зоне сочленения двух континентальных плит (Сибирской и Северо-Монголо-Китайской) приурочено большинство крупных месторождений и рудопроявлений различных металлов. Меньшая часть располагается на значительном удалении от сутуры и обнаруживает связь с региональными разломами. Преимущественное тяготение крупных месторождений и рудопроявлений к Монголо-Охотской сутуре и региональным разломным зонам связано с их повышенной проницаемостью как для рудопродуцирующих расплавов, так и для рудоносных флюидов [Спиридонов и др., 2006].


Спецификой мезозойского магматизма Монголо-Охотского орогенного пояса является его весьма обширный ареал распространения, а химизм и изотопный состав указывают на то, что источники расплавов находились не только в коре, но и в мантии. Магматические породы образовывались из латитовых, высококалиевых известково-щелочных и реже из известково-щелочных магм [Спиридонов и др., 2006].

Существует мнение, что мезозойский магматизм в Забайкалье начался с внедрением шошонит-латитовой магмы, которая инициировала плавление континентальной коры с образованием в промежуточных

камерах известково-щелочной и высококалиевой известково-щелочной магм, чем объясняется наблюдаемая в большинстве рудно-магматических системах перемежаемость во времени и пространстве производных этих трех видов магм. Источником шошонит-латитовых магм стал астеносферный выступ (по модели [England, Houseman, 1988; Molnar, 1988]), образовавшийся в процессе сжатия во время коллизии континентов. Воздействие его горячего вещества на кору привело к выплавлению промежуточных (в том числе и кислых) магм с повышенной щелочностью [Спиридонов, Зорина, 2006].

Иного мнения придерживаются В.И. Коваленко, М.И. Кузьмин и В.Я. Ярмолюк [Ярмолюк, Коваленко, Богатиков, 1990; Ярмолюк и др., 2000], считающие, что причина магматической и рудной активности здесь заключается в проявлении Центрально-Азиатского мантийного плюма.

В металлогеническом отношении Агинская зона известна как область наиболее широкого в регионе развития редкометалльного (Sn, W, Be, Li, Ta) пневматолитгидротермального оруденения. Пространственно и генетически оруденение связано с многочисленными небольшими (до 300 км²) массивами кукульбейского (J₃) лейкогранитного комплекса (рис. 1).

Puc. 1. Схема расположения объектов исследования Fig. 1. Layout of research objects

Наряду с массивами гранитов кукульбейского комплекса в Агинской зоне широко развиты небольшие интрузии шахтаминского (J2-J3) комплекса габбро-диорит-монцодиорит-гранодиоритового состава [Козлов, 2011]. Основную часть вольфрамового оруденения несут кварцевые жилы с грейзенированными зальбандами и штокверки, меньшую часть - кварцмусковитовые, кварц-топазовые, кварц-турмалиновые и другие грейзены. При этом имеются все переходные типы от собственно грейзеновых к собственно кварцевым рудным телам. Чаще всего минеральные ассоциации в большинстве (пунктов минерализации) рудопроявлений однородны и представлены вольфрамитом, касситеритом, молибденитом, арсенопиритом, пиритом, пирротином, висмутином, бериллом, флюоритом и др. Некоторые отличия были обнаружены лишь в месторождениях с более сложным составом и нередко значительной ролью сульфидов молибдена, свинца, цинка, меди, мышьяка и других элементов.

Отличительной чертой Аргунской зоны является широкое распространение в ее пределах золоторудных и комплексных золотосодержащих месторождений (Mo, W, Cu, Pb, Zn и др.). Важное минерагеническое значение имеют магматические породы шахтаминского комплекса. С породами комплекса связано формирование наиболее крупных комплексных скарновых месторождений – Лугоканского, Кулутминского и Быстринского, а также крупных редкометалльных, в том числе золотосодержащих месторождений – Шахтаминского и Бугдаинского. Также в пределах этой зоны широко проявлены и золотополиметаллические месторождения (Новоширокинское, Лугиинское), которые парагенетически связаны со становлением магматических пород шахтаминского комплекса.

Методы исследования

LA-ICP-MS метод. Выделение мономинеральной фракции цирконов проводится стандартными методами с использованием магнитной сепарации и тяжелых жидкостей. Предварительно измельченную на щековых дробилках породу просеивают на ситах и концентрируют на вибрационном столе. С помощью ручного магнита отделяют магнитную фракцию. Далее идет разделение на легкую и тяжелую фракцию в тяжелой жидкости ГПС-В (концентрированный водный раствор гетерополивольфрамата натрия) плотностью $2,80\pm0,05$ г/мл (по ТУ). Отдельные зерна цирконов выделяются из тяжелой фракции с помощью бинокуляра Ломо МСП-2. Зерна цирконов заливаются в шашки эпоксидной смолы Struers ЕроFix, которая является рекомендованной в российской и зарубежной

литературе, и приполировываются. Для определения морфологии и внутреннего строения цирконов были использованы катодолюминесцентные изображения (СL) минералов, полученные с помощью сканирующих электронных микроскопов с системой катодолюминесценции JSM 6510 и LEO-1430VP в Центре многоэлементных и изотопных исследований ИГМ СО РАН (г. Новосибирск).

Для проведения U/Pb-датирования цирконов используется следующее оборудование: 1) система лазерной абляции NWR213 (ESI), соединенная с квадрупольным масс-спектрометром с ионизацией в индуктивно-связанной плазме ThermoScientific iCAP Q (на базе Казанского (Приволжского) государственного университета); 2) масс-спектрометр высокого разрешения с индуктивно-связанной плазмой Thermo Scientific Element XR, соединенный системой лазерной абляции NWR UP 213 (Центр многоэлементных и изотопных исследований ИГМ СО РАН, г. Новосибирск). Параметры измерения масс-спектрометра оптимизируются для получения максимальной интенсивности сигнала 208Рb при минимальном значении ²⁴⁸ThO⁺/²³²Th⁺ (менее 2 %), используя стандарт NIST SRM612. Все измерения выполняли по массам ²⁰²Hg, ²⁰⁴(Pb+Hg), ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U, ²³⁸U. Диаметр лазерного луча - 30 мкм, частота повторения импульсов 5 Гц и плотность энергии лазерного излучения 3,0-3,5 Дж/см². Анализ пробы проводится по следующей схеме: в начале и в конце сессии измерений выполняется по три и два измерения двух стандартов (внешнего и контрольного) соответственно. Используются международные эталонные образцы цирконов: 91500 – внешний стандарт (1064 млн лет, [Weidenbeck et al., 1995]) и Plešovice – контрольный образец (337 млн лет [Slama et al., 2008]). Далее через каждые десять измерений проводится по одному измерению внешнего и контрольного стандартов. По внешнему стандарту осуществляется коррекция на фракционирование элементов при лазерном испарении, дискриминация масс и дрейф настроек масс-спектрометра во времени. Контрольный образец применяется для проверки правильности измерений. Также в начале и в конце сессии измерений дополнительно измеряется стандартное синтетическое стекло NIST SRM 612 для учета чувствительности масс-спектрометра. Данные масс-спектрометрических измерений обрабатываются с помощью программ Glitter (GEMOC, [Griffin et al., 2008]) и Iolite 3.65 встроенной в Igor Pro [Paton et al., 2010]. U-Рb изотопные отношения нормализуются на соответствующие значения изотопных отношений стандартных цирконов 91500 [Wiedenbeck et al., 1995], Plesovice [Slama et al., 2008].

Погрешности единичных анализов (отношений, возрастов) приводятся на уровне 1σ (Thermo Scientific

Element XR) и 2σ (ThermoScientific iCAP Q), погрешности вычисленных конкордантных возрастов - на уровне 2_о. Обработка «сырых» данных, учет коррекций, выбор оптимального участка сигнала, расчет $(^{207}\text{Pb}/^{206}\text{Pb},$ отношений $^{206}\text{Pb}/^{238}\text{U}$ изотопных $^{207}{\rm Pb}/^{235}{\rm U}$, $^{208}{\rm Pb}/^{232}{\rm Th})$ и соответствующих возрастов проводится с помощью программы Iolite 3.65 встроенной в Igor Pro [Paton et al., 2010]. Расчет средневзвешенных значений возраста по изотопным отношениям, построение диаграммы с конкордией выполняются в Microsoft Excel со встроенным пакетом Isoplot [Ludwig, 2003]. Диаграммы с конкордией строятся по возрастам, рассчитанным по изотопным отношениям 207 Pb/ 235 U - 206 Pb/ 238 U. Для построения гистограммы относительной вероятности используются $^{206}Pb/^{238}U$ возрасты с дискордантностью (D, %) в интервале (-10%) - 10%. Для расчета дискордантности применя- $D = 100*(Bospact(^{207}Pb/^{235}U)/Bos$ формулы раст $(^{206}\text{Pb}/^{238}\text{U})$ -1) (возраст < 1 млрд) и D = 100*(Возраст $(^{207}\text{Pb}/^{235}\text{U})/\text{Возраст}(^{206}\text{Pb}/^{238}\text{U})$ -1) (возраст > 1 млрд).

Ar-Ar метод. Для Ar-Ar датирования были отобраны под бинокуляром, монофракции К-содержащих минералов синрудных парагенезисов и К-содержащих минералов магматических пород. Анализы проводились в Центре многоэлементных и изотопных исследований ИГМ СО РАН (г. Новосибирск). ⁴⁰Ar/³⁹Ar датирование проведено по мономинеральным фракциям К-содержащих минералов. Градиент нейтронного потока за период облучения не превышал 0.5% в размере образца. В качестве монитора использовался стандартный К/Аг образец мусковит MCA11 (ОСО No 12988), подготовленный Всесоюзным научно-исследовательским институтом минерального сырья Министерства геологии СССР (ВИМС) в 1988 г. Для его калибровки в качестве ⁴⁰Ar/³⁹Ar монитора использовались международные стандартные образцы: мусковит Bern 4m и биотит LP6. Значение полной постоянной распада K, в соответствии с [Steiger, Jager, 1977], принималось равным $5,543 \times 10^{-10}$ год⁻¹.

Холостой опыт по определению 40 Ar (10 мин при 1 200 °C) не превышал 5 10^{-10} нс×м³. Очистку аргона производили с помощью Ti- и ZrAl-SAES геттеров. Дополнительная очистка осуществлялась с помощью кварцевого аппендикса, погруженного в жидкий азот. Изотопный состав аргона измерялся на масс-спектрометре Noble gas 5400 фирмы «Ми кромасс» (Англия). Для коррекции изотопов 36 Ar, 37 Ar, 40 Ar, полученных при облучении Ca, K, использовались следующие коэффициенты:

$$(^{39}Ar/^{37}Ar)Ca = 0,000891 \pm 0,000005,$$

 $(^{36}Ar/^{37}Ar)Ca = 0,000446 \pm 0,000006,$
 $(^{40}Ar/^{39}Ar)K = 0,089 \pm 0,001.$

Особое внимание уделялось контролю фактора изотопной дискриминации с помощью измерения порции

очищенного атмосферного аргона. Среднее значение отношения $^{40}{\rm Ar}/^{36}{\rm Ar}$ на период измерений составило 295,5 ± 0,5. Нагревание образца происходило в кварцевом реакторе, помещенном в резистивную печь. Датирование производилось методом ступенчатого прогрева. Контроль температуры осуществлялся посредством хромель-алюмелевой термопары. Точность регулировки температуры составляла ±1 °C.

Исследования проведены в лаборатории аналитической геохимии № 775 Института геологии и минералогии СО РАН (г. Новосибирск).

Геологическое строение и результаты U-Pb и Ar-Ar датирования

Возраст редкометалльного, золото-полиметаллического оруденения и ассоциирующего с ним магматизма на примере Кукульбейского рудного района (Агинская зона). Кукульбейский рудный район расположен в Юго-Восточном Забайкалье, в Агинской тектонической зоне и содержит крупные минеральные ресурсы вольфрама, позволяющие считать этот рудный район самостоятельной минерально-сырьевой базой вольфрама Забайкалья. Они сосредоточены главным образом на рудных полях, месторождениях Букука-Белухинского рудного узла и отчасти Этакинского. В этом старейшем рудном районе в 1940–1950-х гг. эксплуатировались Букукинское, Белухинское, Антоновогорское и другие месторождения (рис. 1). Кроме редкометалльного оруденения в Кукульбейском районе также известны месторождения (Антиинское, Кирченовское и др.) и многочисленные рудопроявления золота, парагенетические связанные с магматическими породами шахтаминского комплекса. Проведенные нами раннее исследования возраста оруденения на примере трех месторождений (Белухинского, Букукинского и Антоновогорского) показали, что время формирования редкометалльного (вольфрамового) оруденения протекало в поздней юре – раннем мелу [Редина и лр., 2019]. Как уже говорилось выше, кроме широко проявленных в рудном районе магматических пород кукульбейского комплекса, с которым связана подавляющая часть редкометалльного оруденения, также проявлены и магматические породы шахтаминского комплекса. Большинство исследователей связывают формирование редкометалльного оруденения в Кукульбейском рудном районе со становлением пород кукульбейского комплекса. Возраст магматических пород кукульбейского комплекса в основном ограничивается К/Аг определениям по породам и биотитам 70-х гг. прошлого столетия.

Большая часть определений попадает в диапазон 150–145, а часть – в диапазон 136–126 млн лет. Более

новые данные были получены по результатам определений изохронного Rb/Sr возраста биотитовых и редкометалльных гранитов Орловского (Хангилайского), Li-F амазонитовых гранитов Этыкинского и онгонитов Ары-Булакского массивов кукульбейского комплекса, которые составляют, соответственно, 143–142 млн лет [Козлов, 2011]. Также существует проблема отнесения отдельных интрузивных массивов к тому или иному магматическому комплексу. В частности, Белухинский и Олдондинский массивы на геологических картах отнесены к шахтаминскому комплексу, в то время как в последних публикациях их относят к кукульбейскому комплексу. Учитывая разброс возрастных данных при ограниченном их количестве, нами современными методами был установлен возраст магматических пород Белухинского, Олдондинского и Антиинских массивов. Полученный позднеюрский возраст (155,6±1,8 млн лет серицит из кварц-вольфрамитовых жил) вольфрамового оруденения на Белухинском месторождении наталкивает на мысль о возможной его связи со становлением магматических пород шахтаминского комплекса. В том числе для прояснения этого вопроса и были проведены изотопно-геохронологические исследования магматических пород, развитых как на редкометалльных, так и на золоторудных месторождениях.

Белухинское месторождение. Белухинское месторождение расположено в экзоконтактовой зоне одноименного гранитного массива. Массив сложен преимущественно биотитовыми и амфибол-биотитовыми гранитами второй и третьей фазы шахтаминского комплекса, которые прорывают гранодиориты ундинского комплекса. Для геохронологических исследований были отобраны как биотит-амфиболовые граниты второй и третьей фазы шахтаминского комплекса, так и вмещающие гранодиориты ундинского комплекса. Для U-Рb датирования (LA-ICP-MS) цирконы были выделены из биотит-амфиболовых гранитов Белухинского массива (вторая фаза) и гранодиоритов ундинского комплекса. Цирконы из биотит-амфиболовых гранитов Белухинского массива имеют средневзвешенный возраст 206 Pb/ 238 U, равный $165,5\pm1,03$ млн лет (MSWD = 0,4, n = 7) (рис. 2, a). В то время как гранодиориты ундинского комплекса имеют средневзвешенный возраст 206 Pb/ 238 U, равный $^{262\pm1,12}$ млн лет (MSWD = 0,91, n = 14) (рис. 2, b). Возраст биотит-амфиболовых гранитов третьей фазы шахтаминского комплекса Белухинского массива был определен Ar-Ar методом. Полученный возрастной спектр биотита из биотит-амфиболовых гранитов показан на рис. 3. В спектре биотита из биотит-амфиболовых гранитов выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста $150,2\pm2,5$ млн лет, которому соответствует 95,4 % выделенного 39 Ar.

Антиинское месторождение. Антиинское золоторудное месторождение приурочено к одноименному массиву шахтаминского комплекса и находится примерно в 40 км на юго-запад от Белухинского месторождения. Центральная и восточная части массива сложены граносиенитами и гранодиоритами с переходами до гранитов, а западная и северная - кварцевыми монцодиоритами и монцодиоритами, подобным породам соседнего Ноцуйского массива. Это давало основание считать оба массива выступами единого более крупного интрузива. Нами изучались магматические породы, отобранные в северной части (район Антиинского месторождения) Антиинского массива. Для U-Рb датирования (LA-ICP-MS) цирконы были выделены из кварцевых монцодиоритов. Цирконы из кварцевых монцодиоритов Антиинского массива имеют средневзвешенный возраст ²⁰⁶Pb/²³⁸U, равный 159,3 \pm 0,91 млн лет (MSWD = 0,094, n = 11) (рис. 2, c).

Арбуйское месторождение. Месторождение приурочено к олдондинскому массиву, также в непосредственной близости (около 2 км) расположено еще одно крупное месторождение вольфрама — Антоновогорское. Олдондинский массив сложен биотитовыми гранитами и реже гранит-порфирами, которые относят к шахтаминскому комплексу. Хотя есть мнение, что Олдонинский массив, так же как и Белухинский, относится к кукульбейскому комплексу [Козлов, 2011]. Нами изучались граниты, отобранные в западной части массива, в непосредственной близости от Арбуйского месторождения. Так, цирконы из гранитов Олдондинского массива имеют средневзвешенный возраст 206 Pb/ 238 U, равный $158,1\pm1,31$ млн лет (MSWD = 1,6, n=4) (рис. 2, d).

Возраст продуктивного магматизма, связанного с ним золото-медно-железо-скарнового, порфирового и золото-полиметаллического оруденения Аргунской зоны. Территория Аргунской зоны характеризуется широким развитием в ее пределах золотомедно-железо-скарновых, порфировых (и комплексных, например, золото-порфировых) и золото-полиметаллических месторождений. Аu-Cu-Fe-скарновые месторождения расположены, главным образом, в северо-восточной и юго-восточной частях Шилка-Аргунского междуречья. К наиболее крупным относятся Быстринское, Култуминское и Лугоканское месторождения. Все месторождения приурочены к Газимуровской региональной тектонической зоне и парагенетически связаны со становлением магматических пород шахтаминского комплекса.

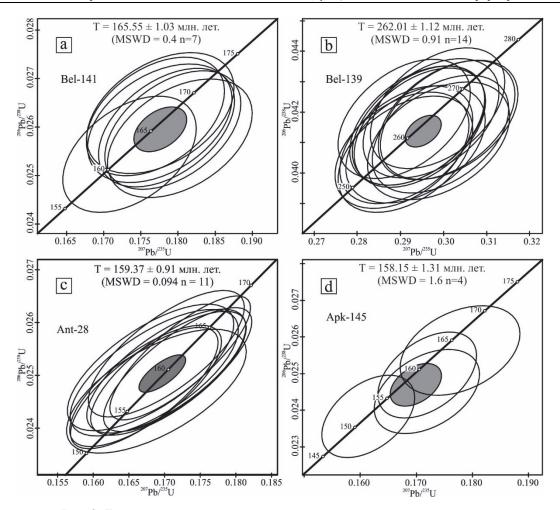


Рис. 2. Диаграммы с конкордией для цирконов из магматических пород

а – Белухинский массив, биотит-амфиболовые граниты (вторая фаза); b – гранодиориты ундинского комплекса; c – Антиинский массив, кварцевые монцодиориты; d – Олдондинский массив, граниты

Fig. 2. Diagrams with concordia for zircons from igneous rocks

a – Belukha massif, biotite-amphibole granites (second phase); b – granodiorites of the Unda complex; c – Antiinsky massif, quartz monzodiorites; d – Aldondin massif, granites

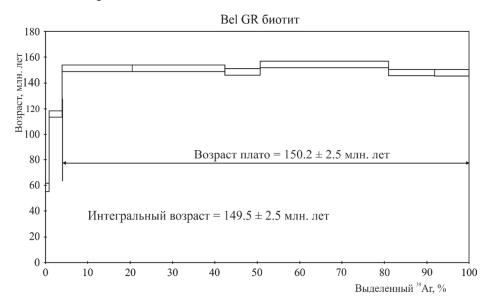


Рис. 3. Возраст биотита из биотит-амфиболовых гранитов третьей фазы Белухинского массива

Fig. 3. Age of biotite from biotite-amphibole granites of the third phase of the Belukha massif

Для выяснения хронологии развития рудно-метасоматических и магматических процессов и их временной корреляции нами были проведены геохронологические исследования магматических пород и руд, развитых на Лугоканском, Быстринском — золото-медно-железо-скарновых, а также Бугдаинском — порфировом (золотосодержащем) и Лугиинском — золото-полиметаллическом месторождениях.

Пугоканское месторождение. Месторождение приурочено к одноименному массиву шахтаминского комплекса. Вмещающие породы представлены карбонатно-терригенными отложениями нижнего кембрия (быстринская свита \mathfrak{C}_1bs). Расположение месторождения на пересечении разноориентированных региональных разломов (Будюмканского северо-восточного и Урово-Джалирского северо-западного) обусловило интенсивное развитие здесь хрупких деформаций. Последние проявляются в виде многочисленных зон повышенной трещиноватости, дробления и брекчирования пород. Оруденение приурочено к скарнам и в меньшей степени к карбонатным породам (подвергшимся интенсивной тектонической проработке), редко к гранодиорит-порфирам. Лугоканский

массив сложен преимущественно гранодиоритами и гранодиорит-порфирами второй фазы шахтаминского комплекса. Как показали предыдущие Ar-Ar исследования, формирование рудной минерализации происходило в позднеюрское время в интервале 160-155 млн лет, в это же время на исследованной территории широко проявились магматические образования шахтаминского комплекса (Ar-Ar возраст биотита из гранодиорит-порфиров Лугоканского месторождения составляет 154,7±1,2 млн лет) [Редин и др., 2020]. Для уточнения хронологии процессов магматизма и рудообразования нами были проведены геохронологические исследования как магматических пород, так и руд. Для U-Pb датирования (LA-ICP-MS) цирконы были выделены из гранодиоритов и гранодиорит-порфиров. Цирконы из гранодиоритов Лугоканского массива имеют средневзвешенный воз- $^{206}\text{Pb}/^{238}\text{U}$ 158,2±0,7 млн лет раст равный (MSWD = 0.061, n = 13, puc. 4, a). Близкий средневзвешенный возраст ²⁰⁶Рb/²³⁸U был получен и для гранодиорит-порфиров Лугоканского массива, который составляет 157,8 \pm 0,83 млн лет (MSWD = 0,94, n = 10, рис. 4, b).

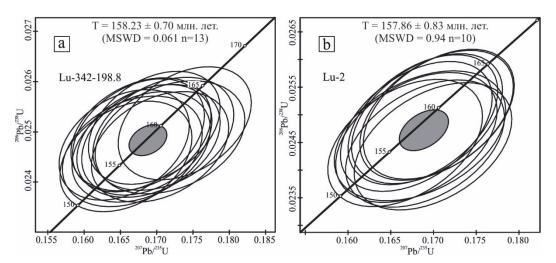


Рис. 4. Диаграммы с конкордией для цирконов из магматических пород Лугоканского массива а – гранодиориты; b – гранодиорит-порфиры

 $\label{eq:Fig. 4. Diagrams with concordia for zircons from igneous rocks of the Lugokan mass if a-granodiorites; b-granodiorite porphyry$

Для определения возраста золотого оруденения нами был отобран серицит из кварц-серицитовых жил с пиритом и самородным золотом в мраморизованных известняках Лугоканского месторождения. Полученный возрастной спектр серицита из кварц-серицитовых жил показан на рис. 5. В спектре серицита выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста 235,3±1,8 млн лет, которому соответствует 85,8 % выделенного ³⁹Ar.

Быстринское месторождение. В геологическом строении месторождения принимают участие серия свит палеозойско-мезозойского возраста, которые прорываются средне-верхнеюрскими интрузивными породами шахтаминского комплекса. Рудовмещающими толщами являются кембрийские, девонские терригенно-карбонатные отложения и раннеюрские терригенные отложения. Кембрийские терригенно-карбонатные отложения представлены быстринской свитой (до-

ломиты, известковистые доломиты, известняки с прослоями песчаников, алевролитов, углисто-глинистых сланцев). Известняки и доломиты на контактах с интрузивными телами шахтаминского комплекса скарнируются вплоть до образования гранатовых, пироксеновых, амфиболовых и флогопитовых скарнов. Среднедевонские и раннеюрские отложения представлены ильди-

канской D_2il (песчаники, алевролиты, аргиллиты, известняки) и государевской J_1gs (песчаники, алевролиты, аргиллиты и конгломераты) свитами. Месторождение находится в южной части Урюмкано-Будюмканской структурно-металлогенической зоны на пересечении Урюмкан-Будюмканского и Нерзаводско-Сретенского разломов [Коваленкер и др., 2018].

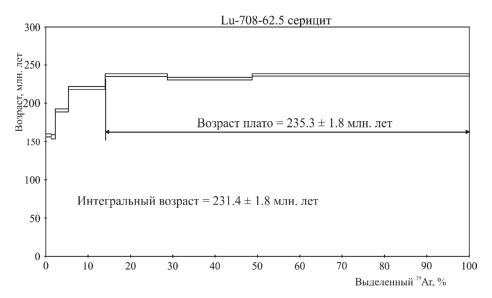
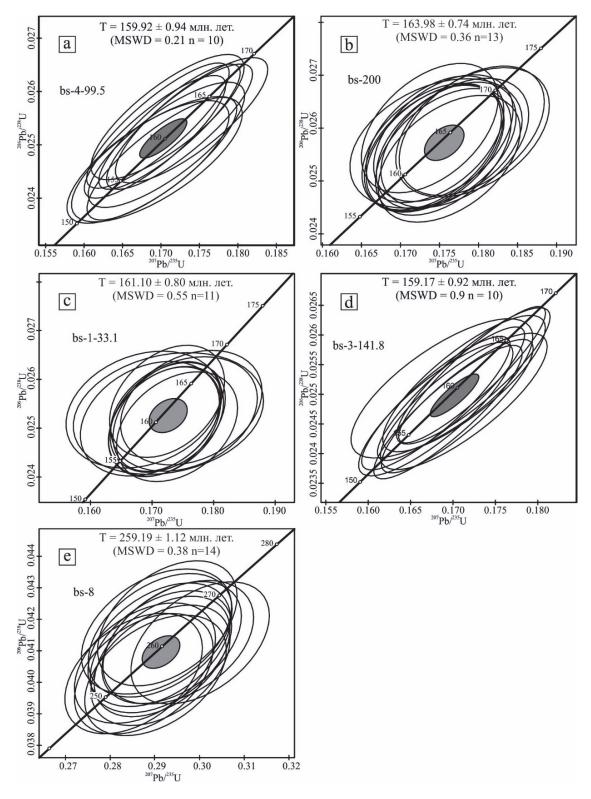


Рис. 5. Возраст серицита из кварц-серицитовых жил с пиритом и самородным золотом в мраморизованных известняках


Fig. 5. Age of sericite from quartz-sericite veins with pyrite and native gold in marbled limestones

Основным рудоконтролирующим фактором на территории Быстринского месторождения является комплексная, многоэтапная и разнопорядковая система складчато-разрывных нарушений, выраженная серией протяженных (простирающихся с севера на юг), долгоживущих разрывных нарушений и сложной системой оперяющих разломов меньшего порядка [Спиридонов и др., 2006]. Быстринский массив сложен диоритами (монцонитов) первой фазы шахтаминского интрузивного комплекса $(J_{2-3}\check{s})$ и относительно мелкими телами гранодиорит-порфиров и диоритовыми порфирами второй фазы шахтаминского комплекса. Рудные тела имеют жило-, пластои линзообразную формы. Мощности рудных тел не выдержаны в пространстве и могут варьировать от первых метров до первых десятков метров. Большинство рудных тел залегает субсогласно с контактами интрузий, но в некоторых случаях выделяются секущие тела, образовавшиеся в связи с наличием зон интенсивной тектонической проработки вблизи эндоконтакта скарнов.

Для геохронологических исследований были отобраны несколько разновидностей магматических пород, широко развитых в пределах месторождения: монцониты, монцонит-порфиры, диорит-порфиры и гранодиориты. Так, цирконы из монцонитов имеют возраст $^{206}\text{Pb}/^{238}\text{U}$ средневзвешенный $159,9\pm0,94$ млн лет (MSWD = 0,21, n=10, образец bs-4-99.5) (рис. 6, a). Цирконы из монцонит-порфиров Быстринского массива имеют средневзвешенный $^{206}\text{Pb}/^{238}\text{U}$ возраст равный 163,98±0,74 млн лет (MSWD = 0.36,образец n = 13, $161,1\pm0,80$ млн лет (MSWD = 0,55, n = 11, образец bs-1-33.1) (рис. 6, *b*, *c*). Близкий возраст был получен и для цирконов из диорит-порфиров Быстринского массива – $159,1\pm0,92$ млн лет (MSWD = 0,9, n=10, образец bs-3-141.8) (рис. 6, d). В то время как возраст цирконов из гранодиоритов составляет 259,19±1,12 млн лет (MSWD = 0.38, n = 14, образец bs-8) (рис. 6, e). Также был получен возраст биотита из монцонитов Быстринского массива Ar-Ar методом.

Полученный возрастной спектр биотита из монцонитов показан на рис. 7.

В спектре биотита из монцонитов выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста $156,5\pm2,7$ млн лет, которому соответствует 96,5% выделенного ³⁹Ar.

Рис. 6. Диаграммы с конкордией для цирконов из магматических пород Быстринского массива а – монцониты; b, c – монцонит-порфиры; d – диорит-порфиры; e – гранодиориты

Fig. 6. Diagrams with concordia for zircons from igneous rocks of the Bystrinsky massif a – monzonites; b, c – monzonite-porphyry; d – diorite porphyry; e – granodiorites

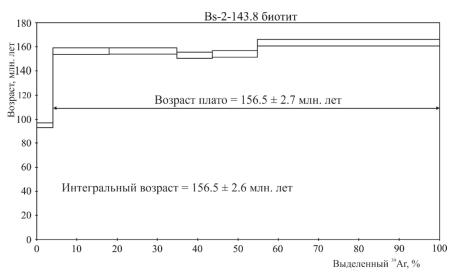
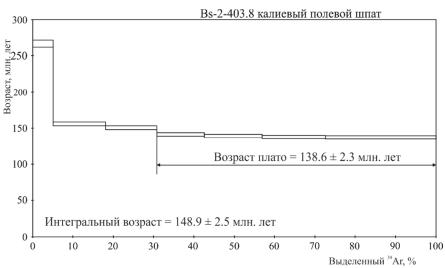



Рис. 7. Возраст биотита из монцонитов Быстринского массива

Fig. 7. Age of biotite from monzonites of the Bystrinsky massif

Puc. 8. Возраст калиевого полевого шпата из кварц-калиевошпатовых жил с сульфидной минерализацией Fig. 8. Age of K-feldspar from quartz-potassium-spar veins with sulfide mineralization

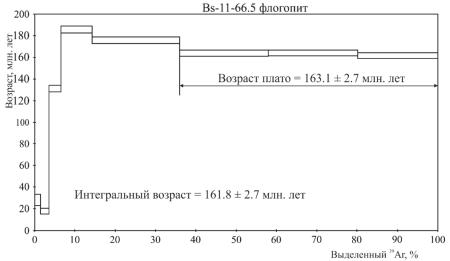
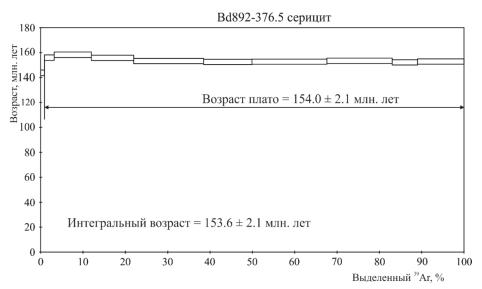


Рис. 9. Возраст флогопита из флогопит-магнетитовых скарнов

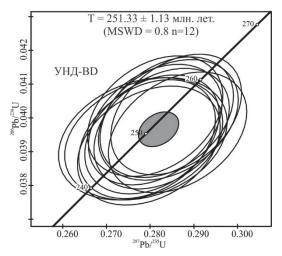
Fig. 9. Age of phlogopite from phlogopite-magnetite skarns


Для определения возраста оруденения нами был отобран флогопит из флогопит-магнетитовых скарнов и калиевый полевой шпат из кварц-калиевошпатовых жил с пиритом и халькопиритом. Полученный возрастной спектр калиевого шпата из кварц-калиевошпатовых жил с сульфидной минерализацией показан на рис. 8. В спектре калиевого полевого шпата выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста 138,6±2,3 млн лет, которому соответствует 68,1 % выделенного ³⁹Ar.

Полученный возрастной спектр флогопита из флогопит-магнетитовых скарнов показан на рис. 9. В спектре флогопита выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста $163,1\pm2,7$ млн лет, которому соответствует 64,2 % выделенного ³⁹Ar.

Бугдаинское месторождение приурочено к центральной части очаговой вулкано-купольной структуры. Последняя осложнена интерферирующими кольцевыми структурами меньшего диаметра, контролирующими положение рудных тел: штоками гранит-порфиров, которые относятся к шахтаминскому интрузивному комплексу. Вмещающие породы представлены биотит-роговообманковыми гранитами и гранодиорит-порфирами ундинского комплекса. Рудоносными магматическими породами являются риолит-порфиры и гранит-порфиры шахтаминского комплекса.

На месторождении выделяются по минералогогеохимическим особенностям два типа промышленного оруденения: 1) W-Мо-штокверковое и жильноштокверковое и 2) Au-Pb-Zn-жильное и жильно-прожилковое. Первое из них приурочено к меридиональной северо-восточной и кольцевой системам трещин. Оруденение локализовано в центральной части месторождений, где образует вокруг центрального штока разреженный штокверк минерализованных трещин и жил. Собственно, вольфрамовое оруденение приурочено в основном к внутренней (примыкающей к штоку) части штокверка. Молибденовая минерализация распространена в пределах всего контура штокверковых и жильно-штокверковых руд. Основная часть Au-Pb-Zn-жильного оруденения приурочена главным образом к северо-западным, реже к меридиональным нарушениям.


Для определения возраста золотого оруденения нами был отобран серицит из кварц-серицитовых жил (во вмещающих породах ундинского комплекса) с пиритом, галенитом, сфалеритом, тетраэдритом и самородным золотом. Полученный возрастной спектр серицита из кварц-серицитовых жил показан на рис. 10. В спектре серицита выделяется четкое плато (соответствующее предложенным критериям [Fleck et al., 1977]) со значением возраста 154,0±2,1 млн лет, которому соответствует 98,3 % выделенного ³⁹Ar.

Puc. 10. Возраст серицита из кварц-серицитовых жил с самородным золотом и сульфидными минералами
Fig. 10. Age of sericite from quartz-sericite veins with native gold and sulfide minerals

Для U-Pb датирования цирконы были выделены из аляскит-порфиров шахтаминского комплекса (рудоносные) и вмещающих гранодиорит-порфиров ундинского комплекса. Так как в акцессорных минералах аляскит-порфиров циркон встречался крайне редко, удалось

лишь качественно оценить их возраст, который составляет $158,7\pm3$ млн лет. Цирконы из гранодиорит-порфиров ундинского комплекса имеют средневзвешенный возраст $^{206}\text{Pb}/^{238}\text{U}$, равный $251,3\pm1,13$ млн лет (MSWD = 0,8,n=12, образец BD-УНД) (рис. 11).

Puc. 11. Диаграммы с конкордией для цирконов из гранодиорит-порфиров ундинского комплекса Fig. 11. Diagrams with concordia for zircons from granodiorite porphyries of the Unda Complex

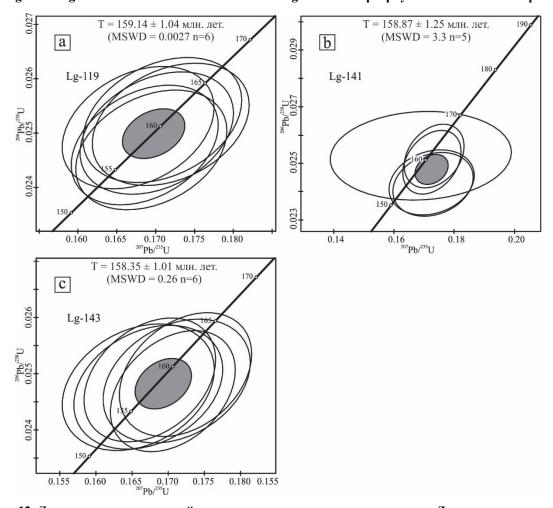


Рис. 12. Диаграммы с конкордией для цирконов из магматических пород Лугиинского массива а – биотит-роговообманковые граниты; b – биотит-роговообманковые гранодиориты; с – роговообманковые гранит-порфиры

Fig. 12. Diagrams with concordia for zircons from igneous rocks of the Lugiinsky massif a – biotite-hornblende granites; b – biotite-hornblende granodiorites; c – hornblende granite porphyry

*Лугиинское месторожд*ение расположено в Широкинском рудном поле. Месторождение приурочено

к сравнительно узкой полосе юрских отложений шадоронской и онон-борзинсокой серий. В строении

этих серий участвуют несколько свит. Непосредственно на месторождении наблюдаются выходы двух из них: государевская свита (онон-борзинская серия), которая представлена песчаниками, алевролитами, аргиллитами и конгломератами, и кипринская свита (шадоронская серия), сложенная дацитами, андезибазальтами, туфами, прослоями туфопесчаников и туфоконгломерато-брекчиями. Субвулканические интрузии шадоронского комплекса на месторождении развиты повсеместно и представлены в основном андезито-дацитами, дацитами, кварцевыми диоритовыми порфиритами, гранодиорит-порфирами, дайками кварцевых диоритовых порфиритов, диоритовыми порфиритами. Вся гамма этих пород прорывается дайками гранит-порфиров и гранодиоритами щахтаминского рудоносного комплекса. Гранодиориты в юго-восточной части месторождения образуют крупный шток (Лугиинский), границы которого выходят далеко за пределы месторождения.

Минерализованные зоны приурочены к тектонически нарушенным и гидротермально измененным субвулканическим и вулканогенно-осадочным породам. Зоны вытянуты вдоль ветвей Лугиинского северо-западного разлома более чем на 2 км и имеют значительные мощности (до 200 м). Рудные тела представлены пластообразными и линзообразными залежами сложной формы протяженностью 100-600 м при мощности 130 м. Визуально границы рудных тел можно определить условно по наличию зон катаклаза, брекчирования и интенсивной березитизации пород [Редин и др., 2017]. Для U-Рb датирования (LA-ICP-MS) цирконы были выделены из биотит-роговообманковых гранитов, биотит-роговообманковых гранодиоритов и роговообманковых гранит-порфиров Лугиинского массива. Цирконы из биотит-роговообманковых гранитов имеют средневзвешенный $^{206}\text{Pb}/^{238}\text{U}$ равный $159,1\pm1,04$ млн лет (MSWD = 0.0027, n = 6, образец Lg-119), из биотит-роговообманковых гранодиоритов — 158,8±1,25 млн лет (MSWD = 3,3, n = 5, oбразец Lg-141) и из роговообмангранит-порфиров – 158,3±1,01 (MSWD = 0,26, n = 6, образец Lg-143) (рис. 12, a, b, c).

Обсуждения результатов

Полученные авторами и заимствованные из опубликованной литературы данные о возрасте магматических пород и оруденения приведены в таблице и на рис. 13.

Как уже говорилось выше, в настоящее время выделены и обоснованы два основных этапа формирования золоторудных и комплексных золотосодержащих месторождений: средне-позднеюрский коллизионный и раннемеловой рифтогенный [Борисенко и др., 2010]. К наиболее ранним относятся Си-Мо (Au) порфировые месторождения (Шахтаминское и Жирекенское): возраст формирования молибденовой минерализации составляет 163-158 млн лет. Возраст золото-сульфидно-кварцевого оруденения несколько моложе: 158,5±1,5 млн лет (полиметаллическая стадия основного рудопродуктивного этапа, Дарасунское месторождение), 157±2 млн лет (Карийское рудное поле, месторождение Амурская дайка). Время формирования золото-серебряного оруденения укладывается в интервал $150\pm1-143,6\pm6,1$ млн лет [Борисенко и др., 2010]. Для Балейского месторождения возраст гидротермально измененных (с пиритом и арсенопиритом) вмещающих пород, определенный по серициту из псевдоморфоз по плагиоклазу в обломках гранита в юрско-меловых конгломератах, составляет 149,2±1,5 млн лет, кварцевых жил с самородным золотом и сульфосолями – 146±1,4 млн лет (новообразованный серицит), а гидротермально измененных пород в зальбандах антимонитовых жил 143,6±6,1 млн лет.

На средне-позднеюрском этапе широко проявились магматические образования шахтаминского и амуджикано-сретенского интрузивных комплексов, с которыми подавляющие число исследователей связывают редкометалльное, золотое и полиметаллическое оруденения. Полученные нами новые геохронологические данные, в совокупности с опубликованными данными, позволили выделить новые этапы, а также дополнить и расширить представления о возрасте различного оруденения и его соотношении с магматизмом.

Полученные новые данные о возрасте золотого оруденения позволяют рассмотреть вопрос о выделении нового этапа золотого оруденения (среднетриасовый) -235.3 ± 1.8 млн лет (серицит из кварц-серицитовых прожилков с пиритом и самородным золотом в мраморизованных кембрийских известняках, Лугоканское месторождение). Хотелось также уточнить, что зона дробления известняков (мраморизованных) с золоторудной минерализацией на Лугоканском месторождении имеет довольно большую мошность ~ 50 м и находится на удалении от основного контакта с магматическими породами шахтаминского комплекса ~ 100 м, а сами породы не затронуты процессами скарнирования. В настоящее время затруднительно сказать, можно ли считать это отдельным этапом формирования золоторудной минерализации или все-таки это локальное событие. Данный вопрос может быть решен лишь получением более обширных данных о возрасте различного оруденения и сопутствующего магматизма.

Средне-позднеюрский коллизионный этап на наш взгляд целесообразно разделить на несколько стадий. Как говорилось выше, к наиболее ранним относятся

Си-Мо (Аи) порфировые месторождения. Однако нужно подчеркнуть, что формирование редкометалльного оруденения на этих порфировых месторождениях, в частности молибденового, оторвано по времени с золотым. Это наглядно видно на примере Бугдаинского месторождения, где возраст формирования золото-полиметаллического оруденения составляет 154,0±2,1 млн лет. В то время как формирование молибденового оруденения на Шахтаминском месторождении (которое расположено чуть севернее, на удалении 6-7 км) укладывается в интервал 159-158 млн лет [Berzina et al., 2003]. В самую раннюю стадию данного этапа происходило формирование редкометалльного Мо-оруденения, а также формирование магнетитового оруденения на Au-Cu-Fe-скарновых месторождениях (163-160 млн лет). Здесь также следует отметить, что формирование магнетитового оруденения на скарновых месторождениях оторвано по времени с золотым. Формирование молибденового и магнетитового оруденения на комплексных порфировых и скарновых месторождениях связано со становлением ранних фаз шахтаминского комплекса. Здесь даже более корректно говорить не о «ранних фазах», а скорее о «ранних импульсах» магматизма, так как не всегда есть прямая взаимосвязь с конкретной фазой. Поэтому, на наш взгляд, лучше употреблять «импульс» магматизма, который означает внедрение магматических пород шахтаминского комплекса на каждом конкретном месторождении. Это хорошо видно, в том числе на примере Быстринского месторождения.

С данной стадией связано также и формирование самого раннего золотого оруденения (Au-As и Au-Cu). Как хорошо известно на многих крупных золоторудных месторождениях Восточного Забайкалья, одна из самых ранних генераций самородного золота часто находится в ассоциации с ранними сульфидными минералами – пиритом и арсенопиритом (Au-As стадия минерализации). Необходимо отметить, что возрастное положение Au-As месторождений (или стадий минерализации) в обшей хронологии развития процессов магматизма и рудообразования Забайкалья пока не было определено. Большинство комплексных золоторудных месторождений Восточного Забайкалья характеризуются стандартной последовательностью формирования стадийных минеральных ассоциаций руд (от ранних к поздним): кварц-турмалин-пиритовая (кварц-турмалиновые метасоматиты, брекчии, жилы) → пирит-арсенопиритовая (ранняя золотоносная, жилы, прожилки, вкрапленность в метасоматитах) → полиметаллическая (пирит, галенит, сфалерит, халькопирит) → сульфосольная (продуктивная, сульфосоли Си, Рь, Ад, Ві, теллуриды, халькопирит, пирротин) → антимонитовая (постзолоторудная, антимонит, сульфиды Аѕ, клейофан, киноварь, барит).

На разных месторождениях количественные соотношения минералов разных стадий сильно варьируют, но общая последовательность их образования не меняется [Спиридонов и др., 2003]. Наиболее полно эти минеральные ассоциации проявлены на крупных месторождениях. Особняком стоит ряд месторождений, которые исследователи относили к «нетрадиционным» типам золоторудных месторождений для Восточного Забайкалья. К этим месторождениям относятся Погромное, Солонеченское и Савкинское, которые ранее относили к карлин типу (Солонеченское и Савкинское) и другие. Решение этого вопроса стало возможным с получением новых данных о возрасте оруденения. Так, полученные данные по возрасту оруденения на месторождении Серебряное показали, что возраст Au-As стадии оценивается в 163±1,9 млн лет [Редин и др., 2016]. Близкий возраст также был получен для серицита из зальбанда золотоносной кварц-пиритовой жилы с вкрапленностью молибденита Александровского месторождения (162±2,3 млн лет) [Боровиков и др., 2020]. Это значение близко к возрасту магматических пород амуджикано-сретенского комплекса на месторождение Дарасун, в частности с его ранними «импульсами» [Чернышев и др., 2014]. Формирование ранней Au-As стадии и связанных с ней процессов березитизации на комплексных золоторудных месторождениях связано с ранними импульсами магматизма, будь то шахтаминского или амуджикано-сретенского комплексов. Однако полученные данные по возрасту метасоматитов с пиритом, арсенопиритом и самородным золотом месторождения Погромное показали, что формирование главной продуктивной стадии происходило в меловое время (139,5±1,5 млн лет) и не связано со становлением магматических пород шахтаминского и амуджикано-сретенского комплекса [Спиридонов и др., 2015]. Вероятнее всего, сюда же можно отнести и амагматичное Солонеченское Au-As-Sb-Hg месторождение. В то время как Савкинское Au-As-Sb-Hg месторождение, где проявлены магматические породы шахтаминского комплекса, наиболее вероятно можно отнести к позднеюрскому этапу. Оба этих месторождения можно отнести к карлин типу [Mao et al., 2002; Zhang, Zhang, 2003].

Со второй стадией позднеюрского этапа связано формирование редкометалльного W, и золото-полиметаллического оруденения. Полученные нами ранее данные о возрасте W оруденения в Кукульбейском рудном районе (Агинская зона) наталкивали на мысль о выделении двух стадий формирования — позднеюрской и раннемеловой. С позднеюрской стадией связано формирование таких месторождений, как Белухинское (155,6±1,8 млн лет), а также, по всей вероятности, и Арбуйского.

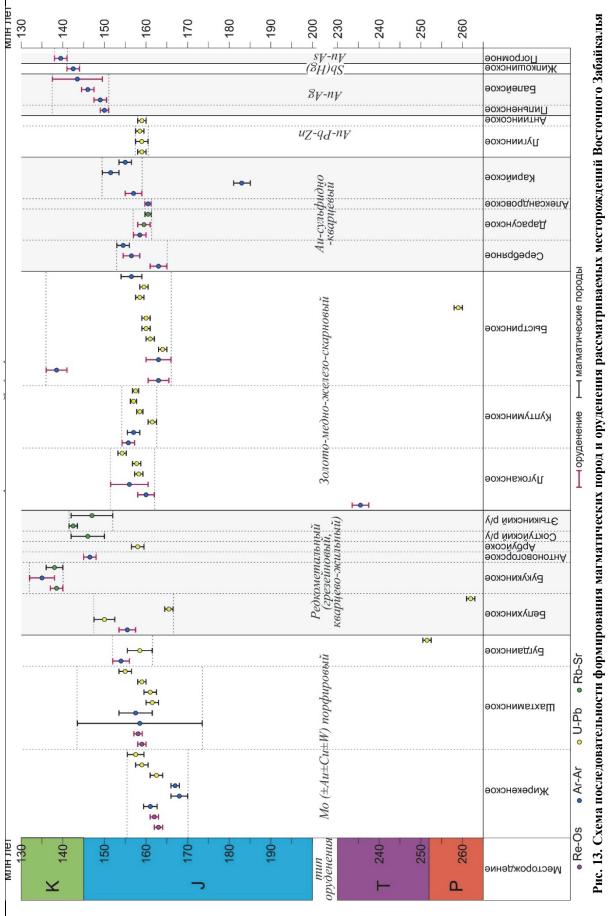


Fig. 13. Scheme of the sequence of formation of igneous rocks and mineralization of the considered deposits in Eastern Transbaikalia

Полученная возрастная оценка возраста оруденения Белухинского месторождения, а также сопоставление с новыми данными о возрасте магматических Белухинского массива $(165,5\pm1,03)$ 150,2±2,5 млн лет) позволяют говорить о парагенетической связи вольфрамового оруденения с магматическими породами шахтаминского комплекса. Позднеюрский возраст (158,1±1,31 млн лет) установлен также и для пород Олдондинского массива, который неоднократно, как и Белухинский массив, относили и к шахтаминскому и к кукульбейскому комплексам. Формирование же главной части W оруденения происходило в меловое время – 146–135 млн лет (Букукинское и Антоновогорское месторождения) и связано со становлением магматических пород кукульбейского комплекса (147–138 млн лет) [Сырицо и др., 2018; Редина и др., 2019]. В Аргунской зоне вольфрамовое оруденение проявлено в меньшей степени и, по всей видимости, относится к средне-позднеюрскому этапу. Одним из примеров является Бугдаинское Мо-W-золотосодержащее месторождение, где основная часть вольфрамовой минерализации проявлена в ранней стадии – кварц-молибденитовой. В то время как золото-полиметаллическая стадия (по минералогическим данным) явно более поздняя. Учитывая полученный возраст Au-полиметаллической стадии (154,0±2,1 млн лет), разумно предположить позднеюрский возраст W оруденения Бугдаинского месторождения.

С этой стадией связано и формирование основной части золото-полиметаллического оруденения на комплексных золоторудных месторождениях. Возраст золото-полиметаллического оруденения укладывается в интервал 158-154 млн лет ($158,5\pm1,5$, золото-полиметаллическая стадия, Дарасунское месторождение; 157 ± 2 млн лет, золото-полиметаллическая

полиметаллическая стадия, Серебряное месторождение; 154,0±2,1, золото-полиметаллическая стадия, Бугдаинское месторождение). Парагенетически оно связано со становлением поздних «импульсов» или даек шахтаминского или амуджикано-сретенского комплексов. Одним из примеров является Карийское месторождение, где формирование золото-полиметаллической стадии в пределах погрешности совпадает со становлением поздних «импульсов» амджикано-сретенского комплекса (гибридные порфиры). В то время как на собственно золото-полиметаллических месторождениях формирование оруденения происходило, вероятнее всего, близко либо одновременно со становлением главных фаз шахтаминского комплекса, проявленных на этих месторождениях. Так возраст магматических пород Лугиинского массива (Лугиинское золото-полиметаллическое месторождение) укладывается в интервал 159-158 млн лет. Близкий возраст был получен и для магматических пород Антиинкого массива (159,3±0,91 млн лет), с которыми связано формирование золото-полиметаллического оруденения. Близкий возраст получен был и для золото-висмутовой стадии (155,9±4,5 млн лет Лугоканское месторождение).

С раннемеловым этапом связано формирование золото-серебряного, сурьмяно-ртутного, вольфрамового и позднего золото-мышьякового оруденения.

Отдельно следует отметить, что благоприятным фактором для образования крупных комплексных месторождений является «пестрость» проявления магматизма и его широкий интервал внедрения, одним из примеров которого служит Быстринское месторождение. Полученные данные о возрасте оруденения и магматизме на Быстринском месторождение показывают, что становление Быстринской рудно-магматической системы протекало длительное время и связано как с позднеюрским магматизмом, так и с более поздними.

Сводная таблица по данным о возрасте месторождений Восточного Забайкалья Summary table of data on the age of deposits in Eastern Transbaikalia

Тип	Месторождение	Минерал, порода	Возраст, млн лет	Метод	Ссылки			
оруденения	Жирекенское	Оруденение						
		Молибденит	163±1	Re-Os	[Berzina et al., 2003]			
		-//-	162±1	-//-	-//-			
		Магматизм						
		КПШ 160,9±1,7		Ar-Ar	[Борисенко и др., 2010]			
$M_{\alpha} \left(+ \Lambda_{M} + C_{M} + W \right)$		Биотит, гранит-порфир 168±1		-//-	-//-			
Mo (±Au±Cu±W) порфировый		-//-	$166\pm0,8$	-//-	-//-			
порфировыи		Циркон, гранитоиды амананского комплекса	162,6±1,4	U-Pb	[Берзина и др., 2015]			
		Циркон, граниты шахтаминскогоко комплекса	159±1,6	-//-	-//-			
		Циркон, монцонит-порфиры шахтаминскогоко комплекса	157,5±2,0	-//-	-//-			

Тип	Месторождение	Минерал, порода	Возраст,	Метод	Ссылки			
оруденения	1	1 31-0	млн лет					
		Молибденит	<i>Оруденение</i> 159±1	Re-Os	[Berzina et al., 2003]			
		-//-	158±1	-//-	-//-			
		Магматизм						
		Амфибол, гранит-порфир	159,5±15	Ar-Ar	[Борисенко и др., 2010]			
		-//-	157,4±4	-//-	-//-			
	Шахтаминское	Циркон, монцониты 161,7±1,4		U-Pb	[Берзина и др., 2013]			
		Циркон, граниты шахтаминского комплекса 161±1,7		-//-	-//-			
		Циркон, монцонит-порфиры 159,3±0,9 шахтаминскогоко комплекса		-//-	-//-			
		Циркон, гранит-порфиры шахта- минскогоко комплекса 155±1,7 -//-		-//-	-//-			
			Оруденение	ı				
		Серицит	154,0±2,1	Ar-Ar	Наши данные			
	F	TT	Магматизм					
	Бугдаинское	Циркон, аляскит-порфиры, шахтаминский комплекс	158,7±3	U-Pb	-//-			
		Циркон, гранодиорит-порфиры, ундинский комплекс	251,3±1,13	-//-	-//-			
		<i>y</i>	Оруденение	I				
		Серицит	155,6±1,8	Ar-Ar	[Редина и др., 2019]			
			Магматизм					
	Белухинское	Циркон, биотит-амфиболовые граниты, шахтаминский комплекс 165,5±1,03		U-Pb	Наши данные			
		Биотит, биотит-амфиболовые граниты, шахтаминский комплекс	150,2±2,5	Ar-Ar	-//-			
		Циркон гранодиориты, ундинский комплекс	комплекс 202±1,12		//-			
	Букукинское	C	Оруденение		[D 2010]			
		Серицит Q-W-жила (минеральная изохрона)	135,0±2,8 138,7±1,5	Ar-Ar Rb-Sr	[Редина и др., 2019] [Сырицо и др., 2018]			
Редкометалльный		Q-w-жила (минеральная изохрона)		K0-31	[Сырицо и др., 2016]			
(грезейновый, кварцево-жиль- ный)		Риолит-порфиры (минеральная изохрона)	138,0±1,9	-//-	-//-			
ныи)	Антоновогор-		Оруденение		•			
	ское	Мусковит	146,7±1,7	Ar-Ar	[Редина и др., 2019]			
			Магматизм					
	Арбуйское	Циркон, граниты, шахтаминский комплекс	158,1±1,31	U-Pb	Наши данные			
	Соктуйский руд- ный узел	Гранит (порода), кукульбейский комплекс	146±4	Rb-Sr	[Государственная, 2001]			
	Этыкинский рудный узел	Li-F граниты, кукульбейский комплекс	143–142	-//-	[Козлов, 2011]			
		Li-F граниты, кукульбейский комплекс	147±5	-//-	[Государственная, 2001]			
	Лугоканское	Оруденение						
Золото-медно-же- лезо-скарновый		Серицит	235,3±1,8	Ar-Ar	Наши данные			
		Флогопит	160±2,0 155,9±4,5	Ar-Ar	[Редин и др., 2016]			
		Адуляр	-//-	-//-				
		**	Магматизм					
		Циркон, гранодиориты, шахтаминский комплекс	158,2±0,7	U-Pb	Наши данные			
		Циркон, гранодиорит-порфиры, шахтаминский комплекс			-//-			
		Биотит, гранодиорит-порфиры, шахтаминский комплекс	154,7±1,2	Ar-Ar	[Редин и др., 2020]			
	V.	Оруденение						
	Култуминское	Флогопит	$156,3\pm1,6$	Ar-Ar	[Redin et al., 2022a]			

Тип оруденения	Месторождение	Минерал, порода	Возраст, млн лет	Метод	Ссылки			
оруденения								
		Биотит, монцодиорит-порфиры, шахтаминский комплекс	Магматизм 157,1±1,6	-//-	-//-			
		Циркон, кварцевые монцодиорит- порфиры, шахтаминский комплекс	161,5±1,02	U-Pb	-//-			
		Циркон, кварцевые монцодиорит- порфиры, шахтаминский комплекс	158,7±0,56	-//-	-//-			
		Циркон, кварцевые монцодиорит- порфиры, шахтаминский комплекс	156,8±0,64	-//-	-//-			
		Циркон, монцодиорит-порфиры, шахтаминский комплекс	157,4±0,53	-//-	-//-			
		Оруденение						
		Флогопит Калиевый полевой шпат	163,1±2,7 138,6±2,3	Ar-Ar	Наши данные			
		Флогопит	158,0±2,5 163±3	-//- K-Ar	-//- [Коваленкер и др., 2016]			
		<u>_</u>	Магматизм		2010]			
		Циркон, монцонит-порфиры, шахтаминский комплекс	163,9±0,74	U-Pb	Наши данные			
		Циркон, монцонит-порфиры, шахтаминский комплекс	161,1±0,80	-//-	-//-			
	Быстринское	Циркон, монцониты, шахтамин- ский комплекс	159,9±0,94	-//-	-//-			
		Циркон, диорит-порфиры шахтаминский комплекс	159,1±0,92	-//-	-//-			
		Циркон, гранодиориты ундинский комплекс 259,1±1,12		-//-	-//-			
		Циркон, монцониты, шахтамин- ский комплекс 158,6±0,93		-//-	[Redin et al., 2022b]			
		Циркон, монцонит-порфиры, шахтаминский комплекс	159,6±0,79	-//-	-//-			
		Биотит, монцнониты, шахтаминский комплекс	156,5±2,7	Ar-Ar	Наши данные			
		Оруденение						
	Серебряное	Серицит	163±1,9	Ar-Ar	[Редин и др., 2016]			
		Серицит	156,3±1,8	-//-	-//-			
			Магматизм					
		Биотит, монцонит-порфиры	154,6±1,5	-//-	[Редин, Козлова, 2014]			
			Оруденение	T	1==			
	Дарасунское	Серицит	158,5±1,5	Ar-Ar	[Борисенко и др., 2010]			
		Березиты	159,6±1,5	Rb-Sr	[Чернышев и др., 2014]			
Au-сульфидно-		Гранодиорит-порфиры, амуджи- кано-сретенский комплекс	Магматизм 160,5±0,4	-//-	-//-			
кварцевый		Runo operenerim remissione	Оруденение	II.				
* '	Александровское	Серицит	162,0±2,3	Ar-Ar	[Боровиков и др., 2020]			
			Оруденение					
		КПШ	157±2	Ar-Ar	[Борисенко и др., 2010]			
			Магматизм					
	Карийское	Амфибол, габбро, амананский комплекс	182,9±2,6	Ar-Ar	[Ефремов и др., 2019]			
		Амфибол, гибридные порфиры, амуджикано-сретенский комплекс	151,7±1,9	-//-	-//-			
		Амфибол, гибридные порфиры,	154,9±1,7	-//-	-//-			
		амуджикано-сретенский комплекс	Магматизм	1				
	Лугиинское	Циркон, Bt-Hbl-граниты, шахтаминский комплекс	159,1±1,04	U-Pb	Наши данные			
Au-Pb-Zn		Циркон, Bt-Hbl-гранодиориты, шахтаминский комплекс	158,8±1,25	-//-	-//-			
		Циркон, Hbl-гранит-порфиры, шахтаминский комплекс	158,3±1,01	-//-	-//-			

Тип оруденения	Месторождение	Минерал, порода	Возраст, млн лет	Метод	Ссылки		
		Магматизм					
	Антиинское	Циркон, монцодиориты, шахта- минский комплекс 159,3±0,91		-//-	-//-		
	Питиманана	Оруденение					
	Пильненское	Серицит 150±1		Ar-Ar	[Борисенко и др., 2010]		
Au-Ag	Балейское	Оруденение					
Au-Ag		Серицит	$149,2\pm1,5$	-//-	-//-		
		-//-	$146\pm1,4$	-//-	-//-		
		-//- 143,6±		-//-	-//-		
Ch(IIa)	Жипкошинское	Оруденение					
Sb(Hg)		-//-	142,5±1,5	-//-	-//-		
	Погромное	Оруденение					
Au-As		Метасоматит хлорит-карбонатного состава (с примесью серицита и альбита)	139,5±1,5	-//-	[Спиридонов и др., 2015]		

Проведенные исследования в совокупности с опубликованными ранее данными позволили выделить основные этапы формирования золотого и редкометалльного оруденения Восточного Забайкалья и связанного с ним магматизма:

Этап I (среднетриасовый) — Au оруденение \rightarrow Этап II (средне-позднеюрский, коллизионный): первая стадия — Mo-, Fe-скарновое, Au-As, Au-Cu оруденение и

ранние «импульсы» или фазы шахтаминского и амуджикано-сретенского комплекса — вторая стадия W-, Au-полиметаллическое, Au-Bi-оруденения и поздние «импульсы» или фазы шахтаминского и амуджикано-сретенского комплекса — Этап III (раннемеловой, рифтогенный) Au-Ag, Sb-Hg и Au-As оруденения, а также W-оруденение, связанное с магматическими породами кукульбейского интрузивного комплекса.

Список источников

Берзина А.П., Берзина А.Н., Гимон В.О., Баянова Т.Б., Киселева В.Ю., Крымский Р.Ш., Лепехина Е.Н., Палесский С.В. Жирекенская Мо-порфировая рудно-магматическая система (Восточное Забайкалье): U-Рb возраст, источники, геодинамическая обстановка // Геология и геофизика. 2015. Т. 56, № 3. С. 571–594.

Берзина А.П., Берзина А.Н., Гимон В.О., Крымский Р.Ш., Ларионов А.Н., Николаева И.В., Серов П.А. Шахтаминская Мо-порфировая рудно-магматическая система (Восточное Забайкалье): возраст, источники, генетические особенности // Геология и геофизика. 2013. Т. 54, № 6. С. 764—786.

Борисенко А.С., Жмодик С.М., Наумов Е.А., Спиридонов А.М., Берзина А.Н. Возрастные рубежи формирования золотого оруденения Восточного Забайкалья // Материалы Всероссийской конференции (с международным участием) «Самородное золото: типоморфизм минеральных ассоциаций, условия образования месторождений, задачи прикладных исследований». М.: ИГЕМ РАН, 2010. С. 82–84.

Боровиков А.А., Калинин Ю.А., Абрамов Б.Н., Сухоруков В.П. Рудообразующие флюиды месторождений Александровское и Давенда (Восточное Забайкалье) // Геология рудных месторождений. 2020. Т. 62, № 4. С. 321–348.

Горячев Н.А., Спиридонов А.М., Вах А.С., Гвоздев В.И., Будяк А.Е. Монголо-Охотский орогенный пояс: структурный каркас, эндогенные события, специфика магматизма и металлогении // Материалы II Российско-Казахстанского международного научного совещания — Корреляция Алтаид и Уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогеническое прогнозирование. Новосибирск: Изд-во СО РАН, 2014. С. 35–37.

Государственная геологическая карта Российской Федерации масштаба 1: 200 000. 2-е изд. Серия Приаргунская. Лист М-50-IX (Калангуй). Объяснительная записка. СПб. : Картографическая фабрика ВСЕГЕИ, 2001. 156 с.

Ефремов С.В., Спиридонов А.М., Травин А.В. Новые данные о возрасте, генезисе и источниках вещества гранитоидов Карийского золоторудного узла (Восточное Забайкалье) // Геология и геофизика. 2019. Т. 60, № 6. С. 772–788.

Зорин Ю.А., Беличенко В.Г., Рутштейн И.Г., Зорина Л.Д., Спиридонов А.М. Геодинамика западной части Монголо-Охотского пояса и тектоническая позиция рудных проявлений золота в Забайкалье // Геология и геофизика. 1998. Т. 39, № 11. С. 1578–1586.

Коваленкер В.А., Абрамов С.С., Крылова Т.Л., Языкова Ю.И, Бортников Н.С. Крупное Быстринское Сu-Au-Fеместорождение (Восточное Забайкалье) — первый в России пример ассоциированной с адакитами скарново-порфировой рудообразующей системы // Доклады Академии наук. 2016. Т. 468, № 5. С. 547–552.

Коваленкер В.А., Киселева Г.Д., Крылова Т.Л., Андреева О.В. Минералогия и условия формирования золотоносного W-Мо-порфирового Бугдаинского месторождения (Восточное Забайкалье) // Геология рудных месторождений. 2011. Т. 53, № 2. С. 107–142.

Коваленкер В.А., Трубкин Н.В., Абрамова В.Д., Плотинская О.Ю., Киселева Г.Д., Борисовский С.Е., Языкова Ю.И. Типоморфные характеристики молибденита Быстринского Си-Аи-скарново-порфирового месторождения (Восточное Забайкалье, Россия) // Геология рудных месторождений. 2018. Т. 60, № 1. С. 68–90.

Козлов В.Д. Особенности редкоэлементного состава и генезиса гранитоидов шахтаминского и кукульбейского редкометалльного комплексов Агинской зоны Забайкалья // Геология и геофизика. 2011. Т. 52, № 5. С. 676–689.

- Редин Ю.О., Дульцев В.Ф., Неволько П.А., Пономарчук А.В. Новые данные о возрасте золотого оруденения Лугоканского рудного узла (Восточное Забайкалье) // Доклады Академии наук. 2016. Т. 469, № 5. С. 607–610.
- Редин Ю.О., Козлова В.М. Золото-висмут-теллуридная минерализация в рудах месторождения Серебряного (Лугоканский рудный узел, Восточное Забайкалье) // Тихоокеанская геология. 2014. Т. 33, № 3. С. 39–52.
- Редин Ю.О., Редина А.А., Колпаков В.В. Минеральный состав и условия формирования руд Лугиинского золотополиметаллического месторождения (Восточное Забайкалье) // Разведка и охрана недр. 2017. № 8. С. 3–8.
- Редин Ю.О., Редина А.А., Прокопьев И.Р., Дульцев В.Ф., Кириллов М.В., Мокрушников В.П. Лугоканское золотомедно-скарновое месторождение (Восточное Забайкалье): минеральный состав, возраст и условия формирования // Геология и геофизика. 2020. Т. 61, № 2. С. 216–242.
- **Редина А.А., Мокрушников В.П., Редин Ю.О.** Условия формирования и возраст редкометалльного оруденения Кукульбейского рудного района (Восточное Забайкалье) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 9. С. 90–102.
- Спиридонов А.М. Золотометалльные рудно-магматические системы забайкальской части Монголо-Охотского складчатого пояса (геодинамическая позиция, модельные типы, генезис, прогноз): дис. ...д-ра геол.-минер. наук. Иркутск, 2003. 574 с.
- Спиридонов А.М., Зорина Л.Д. Геолого-генетические модели золоторудных месторождений Забайкальской части Монголо-Охотского складчатого пояса // Геология и геофизика. 2006. Т. 47, № 11. С. 1158—1169.
- **Спиридонов А.М., Зорина Л.Д., Китаев Н.А.** Золотоносные рудно-магматические системы Забайкалья. Новосибирск : ГЕО, 2006. 291 с.
- Спиридонов А.М., Зорина Л.Д., Куликова З.И., Будяк А.Е., Паршин А.В., Гранина Е.М., Павлова Л.А. Месторождение Погромное нетрадиционный промышленный тип золотого оруденения Забайкалья // Геология и геофизика. 2015. Т. 56, № 10. С. 1760–1772.
- Сырицо Л.Ф., Баданина Е.В., Абушкевич В.С., Волкова Е.В., Терехов А.В. Продуктивность редкометальных плюмазитовых гранитов и условия образования месторождений вольфрама // Геология рудных месторождений. 2018. Т. 60, № 1. С. 38–56.
- Чернышев И.В., Прокофьев В.Ю., Бортников Н.С., Чугаев А.В., Гольцман Ю.В., Лебедев В.А., Ларионова Ю.О., Зорина Л.Д. Возраст гранодиорит-порфиров и березитов Дарасункского золоторудного поля (Восточное Забайкалье, Россия) // Геология рудных месторождений. 2014. Т. 56, № 1. С. 3–18.
- **Ярмолюк В.В., Коваленко В.И., Богатиков О.А.** Южно-байкальская «горячая точка» мантии и ее роль в формировании байкальской рифтовой области // Доклады Академии наук СССР. 1990. Т. 312, № 1. С. 187.
- **Ярмолюк В.В., Коваленко В.И., Кузьмин М.И.** Северо-Азиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника. 2000. № 5. С. 3–29.
- Berzina A.N., Stein H.J., Zimmerman A., Sotnikov V.I. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record // Mineral exploration and sustainable development. 2003. V. 1. P. 231–234
- **England P.C., Houseman G.A.** The mechanics of the Tibetan Plateau // Philosophical Transactions of the Royal Society of London. 1988. A326. P. 301–319.
- **Fleck R.J., Sutter J.F., Elliot D.H.** Interpretation of discordant ⁴⁰Ar/³⁹Ar age spectra of Mesozoic tholeites from Antarctica // Geochimica et Cosmochimica Acta. 1977. V. 41. P. 15–32.
- **Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y.** GLITTER: Data reduction software for laser ablation ICP-MS // Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues: Mineralogical Association of Canada. Short Course Series. 2008. V. 40. P. 307–311.
- **Ludwig K.R.** User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel // Special publication, Berkeley Geochronology Center. 2003. No. 4. P. 1–70.
- Mao J., Qiu Yu., Goldfarb R.G., Zhang Z., Garwin S., Fendshow R. Geology, distribution, and classification of gold deposits in the western Qinling belt, central China // Mineralium deposita. 2002. V. (3–4). P. 352–377.
- **Molnar P.A.** Review of geological constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakorum and their tectonic implication // Philosophical Transactions of the Royal Society of London. 1988. A326. P. 33–88.
- Paton C., Woodhead J., Hellstrom J., Hergt J., Greig A., Maas R. Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction // Geochemistry, Geophysics, Geosystems. 2010. V. 11, No. 3. doi: 10.1029/2009GC002618
- Redin Y.O., Redina A.A., Mokrushnikov V.P., Malyutina A.V., Dultsev V.F. The Kultuma Au-Cu-Fe-Skarn Deposit (Eastern Transbaikalia): Magmatism, Zircon Geochemistry, Mineralogy, Age, Formation Conditions and Isotope Geochemical Data // Minerals. 2022a. V. 12, No. 12. doi: 10.3390/min12010012
- Redin Y.O., Redina A.A., Mokrushnikov V.P., Malyutina A.V., Dultsev V.F. Rock-Forming (Biotite and Plagioclase) and Accessory (Zircon) Minerals Geochemistry as an Indicator of the Metal Fertility of Magmas by the Example of Au-Cu-Fe-Skarn Deposits in Eastern Transbaikalia // Minerals. 2022b. V. 12, No. 50. doi: 10.3390/min12010050
- Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene N., Tubrett M.N., Whitehouse M.J. Plesovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249, No. 1–2. P. 1–35.
- **Steiger R.H., Jager E.** Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology // Earth and Planetary Science Letters. 1977. No. 36. P. 359–361.
- Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostandards Newsletter. 1995. No. 19. P. 1–23.
- **Zhang F., Zhang J.** Geological–geochemical characteristics of Carlin-and Carlin-like-type gold deposits in South Qinling mountains // Chin. J. Geochem. 2003. V. 22. P. 11–22.
- Zorin Yu.A., Zorina L.D., Spiridonov A.M., Rutshtein I.G. Geodynamic setting of gold deposits in the Transbaikal region (Eastern Siberia, Russia) // Ore Geology Reviews. 2001. V. 17. P. 215–232.

References

Berzina A.P., Berzina A.N., Gimon V.O., Bayanova T.B., Kiseleva V.Yu, Krymskii R.Sh., Lepekhina E.N., Palesskii S.V. The Zhireken porphyry Mo ore-magmatic system (Eastern Transbaikalia): U–Pb age, sources, and geodynamic setting // Geologiya i Geofizika [Russian Geology and Geophysics]. 2015. V. 56. No. 3. pp. 571–594. In Russian

Berzina A.P., Berzina A.N., Gimon V.O., Krymskii R.Sh., Larionov A.N., Nikolaeva I.V., Serov P.A. The Shakhtama porphyry Mo ore-magmatic system (Eeastern Transbaikalia): age, sources, and genetic features // Geologiya i Geofizika [Russian Geology and Geophysics]. 2013. V. 54. No. 6. pp. 764–786. In Russian

Borisenko A.S., Zhmodik S.M., Naumov E.A., Spiridonov A.M., Berezina A.N. *Vozrastnye rubezhi formirovaniya zolotogo orudeneniya Vostochnogo Zabaykal'ya* [Age boundaries of the formation of the gold mineralization of Eastern Transbaikalia] // Materials of the All-Russian Conference (with international participation) "Native gold: typomorphism of mineral associations, conditions of formation of deposits, tasks of applied research". Moscow: IGEM RAS. 2010. pp. 82–84. In Russian

Borovikov A.A., Kalinin Y.A., Sukhorukov V.P., Abramov B.N. Ore-forming fluids of the Aleksandrovskoe and Davenda deposits (Eastern Transbaikalia) // Geologiya rudnykh mestorozhdeniy [Geology of Ore Deposits]. 2020. V. 62. No. 4. pp. 321–348. In Russian

Goryachev N.A., Spiridonov A.M., Vakh A.S., Gvozdev V.I., Budyak A.E. *Mongolo-Okhotskiy orogennyy poyas: strukturnyy karkas, endogennye sobytiya, spetsifika magmatizma i metallogenii* [Mongolian-Okhotsk orogenic belt: structural framework, endogenous events, specificity of magmatism and metallogeny] // Proceedings of the II Russian-Kazakhstan International Scientific Conference – Correlation of Altaiids and Uralids: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogenic forecasting. Novosibirsk: Publishing house SO RAN/ 2014. pp. 35–37. In Russian

Gosudarstvennaya geologicheskaya karta Rossiyskoy Federatsii masshtaba 1 : 200 000. Izd. 2-e. Seriya Priargunskaya. List M-50-IX (Kalanguy). Ob"yasnitel'naya zapiska [State geological map of the Russian Federation, scale 1 : 200,000. Ed. 2nd. Priargunskaya series. Sheet M-50-IX (Kalangui). Explanatory letter]. St. Petersburg: Cartografic factory of VSEGEI, 2001. 156 p. In Russian

Efremov S.V., Spiridonov A.M., Travin A.V. New data on granitoids of the Kara gold ore cluster (Eastern Transbaikalia): age, genesis, and sources of material // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2019. V. 60. No. 6. pp. 772–788. In Russian

Zorin Yu.A., Belichenko V.G., Rutstein I.G., Zorina L.D., Spiridonov A.M. *Geodinamika zapadnoy chasti Mongolo-Okhotskogo poyasa i tektonicheskaya pozitsiya rudnykh proyavleniy zolota v Zabaykal'e* [Geodynamics of the western part of the Mongol-Okhotsk belt and the tectonic position of gold ore occurrences in Transbaikalia] // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 1998. V.39. No. 11. pp. 1578–1586. In Russian

Kovalenker V.A., Abramov S.S., Kiseleva G.D., Krylova T.L., Yazykova Y.I., Bortnikov N.S. The large Bystrinskoe Cu–Au–Fe deposit (Eastern Transbaikal region): Russia's first example of a skarn-porphyry ore-forming system related to adakite // Doklady Akademii Nauk [Doklady Earth Sciences]. 2016. V. 468. No. 5. pp. 547–552. In Russian

Kovalenker V.A., Kiseleva G.D., Krylova T.L., Andreeva O.V. Mineralogy and ore formation conditions of the Bugdaya Aubearing W-Mo porphyry deposit, Eastern Transbaikal region, Russia // *Geologiya rudnykh mestorozhdeniy* [Geology of Ore Deposits]. 2011. V. 53. No. 2. pp. 107–142. In Russian

Kovalenker V.A., Trubkin N.V., Abramova V.D., Plotinskaya O.Y., Kiseleva G.D., Borisovskii S.E., Yazykova Y.I. Typomorphic characteristics of molybdenite from the Bystrinsky Cu–Au porphyry–skarn deposit, Eastern Transbaikal region, Russia // Geologiya rudnykh mestorozhdeniy [Geology of Ore Deposits]. 2018. V. 60. No. 1. pp. 68–90. In Russian

Kozlov V.D. Trace-element composition and origin of granitoids from the Shakhtama complex and Kukul'bei rare-metal complex (Aga zone, Transbaikalia) // Geologiya i Geofizika [Russian Geology and Geophysics]. 2011. V. 52. No. 5. pp. 676–689. In Russian

Redin Y.O., Dultsev V.F., Nevolko P.A., Ponomarchuk A.V. New data on the age of gold mineralization of the Lugokan ore cluster (Eastern Transbaikalia) // Doklady Akademii Nauk [Doklady Earth Sciences]. 2016. V. 469. No. 2. pp. 607–610. In Russian

Redin Y.O., Kozlova V.M. Gold-bismuth-telluride mineralization in ores from the Serebryanoe deposit of the Lugokan ore cluster of Eastern Transbaikalia // Tikhookeanskaya geologiya [Russian Journal of Pacific Geology]. 2014. V. 33. No 3. pp. 39–52. In Russian

Redin Yu.O., Redina A.A., Kolpakov V.V. *Mineral'nyy sostav i usloviya formirovaniya rud Lugiinskogo zoloto-polimetallicheskogo mestorozhdeniya (Vostochnoe Zabaykal'e)* [Mineral composition and conditions of ore formation of Lugiinsky gold-polymetallic deposit (Eastern Transbaikalia)] // *Razvedka i okhrana nedr* [Exploration and protection of mineral resources]. 2017. No. 8. pp. 3–8. In Russian

Redin Yu.O., Redina A.A., Prokopiev I.R., Dultsev V.F., Kirillov M.V., Mokrushnikov V.P. The Lukoganskoe Au-Cu skarn deposit (Eastern Transbaikalia): mineral composition, age, and formation conditions // Geologiya i Geofizika [Russian Geology and Geophysics]. 2020. V. 61. No. 2. pp. 216–242. In Russian

Redina A.A., Mokrushnikov V.P., Redin Yu.O. *Usloviya formirovaniya i vozrast redkometal'nogo orudeneniya Kukul'beyskogo rudnogo rayona (Vostochnoe Zabaykal'e)* [Formation conditions and age of the rare-metal mineralization of the Kukulbey ore region (Eastern Transbaikalia)] // Bulletin of the Tomsk Polytechnic University. Engineering of georesources. 2019. V. 330. No. 9. pp. 90–102. In Russian

Spiridonov A.M. Zolotometall'nye rudno-magmaticheskie sistemy zabaykal'skoy chasti Mongolo-Okhotskogo skladchatogo poyasa (geodinamicheskaya pozitsiya, model'nye tipy, genezis, prognoz) [Gold-metal ore-magmatic systems of the Transbaikal part of the Mongol-Okhotsk folded belt (geodynamic position, model types, genesis, forecast)]. dis. ...d-ra geol.-miner. nauk. Irkutsk, 2003. 574 p. In Russian

Spiridonov A.M., Zorina L.D. Geological-genetic models of gold ore deposits in the Transbaikalian area of the Mongol-Okhotsk fold belt // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2006. V. 47. No. 11. pp. 1158–1169. In Russian

Spiridonov A.M., Zorina L.D., Kitaev N.A. *Zolotonosnye rudno-magmaticheskie sistemy Zabaykal'ya* [Gold-bearing ore-magmatic systems of Transbaikalia]. Novosibirsk: Academic publishing house "GEO". 2006. 291 p. In Russian

Spiridonov A.M., Zorina L.D., Kulikova Z.I., Budyak A.E., Parshin A.V., Granina É.M., Pavlova L.A. The Pogromnoe deposit as an unconventional commercial type of gold mineralization in Transbaikalia // Geologiya i Geofizika [Russian Geology and Geophysics]. 2015. V. 56. No. 10. pp. 1760–1772. In Russian

Syritso L.F., Badanina E.V., Volkova E.V., Abushkevich V.S., Terekhov A.V. Fertility of rare-metal peraluminous granites and formation conditions of tungsten deposits // *Geologiya rudnykh mestorozhdeniy* [Geology of Ore Deposits] 2018. V. 60. No. 1. pp. 38–56. In Russian

Chernyshev I.V., Prokofev V.Y., Bortnikov N.S., Chugaev A.V., Goltsman Y.V., Lebedev V.A., Larionova Y.O., Zorina L.D. Age of granodiorite porphyry and beresite from the Darasun gold field, Eastern Transbaikal region, Russia // *Geologiya rudnykh mestorozhdeniy* [Geology of Ore Deposits]. 2014. V. 56. No. 1. pp. 3–18. In Russian

Yarmolyuk V.V., Kovalenko V.I., Bogatikov O.A. *Yuzhno-baykal'skaya "goryachaya tochka" mantii i ee rol' v formirovanii baykal'skoy riftovoy oblasti* [South Baikal "hot spot" of the mantle and its role in the formation of the Baikal rift area] // Reports of the Academy of Sciences of the USSR. 1990. V. 312. No. 1. pp. 187. In Russian

Yarmolyuk V.V., Kovalenko V.I., Kuzmin M.I. Severo-Aziatskiy superplyum v fanerozoe: magmatizm i glubinnaya geodinamika [North Asian superplume in the Phanerozoic: magmatism and deep geodynamics] // Geotektonika [Geotectonics]. 2000. No. 5. pp. 3–29. In Russian

Berzina A.N., Stein H.J., Zimmerman A., Sotnikov V.I. Re-Os ages for molybdenite from porphyry Cu-Mo and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record // Mineral exploration and sustainable development. 2003. V. 1. pp. 231–234.

England P.C., Houseman G.A. The mechanics of the Tibetan Plateau // Philosophical Transactions of the Royal Society of London. 1988. A326. pp. 301–319.

Fleck R.J., Sutter J.F., Elliot D.H. Interpretation of discordant ⁴⁰Ar/³⁹Ar age spectra of Mesozoic tholeites from Antarctica // Geochimica et Cosmochimica Acta. 1977. V.41. pp. 15–32.

Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS // Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues: Mineralogical Association of Canada. Short Course Series. 2008. V. 40. pp. 307–311.

Ludwig K.R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel // Special publication, Berkeley Geochronology Center. 2003. No. 4. pp. 1–70.

Mao J., Qiu Yu., Goldfarb R.G., Zhang Z., Garwin S., Fendshow R. Ren Geology, distribution, and classification of gold deposits in the western Qinling belt, central China // Mineralium deposita 2002. V. (3–4). pp. 352–377.

Molnar P.A. review of geological constraints on the deep structure of the Tibetan Plateau, the Himalaya and the Karakorum and their tectonic implication // Philosophical Transactions of the Royal Society of London. 1988. A326. pp. 33–88.

Paton C., Woodhead J., Hellstrom J., Hergt J., Greig A., Maas R. Improved laser ablation U-Pb zircon geochronology through robust down-hole fractionation correction. // Geochemistry, Geophysics, Geosystems. 2010. V. 11. No. 3. doi: 10.1029/2009GC002618

Redin Y.O., Redina A.A., Mokrushnikov V.P., Malyutina A.V., Dultsev V.F. The Kultuma Au–Cu–Fe-Skarn Deposit (Eastern Transbaikalia): Magmatism, Zircon Geochemistry, Mineralogy, Age, Formation Conditions and Isotope Geochemical Data // Minerals. 2022. No. 12. doi: 10.3390/min12010012.

Redin Y.O., Redina A.A., Mokrushnikov V.P., Malyutina A.V., Dultsev V.F. Rock-Forming (Biotite and Plagioclase) and Accessory (Zircon) Minerals Geochemistry as an Indicator of the Metal Fertility of Magmas by the Example of Au-Cu-Fe-Skarn Deposits in Eastern Transbaikalia // Minerals. 2022. No. 12. doi: 10.3390/min12010050.

Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene N., Tubrett M.N., Whitehouse M.J. Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. No. 1–2. pp. 1–35.

Steiger R.H., Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology // Earth and Planetary Science Letters. 1977. No. 36. pp. 359–361.

Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostandards Newsletter. 1995. No.19. pp. 1–23.

Zhang F., Zhang J. Geological-geochemical characteristics of Carlin-and Carlin-like-type gold deposits in South Qinling mountains // Chin. J. Geochem., 2003. V. 22. pp. 11–22

Zorin Yu.A., Zorina L.D., Spiridonov A.M., Rutshtein I.G. Geodynamic setting of gold deposits in the Transbaikal region (Eastern Siberia, Russia) // Ore Geology Reviews. 2001. V. 17. pp. 215–232.

Информация об авторах:

Редин Ю.О., кандидат геолого-минералогических наук, старший научный сотрудник, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: redin@igm.nsc.ru

Борисенко А.С., доктор геолого-минералогических наук, главный научный сотрудник, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: borisenko@igm.nsc.ru

Редина А.А., научный сотрудник, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия. E-mail: redina@igm.nsc.ru

Малютина А.В., младший научный сотрудник, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: malyutina@igm.nsc.ru

Дульцев В.Ф., инженер, Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия.

E-mail: dultsev@igm.nsc.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Redin Yu.O., Cand. Sci. (Geol.-Miner.), Senior Researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: redin@igm.nsc.ru

Borisenko A.S., Dr. Sci. (Geol-Miner.), Chief Researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: borisenko@igm.nsc.ru

Redina A.A., Researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: redina@igm.nsc.ru

Malyutina A.V., Junior Researcher, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: malyutina@igm.nsc.ru

Dultsev V.F., Engineer, V.S. Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia.

E-mail: dultsev@igm.nsc.ru

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.

Статья поступила в редакцию 30.03.2023; одобрена после рецензирования 04.12.2023; принята к публикации 03.06.2024

The article was submitted 30.03.2023; approved after reviewing 04.12.2023; accepted for publication 03.06.2024

Научная статья УДК 553.89

doi: 10.17223/25421379/31/6

ПРОЦЕССЫ РОДИНГИТИЗАЦИИ И НЕФРИТООБРАЗОВАНИЯ НА КОНТАКТЕ СЕРПЕНТИНИТОВ С ПЛАГИОРИОЛИТ-ПОРФИРАМИ УЛАН-ХОДИНСКОГО МЕСТОРОЖДЕНИЯ (ВОСТОЧНЫЕ САЯНЫ, РОССИЯ)

Виталий Александрович Шутов¹, Алексей Сергеевич Мехоношин², Татьяна Борисовна Колотилина³

- ^{1, 2, 3} Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия
- ¹v.shutov@igc.irk.ru
- ² mekhonos@igc.irk.ru
- ³ tak@igc.irk.ru

Аннотация. Проведено детальное минералого-геохимическое исследование контактов плагиориолит-порфиров с серпентинитами и нефритами на Улан-Ходинском месторождении. Установлено, что на контактах с серпентинитами по плагиориолит-порфирам образуются родингиты, состоящие из диопсида, гроссуляра, альбита и паргасита. А на контакте с нефритами присутствует зона диопсидитов с небольшим количеством тремолита. Исходя из наблюдаемых взаимоотношений, геохимических и минералогических особенностей пород, предложена новая модель стадийности образования нефрита на Улан-Ходинском месторождении.

Ключевые слова: офиолитовый комплекс, серпентиниты, дайки плагиориолит-порфиров, нефрит, родингит, распределение редкоземельных элементов, Харанурский массив, Улан-Ходинское месторождение, Восточный Саян

Источник финансирования: Исследования выполнены в рамках государственного задания Минобрнауки РФ в части проведения НИР по теме № 0284-2021-0006 «Ультраосновные—основные комплексы Сибирского кратона и его складчатого обрамления: эволюция состава, геодинамические аспекты образования и рудный потенциал».

Для цитирования: Шутов В.А., Мехоношин А.С., Колотилина Т.Б. Процессы родингитизации и нефритообразования на контакте серпентинитов с плагиориолит-порфирами Улан-Ходинского месторождения (Восточные Саяны, Россия) // Геосферные исследования. 2024. № 2. С. 101–116. doi: 10.17223/25421379/31/6

Original article

doi: 10.17223/25421379/31/6

NEPHRITE FORMATION PROCESSES AT THE CONTACT OF SERPENTINITES WITH PLAGIORHYOLITE-PORPHYRIES OF THE ULAN-KHODINSKY DEPOSIT, EASTERN SAYANS, RUSSIA

Vitaliy A. Shutov¹, Alexey S. Mekhonoshin², Tatiana B. Kolotilina³

Abstract. In southern Siberia, several deposits of green jade are associated with depleted mantle peridotites of the Ilchir ophiolite complex. One of them, Ulan-Khodinskoe, is located within the Kharanur dunite-harzburgite massif, which is one of the largest massifs of depleted mantle peridotites in the Eastern Sayan.

The investigation into the contact zones between plagiorhyolite-porphyries and serpentinites at the Ulan-Khodinsky jade deposit reveals that serpentinites undergo recrystallisation, leading to alterations in structural and textural features. In contrast, plagiorhyolite-porphyries give rise to rodingites. Rodingites occurring at the boundary with serpentinites exhibit a comparable mineral assemblage, including diopside, grossular, calcite, albite, and pargasite. However, at the boundary with jade, there exists a region primarily composed of diopside (diopsidites) with negligible traces of tremolite towards the edges of this region. Diopside in this area bears a resemblance to jade. Such rocks were discovered in the Oman ophiolite complex. Within the depleted mantle peridotites, including apogabbroic rodingites, there are "dikes" of diopsidites. In the marginal areas of the diopsidites, there are zones of tremolitisation that transition to jade.

^{1, 2, 3} Vinogradov Institute of Geochemistry, SB RAS, Irkutsk, Russia

¹v.shutov@igc.irk.ru

² mekhonos@igc.irk.ru

³ tak@igc.irk.ru

The confirmation of serpentinite serving as a protolith for jade formation is supported by the composition of residual chromospinelide and the transfer of rare elemental, including rare-earth, features of rocks. Considering the specific changes in the chemical composition of rocks at the contact with plagioriolit-porphyry dikes in the Ulan-Khodinsky deposit, it should be noted that the formation processes of jade are characterized by CaO and SiO₂ intrusion, as well as MgO export. In contrast, the rodingit-isation processes are accompanied by CaO intrusion and the export of SiO₂ and alkalis.

On one hand, the increase in SiO₂ concentration during jade formation and its decrease during rodingitisation can be explained by diffusion metasomatosis. This process occurs at the boundaries of serpentinites with plagioriolit-porphyries, where the driving force is the difference in chemical potentials of components within the interstitial solution of different zones in the metasomatic column. However, this assumption contradicts the behaviour of other macro-components, particularly with the simultaneous increase of CaO levels in jades and rodingites. Furthermore, plagiorhyolite-porphyries or serpentinites cannot be responsible for the calcium source.

The relationship between nephrite and diopside formation processes is demonstrated by alterations in mineral and rare-element composition of nephrite as it approaches diopside contact. The occurrence of antigorite \pm tremolite in jade in between diopsidite indicates that diopsidites with jade walls are created from the stability zone of forsterite \pm diopside. While diopside and tremolite exist within a wide temperature range, the equilibrium of forsterite \pm antigorite \pm tremolite in jade hints at a formation temperature of around 550–600 °C with relatively high X_{CO2} .

Keywords: ophiolite complex, serpentinites, plagiorhyolite-porphyry dikes, rodingit, tremolite, nephrite, rare-earth element distribution, Ulan-Khodinsky deposit, Eastern Sayan

Source of financing: The studies are performed as a part of the governmental assignment of the Ministry of Science and Higher Education of the Russian Federation to research theme 0284-2021-0006.

For citation: Shutov V.A., Mekhonoshin A.S., Kolotilina T.B. (2024) Nephrite formation processes at the contact of serpentinites with plagiorhyolite-porphyries of the Ulan-Khodinsky deposit, Eastern Sayans, Russia. *Geosfernye issledovaniya – Geosphere Research*. 2. 101–116. (In Russian). doi: 10.17223/25421379/31/6

Введение

Офиолитовые комплексы представляют собой фрагменты верхней мантии и океанической коры, которые фиксируют тектоническую эволюцию океанических бассейнов от стадий их рифтогенеза и распространения морского дна до начала субдукции и окончательного закрытия [Coleman, 1977; Moores et al., 2000; Pearce et al., 2000]. Петрографические и геохимические исследования верхнемантийных (реститовых) перидотитов в офиолитовых комплексах предоставляют ценную информацию об истории их образования и о флюидном режиме, сопровождавшем эксгумацию этих пород [Bodinier, Codard, 2005; Cluzel et al., 2019]. Одним из источников такой информации могут служить нефрит, ассоциирующие с ним дайковые породы и родингиты [Cluzel et al., 2011].

Нефрит – это горная порода, состоящая из тонкокристаллического амфибола тремолит-актинолитового ряда $Ca_2(Mg,Fe^{2+})_5Si_8O_{22}(OH)_2$, характеризующаяся спутанно-волокнистой структурой. С генетической точки зрения существует два основных типа нефрита, различающихся окраской [Методические указания..., 1975]. Первый образуется в серпентинитах реститовых перидотитов (апогипербазитовый), второй – в доломитовых мраморах (апокарбонатный). Как правило, для нефритов первого типа характерны оттенки зеленого цвета, а для второго – белого. По существующим представлениям [Leaming, 1978; Сутурин, Замалетдинов, 1984; Yui et al., 1988; Harlow, Sorensen, 2005; Liu et al., 2016; Кислов и др., 2022] образование нефрита происходит в результате метасоматического замещения серпентинитов или доломитовых мраморов на контакте с алюмосиликатными породами в локальных зонах, происхождение которых до сих пор остается дискуссионным вопросом. Кроме того, пока не до конца расшифрована стадийность процессов нефритообразования и природа метасоматизирующих флюидов.

На юге Сибири известно несколько месторождений зеленого нефрита, связанных с реститовыми перидотитами Ильчирского офиолитового комплекса. Одно из них, Улан-Ходинское, приурочено к Харанурскому дунит-гарцбургитовому массиву.

В настоящей статье впервые представлены данные по минералогии и геохимии пород метасоматической зоны, образованной на контакте серпентинитов Харанурского массива с дайками плагиориолит-порфиров, рассмотрены возможные механизмы образования нефрита и родингитов.

Материалы и методы

В данном исследовании использовалось более 60 образцов керна из скважины, вскрывающей полный геологический разрез контакта серпентинитов с дайкой плагиориолит-порфира, их контактово-метасоматические изменения и нефритовое тело. Петрографическое изучение проводилось при помощи оптического поляризационного микроскопа Olympus BX51 (Olympus Optical Co., Япония) с цифровой камерой Infinity 2C. Концентрации основных петрогенных элементов получены методом рентгенофлуоресцентного анализа с использованием сканирующего спектрометра S4 Pioneer (Bruker AXS, Германия). Концентрации редких элементов получены методом ICP-MS на масс-спектрометре ELEMENT 2 (Finnigan MAT, Германия). Состав минералов определялся *in situ* в полированных пластинках

методами сканирующей электронной микроскопии и энерго-дисперсионной спектрометрии (СЭМ ЭДС) и рентгеноспектрального электронно-зондового микроанализа (РСМА). СЭМ ЭДС анализ выполнялся на электронном микроскопе Tescan MIRA 3 LMH (Tescan, Чешская Республика) с системой энергодисперсионного анализа AztecLive Advanced Ultim Max 40 (Oxford Instruments Analytical Ltd., Великобритания). Анализы выполняли при ускоряющем напряжении 20 кВ, токе зонда ~0,5 нА, время накопления спектра составляло 10-50 с. РСМА выполнялся на микроанализаторе Superprobe JXA8200 (JEOL Ltd., Япония) при следующих условиях: размер электронного пучка – 1 мкм, ток зонда 20 нА, ускоряющее напряжение 20 кВ, время счета 10 с вдоль линии пика плюс 5 с для фона по обе стороны от линии пика. Метрологические характеристики методик были определены на контрольных образцах известного состава.

Геологическое положение Харанурского массива

Харанурский массив расположен в северном обрамлении Гарганской глыбы, в бассейне верхнего течения р. Урик, и прослеживается от оз. Хара-Нур до устья р. Холбо (правого притока р. Урик). Он является составной частью Ильчирского офиолитового комплекса и одним из крупнейших, наряду с Оспинско-Китойским, гипербазитовых массивов в Восточных Саянах. В плане массив имеет форму неправильную форму (рис. 1) общей площадью около 35 км². Основными морфологическими структурами, определяющими форму и ориентировку массива в пространстве, являются глубинные разломы, заложенные на сочленении древнего архейского выступа Гарганской глыбы и протерозойско-палеозойских осадочных образований Окинской структурно-формационной зоны [Гордиенко и др., 2021].

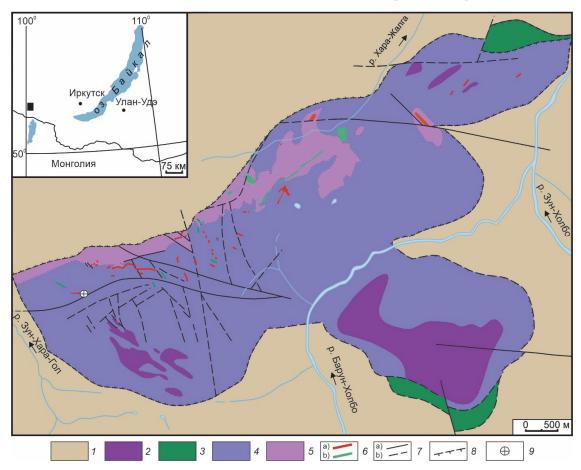


Рис. 1. Расположение и схематическая геологическая карта Харанурского гипербазитового массива

Составлена на основе геологической карты [Замалетдинов, Якшин, 1971] с дополнениями и упрощениями авторов статьи: 1 – вмещающие осадочно-метаморфические образования; 2 – дуниты и гарцбургиты; 3 – габброиды; 4 – серпентиниты и серпентинизированные ультрамафиты; 5 – тальк-карбонатные породы; 6 – дайковые образования: а) плагиориолит-порфиры, b) мета-долериты; 7 – разрывные нарушения (а – достоверные, b – предполагаемые); 8 – надвиги; 9 – объект исследования

Fig. 1. Location and schematic geological map of the Kharanur hyperbasite massif

Compiled on the basis of the geological map [Zamaletdinov, Yakshin, 1971] with additions and simplifications by the authors of the article: 1 – host sedimentary-metamorphic formations; 2 – dunites and harzburgites; 3 – gabbroids; 4 – serpentinites and serpentinized ultramafic rocks; 5 – talc-carbonate rocks; 6 – dike formations: a) plagiorhyolite-porphyries, b) metadolerites; 7 – faults (a – reliable, b – supposed); 8 – thrusts; 9 – study object

Геолого-структурные и минералого-геохимические особенности Харанурского массива достаточно хорошо изучены и представлены в работах [Колесник, 1966; Замалетдинов, Якшин, 1971; Сутурин, 1978; Сутурин, Замалетдинов, 1984; Гончаренко, Чернышов, 1990; Секерин, Секерина, 2000].

Породы дунит-гарцбургитового комплекса в значительной степени серпентинизированы, а в периферических частях массива полностью превращены в серпентиниты и тальк-магнезитовые породы.

Структурный план массива определяется интенсивным развитием разрывных нарушений северо-за-

падного и северо-восточного направлений, разбивающих серпентиниты на отдельные тектонические блоки. Внутри этих блоков широко развиты взаимопараллельные и сближенные между собой зоны рассланцевания северо-западного, реже северо-восточного и субширотного простирания, к которым обычно приурочены дайковые тела плагиогранитов, плагиориолит-порфиров и долеритов [Сутурин, Замалетдинов, 1984]. На контакте с серпентинитами в плагиориолит-порфирах происходит образование цоизита, гроссуляра, а долериты превращаются в амфибол-цоизит-плагиоклазовые родингиты.

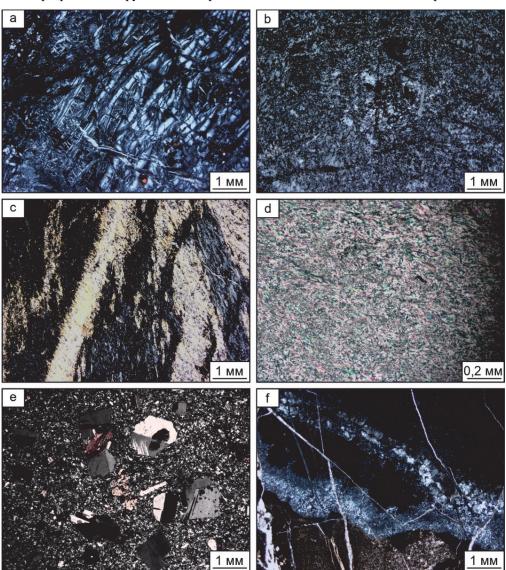


Рис. 2. Структурные особенности пород

а – серпентинит с петельчатой структурой; b – серпентинит с чешуйчато-игольчатой структурой; с – взаимоотношения серпентинита и тремолита на контакте с нефритом; d – спутанно-волокнистая структура нефрита; е – плагиориолит-порфир с порфировыми вкрапленниками альбита; f – контакт серпентинитов с родингитами, разбитых сетью трещин. Микрофотографии шлифов, поляризаторы скрещены

Fig. 2. Structural features of the rocks

a – serpentinite with a looped structure; b – serpentinite with a flake-needle structure; c – relationship of serpentinite and tremolite at the contact with nephrite; d – tangled-fibrous structure of nephrite; e – plagiorhyolite-porphyry with porphyry phenocrysts of albite; f – contact of serpentinite with rodingite, broken by fracture network. Microphotographs of thin sections, polarizers crossed

Результаты исследования

В результате изучения керна скважины установлена следующая закономерная последовательность смены пород: серпентинит \rightarrow родингит \rightarrow плагиориолит-порфир \rightarrow родингит \rightarrow нефрит \rightarrow серпентинит.

Петрографическая характеристика пород. Серпентиниты имеют серовато-зеленый цвет, пятнистую брекчиевидную текстуру. Лизардитовые и хризолитовые серпентиниты с петельчатой и пластино-петельчатой структурой (см. рис. 2, а) встречаются на удалении от дайки плагиориолит-порфиров. По мере приближения к дайке цвет серпентинитов становится тёмно-зелёным, текстура — массивной. Вместо пластино-петельчатой отмечается микропластинчатая, решетчатая и игольчатая микроструктуры (рис. 3, b).

По внешнему облику они часто напоминают нефрит. Кроме того, в приконтактовой части с родингитами в серпентинитах интенсивно развиваются листоватые и пластинчатые агрегаты хлорита (рис. 4, a). Иногда в породах присутствуют прожилки талька и карбоната (см. рис. 2, f).

Плагиориолит-порфиры — серые, зелёновато-серые, массивные. Для них характерна порфировидная структура, микроструктура основной массы — аллотриоморфнозернистая (рис. 2, e). Порфировые вкрапленники, размер которых составляет 2–3 мм, представлены плагиоклазом (An₀₋₂). Основная масса состоит из (об. %) плагиоклаза (80), кварца (10), диопсида (5). Из второстепенных минералов в небольшом

количестве присутствуют хлорит, амфибол, карбонат. Размеры зёрен минералов основной массы составляют 0.05×0.2 мм.

На контакте с серпентинитами родингитизация плагиориолит-порфиров макроскопически выражена в изменении цвета – порода становится желтовато-белой. Контакт с серпентинитами чёткий, заливообразный (рис. 4, g). Вкрапленники альбита срастаются между собой и теряют изометричный облик. Главными минералами родингитов здесь являются диопсид, гранат, Sr-цоизит, амфибол, кальцит, альбит, количество которого меньше, чем в плагиориолит-порфирах, второстепенными – хлорит, титанит. Внутри граната присутствуют включения альбита, калиевого полевого шпата и клинопироксена. В диопсиде обнаружены мелкие ксеноморфные включения цельзиана. Амфиболы образуют крупные, по сравнению с другими минералами, призматические кристаллы размером до 0,2×0,08 мм. На отдельных участках альбит замещается цоизитом и гранатом. Иногда в породах присутствуют «обломки» хромшпинелидов (рис. 4, h).

В родингите на контакте с нефритом (см. рис. 3, a) гранат отсутствует. Основная масса плагиориолит-порфира замещается диопсидом и игольчатым амфиболом (рис. 4, e). Редко присутствуют мелкие зёрна сфена неправильной формы. Количество диопсида в породе значительно выше, чем на контакте с серпентинитами. Совместно с амфиболом диопсид образует веретеновидные и игольчатые агрегаты, переплетающиеся между собой и образующие «нефритоподобную» структуру (рис. 4, f).

Рис. 3. Фотография образцов

а – нефрит; b – контакт нефрита и родингита (1 – нефрит, 2 – зона тремолит-диопсидового родингита, 3 – родингитизированный плагиориолит-порфир)

Fig. 3. Rock samples photography

a – nephrite; b – contact between nephrite and rodingite (1 – nephrite; 2 – tremolite-diopside zone; 3 – rodingitized plagiorhyolite-porphyry)

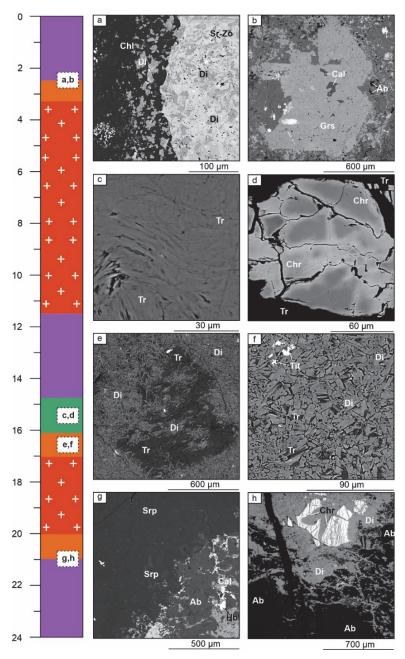


Рис. 4. Взаимоотношения минералов в зонах родингитизации и нефритообразования

a — хлоритизированные серпентиниты на контакте с родингитом; b — полностью замещённый гранатом плагиоклаз; c — спутанноволокнистая структура нефрита; d — цинксодержащий хромшпинелид в нефрите; e) диопсид и тремолит в родингите; f — сростки диопсида e тремолитом; g — контакт серпентинита e родингитом; e — родингит e включением хромшпинелида. Srp — серпентин, e — серпентин, e — хлорит, e — альбит, e — кальцит, e — гроговая обманка, e — диопсид, e — хромшпинелид, e — гроссуляр, e — громолит

Fig. 4. Relationship between minerals in areas of rhodinitization and nephrite formation

a – chloritized serpentinite at contact with rodingite; b – plagioclase completely substituted by garnet; c – tangled fibrous structure of nephrite; d – zinc-bearing chromspinelide in nephrite; e – diopside and tremolite in rodingite; f – aggregates of diopside with tremolite g – contact of serpentinite with rodingite; h – rodingite with chromospinelide inclusion. Srp – serpentine, Chl – chlorite, Ab – albite, Cal – calcite, Hbl – hornblende, Di – diopside, Chr – chromospinelide, Grs – grossular, Tr – tremolite

Нефрит обладает грязно-зеленовато-серым цветом, порода плотная, массивная, просвечивает на глубину до 3-5 мм (рис. 3, b). Микроструктура нефрита спутанно-волокнистая (см. рис. 2, d). На удалении от контакта с родингитами порода состоит преимущественно

из равномерно волокнистых агрегатов амфибола, ориентированных в различных направлениях (рис. 4, *c*) и хромшпинелида. Хромшпинелид представлен гипидиоморфными и ксеноморфными зернами размером до 2,0 мм вишнево-бурой окраски. По периферии и вдоль

внутризерновых трещин зерна замещены магнетитом. На контакте с родингитами кроме спутанно-волокнистых амфиболов в породе присутствуют крупные призматические кристаллы тремолита.

В серпентинитах на контакте с нефритом можно наблюдать, как по трещинам спайности в чешуйчатых и тонкопластинчатых агрегатах серпентина развиваются волосовидные агрегаты тремолита (рис. 2, c), количество которых возрастает ближе к нефриту. Кроме того, в них присутствует тальк. Микроскопически эти серпентиниты не отличаются от таковых на контакте с родингитами.

Состав минералов. Серпентин из серпентинитов на удалении от даек плагиориолит-порфиров, как уже отмечалось выше, по составу отвечает лизардиту и хризотилу.

Массивные нефритоподобные серпентиниты состоят из антигорита ((Mg+Fe)/Si < 1,5). Он характеризуется высокой магнезиальностью (Mg/(Mg+Fe) - 0,97-0,98) и содержит примеси Al₂O₃ (4,5-9,7 мас. %), и реже CaO (0,2-2,27 мас. %) (табл. 1).

Полевые шпаты в родингитах представлены альбитом ($An_{0.5}$), калиевым полевым шпатом ($Ort_{82-100}An_{15-6}Ab_{2-3}$) и бариевым полевым шпатом подгруппы гиалофана — цельзианом ($K_{0.1}Ba_{0.8}Ca_{0.1}Al_{1.8}Si_{2.2}$).

Состав клинопироксенов в плагиориолит-порфирах характеризуется следующим соотношением миналов: $Wo_{48-50}En_{31-44}Fs_{4-18}$, величина коэффициента магнезиальности (Mg/(Mg+Fe)) составляет 0,8–0,9. Содержание Al_2O_3 в них варьирует от 0,4 до 1,9 мас. %, $Na_2O-0,2-0,8$ мас. %. Игольчатые клинопироксены из диопсидитов более магнезиальные (Mg/(Mg+Fe) = 0,84–0,95), соотношение миналов в них составляет $Wo_{40-50}En_{42-52}Fs_{4-9}$.

Иногда наблюдается зональность, выраженная в уменьшении содержаний Al_2O_3 и Na_2O от центра к краю зерен (2,6–0,9 и 1,2–0,4 мас. % соответственно), при этом увеличивается содержание FeO (от 1,6 до 2,8 мас. %). Клинопироксены в родингитах наименее магнезиальные (Mg/(Mg+Fe) = 0,47–0,66), состав характеризуется следующими вариациями основных миналов $Wo_{49-50}En_{23-32}Fs_{17-26}$.

Таблица 1 Представительные анализы минералов из метасоматической зоны серпентинит – родингит, мас. %

Table 1 Representative electron microanalyses of mineral compositions (wt. %) from metasomatic zone serpentinite – rodingite

Компонент	1	2	3	4	5	6	7	8
SiO ₂	68,70	53,35	41,29	29,40	2,58	39,02	50,81	0,33
TiO_2	_	-	_	_	_	0,28	-	0,52
Al_2O_3	19,76	1,21	4,69	19,03	0,28	22,21	2,90	10,91
Cr_2O_3	_	_	_	_	_	_		48,33
FeO		6,44	1,82	14,49		0,74	5,72	32,81*
MnO	_	0,22	_	1,08	_	_	0,18	_
MgO		14,08	36,77	24,15	0,38	_	12,51	5,23
CaO	0,25	24,07	2,36	_	52,34	36,98	25,46	0,25
Na ₂ O	11,13	0,36	_	_	0,16	_	0,24	_
ZnO	_	_	_	_	_	_		0,54
V_2O_3	_	_	_	_	_	_	_	0,23
Сумма	99,85	99,73	86,92	88,15	55,75	99,24	97,82	99,16

Примечание. 1 – альбит, 2 – диопсид, 3 – серпентин, 4 – хлорит, 5 – кальцит, 6 – гроссуляр, 7 – роговая обманка, 8 – хромшпинелид из родингита. Прочерк – ниже предела обнаружения. *Соотношения двух- и трёхвалентного железа, рассчитанные исходя из стехиометрии и принципа сохранения баланса зарядов, составляют 24,90 и 7,26 мас. % соответственно.

Note. 1 – albite, 2 – diopside, 3 – serpentine, 4 – chlorite, 5 – calcite, 6 – grossular, 7 – hornblende, 8 – chromospinelide from rodingite. A dash means below the detection limit. *The percentages of bivalent and trivalent iron, calculated using the principles of stoichiometry and charge balance conservation, are 24,90 % and 7,26 % by weigh, respectively.

Хромшпинелиды в родингитах — это алюмохромиты (рис. 5, a), Cr/(Cr+Al) — 0,74, Mg/(Mg+Fe) — 0,19—0,23), содержания TiO₂ и ZnO в них находятся на близком уровне — 0,3—0,5 мас. % (рис. 5, b), какаялибо зональность отсутствует.

Хромшпинелиды в серпентинитах и нефритах в основном хромиты (см. рис. 5, a), в них содержания TiO_2 находятся ниже предела обнаружения. Изменение состава первичных хромшпинелидов происходит в краевых частях зерен и по трещинам катаклаза внутри них.

Общие тенденции изменений заключаются в увеличении содержания ZnO (0,2-1,0 мас. %), уменьшении содержаний V_2O_3 (0,3-0,1 мас. %) и величины Mg/(Mg+Fe) (0,5-0,01), при этом величина Cr/(Cr+Al) существенно не изменяется (0,81-0,86).

Очень редко в центре раздробленных участков зёрен сохраняются составы, отвечающие алюмохромиту с Cr/(Cr+Al) = 0.78 и Mg/(Mg+Fe) = 0.56 (см. рис. 5, a).

Содержание V_2O_3 в них составляет 0,3 мас. %, а ZnO- на уровне предела обнаружения.

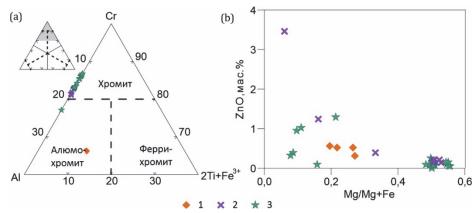


Рис. 5. Особенности состава хромшпинелидов

1 – родингиты, 2 – серпентиниты, 3 – нефрит

Fig. 5. Composition of Cr-spinel

1 – rodingite, 2 – serpentinite, 3 – nephrite

Призматические кристаллы амфибола в родингитах по составу соответствуют паргаситу (рис. 6, a; табл. 2), в котором содержание TiO_2 составляет 1,4—1,6 мас. %. Состав игольчатых амфиболов из диопсидитов на контакте с нефритом отвечает ряду актинолит-тремолит (рис. 6, a), в них величина Mg/(Mg+Fe) варьирует от 0,77 до 0,92, содержания Al_2O_3 составляют 0,3—0,5 мас. %, а Cr_2O_3 не превышает 0,2 мас. %. Причем Cr_2O_3 отмечается только в тремолитах. В нефритах состав амфиболов соответствует тремолиту (Mg/(Mg+Fe)-0.92), для него характерны вариации содержаний Al_2O_3 (0,4—2,0 мас. %) и Cr_2O_3 (0,2—1,6 мас. %). Наиболее «хромистые» тремолиты выполняют трещины катаклаза в хромшпинелидах.

Гранат по составу отвечает гроссуляру с небольшим количеством андрадитового минала — Gross₉₃₋₉₈Andr₂₋₆.

Хлорит в родингитах по соотношению содержаний SiO_2 и FeO относится к диабантиту, в нем количество Cr_2O_3 ниже предела обнаружения, но отмечаются повышенные содержания MnO ($\sim 1,0$ мас. %). Хлорит в серпентинитах и большей частью в нефрите отвечает по составу тальк-хлориту, единичные анализы в последнем соответствуют пеннину (рис. 6, *b*). Для всех них характерно повышенное содержание Cr_2O_3 (1,5–4,0 мас. %).

Для цоизита характерно высокое содержание SrO (5,2-8,8 мас. %).

Таблица 2

Представительные анализы минералов из метасоматической зоны родингит – нефрит, мас. %

Тable 2

 $T\,a\,b\,l\,e\,\,\,2$ Representative electron microanalyses of mineral compositions (wt. %) from metasomatic zone rodingite – nephrite

Компонент	1	2	3	4	5
SiO ₂	53,64	54,58	30,38	55,56	0,39
${ m TiO_2}$	=	_	38,92	_	_
Al_2O_3	0,69	0,89	1,87	0,45	6,84
Cr_2O_3	=	_	_	_	64,63
FeO	4,76	4,46	_	3,09	17,33*
MnO	0,23	_	_	_	_
MgO	15,08	20,2	_	21,18	9,85
CaO	25,17	13,18	28,52	12,76	
Na ₂ O	0,24	_	_	_	_
K_2O	_	_	_	_	_
NiO	_	_	_	0,14	_
ZnO	_	_	_	_	0,1
V_2O_3	=		=		0,22
Сумма	99,82	93,31	99,68	93,04	99,36
$Mg/(Mg+Fe^{2+})$	_	0,88	_	0,92	_

Примечание. 1 – диопсид, 2 – актинолит из родингитов, 3 – сфен, 4 – тремолит из нефритов, 5 – хромшпинелид из нефритов. Здесь и в табл. 3, 4 – прочерк – ниже предела обнаружения. *Трехвалентное железо по результатам расчета, исходя из стехиометрии и принципа сохранения баланса зарядов, отсутствует.

Note. 1 – diopside, 2 – actinolite from rodingite, 3 – titanite, 4 – tremolite from nephrite, 5 – chromospinelide from nephrite. Here and in Tables 3, 4 a dash means below the detection limit. *Trivalent iron is absent according to the calculation results, based on stoichiometry and the principle of charge balance conservation.

Состав пород представлен в табл. 3 и 4. Плагиориолит-порфиры по соотношению содержаний SiO_2 и суммы щелочей можно отнести к умеренно щелочным гранитам. Они характеризуются низкими содержаниями TiO_2 (\sim 0,26 мас. %), $Fe_2O_{306\text{ нц.}}$ (2,3–3,7 мас. %) и высоким содержанием Al_2O_3 (10,2–17,0 мас. %) по сравнению с обычными континентальными или островодужными кислыми вулканитами и гранитоидами. В них также отмечаются низкие содержания K_2O (0,1–0,2 мас. %), P_2O_5 (\sim 0,1 мас. %), лёгких редкоземельных элементов (табл. 3). При этом содержания Sr и Ba высокие (табл. 4).

Серпентиниты характеризуются следующим диапазоном изменений содержаний петрогенных элементов (мас. %): SiO_2 (35,1–41,0), Al_2O_3 (0,3–5,0),

 Fe_2O_{306m} . (2,9–9,4), MgO (33,3–42,1), П.п.п. (11,4–16,1).

Содержания остальных элементов не демонстрируют значительных колебаний. Вариации содержаний SiO_2 обусловлены изменением количества талька в породах. При этом высокие содержания Al_2O_3 характерны для хлоритизированных серпентинитов.

Редкоэлементный состав серпентинитов характеризуется высокими концентрациями совместимых элементов (Cr, Ni и Co), уровень содержаний которых сопоставим с таковым для дунитов массива, и немного повышенными содержаниями относительно таковых в дунитах ряда флюид-мобильных элементов (Li, Sb, Pb и U).

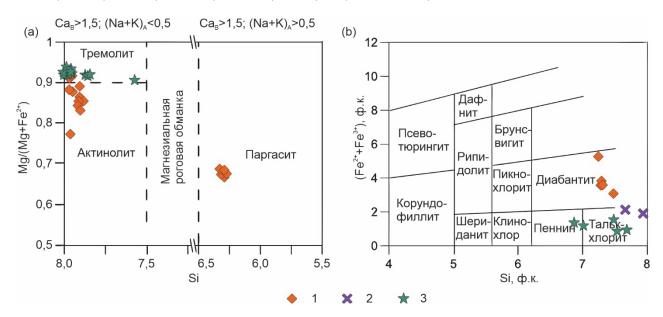


Рис. 6. Особенности состава (а) амфиболов и (b) хлоритов

1 – родингиты, 2 – серпентиниты, 3 – нефриты. Поля составов амфиболов по [Leake et al., 1997], хлоритов по [Hey, 1954]

Fig. 6. Composition of (a) amphiboles and (b) chlorites

1 - rodingite, 2 - serpentinite, 3 - nephrite. Amphibole composition fields according to [Leake et al., 1997], chlorite according to [Hey, 1954]

Химический состав пород скважины, мас. %

Table 3

Таблица 3

Representative analyses of the content of petrogenic elements (wt %)

No	Проба	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	П.п.п.	Сумма
1	20-57	38,99	0,01	0,73	5,51	0,04	40,41	0,91	0,20	-	_	13,69	100,3
2	20-56	37,94	0,01	0,69	5,51	0,04	39,06	0,39	0,20	_	_	16,51	100,1
3	20-55	35,56	0,03	8,66	6,22	0,07	36,75	0,22	0,20	0,04	0,03	12,73	100,3
4	20-54	37,25	0,05	5,15	6,29	0,05	38,57	0,30	0,20	-	_	12,71	100,4
5	20-53	39,15	0,04	2,63	6,25	0,05	38,67	0,10	0,20	-	_	13,32	100,2
6	20-52	35,33	0,25	10,07	6,36	0,11	33,34	0,37	0,20	0,03	0,06	13,71	99,8
7	20-51	37,08	0,07	4,40	10,39	0,07	35,21	0,35		0,05	_	11,29	98,9
8	20-50	36,70	0,06	5,14	6,62	0,06	36,42	0,16	_	0,06	0,01	13,96	99,2
9	20-49	35,08	0,30	9,46	6,77	0,11	35,20	0,21		0,09	0,09	12,91	100,2
10	20-48	36,18	0,25	7,76	5,27	0,11	35,59	0,86	0,20	-	0,06	13,72	99,8
11	20-48A	46,88	0,21	13,32	4,50	0,12	9,29	21,82	0,62	0,73	0,05	2,08	100,4
12	20-47	62,71	0,27	16,47	2,41	0,04	2,14	3,49	9,41	0,12	0,07	1,48	98,7
13	20-46	40,55	0,25	11,62	1,82	0,09	23,97	9,77	_	0,03	0,07	11,66	99,9

No	Проба	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅	П.п.п.	Сумма
14	20-45	59,11	0,25	15,39	2,72	0,04	2,60	12,67	5,55	0,09	0,07	1,57	100,1
15	20-44	44,86	0,22	17,87	2,57	0,07	8,93	18,82	1,06	0,40	0,06	4,38	99,6
16	20-43	68,36	0,27	16,21	2,33	0,02	1,45	1,50	9,35	0,15	0,06	0,33	100,1
17	20-42	69,60	0,26	15,82	2,42	0,02	1,21	1,06	9,10	0,19	0,04	0,21	100
18	20-41	68,72	0,26	15,15	3,08	0,03	1,79	1,17	8,73	0,19	0,05	0,86	100,1
19	20-40	67,59	0,26	15,55	2,42	0,03	2,02	2,67	9,02	0,10	0,06	0,35	100,1
20	20-39	67,49	0,26	15,95	2,28	0,03	1,79	2,67	9,25	0,07	0,06	0,25	100,1
21	20-38	65,79	0,25	16,13	2,35	0,03	2,45	2,69	9,26	0,04	0,05	0,82	99,9
22	20-37	66,12	0,25	15,18	2,85	0,03	1,76	5,44	7,74	0,05	0,06	0,39	99,9
23	20-36	66,18	0,26	15,27	2,89	0,03	1,86	5,47	7,71	0,05	0,06	0,3	100,1
24	20-35	62,39	0,26	15,88	2,74	0,12	2,93	7,16	7,98	0,05	0,06	0,36	100
25	20-34	52,86	0,03	1,13	4,59	0,04	26,76	9,19	0,20	0,02	_	5,33	100
26	20-33	49,37	0,04	2,90	5,95	0,05	28,48	7,04	0,20	0,04	_	6,52	100,4
27	20-32	49,66	0,01	0,33	5,79	0,03	35,08	0,10	0,20	_	_	9,41	100,4
28	20-31	51,22	0,01	0,39	5,00	0,03	33,60	0,72	0,20	_	_	9,17	100,2
29	20-30	56,24	0,01	0,81	3,86	0,04	23,36	12,62	0,20	0,05	_	3,23	100,2
30	20-29	56,13	0,02	1,40	3,44	0,10	23,66	11,95	0,20	0,12	_	3,01	100
31	20-28-2	57,08	0,04	0,86	6,31	0,20	20,80	13,79	0,18	0,17	_	1,65	99,9
32	20-28-1	54,92	0,12	1,26	9,34	0,23	19,06	14,32	0,28	0,12	0,05	1,8	99,7
33	20-28	52,73	0,27	2,58	6,31	0,40	17,09	19,51	0,73	0,10	0,11	3,1	99,4
34	20-27	63,00	0,27	16,83	2,46	0,05	3,32	3,55	9,30	0,05	0,07	0,85	99,8
35	20-26	63,44	0,28	17,02	2,84	0,05	2,22	3,28	9,36	0,08	0,08	1,24	99,9
36	20-25	64,12	0,27	16,86	2,49	0,04	2,45	3,60	9,45	0,12	0,07	0,3	99,9
37	20-24	63,38	0,26	17,34	3,55	0,03	1,63	3,70	9,19	0,20	0,10	0,56	100,2
38	20-23	59,07	0,21	10,08	3,66	0,14	10,95	8,31	5,29	0,08	0,06	1,96	99,9
39	20-22	52,71	0,26	16,22	2,09	0,03	10,19	8,32	5,41	0,06	0,06	4,47	99,8
40	20-21A	42,45	0,31	18,15	2,32	0,06	4,04	29,26	0,93	0,16	0,05	2,06	99,8
41	20-21	40,55	0,25	15,22	2,30	0,08	10,72	24,54	0,60	0,13	0,04	2,06	99,9
42	20-20	35,10	0,16	9,89	4,80	0,08	37,25	0,16	0,20	_	0,04	12,79	100,3
43	20-19	40,58	0,01	0,87	3,65	0,03	40,58	0,84	0,20	_		13,53	100,2
44	20-18	41,02	0,01	0,70	2,92	0,04	42,06	0,45	0,20	_	_	12,75	100

Примечание. 1–10 – серпентиниты, 11–15 – родингиты, 16–24 – плагиориолит-порфиры, 25–28 – серпентинит-тремолитовая порода, 29–31 – нефрит, 32, 33 – диопсидит, 34–37 – плагиориолит-порфиры, 38–41 – родингиты, 42–44 – серпентиниты.

Note. 1–10 – serpentinites, 11–15 – rodingites, 16–24 – plagiorhyolite-porphyries, 25–28 – serpentinite-tremolite rock, 29–31 – nephrites, 32, 33 – диопсидит, 34–37 – plagiorhyolite-porphyries, 38–41 – rodingites, 42–44 – serpentinites.

 $T\,a\,6\,\pi\,u\,\mu\,a\quad 4$ Представительные анализы содержания микроэлементов, r/т $T\,a\,b\,l\,e\quad 4$ Representative analyses of trace element content, ppm

Элемент	20-27	20-28-1	20-29	20-30	20-5
Li	-	-	5,01	1,11	2,24
Be	1,26	0,67	0,48	0,26	0,00
Sc	_	_	5,19	3,41	6,95
Ti	1848,25	565,42	78,92	22,66	10,29
V	69,37	44,17	9,73	2,68	10,56
Cr	29,94	699,47	1401,91	385,24	1706,71
Mn	486,34	1643,57	817,73	293,98	970,33
Co	6,87	40,42	54,09	53,51	132,65
Ni	23,21	716,07	1201,68	1186,47	2316,28
Cu	5,88	11,71	1,08	1,70	2,83
Zn	57,16	78,31	49,21	19,46	32,77
Ga	18,34	2,70	1,81	0,89	0,30
Ge	0,57	0,40	0,20	0,23	0,75
Rb	1,87	2,73	4,15	2,57	0,01
Sr	365,95	325,91	437,49	24,37	2,41
Y	6,03	4,22	0,39	0,06	0,02
Zr	149,43	120,38	6,70	0,42	0,12
Nb	3,88	0,39	0,65	0,02	_
Mo	2,26	1,50	0,06	0,06	0,08
Sn	0,20	0,67	0,11	0,08	0,12
Sb	0,74	_	0,04	0,03	0,02
Cs	_	_	0,42	0,37	0,01

Шутов В.А., Мехоношин А.С., Колотилина Т.Б. Процессы родингитизации и нефритообразования на контакте серпентинитов

Элемент	20-27	20-28-1	20-29	20-30	20-5
Ba	382,65	10,74	9,22	7,04	2,30
La	17,21	20,46	0,56	0,07	0,01
Ce	29,71	41,13	0,97	0,08	0,03
Pr	3,13	3,03	0,11	0,01	_
Nd	11,61	9,80	0,39	0,05	0,01
Sm	2,13	1,44	0,07	0,01	_
Eu	0,54	0,28	0,04	_	_
Gd	2,02	1,29	0,08	0,01	_
Tb	0,24	0,14	0,01	_	_
Dy	1,37	0,67	0,07	0,01	_
Но	0,23	0,14	0,01	_	_
Er	0,55	0,45	0,05	_	_
Tm	0,07	0,06	0,01	_	_
Yb	0,50	0,39	0,05	0,01	0,01
Lu	0,08	0,07	0,01	_	_
Hf	3,84	3,01	0,15	0,01	_
Ta	0,29	0,05	0,05	_	_
Pb	0,98	0,82	1,80	0,97	0,07
Th	5,38	3,59	0,13	0,02	_
U	1,16	0,47	0,05	0,06	_

Примечание. 20-27 — плагиориолит-порфир, 20-28-1 — диопсидит, 20-29 — промежуточная серпентинит-нефритовая порода; 20-30 — нефрит; 20-5 — дунит.

Note. 20-27 – plagiorhyolite-porphyry, 20-28-1 – diopsidite, 20-29 – intermediate serpentine-nephrite rock, 20-30 – nephrite, 20-5 – dunite.

Уровень содержаний редкоземельных элементов (рис. 7) в серпентинитах в 3–10 раз выше такового в дунитах, спектр характеризуется небольшим обогащением легкими РЗЭ (La/Sm_N \sim 4,3) при почти одинаковом уровне содержаний средних и тяжелых – (Gd/Yb_N \sim 1,1).

Петрохимический состав нефритов почти полностью соответствует составу тремолита. Рассматривая редкоэлементный состав нефритов, можно отметить, что по сравнению с серпентинитами для них характерно более высокое содержание Ti, Rb, Sr, Ba, Th, U и более низкое - Со. Кроме того, содержания почти всех элементов, кроме Со и Ni, на контакте с родингитами выше в 2-30 раз по сравнению с таковыми на удалении от контакта. Наиболее значительные различия характерны для Nb, Sr, Zr, редкоземельных элементов и Hf. Уровень содержаний редкоземельных элементов в нефритах на удалении от контакта с родингитами сопоставим с таковым в серпентинитах (см. рис. 7), а в нефритах на контакте он в 2-4 раза выше. При этом конфигурации кривых почти одинаковые – для них, так же как и для серпентинитов, характерно обогащение легкими РЗЭ (La/Sm_N = 4,5-4,9) при близких содержаниях тяжёлых (Gd/Yb_N = 1,2-1,3).

Изменения химического состава пород в зонах родингизации и нефритообразования чётко прослеживаются по разрезу скважины (рис. 8).

Изменение содержаний СаО в самой мощной зоне родингитизации (интервал 10,7-13,1 м) идёт постепенно: в плагиориолит-порфирах -2,6 мас. %, в слабо родингитизированных плагиориолит-порфирах -5,4-7,1 мас. %, в родингитах достигает максимума для этого интервала -9,2 мас. %, а далее начинает снижаться до 0,1 мас. % на контакте с серпентинитами.

В диопсидитах на контакте с нефритами и в другой зоне родингитизации на контакте с серпентинитами (интервалы 16,1–17,1 и 20,1–21,0 м соответственно) увеличение содержаний СаО происходит резко до 19,5 и 29,3 мас. %.

С увеличением содержаний CaO в родингитизированных гранитах и родингитах уменьшается количество SiO₂ и Na₂O. Для других элементов нет такой чёткой зависимости. Уровень содержаний P3Э в слабо родингитизированном плагиориолит-порфире и в родингите (см. рис. 7) сопоставим и составляет 55–2 и 65–2 хондритовых отношений соответственно. Для спектров распределения характерен пологий наклон в сторону тяжёлых P3Э (La/Sm_N = 4,9 и 10; Gd/Yb_N = 3,1 и 1,6 соответственно). При этом их петрохимический состав существенно различается по уровню содержаний SiO₂, Al₂O₃, CaO, MgO, Na₂O (см. табл. 2).

В зоне контакта с нефритами, от плагиориолитпорфиров к родингитам, существенно увеличиваются (в 2–6 раз) содержания Rb, Ni, Co, Mn, уменьшаются Ва, U, Ga.

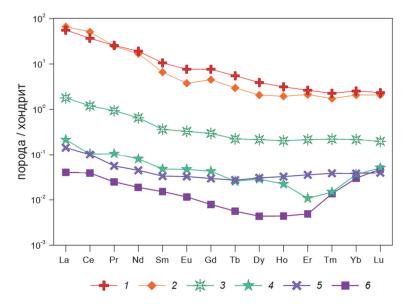


Рис. 7. Графики нормированного распределения редкоземельных элементов

1 — плагиориолит-порфир слабо родингитизированный; 2 — родингит, 3 — нефрит на контакте с диопсидитами; 4 — нефрит на удалении от контакта; 5 — серпентинит, 6 — дунит. Данные по хондриту С1 по [Boynton, 1984]

Fig. 7. REE patterns normalized to C1 chondrite [Boynton, 1984]

1 – plagiorhyolite-porphyr weakly rodingitised; 2 – rodingite; 3 – nephrite on contact with rodingite; 4 – nephrite at a distance from the contact; 5 – serpentinite, 6 – dunite

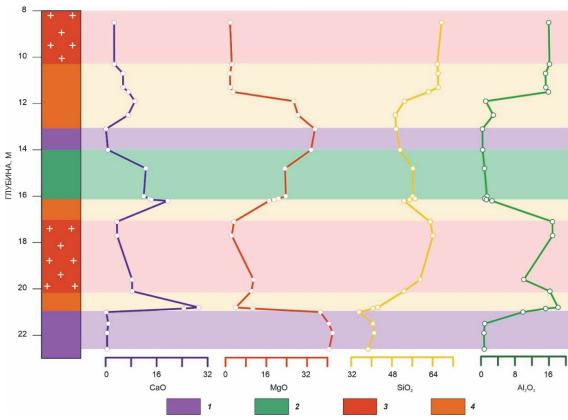


Рис. 8. Распределение петрогенных элементов по разрезу массива в зонах родингизации и нефритообразования

1 – серпентиниты; 2 – нефриты; 3 – родингиты; 4 – плагиориолит-порфиры

Fig. 8. Distribution of petrogenic elements along the massif section in the zones of rhodinization and nephrite formation

1 – serpentinites; 2 – nephrites; 3 – rodingites; 4 – plagiorhyolite-porphyries

Обсуждение результатов

Существующие представления о стадийности процессов нефритообразования сводятся к следующей последовательности событий [Сутурин и др., 2015]: 1) внедрение в серпентинизированные реститовые перидотиты по зонам катаклаза или вдоль контакта перидотитов с вмещающими породами даек или жильных тел долеритов или плагиогранитов; 2) перекристаллизация и диспергирование серпентинитов в результате термального и флюидного воздействия магматических пород и 3) метасоматические преобразования серпентинитов и дайковых пород, в результате которых образуются нефриты и родингиты.

Изучение контактовых зон плагиориолит-порфиров и серпентинитов на Улан-Ходинском месторождении нефритов показало, что действительно в серпентинитах происходит перекристаллизация, выраженная в изменении структурно-текстурных свойств, а по плагиориолит-порфирам образуются родингиты. При этом родингиты на контакте с серпентинитами характеризуются одинаковыми минеральными парагенезисами (диопсид, гроссуляр, кальцит, альбит, паргасит). Однако на контакте с нефритом присутствует зона преимущественно диопсидового состава (диопсидиты) с незначительным содержанием тремолита в краевой части зоны. Как уже отмечалось выше, диопсид в этой зоне обладает нефритоподобным обликом (см. рис. 2, е).

Такого рода породы были обнаружены в офиолитовом комплексе Омана [Python et al., 2011], где в деплетированных мантийных перидотитах наряду с апогаббровыми родингитами присутствуют «дайки» диопсидитов, в краевых частях которых развиты зоны тремолитизации переходящие в нефрит.

Кроме того, в офиолитовом комплексе Перидотитовый Мыс (Peridotite Nappe) (Новая Каледония) [Cluzel et al., 2019] также в мантийной секции разреза обнаружены тремолититы в антигоритовых жилах.

К тому же в центральной части наиболее крупных дунитовых тел в Ольхонском композитном террейне жильные породы выполняют систему разрывных нарушений [Mekhonoshin et al., 2013; Колотилина, Мехоношин, 2022]. Состав жильных пород сложный, одна из зон в них выполнена агрегатом тремолита, магнезита и серпентина. Благодаря тому, что массивы дунитов хорошо обнажены, четко видно положение жильных тел, образующих своеобразную сетку внутри массивов. Ранее нами было высказано предположение, что образование этой системы трещин обусловлено вязкопластичными деформациями со сдвиго-взбросовой кинематикой [Mekhonoshin et al., 2013].

Однако, анализируя работы по петроструктурному анализу гипербазитовых массивов [Гончаренко, Чернышов, 1990] и процессам серпентинизации ультраосновных пород [Lyer et al., 2008; Malvoishin et al., 2017; Cluzel et al., 2019], можно предположить, что не исключена возможность изначального образования таких крупномасштабных трещин в ходе статической серпентинизации перидотитовых массивов. В дальнейшем они могли служить, с одной стороны, в качестве своеобразного проводника для «инъекций» флюидов, а с другой – способствовать образованию разрывных нарушений внутри массивов реститовых перидотитов [Tesei et al., 2018]. Исходя из этого, нельзя исключить такую возможность, что образование пород существенно тремолитового состава и собственно нефрита могло предшествовать внедрению даек плагиориолит-порфиров.

Особенности химизма процессов. То, что протолитом для образования нефрита послужил серпентинит, подтверждается составом реликтового хромшпинелида и унаследованностью редкоэлементного, в том числе редкоземельного состава пород. Рассматривая особенности изменения химического состава пород на контакте с дайками плагиориолит-порфиров в Улан-Ходинском месторождении, подчеркнём, что для процессов нефритообразования характерны привнос СаО, SiO₂, вынос MgO, а процессы родингитизации сопровождаются привносом СаО и выносом SiO₂ и щелочей.

С одной стороны, увеличение содержаний SiO₂ при образовании нефритов и уменьшение таковых при родингитизации можно объяснить проявлением диффузионного метасоматоза, проходившего на границах серпентинитов с плагиориолит-порфирами, при котором движущей силой диффузии является разница химических потенциалов компонентов в межпоровом растворе различных зон метасоматической колонки. С другой стороны, это предположение не согласуется с поведением других макрокомпонентов, и тем более с одновременным ростом содержаний СаО в нефритах и родингитах. При этом ни плагиориолит-порфиры, ни серпентиниты не могут служить источником кальция.

Существует несколько точек зрения на происхождение нефритообразующих флюидов. Так, Колман [Coleman, 1977] считал, что флюиды, протекающие через тела ультраосновных пород при серпентинизации, должны насыщаться Ca²⁺ в результате распада клинопироксена. Сутурин и Замалетдинов [Сутурин, Замалетдинов, 1984] предположили существование некого гипотетического внешнего источника для нефритообразующих компонентов, которые поступают во вмещающие породы. О'Хэнли [O'Hanley,

1996] утверждал, что для образования нефрита (в отличие от родингита) Са должен поступать извне серпентинита после того, как серпентинизация и образование родингита практически завершены. Адамс и соавт. [Adams et al., 2007] с помощью изотопных исследований установили, что Са в нефрит поступает из кремнистых осадочных пород. Пайтон и соавт. [Python 2011], на основе изучения «даек» диопсидитов на контакте с нефритами в офиолитовом комплексе Омана, пришли к выводу, что их образование связано с циркуляцией очень высокотемпературных (> 800 °C) карбонатных флюидов и морской воды. Авторы отмечают, что такой составной «флюид» должен быть чрезвычайно богат Са, Si, беден Fe и Mg.

На данном этапе без дополнительных изотопных исследований мы не можем с уверенностью сказать об источнике флюидов для образования нефритов Улан-Ходинского месторождения.

То, что процессы образования нефрита и диопсидитов связаны между собой, свидетельствуют изменения как минерального, так и редкоэлементного состава нефрита по направлению к контакту с диопсидитом.

Наличие скопления антигорита \pm тремолита в нефрите между диопсидитом показывает, что диопсидиты с нефритовой стенкой формируются из поля стабильности форстерит + диопсид.

Диопсид и тремолит сосуществуют в большой области температур, но равновесие форстерит + антигорит + тремолит в нефрите предполагает температуру образования около 550–600 °C при относительно высокой $X_{\rm CO_2}$ (Trommsdorff, Evans, 1972; Trommsdorff, Connolly, 1990).

Заключение

Изучение контактов даек плагиориолит-порфиров с серпентинитами и нефритами на Улан-Ходинском месторождении показало, что наряду с типичными родингитами, на контакте с нефритами обнаружены зоны, сложенные диопсидитами с реликтами тремолита.

Нефриты и диопсидиты, вероятно, являются результатом преобразования гарцбургита/серпентинита путем добавления Са, Si и удаления Fe, Mg при постоянной массе. Падение плотности и объемное расширение в результате этого преобразования, вероятно, были скорректированы общей трещиноватостью пород. Диопсидиты могли формироваться непосредственно из флюида или замещать тремолитизированный гарцбургит/серпентинит. Внедрение даек плагиориолит-порфиров происходило, скорее всего, позднее и не связано с образованием нефрита и диопсидитов.

Список источников

Гончаренко А.И., Чернышов А.И. Деформационная структура и петрология нефритоносных гипербазитов. Томск : Изд-во Том. ун-та, 1990. 200 с.

Гордиенко И.В., Добрецов Н.Л., Жмодик С.М., Рощектаев П.А. Многоэтапная покровная тектоника юго-восточной части Восточного Саяна и ее роль в формировании золоторудных месторождений // Геология и геофизика. 2021. Т. 62, № 1. С. 134—147.

Замалетдинов Р.С., Якшин И.С. Геологические особенности и условия формирования восточно-сибирских месторождений нефрита // Разведка и охрана недр. 1971. № 8. С. 15—17.

Кислов Е.В., Ерохин Ю.В., Попов М.П., Николаев А.Г. Нефрит Баженовского месторождения хризотил-асбеста, Средний Урал // Геосферные исследования. 2022. № 3. С. 40–59.

Колесник Ю.Н. Нефриты Сибири. Новосибирск : Наука, 1966. 149 с.

Колотилина Т.Б., Мехоношин А.С. Плагиограниты и жильные породы в дунитах офиолитового комплекса Ольхонского композитного террейна // Петрология и рудоносность магматических формаций. Новосибирск : ИГМ СО РАН. 2022. С. 103–106.

Методические указания по поискам и перспективной оценке месторождений цветных камней (ювелирных, поделочных, декоративно-облицовочных). Вып. 3: Нефрит. М.: Министерство геологии СССР, 1975. 44 с.

Секерин А.П., Секерина Н.В. Нефриты и их распространение в Южной Сибири // Байкальская Сибирь в древности. Иркутск: Изд-во ИГПУ, 2000. Вып. 2, ч. 1. С. 146–160.

Сутурин А.Н. Геохимия гипербазитов Восточного Саяна. Новосибирск : Наука, 1978. 142 с.

Сутурин А.Н., Замалетдинов Р.С. Нефриты. М.: Наука, 1984. 292 с.

Сугурин А.Н., Замалетдинов Р.С., Секерина Н.В. Месторождения нефритов. Иркутск : Изд-во ИГУ, 2015. 377 с.

Adams C.J, Beck R.J, Campbell H.J. Characterization and origin of New Zealand nephrite jade using its strontium isotopic signature // Lithos. 2007. V. 97. P. 307–322.

Bodinier J.-L., Godard M. Orogenic, Ophiolitic, and Abyssal Peridotites // Treatise on Geochemistry. 2005. P. 1–73.

Boynton W.V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies // Developments in Geochemistry. 1984. P. 63–114. **Coleman R.G.** Ophiolites: Ancient Oceanic Lithosphere? (Minerals and Rocks, v. 12). Berlin; Heidelberg; New York: Springer Verlag, 1977. 229 p.

Cluzel D., Boulvais P., Iseppi M., Lahondère D., Lesimple S., Maurizot P., Paquette J.-L., Tarantola A., Ulrich M. Slab-derived origin of tremolite–antigorite veins in a supra-subduction ophiolite: the Peridotite Nappe (New Caledonia) as a case study // International Journal of Earth Sciences. 2019. V. 109, № 1. P. 171–196.

Harlow G.E., Sorensen S.S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections // International Geology Review. 2005. V. 47. P. 113–146.

Hey M.H. A new review of the chlorites // Mineralogical Magazine and Journal of the Mineralogical Society. 1954. V. 30 (224). P 277–292

Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Youzhi G. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names // American Mineralogist. 1997. V. 82. P. 1019–1037.

Leaming S.F. Jade in Canada. Geological Survey of Canada. 1978. 59 p.

Liu Y., Zhang R. Q., Abuduwayiti M., Wang C., Zhang S., Shen C., Zhang Z., He M., Zhang Y., Yang X. SHRIMP U–Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China: implication for a magnesium skarn // Ore Geology Reviews. 2016. V. 72. P. 699–727.

Lyer K., Jamtveit B., Mathiesen J., Malthe-Sørenssen A., Feder J. Reaction-assisted hierarchical fracturing during serpentinization // Earth and Planetary Science Letters. 2008. V. 267 (3–4). P. 503–516.

Malvoisin B., Brantut N., Kaczmarek M.-A. Control of serpentinization rate by reaction-induced cracking // Earth Planet. Sci. Lett. 2017. V. 476. P. 143–152.

Moores E.M., Kellogg L.H., Dilek Y. Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum" // Geological Society of America Special Papers. 2000. V. 349. P. 3–12.

Mekhonoshin A.S., Vladimirov A.G., Vladimirov V.G., Volkova N.I., Kolotilina T.B., Mikheev E.I., Travin A.V., Yudin D.S., Khlestov V.V., Khromykh S.V. Restitic ultramafic rocks in the Early Caledonian collisional system of western Cisbaikalia // Russian Geology and Geophysics. 2013. V. 54, No. 10. P. 1219–1235.

O'Hanley D.S. Serpentinites, recorders of tectonic and petrological history // Oxf. Mono. Geol. Geophys. 1996. 277 p.

Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic // Contributions to Mineralogy and Petrology. 2000. Is. 139 (1). P. 36–53.

Python M., Yoshikawa M., Shibata T., Arai S. Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle. Dyke Swarms // Keys for Geodynamic Interpretation. 2011. P. 401–435.

Tesei T., Harbord C.W.A., De Paola N., Collettini C., Viti C. Friction of Mineralogically Controlled Serpentinites and Implications for Fault Weakness // Journal of Geophysical Research: Solid Earth. 2018. Is. 123. P. 6976–6991.

Trommsdorff V., Connolly J.A.D. Constraints on phase diagram topology for the system CaO-MgO-SiO₂-CO₂-H₂O // Contributions to Mineralogy and Petrology. 1990. Is. 104 (1). P. 1–7.

Trommsdorff V., Evans B.W. Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy) // American Journal of Science. 1972. Is. 272 (5). P. 423–437.

Yui T.-F., Yeh H.-W., Chihming Wang Lee. Stable isotope studies of nephrite deposits from Fengtien, Taiwan // Geochimica et Cosmochimica Acta. 1988. Is. 52 (3). P. 593–602.

References

Goncharenko A.I. Chernyshov A.I. *Deformacionnaja struktura i petrologija nefritonosnyh giperbazitov* [The deformation structure and petrology of nephritic hyperbasites] Tomsk: Izdatel'stvo Tomskogo universiteta, 200 p. In Russian

Gordienko I.V., Dobrecov N.L., Zmodik S.M., Roshchektayev P.A. Multi-stage cover tectonics of the southeastern part of the Eastern Sayan and its role in formation of gold deposit // *Geologiya i Geofizika* [Russian Geology and Geophysics]. 2021 V. 62, No. 1, p. 134–147. doi: 10.15372/GiG2020185. In Russian

Zamaletdinov R.S., Yakshin I.S. Geologicheskie osobennosti i uslovija formirovanija Vostochno-Sibirskih mestorozhdenij nefrita [Geologic features and formation conditions of the East Sayan nephrite deposits] Razvedka i okhrana nedr [Exploration and protection of mineral resources]. 1971. No. 8. pp. 15–17. In Russian

Kislov E.V., Erokhin Y.V., Popov M.P., Nikolaev A.G. Nephrite of the Bazhenovskoye chrysotile-asbestos deposit, Middle Urals // Geosfernye issledovaniya – Geosphere Research. 2022. No. 3. pp. 40–59. doi: 10.17223/25421379/24/3. In Russian

Kolesnik Yu.N. Nefrity Sibibri [Nephrites of Siberia]. Novosibirsk: Nauka. 1966. 149 p. In Russian

Kolotilina T.B. Mekhonoshin A.S. *Plagiogranity i zhil'nye porody v dunitah ofiolitovogo kompleksa Ol'honskogo kompozitnogo terrejna* [Plagiogranites and vein rocks in dunites of the ophiolite complex of the Olkhon composite terrane] // In: Petrology and ore content of igneous formations. Novosibirsk: IGM SB RAS, 2022. pp. 103–106. In Russian

Metodicheskiye ukazaniya po poiskam i perspektivnoy otsenke mestorozhdeniy tsvetnykh kamney (yuvelirnykh, podelochnykh, dekorativno-oblitsovochnykh [Methodological guidelines for prospecting and prospective assessment of deposits of coloured stones (jewellery, ornamental, decorative and facing stones)] // Issue 3. Nefrit. Moscow: Ministerstvo geologii SSSR. 1975. 44 p. In Russian

Sekerin A.P., Sekerina N.V. Nefrity i ikh rasprostraneniye v Yuzhnoy Sibiri [Nephrites and their occurrence in southern Siberia] // Baykal'skaya Sibir' v drevnosti. Irkutsk: Izd. IGPU 2000. Issue 2 (1), pp. 146–160. In Russian

Suturin A.N. Geohimiia giperbazitov Vostochnogo Saiana [Geochemistry of hyperbasites of Eastern Sayan]. Novosibirsk: Nauka, 1978. 142 p. In Russian

Suturin A.N., Zamaletdinov R.S. Nefrity [Nephrites]. Moscow: Nauka, 1984. 292 p. In Russian

Sututrin A.N., Zamaletdiniv R.S., Sekerina N.V. *Mestorozhdeniya nefritov* [Nephrite deposits]. Irkutsk: Izdatel'stvo IGU, 2015. 377 p. In Russian

Adams C.J., Beck R.J., Campbell H.J. Characterisation and origin of New Zealand nephrite jade using its strontium isotopic signature // Lithos. 2007. V. 97. pp. 307–322. doi.org/10.1016/j.lithos.2007.01.001

Bodinier J.-L., Godard M. Orogenic, Ophiolitic, and Abyssal Peridotites // Treatise on Geochemistry. 2005. pp. 1–73. doi: 10.1016/b0-08-043751-6/02004-1

Boynton W.V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies // Developments in Geochemistry. 1984. pp. 63–114. doi: 10.1016/b978-0-444-42148-7.50008-3

Coleman R.G. Ophiolites: Ancient Oceanic Lithosphere? (Minerals and Rocks, v. 12). Berlin, Heidelberg and New York: SpringerVerlag, 1977. 229 p.

Cluze D., Boulvais P., Iseppi M., Lahondère D., Lesimple S., Maurizot P., Paquette J.-L., Tarantola A., Ulrich M. Slab-derived origin of tremolite–antigorite veins in a supra-subduction ophiolite: the Peridotite Nappe (New Caledonia) as a case study // International Journal of Earth Sciences. 2019. V. 109. No. 1. pp. 171–196. doi: 10.1007/s00531-019-01796-6

Harlow G.E., Sorensen S.S. Jade (nephrite and jadeitite) and serpentinite: metasomatic connections // International Geology Review. 2005. V. 47. pp. 113–146.

Hey M.H. A new review of the chlorites // Mineralogical Magazine and Journal of the Mineralogical Society. 1954. V. 30(224). pp. 277–292. doi: 10.1180/minmag.1954.030.224.01

Leake B.E., Woolley A.R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Youzhi G. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names // American Mineralogist. 1997. V. 82. pp. 1019–1037.

Learning S.F. Jade in Canada; Geological Survey of Canada. 1978. 59 p.

Liu Y., Zhang R. Q., Abuduwayiti M., Wang C., Zhang S., Shen C., Zhang Z., He M., Zhang Y., Yang X. SHRIMP U–Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash River deposits, West Kunlun, Xinjiang, Northwest China: implication for a magnesium skarn // Ore Geology Reviews. 2016. V. 72. pp. 699–727. doi: 10.1016/j.oregeorev.2015.08.023.

Lyer K., Jamtveit B., Mathiesen J., Malthe-Sørenssen A., Feder J. Reaction-assisted hierarchical fracturing during serpentinization // Earth and Planetary Science Letters. 2008. V. 267(3–4). pp. 503–516. doi: 10.1016/j.epsl.2007.11.060

Malvoisin B., Brantut N., Kaczmarek M.-A. Control of serpentinization rate by reaction-induced cracking // Earth Planet. Sci. Lett. 2017. V. 476. pp. 143–152. doi: 10.1016/j.epsl.2017.07.042.

Moores, E. M., Kellogg, L. H., Dilek, Y. Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the "ophiolite conundrum" // Geological Society of America Special Papers. 2000. V. 349. pp. 3–12. doi: 10.1130/0-8137-2349-3.3

Mekhonoshin A.S., Vladimirov A.G., Vladimirov V.G., Volkova N.I., Kolotilina T.B., Mikheev E.I., Travin A.V., Yudin D.S., Khlestov V.V., Khromykh S.V. Restitic ultramafic rocks in the Early Caledonian collisional system of western Cisbaikalia // Russian Geology and Geophysics. 2013. V. 54. No. 10. pp. 1219–1235. doi: 10.1016/j.rgg.2013.09.007

O'Hanley, D.S. Serpentinites, recorders of tectonic and petrological history // Oxf. Mono. Geol. Geophys. 1996. 277 p.

Pearce J.A., Barker P.F., Edwards S.J., Parkinson I.J., Leat P.T. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology. 2000. Iss. 139(1). pp. 36–53. doi: 10.1007/s004100050572

Python M., Yoshikawa M., Shibata T., Arai S. Diopsidites and Rodingites: Serpentinisation and Ca-Metasomatism in the Oman Ophiolite Mantle. Dyke Swarms // Keys for Geodynamic Interpretation. 2011. pp. 401–435. doi: 10.1007/978-3-642-12496-9 23

Tesei T., Harbord C.W.A., De Paola N., Collettini C., Viti C. Friction of Mineralogically Controlled Serpentinites and Implications for Fault Weakness // Journal of Geophysical Research: Solid Earth. 2018. Iss. 123. pp. 6976–6991. doi.org/10.1029/2018jb016058

Trommsdorff V., Connolly J.A.D. Constraints on phase diagram topology for the system CaO-MgO-SiO₂-CO₂-H₂O // Contributions to Mineralogy and Petrology. 1990. Iss. 104(1). pp. 1–7. doi.org/10.1007/bf00310641

Trommsdorff V., Evans B. W. Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy) // American Journal of Science. 1972. Issue. 272(5). pp. 423–437. doi.org/10.2475/ajs.272.5.423

Yui T.-F., Yeh H.-W., Chihming Wang Lee. Stable isotope studies of nephrite deposits from Fengtien, Taiwan // Geochimica et Cosmochimica Acta. 1988. Iss. 52(3). pp. 593–602. doi.org/10.1016/0016-7037(88)90321-3

Информация об авторах:

Шутов В.А., инженер-исследователь, лаборатория основного и ультраосновного магматизма, Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия.

E-mail: v.shutov@igc.irk.ru

Мехоношин А.С., кандидат геолого-минералогических наук, старший научный сотрудник, лаборатория основного и ультраосновного магматизма, Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия.

E-mail: mekhonos@igc.irk.ru

Колотилина Т.Б., кандидат геолого-минералогических наук, старший научный сотрудник, лаборатория основного и ультраосновного магматизма, Институт геохимии им. А.П. Виноградова СО РАН, Иркутск, Россия.

E-mail: tak@igc.irk.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Shutov V.A., Research Engineer, Laboratory of Geochemistry of Basic and Ultrabasic Magmatism, Vinogradov Institute of Geochemistry, SB RAS, Irkutsk, Russia.

E-mail: v.shutov@igc.irk.ru

Mekhonoshin A.S., Cand. Sci.(Geol.-Miner), Senior Researcher, Laboratory of Geochemistry of Basic and Ultrabasic Magmatism, Vinogradov Institute of Geochemistry, SB RAS, Irkutsk, Russia.

E-mail: mekhonos@igc.irk.ru

Kolotilina T.B., Cand. Sci.(Geol.-Miner), Senior Researcher, Laboratory of Geochemistry of Basic and Ultrabasic Magmatism, Vinogradov Institute of Geochemistry, SB RAS, Irkutsk, Russia.

E-mail: tak@igc.irk.ru

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 21.07.2023; одобрена после рецензирования 31.10.2023; принята к публикации 03.06.2024

The article was submitted 21.07.2023; approved after reviewing 31.10.2023; accepted for publication 03.06.2024

ГЕОЭКОЛОГИЯ, ГИДРОЛОГИЯ

Научная статья УДК 550.46556+55.47 doi: 10.17223/25421379/31/7

МИКРОЭЛЕМЕНТНЫЙ СОСТАВ ПРИРОДНЫХ ВОД ВОСТОЧНОГО ЗАБАЙКАЛЬЯ В УСЛОВИЯХ ТЕХНОГЕННОГО ВОЗДЕЙСТВИЯ

Евгений Александрович Бондаревич^{1,2}, Лариса Альфредасовна Михайлова², Наталья Николаевна Коцюржинская³, Ольга Александровна Лескова⁴, Максим Романович Лагутенко⁵, Екатерина Сергеевна Ерофеева⁶, Константин Борисович Ломаковский⁷, Роман Эдуардович Апрелков⁸

^{1, 2, 3, 4, 6, 7, 8} Читинская государственная медицинская академия, Чита, Россия

Аннотация. Проведен анализ данных по содержанию 10 химических элементов в природных водах Забайкальского края. В момент отбора вод измерялся окислительно-восстановительный потенциал и водородный показатель потенциометрическим методом. Определение концентрации элементов проводили без предварительной пробоподготовки с помощью неразрушающего физического метода – рентгенофлуоресцентного анализа с полным внешним отражением на спектрометре S2 Picofox (Bruker Nano GmbH, Германия) с использованием внутреннего стандарта – ионов германия. По величинам среднего содержания элементов с переменной валентностью (Cr, Mn, Fe, Cu, Se и As) был рассчитан риск развития окислительного стресса в физиологических условиях. В результате выявлено, что большинство проб воды имели удовлетворительное качество и соответствовали санитарно-гигиеническим нормативам, однако реки и ручьи в техногенно-нарушенных ландшафтах города Читы, села Акатуй, а также подземные воды посёлка Кличка характеризовались высокими концентрациями цинка, мышьяка, железа, марганца и стронция, что, вероятно, обусловлено как процессами загрязнения окружающей среды, так и природными геохимическим факторами. Выявлены отличия по содержанию химических элементов в водах крупных рек по сравнению с другими источниками, в том числе значительное превышение уровня железа в сравнении с ПДК, особенно в окрестностях города. Величина риска развития окислительного стресса охарактеризовала поверхностные воды водоёмов в окрестностях города Чита как наиболее опасные за счёт высоких концентраций Fe, Mn и Cu.

Ключевые слова: Забайкальский край, питьевые воды, микроэлементы, рентгенофлуоресцентный метод с полным внешним отражением, окислительный стресс

Для цитирования: Бондаревич Е.А., Михайлова Л.А., Коцюржинская Н.Н., Лескова О.А., Лагутенко М.Р., Ерофеева Е.С., Ломаковский К.Б., Апрелков Р.Э. Микроэлементный состав природных вод Восточного Забайкалья в условиях техногенного воздействия// Геосферные исследования. 2024. № 2. С. 117–128. doi: 10.17223/25421379/31/7

^{2,5} Забайкальский государственный университет, Чита, Россия

¹ bondarevich84@mail.ru

² mihailova-la@mail.ru

³ nata nik k@mail.ru

⁴ leskova-olga@inbox.ru

teskova-otga@inoox.ru 5 max.lagutenko@mail.ru

⁶ erof69k.mail@gmail.com

⁷ darkk2015@mail.ru

⁸ roma.aprelkov@bk.ru

Original article

doi: 10.17223/25421379/31/7

TRACE ELEMENT COMPOSITION OF NATURAL WATERS OF EASTERN TRANSBAIKALIA UNDER THE CONDITIONS OF TECHNOGENIC IMPACT

Evgeniy A. Bondarevich¹, Larisa A. Mikhailova², Natalia N. Kotsyurzhinskaya³, Olga A. Leskova⁴, Maxim R. Lagutenko⁵, Ekaterina S. Erofeeva⁶, Konstantin B. Lomakovskiy⁷, Roman E. Aprelkov⁸

1, 2, 3, 4, 6, 7, 8 Chita State Medical Academy, Chita, Russia

Abstract. The paper analyzes data on the content of 10 chemical elements in water of various origins, samples of which were collected on the territory of the Transbaikal region. A total of 32 samples of surface and groundwater were analyzed. At the time of water sampling, the redox potential and pH were measured by the potentiometric method. The determination of the concentration of elements was carried out without prior sample preparation using a non-destructive physical method – X-ray fluorescence analysis with total external reflection on an S2 Picofox spectrometer (Bruker Nano GmbH, Germany) using an internal standard - germanium ions with a concentration of 2.5 mg/l solution. Based on the values of the average content of elements (Cr, Mn, Fe, Cu, Se и As) with variable valence, the risk of developing oxidative stress under physiological conditions was calculated. As a result of the study, it was found that most of the water samples were of satisfactory quality and met the sanitary and hygienic standards adopted in Russia, however, rivers and streams in the technogenically disturbed landscapes of the city of Chita, the village of Akatuy, as well as the underground waters of the village of Klichka, were characterized by high concentrations of trace elements: zinc, arsenic, iron, manganese and strontium, which is probably due to both environmental pollution processes and natural geochemical factors. The content of the microelement selenium in all samples of the selected water turned out to be lower than both the maximum allowable concentration (MPC (Se) = 0.01 mg/l) and the physiological need (55 μ g/day), which confirms the correlation of the study area with selenium deficiency. The content of the microelement selenium in all samples of the selected water turned out to be below the physiological need, which confirms the correlation of the study area with selenium deficiency. Differences in the content of chemical elements in the waters of large rivers compared to other sources were revealed, including a significant excess of the level of iron in comparison with the MPC, especially in the vicinity of the city. Most of the water samples had a pH value close to neutral or slightly alkaline, while the values of the redox potential indicated the predominance of reduced forms in the water. The magnitude of the risk of oxidative stress characterized the surface waters of reservoirs in the vicinity of the city of Chita as the most dangerous, due to high concentrations of Fe. Mn and Cu. The use of such waters can provoke an excessive intake of elements with variable valence into the human body and enhance the formation of toxic reactive oxygen species that damage biological macromolecules and membranes. However, for Klichka, this index had low values, which indicates the selectivity of its use and careful use in assessing hygienic conditions.

Keywords: Transbaikal region, drinking water, microelements, method Total Reflection X-ray Fluorescence Spectroscopy, oxidative stress

For citation: Bondarevich E.A., Mikhailova L.A., Kotsyurzhinskaya N.N., Leskova O.A., Lagutenko M.R., Erofeeva E.S., Lomakovskiy K.B., Aprelkov R.E. (2024) Trace element composition of natural waters of Eastern Transbaikalia under the conditions of technogenic impact. *Geosfernye issledovaniya – Geosphere Research.* 2. pp. 117–128. (In Russian). doi: 10.17223/25421379/31/7

Введение

Территория Забайкалья характеризуется сложными геохимическими условиями, что находит отражение в химическом составе различных геосред. Многочисленность месторождений полезных ископаемых, разработка которых ведётся на протяжении нескольких столетий, обусловила существенное загрязнение территорий, что негативно влияет на биологические системы.

Кроме того, для региона известны и природные микроэлементозы, широко распространенные не только в регионе, но и в сопредельных районах Дальнего Востока России, в Манчжурии и Монголии [Ермаков и др., 2018; Замана и др., 2019]. Всего на территории Забайкальского края выделено 14 геохимических провинций с повышенным содержанием элементов: свинцовая, цинковая, медная, мышьяковая, ртутная, молибденовая с золотом, фтористая, борная, титановая. кобальтовая, никелевая, марганцевая, с

^{2,5} Zabaikalsky State University, Chita, Russia

¹ bondarevich84@mail.ru

² mihailova-la@mail.ru

³ nata nik_k@mail.ru

⁴ leskova-olga@inbox.ru

⁵ max.lagutenko@mail.ru

⁶ erof69k.mail@gmail.com

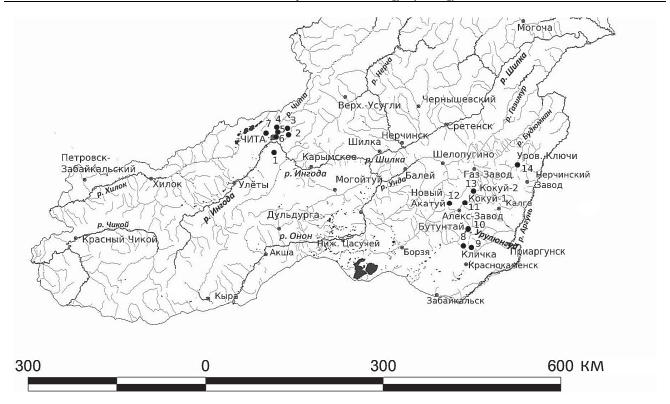
⁷ darkk2015@mail.ru

⁸ roma.aprelkov@bk.ru

повышенной радиоактивностью, редкоземельная [Солодухина и др., 2015]. На исследованной территории, особенно в юго-восточных районах региона, отмечались следующие эндемические заболевания, обусловленные дисбалансом микроэлементов – флюороз – избыточное поступление фторидов с водой и продуктами питания местного производства. Избыток фторид-анионов в момент амелогенеза оказывает цитотоксическое действие на энамелобласты, нарушает синтез амелогенинов и энамелинов межклеточного матрикса эмалевого органа в зубном зачатке и изоморфное замещение усиливает фторидами гидроксид-анионов в гидроксиапатите (Са₁₀(РО₄)₆(ОН)₂ + $2F^- \rightarrow Ca_{10}(PO_4)_6(F)_2 + 2OH^-$). Итогом избыточного поступления F- будет изменение поверхности эмали, возникновение на ней пятен и дефектов различной величины, формы и цвета. В некоторых случаях возможно поражение скелета. Также известно, что при действии фторидов угнетается функция щитовидной железы, что способствует гипотиреозу [Ермаков и др., 2018]. Широко распространён на территории региона и эндемический зоб – патология, обусловленная длительным дефицитом иодидов и иодатов в питьевой воде и продуктах питания. Йододефицит приводит к нарушению выработки тироидных гормонов щитовидной железы, оказывающих действие на весь метаболизм, через изменение скорости энергетического обмена. Кроме недостатка йода патология обусловлена дефицитом Se, который выступает кофактором в синтезе тироидных гормонов. При избыточном содержании As и F возникает ингибирование поступления йода и его включение в состав гормонов Т₃ и Т₄. В XIX в. впервые в мире в районе р. Уров была описана болезнь Кашина-Бека (уровская), выражающаяся деформирующим остеоартритом суставов у детей и подростков. Существует 20 теорий механизмов развития этой патологии, при этом в качестве основной используют геохимическую гипотезу воздействия на организм. В районах распространения эндемии отмечается существенный дисбаланс в почве и воде микроэлементов (Se, I, B, Ge) и кальция на фоне избытка фосфатов, Mn, Ag, Sr [Солодухина и др., 2015; Ермаков и др., 2018; Замана и др., 2019]. Селенодефицит также приводит к развитию кешанской болезни, которая выражается развитием кардиомиопатии, обусловленной нарушением антиоксидантной защиты кардиомиоцитов из-за нехватки Se.

Этот микроэлемент, в составе селенометионина и селеноцистеина, необходим для синтеза ферментов, например, глутатионпероксидазы, разрушающих высокотоксичные активные формы кислорода [Панченко и др., 2004; Солодухина и др., 2015]. Исследований, которые бы оценивали не только особенности химического состава природных вод, но и влияние

прооксидантов (веществ, инициирующих свободнорадикальное окисление за счёт активных форм кислорода), ранее на исследуемой территории не проводилось, что является актуальным вопросом биогеохимии.


Целью исследования является сравнение элементного состава различных по происхождению вод из разных районов Забайкалья, и оценка реального поступления прооксидантов с этим источником через желудочно-кишечный тракт человека.

Материалы и методы

Питьевую воду отбирали в октябре 2021 г. и в мае 2022 г. Всего исследовали 32 пробы подземных (13) и поверхностных (19) вод, пункты отбора которых представлены на карте (рис. 1).

Территории районов исследования характеризуются следующими геологическими особенностями. Город Чита частично расположен в Читино-Ингодинской впадине, в границах которой развиты мезозойские отложения. Районы города, расположенные на северной, восточной и южной окраинах, занимают отроги горных хребтов (Яблоновый и Черского), которые характеризуются наличием позднепалеозойских гранитоидов и нижнепалеозойских отложений. Юго-восточные районы Забайкальского края, где проводились исследования, имеют гораздо более разнообразную геологию. Александрово-Заводский район (сёла Александровский Завод, Бутунтай, Кокуй-1 и 2, Новый Акатуй) имеют участки мезозойских отложений, раннепалеозойских гранитоидов, окрестности посёлка Кличка также включают протерозойские отложения (метаморфизованные песчаники, алевролиты, известняки, доломиты), мезозойские и позднепалеозойские гранитоиды [Атлас..., 2010]. Некоторые источники поступления микроэлементов и приоритетные неорганические загрязнители приведены в табл. 1.

Непосредственно при отборе проб производился замер величины температуры, pH (pH-метр Hanna HI 98128) и окислительно-восстановительного потенциала (ОВП-метр Наппа НІ 98201). Пробы консервировались добавлением 3–5 мл хлороформа. В течение нескольких дней после прибытия в лабораторию кафедры химии и биохимии ФГБОУ ВО ЧГМА химический состав воды анализировался на содержание 10 микроэлементов (Ст, Mn, Fe, Cu, Zn, As, Se, Br, Sr и Pb) рентгенофлуоресцентным методом полного внешнего отражения на спектрометре S2 Picofox (Bruker Nano GmbH, Германия). Предварительная пробоподготовка не проводилась. В качестве внутреннего стандарта использовался стандартный раствор соли Ge с концентрацией 2,5 мг/л (стандарт для ISP, 1 000 мг/л, Sigma-Aldrich). Для каждой пробы применялась трехкратная аналитическая повторность измерения.

Рис. 1. Расположение пунктов отбора проб вод

1-р. Заячий ключ, 2-р. Никишиха, 3-ручей Лагерный, 4-р. Чита, 5-р. Кайдаловка, 6-р. Ингода, 7-р. Застепь, 8-р. Урулюнгуй, 9-скважины пгт. Кличка, 10-с. Бутунтай, 11-с. Александровский Завод, 12-с. Новый Акатуй, 13-села Кокуй-11 и Кокуй-12, 14-6. Уровские Ключи и р. Уров

Fig. 1. Location of water sampling points

1 – Zayachiy Klyuch, 2 – Nikishikha, 3 – Lagerny, 4 – Chita, 5 – Kaydalovka, 6 – Ingoda, 7 – Zastep, 8 – Urulyungui, 9 – Wells in the village district in the village of Klichka, 10 – Butuntai, 11 – Aleksandrovsky Zavod, 12 – New Akatuy, 13 – Kokui-1 and Kokui-2, 14 – Urovskie Klyuchi and Urov River

Таблица 1

Характеристика объектов исследования

Table 1

Characteristics of research objects

		•
Название объекта	Краткая характеристика объекта исследования	Перечень объектов – источников микроэлементов
Малые реки и ручьи в окрестностях г. Чита (Кайдаловка, Антипиха, Сухая падь, Лагерный и Заячий ключ)	и электроснабжения, котельные, транс-	Кайдаловка и Сухая падь протекают возле крупных автодорог, берега рек сильно замусорены, р. Антипиха — через отвалы кирпичного завода, р. Заячий ключ и ручей Лагерный — по техногенно ненарушенным территориям. Существенную роль в загрязнении геосред в г. Чите и её окрестностях представляет собой аэрогенный путь переноса. В период с октября по март происходит формирование плотного токсичного смога, из которого в снежный покров и другие природные системы мигрируют микроэлементы Zn, Cu, As, Cd [Бондаревич и др., 2021]. Почвы и горные породы обогащены Mn и Fe
р. Застепь	Короткая река, берущая начало на Яблоновом хребте. В верховьях реки находятся несколько крупных карьеров по добычи щебня	Крупных источников загрязнения в месте отбора проб нет
р. Никишиха	Река длиной 83 км, прорезающая центральную часть хр. Черского. Впадает в р. Ингода	Крупных источников загрязнения нет
р. Чита	Длина 210 км, впадает в р. Ингода. В месте слияния находятся городские очистные сооружения	На всем протяжении через территорию г. Читы имеет множество источников загрязнения — автодороги и железнодорожные пути, предприятия, гаражные кооперативы и т.д.

Название объекта	Краткая характеристика объекта исследования	Перечень объектов – источников микроэлементов
р. Ингода	Длина 708 км. Геохимические условия на протяжении отрезка реки от истока до г. Чита крайне разнообразны	Берега замусорены, вдоль реки Транссибирская магистраль и автодорога «Байкал». Сброс сточных вод из городских очистных сооружений. В пойме реки расположен золоотвал Читинской ТЭЦ-2, выше по течению от г. Чита — Восточный буроугольный разрез Татауровского месторождения с объемом добычи 1,5 млн т/год
р. Урулюнгуй	Левый приток р. Аргунь длиной 189 км. Берёт начало с Нерчинского хребта. Периодически пересыхающая река	Крупных источников загрязнения нет. Возможно поступление загрязненных вод из шахт и отвалов не функционирующих Нерчинского полиметаллического комбината и Кличкинского рудника
р. Уров	Левый приток р. Аргунь длиной 290 км, берущий начало на северном склоне Нерчинского хребта. Протекает по территории, характеризующейся существенным дисбалансом микроэлементов и развитием болезни Кашина—Бека. Одна из гипотез — марганцево-фосфатная (избыток в почвах и воде ионов марганца и фосфатов, при низкой концентрации кальция), отмечается существенный селенодефицит, избыток кремния и стронция [Михно, Баранова, 2020]	Крупных антропогенных источников загрязнения нет
р. Газимур	Левый приток р. Аргунь длиной 592 км, берущий начало на северно-западном склоне Нерчинского хребта	Крупных анропогенных источников загрязнения в пойме реки нет. Возможен перенос микроэлементов из притоков, которые протекают через территории разработки полиметаллических руд и золотодобычи
Скважины п. Кличка	Глубина скважин 30–60 м. Данных о геологическом строении и составе водоносных слоёв отсутствуют. Посёлок расположен возле Савинское № 5 полиметаллического месторождения [Энциклопедия, 2022]	Природные источники в форме свинцово-цинковых руд полиметаллического месторождения. Техногенные источники – отвалы и горные выработки
Скважины сел Алек- сандровский Завод, Кокуй-1, Кокуй-2, Бу- тунтай, Новый Акатуй	Глубина 10–30 м. Данных о геологическом строении и составе водоносных слоёв отсутствуют	Техногенных источников в окрестностях сел Александровский Завод, Кокуй-1, Кокуй-2 нет, в с. Новый Акатуй расположено Северо-Акатуевское свинцово-цинковое месторождение и горные выработки заброшенного ГОКа

Качество питьевых вод по содержанию микроэлементов оценивали в соответствии с постановлением Главного государственного санитарного врача России от 28.01.2021 № 2 «Об утверждении санитарных правил и норм СанПиН 1.2.3685-21. Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания». Величина ПДК водородного показателя (рН) для воды согласно этому документу находится в пределах от 6 до 9, а окислительно-восстановительный потенциал не нормируется.

Статистический анализ данных проводился методами описательной статистики в пакете MS Excel 365 и PAST 3.25 [Hammer et al., 2001]. Расчёт риска развития окислительного стресса проводили по формуле

 $E = [M_1^{n+}] \cdot E_1^0 + [M_2^{n+}] \cdot E_2^0 + [M_x^{n+}] \cdot E_x^0$, где $[M_1^{n+}]$ и $[M_x^{n+}]$ – молярная концентрация элемента переменной валентности (Cr, Mn, Fe, Cu, Se и As) в мкмоль/л, E_1^0 и E_x^0 – стандартный электродный потенциал элемента в В/моль [Пузаков и др., 2015].

Для оценки реального поступления прооксидантов в организме оценивали по формуле

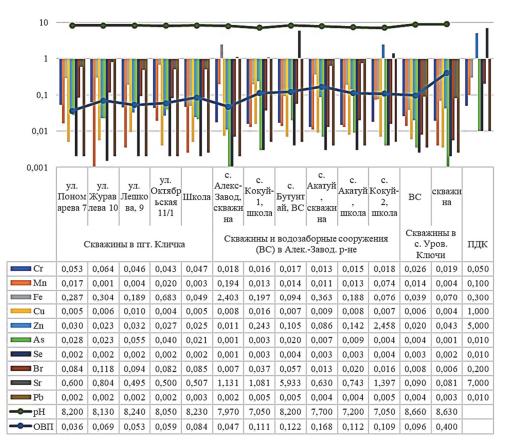
$$E_{\text{CVT.}} = E \cdot CR$$
,

где $E_{\text{сут.}}$ — суточная окислительная нагрузка от воды (мкмоль \cdot В/л), CR — скорость контакта с загрязненной средой (водой) — 2 л/сут [Боев и др., 2006; Красиков и др., 2009].

Существенную проблему составляет реальное значение окислительно-восстановительного потенциала элементов в организме, так как все микроэлементы включены в состав белков (например, трансферрина, церулоплазмина) и ферментов (глутатионпероксидаза, дейодиназа, цитохромов), где аминокислотные лиганды меняют окислительно-восстановительные свойства элементов с переменной валентностью [Бертини и др., 2013]. В связи с этим также в живом организме не могут накапливаться и транспортироваться химические элементы в виде простых веществ и не могут образовываться их валентные формы в высших степенях окисления (например, Cr^{+6} или Fe^{+6}).

По этой причине в работе использованы следующие величины стандартных окислительно-восстановительных потенциалов: хром $(Cr^{+3}/Cr^{+2}) = -0.41$ B, марганец $(Mn(OH)_3 + e^- \rightarrow Mn(OH)_2 + OH^-) = +0.1 B$, железо $(Fe^{+3}/Fe^{+2}) = +0.77 B$, медь $(Cu^{+2}/Cu^{+1}) = +0.16 B$, селен (SeO₄²⁻ + H₂O + 2e⁻ \rightarrow SeO₃²⁻ + 2OH⁻) = +0,05 В и мышьяк $(AsO_4^{3-} + 2H_2O + 2e^- \rightarrow AsO_2^- + 4OH^-) =$ -0,71 В [Пузаков и др., 2015]. Остальные из исследуемых химических элементов в живых организмах присутствуют в форме ионов с постоянной степенью окисления и влияют на окислительно-восстановительные реакции в клетках косвенно. Например, свинец прочно связывает тиольные группы белков и блокирует их восстановительные свойства. Однако оценить это косвенное воздействие простой моделью невозможно, поэтому их окислительно-восстановительные потенциалы не рассматривались.

Результаты и их обсуждение


В подземных водах было выявлено, что содержание хрома и марганца превышало в 1,5–2 раза ПДК в пробах из пгт. Кличка и с. Александровский Завод (рис. 2). Повышенная концентрация растворённых

форм железа отмечалась в пробах пгт. Кличка (2,3 ПДК) и в с. Александровский Завод (8 ПДК).

По количеству в воде меди и цинка загрязнённых проб не выявлено, отмечается существенный дефицит этих эссенциальных микроэлементов в воде из скважин (рис. 2), что, в свою очередь, может быть причиной нарушений метаболических процессов изза низкой функциональной активности Zn- и Cuзависимых ферментов [Бертини и др., 2013].

Концентрация водорастворимых соединений мышьяка превышала ПДК во всех пробах из скважин пгт. Кличка (до 5,5-кратного превышения нормирующего показателя), в остальных населённых пунктах превышений не зафиксировано (рис. 2).

Следует отметить, что ни в одной из отобранных проб подземных вод содержание селена, брома, стронция и свинца не превышало ПДК (рис. 2), при этом для жизненно важного микроэлемента селена концентрация была меньше как нормирующего показателя (0,01 мг/л), так и физиологической потребности (55 мкг/сут, или 0,055 мг/сут) на один порядок, что может быть причиной многих селенодефицитных состояний и провоцировать ряд метаболических патологий (гипотиреоз, болезни Кешана и Кашина—Бека) [Панченко и др., 2004].

Рис. 2. Гидрохимические показатели проб подземных вод из скважин населённых пунктов. Здесь и на рис. 3, 4 содержание микроэлементов в мг/л, окислительно-восстановительный потенциал (ОВП) в вольтах

Fig. 2. Hydrochemical indicators of groundwater samples from wells in settlements Here and in fig. 3, 4 the content of microelements in mg/l, redox potential (OBII) in Volts

Окислительно-восстановительный потенциал проб имел низкие значения, что указывает на преобладание восстановленных форм микроэлементов с переменной степенью окисления (прежде всего железа). По значению рН большинство исследуемых вод можно отнести к слабощелочным, что, вероятно, обусловлено наличием в их составе значительного количества гидрокарбонатов (рис. 2).

Анализ проб поверхностных вод из ручьёв и малых рек выявил, что водоёмы в окрестностях г. Читы

(Кайдаловка, Сухая падь, Антипиха, Застепь) имели превышение содержания хрома (до величины в 3,6 ПДК — Антипиха). По марганцу также имелись превышения для воды из ручья с. Новый Акатуй, протекающего через выработки полиметаллических руд [Михайлова и др., 2019] (18-кратное превышение ПДК), а также для рек в г. Чите — Кайдаловка (12,5 ПДК), Сухая падь (25,5 ПДК), Антипиха (31 ПДК), что, вероятно, обусловлено как геохимическими, так и техногенными факторами (рис. 3).

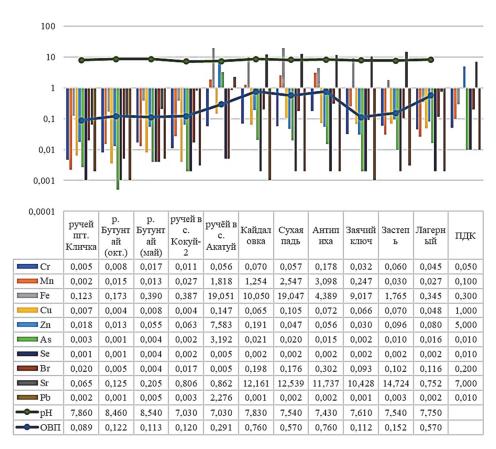


Рис. 3. Гидрохимические показатели проб воды из малых водоёмов

Fig. 3. Hydrochemical indicators of water samples from small reservoirs

По содержанию железа максимумы были зафиксированы для вод ручья с. Акатуй (63,5 ПДК) и р. Сухая падь (63,4 ПДК), и гораздо меньшие превышения для водотоков – Кайдаловка (33,5), Антипиха (14,7 ПДК), Заячий ключ (30 ПДК) и Застепь (6 ПДК) (см. рис. 3).

По концентрации ионов меди и свинца превышений нормирующих показателей не отмечалось (рис. 3). Превышения ПДК были выявлены по стронцию в водах малых рек окрестностей г. Чита — Кайдаловка (1,7 ПДК), Сухая падь (1,8 ПДК), Антипиха (1,7 ПДК), Заячий ключ (1,5 ПДК) и Застепь (2,1 ПДК), однако для вод из геохимически неблаго-

получного по уровской болезни региона (юго-восточные районы Забайкалья) [Замана и др., 2019] превышения содержания микроэлемента не зафиксировано (рис. 3).

По остальным микроэлементам выявлены единичные превышения ПДК: по цинку и мышьяку – ручей с. Новый Акатуй (1,5 и 319,2 ПДК соответственно), по мышьяку – р. Кайдаловка, Сухая падь, Антипиха и ручей Лагерный (2,1, 2, 1,5 и 1,6 ПДК соответственно), по брому – р. Антипиха (15 ПДК) (рис. 3).

Окислительно-восстановительный потенциал имел широкий диапазон значений и был значимо

выше в малых реках из окрестностей г. Чита. Водородный показатель (pH) характеризовался около нейтральными и слабощелочными значениями (рис. 3).

Гидрохимия крупных рек существенно отличалась от малых рек и подземных вод из скважин населённых пунктов. По концентрации ионов хрома имеется незначительное превышение ПДК только для пробы из р. Чита (рис. 4), тогда как содержание мар-

ганца значительно чаще имело превышение нормирующего показателя – р. Урулюнгуй (6,3 ПДК), р. Газимур в осенний период (5,2 ПДК), р. Ингода (2,5 ПДК), р. Чита (2,2 ПДК) и р. Уров (1,4 ПДК). Также для всех проб воды зафиксировано существенное превышение ПДК по железу, однако для крупных рек в окрестностях г. Читы этот показатель значительно выше, чем для рек юго-восточных районов Забайкалья (максимум отмечался для р. Ингода и составил 21,9 ПДК) (рис. 4).

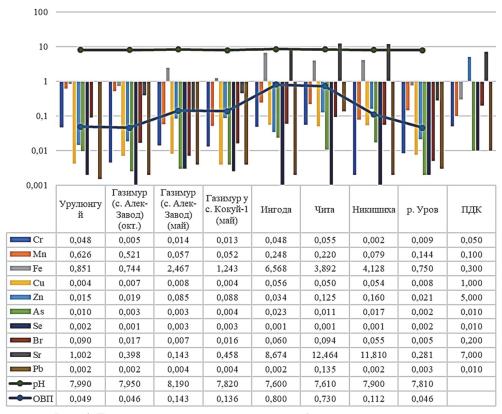


Рис. 4. Гидрохимические показатели проб воды из крупных рек

Fig. 4. Hydrochemical indicators of water samples from large rivers

По количеству в воде растворимых форм меди, цинка, селена, брома и свинца не фиксировалось превышения нормирующих показателей (рис. 4). По мышьяку значения выше ПДК были выявлены в пробах рек Ингода (2,3 ПДК), Чита (1,1 ПДК), Никишиха (1,7 ПДК), при этом реки Ингода и Чита подвергаются мощному техногенному воздействию, тогда как р. Никишиха расположена на территории, где отсутствует техногенез и повышенное содержание микроэлемента обусловлено природными факторами.

Аналогичные особенности выявлены по концентрации в воде стронция – в реках Ингоде, Чите и Никишихе превышения нормирующего показателя были, соответственно, в 1,2; 1,8 и 1,7 раза (рис. 4).

Значения окислительно-восстановительного потенциала были максимальными в пробах воды из рек

Ингода и Чита, что может быть связано с существенным загрязнением этих водоёмов, по водородному показателю (рН) существенных отличий между пробами не выявлено и они характеризовались слабощелочной реакцией (рис. 4).

Оценка окислительной нагрузки и риска развития окислительного стресса элементами переменной валентности, присутствующих в воде выявила, что максимальные значения показателя были в пробах из рек Антипиха, Уров, Сухая падь, Никипиха, Заячий ключ и Застепь (рис. 5).

Рассчитанный риск окислительного стресса по величинам ПДК имел значение 107,3 мкмоль В/л, что характеризует остальные пробы вод как удовлетворительные по этому показателю. Следует отметить, что основной вклад в показатель всех проб внесли железо, в меньшей степени марганец и медь.

Сравнение показателей концентрации ионных форм различных микроэлементов в водах разных водоисточников выявил, что наиболее загрязнёнными были пробы из ручья с. Новый Акатуй (протекающего через техногенные ландшафты полиметаллического месторождения), и малые реки г. Читы — Сухая падь, Заячий ключ, Кайдаловка, в меньшей степени Антипиха и Застепь. Также существенное загрязнение воды отмечалось в реках Никишиха, Чита и Ингода, тогда как крупные реки юго-восточных районов имели в 5—7 раз меньшие величины загрязнения. Практически все пробы вод из скважин и ручьев имели крайне низкие величины концентраций неорганических соединений и их можно отнести к категории чистых вод, соответствующих нормирующим показателям ПДК. Исключением являются

пробы из скважин пгт. Кличка, с превышением по содержанию в водах мышьяка, который представляет существенную опасность для местного населения из-за развития хронического отравления. Аналогичные условия уже фиксировались на территории региона (Нерчинский район), где превышение гигиенического норматива было более чем в 250-кратным, что привело к достоверным изменениям метаболизма у детей и взрослых, усилению цитолиза и возрастанию риска канцерогенных и метаболических патологий [Кольдибекова и др., 2020]. Интенсивная аккумуляция мышьяка у населения пгт. Кличка продолжается в течение многих лет, однако каких-либо профилактических и иных мер реагирования в населённом пункте не проводится, что в перспективе может привести к существенному росту патологий.

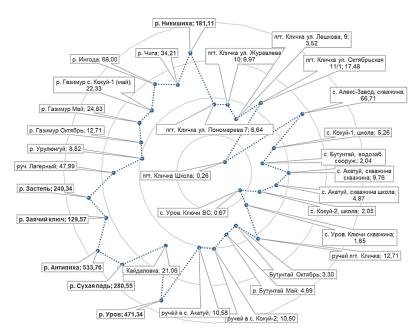


Рис. 5. Величины суточной окислительной нагрузки от воды разных водоисточников, мкмоль ×·В/л

Fig. 5. Values of the daily oxidative load from water from different water sources, μmol·V/l

Таким образом, по концентрации микроэлементов большинство проб воды были удовлетворительными и соответствовали гигиеническим нормативам СанПиН 1.2.3685-21, однако реки и ручьи в техногенных ландшафтах г. Читы, с. Новый Акатуй, а также подземные воды пгт. Кличка характеризовались высоким содержанием цинка, мышьяка, железа, марганца и стронция, что, вероятно, обусловлено как процессами загрязнения окружающей среды, так и природными геохимическим факторами. По данным других авторов [Цыбекмитова, Куклин, 2015; Замана и др., 2019; Куклин, Цыбекмитова, 2019] воды многих подземных и поверхностных водоёмов Забайкалья имели близкие значения по содержанию изучаемых

элементов и не имели существенных источников антропогенного загрязнения. В целом воды многих водоёмов региона содержат избыточное количество железа, марганца, стронция, при этом концентрация биогенных меди, цинка, селена, йода гораздо меньше рекомендуемого суточного потребления, что может способствовать их существенному дефициту в организме жителей Забайкалья.

В ходе комплексной оценки влияния воды на риск развития окислительного стресса в организме человека выявлено, что сильно загрязнённые пробы техногенно-нарушенных районов были наиболее опасны по этому показателю, однако для пгт. Кличка этот индекс имел низкие значения, что

указывает на избирательность его применения и осторожного использования при оценке гигиенических условий.

В целом большинство проб имело околонейтральное или слабощелочное значение водородного показателя, что обусловливает снижение растворимости соединений большинства исследуемых элементов, так как образуются их малорастворимые соединения — гидроксиды, оксиды, фосфаты, сульфаты и т.д.

Аналогично величины окислительно-восстановительного потенциала были в большинстве своем небольшими, что для подземных вод приводит к накоплению в их составе восстановленных форм микроэлементов в низших положительных степенях окисления, и отмечено низкое содержание растворённого кислорода. Опасность восстановленных ионных форм железа заключается в их большей биодоступности и инициировании в организме свободнорадикальных реакций [Егорова, Канатникова, 2020], приводящих к развитию окислительного стресса и повреждению биополимеров — нуклеиновых кислот, белков и ферментов, а также к разрушению биологических мембран.

Выводы

- 1. Поверхностные воды малых рек (ручей с. Новый Акатуй, р. Антипиха и Сухая Падь) имели наибольшие величины суммарного содержания микроэлементов (34,995; 34,541 и 24,014 мг/л соответственно), при этом в пробах из ручья с. Новый Акатуй преобладали Fe, Zn, As, тогда как в реках окрестностей Читы Fe и Sr. Опасность токсического действия Zn и As существенно выше Fe и Sr.
- 2. В крупных реках Ингоде, Чите и Никишихе преобладал Sr, тогда как Fe было в 2,5—4 раза меньше. Эссенциальных микроэлементов в водах из этих водоёмов было чрезвычайно мало.
- 3. Подземные воды из скважин пгт. Кличка характеризовались превышением содержания As, что может негативно сказываться на здоровье населения.

Суточная окислительная нагрузка имела максимумы у проб поверхностных вод (реки Антипиха, Уров, Сухая падь, Никипиха, Заячий ключ и Застепь), которые характеризовались высоким содержанием железа. При этом остальные элементы с переменными валентностями значимого вклада в величину рассчитываемого индекса практически не вносили.

Список источников

Атлас Забайкальского края / гл. ред. В.С. Кулаков. Чита: Изд-во ЗабГГПУ, 2010. С. 48.

Бертини И., Грей Г., Стифель Э. Биологическая неорганическая химия: структура и реакционная способность. М.: БИНОМ. Лаборатория знаний, 2013. 456 с.

Боев В.М., Красиков С.И., Свистунова Н.В., Неплохое А.А., Боев М.В., Шарапова Н.В., Тимошинова С.В. Свободнорадикальное окисление в оценке риска здоровья // Гигиена и санитария. 2006. № 5. С. 19–20.

Бондаревич Е., Коцюржинская Н., Лескова О., Михайлова Л., Самойленко Γ . Мониторинг уровня загрязнения атмосферы по накоплению химических элементов в талой воде снегового покрова // Экология и промышленность России. 2021. № 25 (8). С. 47–53. doi: 10.18412/1816-0395-2021-8-47-53

Егорова Н.А., Канатникова Н.В. Железо, его метаболизм в организме человека и гигиеническое нормирование в питьевой воде. Обзор литературы. Часть 1 // Гигиена и санитария. 2020. № 99 (4). С. 412–417. doi: 10.33029/0016-9900-2020-99-4-412-417

Ермаков В.В., Тютиков С.Ф., Сафонов В.А. Биогеохимическая индикация микроэлементозов / отв. ред. Т.И. Моисеенко. М.: ГЕОХИ РАН, 2018. 386 с.

Замана Л.В., Рихванов Л.П., Соктоев Б.Р., Барановская Н.В., Эпова Е.С., Солодухина М.А., Михайлова Л.А., Копылова Ю.Г., Хващевская А.А. Новые данные об элементном составе природных вод в районе распространения уровской (Кашина — Бека) болезни (Забайкальский край) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 1. С. 121–133. doi: 10.18799/24131830/2019/1/56

Кольдибекова Ю.В., Землянова М.А., Пустовалова О.В., Пескова Е.В. Влияние повышенного содержания мышьяка в питьевой воде на изменения биохимических показателей негативных эффектов у детей, проживающих на территории природной геохимической провинции // Гигиена и санитария. 2020. Т. 99 (8). С. 834–840. doi: 10.47470/0016-9900-2020-99-8-834-840

Красиков С.Й., Кузьмичёва Н.А., Алёхина Е.М. Влияние загрязнения среды обитания металлами переменной валентности на уровень витаминной обеспеченности детского населения на территории промышленного региона // Гигиена и санитария. 2009. № 4. С. 35–38.

Куклин А.П., Цыбекмитова Г.Ц. Содержание токсичных элементов в воде и микроводорослях в водных объектах бассейна трансграничной реки Аргунь (Россия) // Теоретическая и прикладная экология. 2019. № 1. С. 30–35.

Михайлова Л.А., Солодухина М.А., Алексеева О.Г., Бурлака Н.М., Лапа С.Э. Гигиеническая оценка содержания химических веществ в почве горнопромышленных районов Забайкальского края // Гигиена и санитария. 2019. № 98 (4). С. 400–410. doi: 10.18821/0016-9900-2019-98-4-400-410

Михно В.А., Баранова Т.И. Болезнь Кашина–Бека // Забайкальский медицинский журнал. 2020. № 4. С. 57–58.

Панченко Л.Ф., Маев И.В., Гуревич К.Г. Клиническая биохимия микроэлементов. М.: ГОУ ВУНМЦ МЗ РФ, 2004. С. 135–172.

Пузаков С.А., Попков В.А., Филиппова А.А. Сборник задач и упражнений по общей химии : учеб. пособие. М. : Юрайт, 2015. С. 245–247.

Солодухина М.А., Михайлова Л.А., Лапа С.Э., Бурлака Н.М. Геохимические особенности среды и эндемические заболевания Забайкальского края // Забайкальский медицинский вестник. 2015. № 4. С. 169–174.

Цыбекмитова Г.Ц., Куклин А.П. Гидрохимическое состояние притоков верхнего течения реки Онон (Забайкальский край) // Международный журнал прикладных и фундаментальных исследований. 2015. № 8. С. 929–932.

Энциклопедия Забайкалья. URL: http://ez.chita.ru/encycl/concepts/?id=11 (дата обращения: 11.06.2022).

Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis // Palaeontologia Electronica. 2001. V. 4, No. 1. 9 p.

References

Atlas Zabaykal'skogo kraya [Atlas of the Trans-Baikal Territory]. Ch. ed. V.S. Kulakov. Chita: TransBaikalSHPU, 2010. p. 48. In Russian

Bertini I., Gray H., Valentine J.S. *Biologicheskaya neorganicheskaya khimiya: struktura i reaktsionnaya sposobnost'* [Biological inorganic chemistry: structure and reactivity]. Moscow: BINOM, Laboratoriya znaniy. 2013. 456 p. In Russian

Boev V.M., Krasikov S.I., Svistunova N.V., Not bad A.A., Boev M.V., Sharapova N.V., Timoshinova S.V. *Svobodnoradikal'noe okislenie v ocenke riska zdorov'ya* [Free radical oxidation in health risk assessment] // Gigiena i sanitariya [Hygiene and Sanitation, Russian journal]. 2006. No. 5. pp. 19–20. In Russian

Bondarevich E., Kotsurzhinskaya N., Leskova O., Mikhailova L., Samoylenko G. Monitoring the Level of the Air Contamination by Chemical Elements Impoundment in the Snow Melt of the Snow Blanket // Ekologiya i promyshlennost' Rossii [Ecology and Industry of Russia]. 2021. 25(8). pp. 47–53. doi: 10.18412/1816-0395-2021-8-47-53. In Russian

Egorova N.A., Kanatnikova N.V. Iron metabolism in the human body and its hygienic limits for drinking water. Review. Part 1 // *Gigiena i Sanitaria* [Hygiene and Sanitation, Russian journal]. 2020. 99(4). pp. 412–417. In Russian. doi: 10.33029/0016-9900-2020-99-4-412-417

Ermakov V.V., Tyutikov S.F., Safonov V.A. *Biogeohimicheskaya indikaciya mikroelementozov* [Biogeochemical indication of microelementoses]. Moscow: GChACh RAS. 2018. 386 p. In Russian

Zamana L.V., Rikhvanov L.P., Soktoev B.R., Baranovskaya N.V., Epova E.S., Solodukhina M.A., Mikhailova L.A., Kopylova Yu.G., Khvaschevskaya A.A. New data on chemical composition of natural waters in the area of distribution of Urov (Kaschin-Beck) disease (Transbaikal Region) // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019. V. 330(1). pp. 121–133. doi: 10.18799/24131830/2019/1/56. In Russian

Koldibekova J.V., Zemlyanova M.A., Pustovalova O.V., Peskova E.V. Negative impacts exerted by elevated arsenic concentrations in drinking water on biochemical indices in children living in a specific geochemical province // Gigiena i Sanitaria [Hygiene and Sanitation, Russian journal]. 2020. V. 99(8). pp. 834–840. doi: 0.47470/0016-9900-2020-99-8-834-840. In Russian

Krasikov S.I., Kuzmicheva N.A., Alekhina Ye. M. Impact of environmental pollution with variable valence metals on the pediatric population's provision with vitamins in an agroindustrial region // *Gigiena i sanitariya* [Hygiene and Sanitation, Russian journal]. 2009. No. 4. pp. 35–38. In Russian

Kuklin A.P., Tsybekmitova G. Ts. Content of toxic elements in water and macroalgae of the Argun River (Russia) basin water courses // *Teoreticheskaya i prikladnaya ekologiya* [Theoretical and applied ecology]. 2019. No. 1, pp. 30–35. In Russian

Mikhailova L.A., Solodukhina M.A., Alekseeva O.G., Burlaka N.M., Lapa S.E. Hygienic assessment if the content of chemicals in the soil of mining areas of the Trans-Baikal region // *Gigiena i Sanitaria* [Hygiene and Sanitation, Russian journal]. 2019. 98(4). pp. 400–410. doi: 10.18821/0016-9900-2019-98-4-400-410. In Russian

Mikhno V.A., Baranova T.I. Kashin-Beck disease // Zabaykal'skiy meditsinskiy zhurnal [Transbaikalian Medical Bulletin]. No. 4. 2020. pp. 57–58. In Russian

Panchenko L.F., Maev I.V., Gurevich K.G. *Klinicheskaya biohimiya mikroelementov* [Clinical biochemistry of microelements] // Moscow: GOU VUNMC MZ RF. 2004. pp. 135–172.

Puzakov S.A., Popkov V.A., Filippova A.A. Sbornik zadach i uprazhnenij po obshchej himii: Uchebnoe posobie. [Collection of problems and exercises in general chemistry: Textbook]. Moscow: Yurayt. 2015. pp. 245–247. In Russian

Solodukhina N.A., Mikhailova L.A., Lapa S.E., Burlaka N.M. Geochemical features of the environment and endemic disease Trans-Baikal territory // Zabaykal'skiy meditsinskiy zhurnal [Transbaikalian Medical Bulletin]. 2015. No. 4. pp. 169–174. In Russian

Tsybekmitova G.C., Kuklin A.P. Gidrohimicheskoe sostoyanie pritokov verhnego techeniya reki Onon (Zabajkal'skij kraj) [Onon river upper current tributaries hydrochemical condition (Trans-Baykal region)] // Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy [International Journal of Applied and Basic Research]. 2015. No. 8. pp. 929–932. In Russian

Entsiklopediya Zabaykal'ya [Encyclopedia of Transbaikalia]. URL: http://ez.chita.ru/encycl/concepts/?id=11 (Date of accessed 11.06. 2022) Zamana L.V., Rikhvanov L.P., Soktoev B.R., Baranovskaya N.V., Epova E.S., Solodukhina M.A., Mikhailova L.A., Kopylova Yu.G., Khvaschevskaya A.A. New data on chemical composition of natural waters in the area of distribution of Urov (Kaschin–Beck) disease (Transbaikal region) // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019. V. 330(1). pp. 121–133. In Russian Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001. V. 4. № 1. 9 p.

Информация об авторах:

Бондаревич Е.А., кандидат биологических наук, доцент, кафедра химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия; факультет естественных наук, математики и технологий, Забайкальский государственный университет, Чита, Россия.

E-mail: bondarevich84@mail.ru

Михайлова Л.А., кандидат медицинских наук, заведующая кафедрой гигиены, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: mihailova-la@mail.ru

Коцюржинская Н.Н., кандидат биологических наук, заведующая кафедрой химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: nata nik k@mail.ru

Лескова О.А., кандидат биологичексих наук, доцент, кафедра химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: leskova-olga@inbox.ru

Лагутенко М.Р., студент, кафедра биологии, факультет естественных наук, математики и технологий, Забайкальский государственный университет, Чита, Россия.

E-mail: max.lagutenko@mail.ru

Ерофеева Е.С., студент, кафедра химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: erof69k.mail@gmail.com

Ломаковский К.Б., студент, кафедра химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: darkk2015@mail.ru

Апрелков Р.Э., студент, кафедра химии и биохимии, педиатрический факультет, Читинская государственная медицинская академия, Чита, Россия.

E-mail: roma.aprelkov@bk.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Information about authors:

Bondarevich E.A., Cand. Sci. (Biology), Associate Professor, Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy; Department of Biology, Faculty of Natural Sciences, Mathematics and Technology, Zabaikalsky State University, Chita, Russia.

E-mail: bondarevich84@mail.ru

Mikhailova L.A., Cand. Sci. (Medicine), Head of the Department of Hygiene, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia.

E-mail: mihailova-la@mail.ru

Kotsyurzhinskaya N.N., Cand. Sci. (Biology), Head of the Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia.

E-mail: nata nik k@mail.ru

Leskova O.A., Cand. Sci. (Biology), Associate Professor, Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia.

E-mail: leskova-olga@inbox.ru

Lagutenko M.R., student, Department of Biology, Faculty of Natural Sciences, Mathematics and Technology, Zabaikalsky State University, Chita, Russia.

E-mail: max.lagutenko@mail.ru

Erofeeva E.S., student, Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia. E-mail: erof69k.mail@gmail.com

Lomakovskiy K.B., student, Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia.

E-mail: darkk2015@mail.ru

Aprelkov R.E. student, Department of Chemistry and Biochemistry, Faculty of Pediatrics, Chita State Medical Academy, Chita, Russia E-mail: roma.aprelkov@bk.ru

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 22.09.2022; одобрена после рецензирования 01.03.2023; принята к публикации 13.06.2024

The article was submitted 22.09.2022; approved after reviewing 01.03.2023; accepted for publication 13.06.2024

Научная статья УДК 502/504:330.15 doi: 10.17223/25421379/31/8

ЭКОСИСТЕМА И ЭКОЛОГИЧЕСКАЯ ЁМКОСТЬ – МЕТОДЫ И РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ (НА ПРИМЕРЕ УШАЙСКОЙ ЭКОСИСТЕМЫ. РОССИЯ, ТОМСКАЯ ОБЛАСТЬ)

Александр Васильевич Поздняков¹, Игорь Геннадьевич Грачев², Татьяна Шалвовна Фузелла³

- ^{1, 2, 3} Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия
- ¹ synergia7391@yandex.ru
- ² grachevimces@gmail.com

Аннотация. Исследовался энергетический потенциал двух типов экосистем: экологической, эволюционирующей в асимптотически устойчивом режиме, и эколого-экономической энергетически диссипативной с ускорением удаляющейся системы. Раскрытие сути осуществлено на примере экосистемы Ушайской морфоструктуры в окрестностях г. Томска (Россия). Аккумулятором солнечной энергии является совокупность продуцентов, представляющая экзистенциальную ренту. А мерой ренты – количество трансформируемой солярной энергии, накапливаемой в биотопах в единицу времени на заданной площади. Установлено, что максимальным энергопотенциалом обладают насаждения сосны обыкновенной, в которых накопленная энергия за 59 лет равна 25140,94×10⁹ Дж/га, что составляет 86,7 % от всей энергии органического вещества исследуемого участка. На долю почвы приходится около 12,87 % органического вещества, аккумулированного в экосистеме за период формирования в 6 000 лет: в гумусе содержится 2680,30×10⁹ Дж/га (9,24 %), в негумифицированном органическом веществе 1051,80×10⁹ Дж/га (3,63 %). Относительно низкие показатели характерны для энергетических потенциалов фитомассы травяной растительности (28,65×10⁹ Дж/га) и мортмассы (95,61×10⁹ Дж/га), процесс аккумуляции энергии в которых осуществляется в вегетационный период. На момент исследования текущий энергопотенциал экосистемы составил 28997,30×10⁹ Дж/га.

Ключевые слова: экосистема, асимптотически устойчивая, энергетически диссипативная, энергетический потенциал, рента экзистенциальная, экологическая емкость

Источник финансирования: Исследование поддерживается Министерством науки и высшего образования Российской Федерации в рамках научных тем: «Динамические и эволюционные процессы в природных экосистемах Сибири: индикаторы, мониторинг, прогноз», FWRG-2021-0003; «Развитие системы мониторинга и комплексного анализа пулов и потоков парниковых газов болотных и лесных экосистем Западной Сибири», FWRG-2022-0001.

Для цитирования: Поздняков А.В., Грачев И.Г., Фузелла Т.Ш. Экосистема и экологическая ёмкость: методы и результаты исследования (на примере Ушайской экосистемы. Россия, Томская область)// Геосферные исследования. 2024. № 2. С. 129—142. doi: 10.17223/25421379/31/8

Original article

doi: 10.17223/25421379/31/8

ECOSYSTEM AND ECOLOGICAL CAPACITY – RESEARCH METHODS AND RESULTS (ON THE EXAMPLE OF THE USHAI ECOSYSTEM. RUSSIA, TOMSK REGION)

Alexander V. Pozdnyakov¹, Igor G. Grachev², Tatyana Sh. Fuzella³

^{1, 2, 3} Institute for Monitoring of Climatic and Ecological Systems, SB RAS,

Tomsk, Russia

- ¹ synergia7391@yandex.ru
- ² grachevimces@gmail.com
- ³ fts10@yandex.ru

Abstract. A new method for assessing the ecological capacity of ecosystems is presented, carried out on the basis of determining the amount of solar energy accumulated by producers in $J/m^2 \times$ year in the ecosystem. Two types of ecosystems were studied: a self-organizing ecological system evolving in a dynamically equilibrium, asymptotically sustainable mode, and an ecological and economic energy dissipative system receding from dynamic equilibrium with acceleration. The first is spontaneously formed and develops in the natural environment, and the second is organized within the boundaries of the first with the direct participation of

³ fts10@yandex.ru

a human. The concept of "ecological capacity" belongs to the ecological and economic category; it is quantitatively determined by the amount of accumulated energy obtained through photosynthetic transformation of solar energy and its non-renewable sources in the subsurface of the earth. The functions of solar energy accumulator on earth are realized by an emergent set of producers, essentially forming the fundamental basis of the geoecosystem. Its immanent property is existence rent – the only source of energy that gives life to all consults and man, and the measure is the amount of solar energy accumulated in consumers and their derivatives per unit of time. The disclosure of the essence of the problem posed is carried out on the example of the ecosystem of the Ushai ecosystem formed and functioning on the geomorphostructure of the same name. Specialized studies were carried out on 8 isolated biotopes on the transect that cuts the Ushai ecosystem across its length, and were aimed at quantifying the energy potentials (in MJ/m²×year) of grass cover and its mortmass, ground and underground fractions of woody plants, humus, inhumified soil matter. As a result, it was found that the maximum energy potential is possessed by stands of pine, in which the accumulated energy over 59 years is equal to 25140.94×109 J/ha, which is 86.7 % of the total energy of the organic matter of the studied area. The soil accounts for about 12.87 % of the organic matter accumulated in the ecosystem during the formation period of 6000 years: the humus contains 2680.30×10⁹ J/ha (9.24 %), and the inhumified organic matter contains 1051.80×10⁹ J/ha (3,63 %). Relatively low indicators are characteristic of the energy potentials of phytomass of grass vegetation 28.65×109 J/ha and mortmass 95.61×109 J/ha, the process of energy accumulation in which is carried out during the growing season. At the time of the study, the current energy potential of the ecosystem was 28,997.30×10⁹ J/ha.

Keywords: ecosystem, asymptotically sustainable, energy dissipative, potential energy, existence rent, ecological capacity

Source of financing: The work was carried out with the state financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of scientific topics: «Dynamic and evolutionary processes in natural ecosystems of Siberia: indicators, monitoring, forecast», FWRG-2021-0003; «Development of a monitoring system and integrated analysis of pools and fluxes of greenhouse gases of swamp and forest ecosystems of Western Siberia», FWRG-2022-0001.

For citation: Pozdnyakov A.V., Grachev I.G., Fuzella T.Sh. (2024) Ecosystem and ecological capacity: research methods and results (based on the example of the Ushai ecosystem. Russia, Tomsk region). *Geosfernye issledovaniya – Geosphere Research*. 2. pp. 129–142. (In Russian). doi: 10.17223/25421379/31/8

Введение

Статья посвящена фундаментальной проблеме в исследовании экосистем - раскрытию понятия экологической емкости и методам ее количественной оценки. Цель работы – разработать основные положения методологии исследования экосистем как спонтанно самоорганизующихся асимптотически устойчивых структур, в среде которой формируется с ускорением удаляющаяся от состояния динамического равновесия неустойчивая энергетически диссипативная эколого-экономическая система. В задачи исследования ставилось рассмотрение некоторых современных положений теории геоэкосистем, позволяющих конкретизировать методологические приемы решения прикладных проблем, и направление будущих поисков научной истины. Объектом исследования выбрана впервые нами выделенная и названная Ушайская экосистема, сформировавшаяся на одноименной Ушайской геоморфоструктуре. Научно-теоретический и прикладной интерес объекта состоит в причинно обусловленных сочетаниях саморазвивающихся экосистем с явно выраженными характеристиками их естественной деградации, переходящей через стадию асимптотически устойчивого развития к стадии климакса.

В начале статьи приводится краткий критический обзор современных представлений о динамике геоэкосистемы. Далее рассматриваются принципы взаимодействия экологических и эколого-экономических

систем и формулируется понятие «экологическая емкость». Здесь же представлены методологические аспекты выделения динамики асимптотически устойчивых динамически равновесных экосистем и особенности методологии исследования энергетически диссипативных удаляющихся от равновесия эколого-экономических систем. Последние части статьи посвящены рассмотрению методов количественной оценки экологической емкости и результатам прикладных исследований.

Материалы и методы исследований

За основу принята методология системного критицизма [Поздняков, 2008], суть которого, опираясь на К. Поппера [Поппер, 1983], - критический анализ ложных положений в науке и методы научного абстрагирования. В исследовании использовались методы сбора, обработки и предварительного анализа фактических материалов, полученных в экспедиционных условиях [Жучкова, Раковская, 2004]. Отбор проб для определения массовой доли органического вещества травяного покрова и мортмассы осуществлялся на площадках 1 м² посредством механического сбора, укоса трав и высушивания в муфельной печи при температуре 105 °C. Определение зольности и потери вещества при прокаливании, расчет теплоты сгорания проводились согласно ГОСТам Р 556661-2013, 180-84, 33106-2014. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания для

образцов древесной растительности выполнялись по утвержденной ГОСТ 147-2013 методике.

Расчет энергии в органическом веществе травяного покрова E_f и мортмассы E_m проводился по формуле

$$E_f = q_f \times m_f, \tag{1}$$

где E_f — энергопотенциал фитомассы (и мортмассы) травяного покрова, МДж/м²; q_f — удельная теплота сгорания травяного покрова, МДж/кг; m_f — масса органического вещества травяного покрова на 1 м^2 .

Пробы для определения содержания гумуса и углерода в почвенном профиле отбирались в трехкратной повторности на глубинах каждые 10 см слоя почвы. Количество накопленного в почвенном профиле гумуса и углерода определялось по методике И.В. Тюрина [Мазиров, 2012], а оценка энергопотенциала почв выполнялась в соответствии с методикой Н.П. Масютенко [Масютенко и др., 2004] по формуле

$$Q = Q_{\Gamma} + Q_{HB}, \qquad (2)$$

где Q — энергопотенциал органического вещества почвы, МДж/м²; Q_{Γ} — запас энергии в гумусе, МДж/м²; $Q_{\rm HB}$ — запасы энергии в негумифицированном органическом веществе почвы, МДж/м².

Определение энергопотенциала лесообразующих пород и возраста деревьев основывалось на сравнительной оценке двух методов:

— метод прямой оценки — взятие проб из всех фракций спиленного дерева (сосны) и из обнаженной в разрезе корневой системы и отбор буравом Пресслера. Образцы анализировались в лаборатории дендрохронологических исследований в ИМКЭС СО РАН на аппарате Lintab с программным обеспечением TSAP. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания для образцов древесной растительности выполнялись по методике В.И. Николаевой в соответствии с ГОСТ 147-2013;

 опытная сравнительная с естественным аналогом оценка на основе аллометрических зависимостей [Демаков и др., 2015; Усольцев и др., 2022].

Энергопотенциал определялся по формуле

$$E_s = q_s \times (m_{su} + m_{sd}), \tag{3},$$

где E_s количество энергии органического вещества древесной породы, Дж; q_s — удельная теплота сгорания, Дж/кг; m_{su} — масса надземной части органического вещества, кг; m_{sd} — масса органического вещества в корнях сосны, кг.

Суммарное количество аккумулируемой энергии в анализируемых биотопах исследуемой экосистемы на заданной площади S, с учетом формулы (3) определялось по формуле

$$E_{cur} = E_f \times (S - S_f) + E_m \times (S - S_f) +$$

$$+Q_{\Gamma} \times S + Q_{HB} \times S + E_s,$$
(4)

где E_{cur} — количество энергии в органическом веществе Дж/м²; E_f — количество энергии травяной растительности, Дж/м²; S — площадь территории исследуемой экосистемы, м²; S_f — площадь сечения стволов древесных пород, м²; E_m — количество энергии в мортмассе, Дж/м², Q_{Γ} — запас энергии в гумусе, Дж/м²; $Q_{\rm HB}$ — запас энергии в негумифицированном веществе почвы, Дж/м², E_s — количество энергии органического вещества древесных насаждений, Дж.

Краткий анализ современных экосистемных представлений

Учение об экосистемах является основополагающим для всех направлений экологической науки, а фундаментальная проблема в ней — сущность экологической емкости, с которой связана вся история человечества, начиная с подсечно-огневого земледелия. С древних времен, вначале интуитивно, а ныне с научными обоснованиями, проблема сводится к вопросу — сколько человек и как долго может кормить осваиваемый участок земли? Еще в 1921 г. Р.Е. Парк и Е.В. Берджес [Park, Burgess, 1921] предложили связывать изменение численности населения с продовольственными ресурсами в регионе с учетом проблем деградации земель, загрязнения окружающей среды, истощением земли.

Введённое английским биологом Артуром Тенсли в 1935 г. [Tansley, 1935] понятие «экологическая система» является созвучным по смыслу с понятием «экологическая ёмкость». Под экосистемой он понимал совокупность объектов живой и неживой природы и среды их обитания. С тех пор начал формироваться раздел науки об экосистеме как с не различающимися сейчас по смыслу названиями: экологическая ёмкость, экоёмкость и биоёмкость, биогеоценоз [Smaal et al., 1998; Alexander, 1999]. Считается, что экологическая ёмкость конкретной территории в заданное время определяется максимальным биоразнообразием растительности и животного мира, которое может поддерживаться экосистемой; способностью региона поддерживать здоровую окружающую среду и демпфировать отходы производства [Bailey, 1984].

Дж.А. Бейли в книге «Принципы управления мировой жизнью» [Bailey, 1984], обобщенно характеризуя экологическую ёмкость как «долгосрочное среднее изобилие», выделяет два ее типа — экологическую и экономическую ёмкость. Экологическая ёмкость — это переменная характеристика среды обитания, определяемая изменчивым количеством факторов благосостояния, которые ограничивают размер и продуктивность популяции вида. Характеризуется степенью устойчивости, степенью безопасности и степенью толерантности соответственно. Экономическая

ёмкость определяется целями управления в отношении продуктивности популяции, качества животных и условий среды обитания и зависит от переменной и ограниченной способности среды обитания поддерживать достижение этих целей. Объединяя эти концепции, автор заключает: ёмкость — это количество животных определенного качества, которое среда обитания может поддерживать при сохранении определенного, но не прогрессивно возрастающего уровня воздействия на ресурсы среды обитания.

В настоящее время проблема экологической емкости, войдя в активный дискурс, перешла в проблему «экологических услуг», рассматриваемую через призму «борьбы» с потеплением климата [Pörtner, 2019].

Переломным моментом в теории и методологии исследования экосистем без преувеличения можно считать публикацию Роберта Констанза с соавторами «Моделирование сложных эколого-экономических систем» [Costanza, 1992; Costanza et al., 1993], посвященную теоретическим задачам исследования динамики экосистем в аспектах взаимодействия с социально-экономическими системами. В обоснованиях системных принципов взаимодействия социально-экономических и экологических систем уточняется формулировка понятия сложной системы и отмечается, что она характеризуется сильными нелинейными взаимодействиями между частями на основе обратных связей, из-за которых трудно отличить причины от следствий.

Явно прогрессивным является и обоснование необходимости применения эволюционной парадигмы к моделированию эколого-экономических систем, включающей элементы неопределенности, неожиданности, обучения, зависимости от траектории, множественных равновесий, неоптимальной производительности, блокировки и термодинамических ограничений.

В последующих публикациях Р. Констанза и его последователи, переведя проблему взаимодействия [Costanza, 1992; Costanza et al., 1993] экономических и экологических систем в категорию рыночных отношений, отошли от методологии системного анализа.

Справедливо утверждая [Costanza, 1992], что услуги экологических систем и производящие их запасы природного капитала имеют решающее значение для функционирования системы жизнеобеспечения Земли; что они вносят вклад в благосостояние людей, как прямо, так и косвенно, и поэтому представляют собой часть общей экономической ценности планеты, авторы, тем не менее, упускают главное — неумолимо сокращающиеся запасы невозобновляемых энергетических ресурсов, необходимых для содержания современного уровня социально-эко-

номического развития цивилизации. Именно это обстоятельство несет угрозу деградации экосистем в глобальном масштабе, именно оно является причиной с обострением развивающихся межгосударственных коллизий. Социально-экономическая система предчувствует наступающий дефицит энергии не только для развития, но и для поддержания достигнутого уровня.

На основе обобщения научных исследований причин современных изменений климата, опубликованных за период 1990-2013 гг. в 12 тыс. рецензируемых журналах, утверждается, что глобальное потепление происходит по вине человека [Семенов, Иголкина, 2019; Pörtner et al., 2019]. Согласно убеждениям сторонников этого взгляда на проблему, «вина» цивилизации в современном потеплении климата состоит в техногенном загрязнении атмосферы (и природной среды в целом) парниковыми газами - преимущественно углекислым газом СО2, метаном СН4 и закисью азота N2O. Под влиянием так называемого консенсуса ученых, связывающих потепление климата с парниковым эффектом, проблема деградации экосистем перетекла в плоскость количественной оценки содержания СО2. И теперь количество двуокиси углерода, превышающее некоторое предельное его содержание СО2 в атмосфере, рассматривается в качестве опосредованного прокси-показателя степени загрязнения и деградации среды (экосистемы), несущего угрозу для развития цивилизации. Это направление, вместе с проблемой потепления климата, стало мейнстримом в мировых научных исследованиях экологических проблем. Считается, что введение экономических методов регулирования отношений социальноэкономических и экологических систем создает возможности поддержания запасов природного капитала не только для удовлетворения текущих потребностей цивилизации, но и для будущих поколений (с помощью налога на истощение природного капитала, забывая при этом, что его оплата возможна только за счет эксплуатации экосистем).

Согласно разработанным положениям [Шварц и др., 2014], введены такие понятия рыночной экономики, как экологический капитал (активы в виде почвенного и растительного покрова, атмосферы, гидросферы и фауны), представляемый авторами данного направления в качестве экосистемных услуг. Полагается, что на суше наибольшей способностью к секвестрации СО₂ обладают леса, болотные системы и др. При этом не учитывается, что способностью к накоплению СО₂ обладают альпийские и степные луга, поля под паром, участки, занимаемые посевными травами для заготовки сена, для выращивания сельскохозяйственных культур, поглощающие до 2 т/год СО₂ на гектар.

Таким образом, проблему исследования практических связей социально-экономических (СЭС) и экологических систем (ЭКОС) предлагается решать на принципах взаимоотношений спрос – предложение – цена, что характеризуется явной смысловой неопределенностью по отношению к предмету. Если природный капитал – это пассивы (обязательство, выдаваемое экологической системой перед СЭС выполнять геоэкологические услуги), то тогда ЭКОС одновременно выполняет функции и дебитора, обязующегося (через посредника СЭС) производить инвестиции самой себе – кредитору!

Экологическая и эколого-экономическая система – принципы взаимодействия

Понятие «экосистема» нами формулируется как самоорганизующаяся асимптотически устойчивая эмерджентная совокупность взаимодействующих продуцентов и консументов (включая человека) на основе усвоения и трансформации световой, тепловой и гравитационной энергии Солнца и Земли.

Экосистема (ЭКОС) – уникальная, архисложная спонтанно самоорганизующаяся на Земле динамическая асимптотически устойчивая система с геологическим характерным временем развития. Она состоит из неисчислимого множества живых организмов, в ряду которых находится и коэволюционно развивающийся человеческий род, образующий современную цивилизацию. Судя по обоснованным результатам [Арманд и др., 1974; Глазовская, 2009] определения возраста гумуса и гуминовых кислот в иллювиальном и базисном горизонтах (горизонт ВС) почвенного профиля, характерное время формирования и развития экосистемы составляет от 3500-5000 до 8000-11000 тыс. лет. Это значит, что экосистема эволюционирует в динамически равновесном, асимптотически устойчивом режиме с характерным геологическим временем развития, превышающим 10⁴ лет [Арманд, Таргульян, 1974; Глазовская, 2009].

Уникальность ЭКОС состоит в том, что она обладает имманентным свойством самоорганизующейся экзистенциальной ренты [Pozdnyakov, 2022]. Рента является непрерывно самовозобновляющимся источником трансформируемой солнечной энергии, благодаря чему она создает условия для саморазвития консументов всех порядков, включая человечество (цивилизацию) и даже создаваемые ею техногенные системы. Это единственное и фундаментальное обстоятельство, предполагающее связь ренты с потребительскими интересами в эксплуатационной деятельности человека, несущими ему жизненно определяемую экономию труда и экзистенциально-рентные экономические выгоды.

Понятие *«экологическая емкость»* относится к экономической категории; количественно она определяется объемом аккумулируемой энергии за счет фотосинтетической трансформации солнечной энергии, эндогенного потока тепловой энергии и минерального вещества земли в единицу времени на территории экономически используемого биотопа — составной части экосистемы (ландшафта).

В целом экосистема состоит из двух типов принципиально различающихся самоорганизующихся экологических структур:

- экологическая система, эволюционирующая в динамически равновесном, асимптотически устойчивом режиме с характерным геологическим временем развития, превышающим 10^4 лет;
- социетальная эколого-экономическая энергетически диссипативная система, с ускорением удаляющаяся [Поздняков, 2008] от динамически равновесной асимптотически устойчивой структуры. Характерное время ее развития сотни лет, $>10^2$ лет. Это «неравновесная», временно функционирующая структура, относимая к категории новообразований, формирующихся в условиях временно действующего потока вещества, энергии и информации.

Наши представления о практическом и коэволюционном взаимодействии в системе отношений СЭС и ЭКОС опираются, соответственно, на эти два типа.

Методологические аспекты динамики асимптотически устойчивых динамически равновесных экосистем. Асимптотически устойчивыми динамически равновесными структурами мы считаем любую геоэкосистему, самопроизвольно формирующую для себя предел (асимптоту) развития по биоразнообразию, биомассе и количеству элементов, образующих эмерджентную совокупность с гомеостатическими свойствами. К таковым относятся лесные экосистемы Сибирской тайги, Васюганские болота и экотоны в их пограничных пространствах; степи южной Сибири и тундровые экосистемы в северных широтах; саваны и тропические леса и пр.

Теоретически и практически методология исследования такого типа геоэкосистем направлена на решение двух задач:

- количественная оценка скорости накопления солярной энергии, трансформирующейся в биомассе в ее естественном биоразнообразии на конкретной территории;
- сохранение условий для асимптотически устойчивого ее развития.

Роль человеческой деятельности, относимая нами к методам конструктивного перфекционизма, сводится к мероприятиям, направленным на применение инженерно-экологических исследований с целью возможной интродукции новых для данной природной

зоны растений; предотвращение развития пандемии паразитов и пожаров. Классическим примером практической реализации инженерно-экологических мероприятий с использованием условий среды и природного базиса являются результаты работы Н.А. Краснова и его последователей по превращению болот Колхиды в экосистему с элементами субтропической флоры. Здесь мы согласны с позицией А. Дуита [Duit, 2016] в том, что необходимо «вернуть государство к управлению окружающей средой». Очевидно, автор имеет в виду управление всей экосистемой Земли. Уместно заметить, что управление экосистемой, имеющей глобальное значение, может распространяться на сохранение условий для ее асимптотически устойчивого развития. Однако и оно под силу лишь специально образованным надгосударственным природоохранным структурам, например, в лице ООН. В региональном плане управление экосистемами, по размеру и экологическим функциям относящимися к динамически равновесному типу, должно осуществляться под эгидой государственных природоохранных структур, с участием академических институтов, университетов, с целью разработки научных методов управления пространственно-временной динамикой экосистемы. Подчеркнем, что управление динамически равновесными экосистемами должно основываться на принципах соотношения целесообразности управляющих действий человека с целесообразностью динамических процессов саморазвития экосистем, предполагающих разработку причинно обусловленных мероприятий, инициирующих спонтанно развивающийся процесс формирования экосистемой экологической услуги для себя, а затем и услуги для людей.

Фундаментальное познавательное и прикладное значение теории экосистем с асимптотически устойчивой динамикой состоит в осознании способности их самопроизвольно возвращаться к состоянию подвижного равновесия, задаваемого условиями глобальной среды, управлять которыми человечество неспособно. А методы конструктивного перфекционизма (по методу Н.А. Краснова) являются прерогативой человеческой деятельности, направленной на улучшение структуры ландшафтов (экологических систем) в региональных масштабах.

Особенности методологии исследования энергетически диссипативных удаляющихся от равновесия эколого-экономических систем. Принципиальным отличием неравновесных систем от динамически равновесных состоит в том, что первые относятся к категории инициируемых человеческой деятельностью новообразований, формирующихся на локальных участках территории со специфическими условиями

организации потоков вещества, энергии и информации кратковременного действия. Среди природных самоорганизующихся неравновесных экосистем наиболее известными и изученными являются речные поймы, сомы действующих вулканов [Поздняков, 1988] и др. Но наибольшую прикладную и теоретическую значимость имеют неравновесные экологические системы, формирующиеся при непосредственном участии человека, организующего потоки энергии (вещества и информации) и управляющего ими. Очевидно, что с ускорением удаляющаяся энергетически диссипативная система является пространственно экспансивной, подчиняющейся парадигме неограничиваемого экономического роста. Границы техногенного социально-экономического воздействия быстро расширяются, сопровождаясь негативным набором загрязнений природной среды. Именно поэтому небольшие экономически развитые страны (Япония, Южная Корея, ряд западноевропейских стран), в которых источники экологических услуг, по существу, исчерпаны, а большая часть их территории занята городами и соединяющей их инфраструктурой, переходят в категорию неравновесных энергодиссипативных эколого-экономических систем. К такой же категории неумолимо приближаются и крупные экономически развитые страны. На современном этапе развития цивилизации, на стадии расширяющейся глобализации, эта проблема стала экзистенциально определяющей. Принципы и методы управления эколого-экономическими неравновесными системами определяются спецификой их функционирования, которая диктуется жизненно необходимым для человека ускоряющимся производством материальных благ, продуктов потребления, средств для решения проблем обороноспособности, логистики и пр. Однако процесс неограничиваемого удовлетворения человеческих потребностей давно перешел в стадию борьбы с объективно и неотменимо действующим вторым началом термодинамики, согласно которому энтропия системы растет по экспоненциальному закону. Борьба цивилизации, действующей на принципах функционирования неограниченного роста, обрекает ее на деградацию и разрушение.

Методы количественной оценки экологической емкости и результаты исследования

В исследованиях физических процессов понятие «энергия» определяется как мера силы и способности системы совершать работу, как мера различных форм движения и взаимодействия материи. Действия энергетических сил давно раскрыты — они проявляются в известных законах термодинамики. Второе начало

термодинамики констатирует никогда не нарушающуюся направленность изменения процессов в экосистемах, воспринимаемую как самопроизвольно развивающийся процесс формирования динамически равновесного асимптотически устойчивого порядка. Процессы неизменно действуют и в моменты роста экосистемы, и в моменты ее деградации.

Энергия является мерой благодаря источнику максимальной концентрации энергии в Солнце, от которого к Земле, на промежутке характерного времени развития экосистем, она поступает в строго

дозируемом количестве, называемом солнечной постоянной. Аккумулятором солнечной энергии на земле служит эмерджентная совокупность продуцентов, по существу, составляющая фундаментальную основу геоэкосистемы. Для раскрытия сути в аспектах представленной выше научно-теоретической преамбулы выбран участок в окрестностях г. Томска (район Академгородка), названный нами Ушайская морфоструктура (рис. 1). Базис, на котором сформировалась и развивается одноименная Ушайская экосистема.

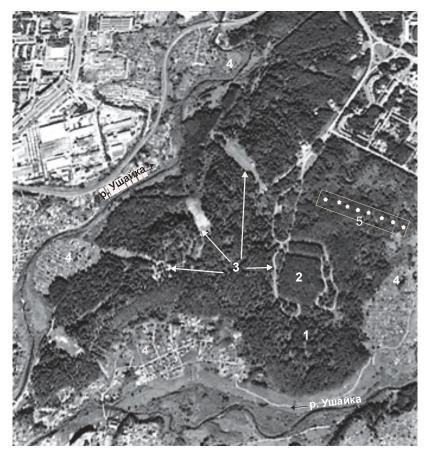


Рис. 1. Ушайская экосистема – схематическая характеристика. Совокупность лесных биотопов с асимптотически устойчивой динамикой и удаляющихся от равновесия эколого-экономических систем 1 – лугово-сосновый биотоп в переходной стадии от климаксовой динамики к деградации; 2 – березово-сосновый биотоп на

1 — лугово-сосновый ойотоп в переходной стадии от климаксовой динамики к деградации; 2 — оерезово-сосновый ойотоп на стадии саморазреживания и сукцессионной замены березы; 3, 4 — динамически неравновесные эколого-экономические системы с их инфраструктурой: 3 — спортивные комплексы, 4 — агроэкосистемы; 5 — описательно-экспериментальная трансекта с пробными площадками

Fig. 1. Schematic characteristics of the Ushai ecosystem. A set of forest biotopes with asymptotically stable dynamics and ecological and economic systems reciding from equilibrium

1 – meadow-pine biotope in the transition stage of climax dynamics to degradation; 2 – birch-pine biotope at the stage of self-thinning and successional replacement of birch; 3, 4 – dynamically nonequilibrium ecological and economic systems with their infrastructure: 3 – sports complexes, 4 – agroecosystems; 5 – descriptive-experimental transect with trial areas

Краткая физико-географическая характеристика объекта. Ушайская морфоструктура в геолого-геоморфологическом отношении представлена ограниченным тектоническими разломами выступом

коренного фундамента, сложенного разновозрастными структурами Кузнецкого Алатау, Колывань-Томской складчатой зоны и Западно-Сибирской плиты [Парначёв, Парначёв, 2010].

Морфоструктура ориентирована на северо-восток, согласно простиранию геологических структур. Объект исследования ограничен долиной р. Ушайки (см. рис. 1), врезанной на глубину 100-120 м относительно абсолютной высоты (200-210 м) вершинной поверхности выступа. Вершинная (водораздел) поверхность представляет собой реликт озерной (возможно и морской) аккумулятивной равнины, сложенной, по нашим наблюдениям и данным, вскрытых буровыми скважинами, зеленовато-серыми, часто карбонатизированными плотными озёрными глинами и суглинками с маломощными прослойками разнозернистого песка [Парначёв, Парначёв, 2010]. Мощность отложений, судя по разнице абсолютных высот вершинной поверхности (198 м) и подошвы толщи (111 м), составляет 81 м. Именно в этой толще формировалась овражная сеть на склонах морфоструктуры.

Ушайская экосистема. Растительный и почвенный покров. Базисной основой экосистемы является Ушайская геоморфоструктура с длительной историей геолого-геоморфологического развития. Ушайская экосистема входит в состав экотона, формировавшегося в границах переходной зоны от темнохвойной тайги к сосново-березовым лесам и лесным лугам [Рожанец, Рожанец-Кучеровская, 1928]. Границы лесных массивов почвенно-растительного покрова и качественный породный состав лесных массивов в пределах Ушайской морфоструктуры, за 100 лет практически не изменились. Леса территории представлены сосновыми борами с различными соотношениями деревьев других пород. Участки исключительно сосновых боров на песчаных и супесчаных почвах перемежаются с березовыми с примесью сосны. Формирование почвенного покрова находится в большой зависимости от коренных пород осадочного озерного генезиса: подзолистые на суглинках, супесчаных и песчаных озерных отложениях. В квалифицированной характеристике почв и растительности М.И. Рожанец [Рожанец, Рожанец-Кучеровская,, 1928] не отмечалось присутствие в древесном составе леса лиственницы, тогда как в настоящее время она образует небольшие по площади скопления возрастом до 59 лет. Появились по окраинам сосновых боров и липа мелколистная, распространяющаяся самосевом (семенами).

В настоящее время заметно увеличивается число представителей лесных пород интродуцентов, завезенных с Уссурийской тайги: лимонник китайский, актинидия, маньчжурский орех, черёмуха Маака; два вида лещины – лещина разнолистая (с Амурской области) и лещина обыкновенная (Южный Урал); дуб монгольский и клен канадский.

Травяной покров характеризуется заметным разнотравьем, особенно на склонах южной экспозиции долины р. Ушайки. В нем представлены: подмаренник, мышиный горошек, костер безостый, лабазник вязолистный, кровохлебка, злаковые, душица, клевер красный, пион уклоняющийся, встречается венерин башмачок, а кандык местами образует сплошной покров.

В аспекте изложенных выше теоретических положений, на исследуемой территории Ушайской экосистемы нами выделяются (рис. 1) совокупность лесных биотопов с асимптотически устойчивой динамикой, характеризующихся спонтанно направленным развитием к динамически равновесному (климаксовому) состоянию; динамически неравновесные энергетически диссипативные эколого-экономические системы с их инфраструктурой: эколого-экономические системы с тотальным преобразованием базисных экосистем – спортивные комплексы, агроэкосистемы и пр.

Ниже процессы, характеризующиеся спонтанно направленным развитием к асимптотически устойчивому состоянию, рассматриваются на примере лугово-сосновых биотопов Ушайской экосистемы.

Суммарный энергопотенциал Ушайской экосистемы

Согласно действующим правилам, энергетический потенциал деревьев определяется по количеству накопленной солнечной энергии в их наземной массе (см., например, [Мельник, Волкова, 2014; Сунгурова и др., 2017]). Информация об энергетической характеристике корневых систем древесной растительности, остается не известной. В лучших случаях она определяется расчетным путем на основе использования аллометрических зависимостей [Демаков и др., 2015; Усольцев и др., 2022]. В исследовании [Демаков и др., 2015] отмечается, что значения параметров в численных моделях специфичны; для каждой древесной породы они связаны с особенностями их биологии и требовательности к условиям среды. Кроме того, аллометрические методы не позволяют определять качественный состав и количество накапливавшихся в деревьях химических элементов. Учитывая данные обстоятельства, нами проведена сравнительная характеристика результатов определения энергопотенциала на основе двух методов: методом измерения веса «живой» сосны с обнаженной корневой системой in situ и аллометрическими методами [Демаков и др., 2015; Усольцев и др., 2022] (табл. 1, 2).

Энергопотенциал модельной сосны по измерениям in situ и по аллометрическим моделям. Для решения

задачи использовалась сосна возрастом 59 лет (определено по годичным кольцам) диаметром 44 см и высотой 2 494,7 см.

Дерево было распилено на части, корни извлечены и взвешены все фитофракции дерева: ствол, сучья, листва, мортмасса и полностью обнаженная корневая система в сухом состоянии и естественной влажности. Суммарный вес всех фракций составляет m=1486,655 кг, а объем аккумулируемой сосной энергии, определявшийся по формуле (3), $-E_s=27,44\times10^9$ Дж/м².

Энергопотенциал сосны в составе тех же фракций, определенный по аллометрической модели В.А. Усольцева [Усольцев и др., 2022] составляет $24,88\times10^9$ Дж/м², а по модели Ю.П. Демакова [Демаков и др., 2015] – $20,78\times10^9$ Дж/м² (табл. 1).

Как видим, наиболее близкими к объективной оценке являются сравнительные показатели, определенные по модели [Усольцев и др., 2022]. Однако это совсем не значит, что на других практических примерах они будут определены с адекватной точностью. Конечно, судить о их практическом применении по единичным результатам сравнения нельзя. Тем не менее для общей экспресс оценки энергопотенциала

лесных биотопов с применением аллометрических методов в экосистемном анализе не обойтись.

Энергопотенциал лугового разнотравья и его мортмассы. Расчет энергии травяного покрова E_f производился по формуле (1). Определение зольности и потери вещества при прокаливании, расчет теплоты сгорания проводились согласно ГОСТам Р 556661-2013, 180-84, 33106-2014. Установлено, что запасы энергии E_f в травяном покрове и мортмассы составляют $E_f = 3,29~\text{МДж/м}^2$ и $E_m = 10,89~\text{МДж/м}^2$, соответственно.

Энергопотенциал почвенного покрова определен на основе анализа образцов, отобранных из почвенного профиля согласно ГОСТ [Масютенко и др., 2004; Мазиров, 2012]. Расчет энергопотенциала Q органического вещества почв и запасы энергии в негумифицированном органическом веществе почвы $Q_{\rm HB}$ производился по формуле (2). Согласно результатам анализа, запасы энергии в гумусе составляют $268,03\times10^6$ Дж на $1~{\rm M}^2$; в негумифицированном веществе почвы $-98,2\times10^6$ Дж на $1~{\rm M}^2$. Суммарный энергопотенциал почвы на участке площадью $100~{\rm M}^2$ составляет $366,23\times10^6$ Дж на $1~{\rm M}^2$, а на одном гектаре $-3~732,20\times10^9$ Дж/га.

Таблица 1 Сравнительная характеристика энергетического потенциала сосны обыкновенной по данным *in situ* и по аллометрическим моделям

Table 1 Comparative characteristics of the energy potential of pine according to *in situ* data and allometric models

	Методы расчета						
Фракция	Расчет по сосне in situ	По методу В.А. Усольцева	По методу Ю.П. Демакова				
	Pacter no coche in situ	и соавт.[2022]	и соавт. [2015]				
Наземная часть, кг	1089,66	1132,63	859,35				
Корневая система, кг	396,99	215,12	266,56				
Общий вес, кг	1486,66	1347,83	1125,91				
Энергопотенциал, Дж	27,44×10 ⁹	24,88×10 ⁹	20,78×10 ⁹				



Рис. 2. Содержание углерода и гумуса в профиле почв в процентных соотношениях

Fig 2. Carbon and humus content in the soil profile in percentages

Таблица 2 Сравнительная характеристика экологической емкости Ушайской экосистемы для площади 1 га по определениям in situ и по аллометрическим моделям

Table 2
Comparative characteristics of the ecological capacity of the Ushai ecosystem for an area of 1 ha according to in situ definitions and allometric models

			•				
	Экологич	еская ёмкость	По аллометрии		По аллометрии		
Компонент экосистемы	i	n situ	В.А. Усольц	ева и соавт. [2022]	Ю.П. Демакова и соавт. [2015]		
	Масса, т/га	Энергия Дж/га	Масса, т/га	Энергия Дж/га	Масса, т/га	Энергия Дж/га	
Пуговая растительность, E_f	1,57	28,65×10 ⁹	1,57	28,65×10 ⁹	1,57	28,65×10 ⁹	
M ортмасса, E_m	5,15	95,61×10 ⁹	5,15	95,61×10 ⁹	5,15	95,61×10 ⁹	
Наземная фитомасса сосны обыкновенной, E_{su}	998,34	18427,25×10 ⁹	1173,62	21662,50×10 ⁹	838,48	15476,60×10 ⁹	
Корневая система сосны обыкновенной, E_{sd}	363,73	6713,69×10 ⁹	222,99	4115,87×10 ⁹	271,18	5005,38×10 ⁹	
Γ умус в почве, Q_{Γ}	123,80	2680,30×10 ⁹	123,80	2680,30×10 ⁹	123,80	2680,3×10 ⁹	
Негумифицированное органическое вещество почв, $Q_{\rm HB}$	55,83	1051,80×10 ⁹	55,83	1051,80×10 ⁹	55,83	1051,8×10 ⁹	
Экологическая емкость, E_{cur}	1548,42	28997,30×10 ⁹	1582,96	29634,73×10 ⁹	1296,01	24338,34×10 ⁹	

Энергопотенциал лесной части Ушайской экосистемы характеризуется сложным сочетанием древостоев по их возрасту (преимущественно от 50 до 100 лет), густоте (от 8 000 до 19 000 сосен/га); породному разнообразию и лесообразующим характеристикам (чистые сосновые боры и даже колки разнообразятся в большей мере березой – от сосново-березового до березово-соснового леса, формировавшихся вследствие сукцессионной замены березового леса сосновым). Наблюдаются различия лесной экосистемы и по сукцессионно-возрастным стадиям его развития. Например, на склонах Ушайской морфоструктуры юго-восточной экспозиции сосновые боры представлены сосновым лесом возрастом до 94 лет, находящейся в заключительной стадии климаксового развития с переходом к стадии деградации.

Расчет энергопотенциала выполнен на примере соснового бора, формировавшегося в характерном для данной территории биотопе (см. рис. 1 – лугово-сосновый биотоп в переходной стадии от климаксовой динамики к деградации), где на участке $S = 100 \text{ м}^2$ произрастает 9 сосен со средним диаметром 44,80 см. При допустимом условии равенства среднего веса одной сосны из 9 весу модельной сосны с энергопотенциалом 27,44×10⁹ Дж, энергопотенциал соснового бора на площади в один гектар равен 28997,30×10⁹ Дж. А энергопотенциал этих же сосен, определенный по аллометрической методике Усольцева-Демакова, соответственно составляет $29634,73\times10^9$ и $24338,34\times10^9$ Дж (табл. 2).

Распределение аккумулируемой солярной энергии между энергопотенциалами Ушайской экосистемы согласно расчетам *in situ* представлено на рис. 3.

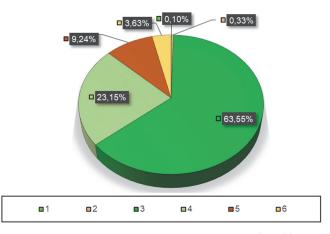


Рис. 3. Энергетическая структура экологической емкости 1 га Ушайской экосистемы

1 — Энергопотенциал фитомассы травяного покрова, E_{f} , 2 — энергопотенциал мортмассы, E_{m} ; 3 — энергопотенциал надземной фитомассы сосны, E_{su} ; 4 — энергопотенциал корневой системы сосны, E_{sd} ; 5 — энергопотенциал гумуса, Q_{Γ} ; 6 — энергопотенциал негумифицированного вещества почвы, Q_{HB}

Fig. 3 The energy structure of the ecological capacity of 1 ha of the Ushai ecosystem

- 1 Energy potential of grass cover phytomass, E_f , 2 mortmass energy potential, E_m ; 3 energy potential of aboveground pine phytomass, E_{su} ;
- 4 the energy potential of the pine root system, E_{sd} ; 5 humus energy potential, Q_{Γ} ; 6 energy potential of inhumified soil matter, Q_{HB}

Обсуждение, выводы и задачи исследований

В растущем количестве публикаций по проблемам рационального использования природных ресурсов экосистема рассматривается с позиций выполняющего экологические услуги партнера. Полагать, что экосистема — партнер по экономическим отношениям на основе принципов «спрос — предложение — цена» и невмешательства государства в эти отношения (принцип laisser-faire), — это ошибочное убеждение. Необходим переход на иную формулу взаимоотношений: спроспредложение — энергетически оцененный выход.

Мерой динамического состояния экосистем не могут быть деньги. Единственной объективно отображающей динамическое состояние экосистемных процессов мерой является энергия – количественный баланс аккумулируемой и расходуемой энергии в экосистеме, рассчитанный в единицу времени на единице площади, т.е. скорость накопления биомассы, выражающаяся в весовых (килограммы, тонны) и энергетических единицах (Дж, калории) измерения.

На этой научно-теоретической идеологии основаны наши подходы к практической количественной оценке экологической емкости конкретной экосистемы.

Ушайская экосистема по физико-географическому положению относится к категории городских лесов с явно выраженной спецификой естественного развития и функционирования. С одной стороны, ее эволюционная динамика, подчиняющаяся климатически обусловливаемым изменениям природной среды, характерным для южных районов Западной Сибири, объективно предполагает ее развитие в асимптотически устойчивом режиме. Но, с другой стороны, зародившаяся более 300 лет назад и бурно

развивающаяся в ее границах социально-экономическая система, в виде техногенной деятельности, формирования инфраструктуры города Томска и многочисленных поселений пригородного типа, приводили к неоднократным существенным ее изменениям, вплоть до полного уничтожения (преимущественно вследствие использования древесины для строительства жилья, обогрева и пр.). По-видимому, последним таким этапом был период революционных изменений в России, произошедших 100 лет назад. На настоящий момент наблюдаются контрастно выраженные взаимопроникновения находящейся в асимптотически устойчивом режиме развитии экосистемы и эколого-экономических систем в условиях законодательно регулируемых границ их взаимодействия. Это обстоятельство предполагает связь экосистемной ренты с потребительскими интересами человека, несущими ему жизненно определяемую экономию труда и экзистенциально-рентные экономические выгоды. По существу энергетически оцениваемая экологическая емкость есть содержательная суть ренты в количественном ее выражении.

Важной задачей дальнейших исследований является оценка роли аккумуляции и пространственного перераспределения микроэлементного минерального состава растениями на стадиях развитого их круговорота: формирование сложных полиминеральных растворов в почвогрунтах — накопление микроэлементов в растительности — накопление их в косной среде гумуса и почве — переход в начало нового цикла и т.д. Положенное нами этому направлению исследования начало свидетельствует о его научно-теоретической и прикладной перспективности.

Список источников

Арманд А.Д., Таргульян В.О. Принцип дополнительности и характерное время в географии // Системные исследования. М.: Наука, 1974. С. 146–153.

Глазовская М.А. Педолитогенез и континентальные циклы углерода. М.: Либроком, 2009. 336 с.

Демаков Ю.П., Пуряев А.С., Черных В.Л., Черных Л.В. Использование аллометрических зависимостей для оценки фитомассы различных фракций деревьев и моделирования их динамики // Вестник Поволжского государственного технологического университета. Серия: Лес. Экология. Природопользование. 2015. № 2 (26). С. 19–36.

Жучкова В.К., Раковская Э.М. Методы комплексных физико-географических исследований: учеб. пособие для студентов вузов. М.: Академия, 2004. 368 с.

Мазиров М.А. Полевые исследования свойств почв: учеб. пособие к полевой практике для студентов, обучающихся по направлению подготовки – почвоведение. Владимир: Изд-во ВлГУ, 2012. 72 с.

Масютенко Н.П., Шеховцова В.В., Шеховцов В.И. Научные основы и методы оценки энергетического состояния почв в агроландшафтах. Курск : ВНИИЗиЗПЭ, 2004. 60 с.

Мельник М.А., Волкова Е.С. Территориальные особенности биоэнергетического потенциала лесных ресурсов Томской области // Современные проблемы науки и образования. 2014. № 5. URL: http://www.science-education.ru/pdf/2014/5/717.pdf

Парначёв В.П., Парначёв С.В. Геология и полезные ископаемые окрестностей города Томска: Материалы к полевой геологической экскурсии : справочное пособие. Томск : ТГУ, 2010. 144 с.

Поздняков А.В. Динамическое равновесие в рельефообразовании. М.: Наука, 1988. 208 с.

Поздняков А.В. Принципы самоорганизации и функционирования геосистем (К программе магистерского курса по специальности магистр геоэкологии и природопользования). 2008. URL: https://elib.sfu-kras.ru/handle/2311/8488 (дата обращения: 30.04.2023).

Поппер К. Логика и рост научного знания. М. : Прогресс, 1983. С. 240–245.

Рожанец М.И., Рожанец-Кучеровская С.Е. Почвы и растительность окрестностей г. Томска: с картой почв и растительности. Томск, 1928. С. 315–405.

Семенов С.М., Иголкина Е.Д. Современные климатообусловленные глобальные изменения океана и криосферы: Специальный доклад Межправительственной группы экспертов по изменению климата (МГЭИК) // Фундаментальная и прикладная климатология. 2019. № 4. С. 30–48.

Сунгурова Н.Р., Бабич Н.А., Сунгуров Р.В., Любов В.К., Попов А.Н. Энергетический потенциал культур сосны и ели // Лесной журнал. 2017. № 3. С. 78—84.

Усольцев В.А., Цепордей И.С., Норицин Д.В. Аллометрические модели биомассы деревьев лесообразующих пород Урала // Леса России и хозяйство в них. 2022. № 1(80). С. 4–14.

Шварц Е.А., Книжников А.Ю., Воропаев А.И., Постнова А.И., Боев П.А., Mattoon S., Wackernagel M., Zokai G., Iha K., Borucke M., Lazarus E., Ortego J., Trotter G. Экологический след субъектов Российской Федерации. М.: WWF России, 2014. 88 с.

Alexander H. Resource review: Nature's Services: Social Difference on Natural Ecosystems // Corporate Environmental strategy. 1999. V. 6 (2). P. 219.

Bailey J.A. Principles of world life management. New York: John Wiley and Sons Inc., 1984. 373 p.

Costanza R. Natural capital and sustainable development // Conservation biology. 1992. V. 6 (1). P. 37–46.

Costanza R., Wainger L., Folke C., Mäler K.-G. Modeling Complex Ecological Economic Systems // BioScience. 1993. V. 43 (8). P. 545–555.

Duit A. State and Environment: The Comparative Study of Environmental Governance // Global environmental politics. Cambridge, MA: MIT Press. 2016. V. 16 (1). P. 108–109.

Park R.E., Burgess E.W. Introduction to the science of sociology. Chicago Press, 1921. 1010 p.

Pozdnyakov A.V. Global existential rent – the basis of sustainable development of civilization // Abstracts of reports 5th International Conference «Resources, Environment and Regional Sustainable Development in Northeast Asia». Irkutsk: Publishing House of the S.B. Sochava Institute of Geography SB RAS, 2022. P. 70.

Pörtner H.-O., Roberts D.C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Nicolai M., Okem A., Petzold J., Rama B., Weyer N. Summary for Policymakers // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge: Cambridge University Press, 2019. P. 3–35.

Smaal A.C., Prins T.C., Dankers N., Ball B. Minimum requirements for modelling bivalve carrying capacity // Aquatic Ecology. 1998. No 31. P. 423–428.

Tansley A.G. The use and abuse of vegetational concepts and terms // Ecology. 1935. No. 16. P. 284–307.

References

Armand A.D., Targul'yan V.O. *Printsip dopolnitel'nosti i kharakternoe vremya v geografii* [The principle of complementarity and characteristic time in geography] // *Sistemnyye issledovaniya* [System research]. Moscow: Nauka. 1974. pp. 146–153. In Russian

Glazovskaya M.A. *Pedolitogenez i kontinental'nye tsikly ugleroda* [Pedolithogenesis and continental carbon cycles]. Moscow: Book house «Librocom». 2009. 336 p. In Russian

Demakov Yu.P., Puryaev A.S., Chernykh V.L., Chernykh L.V. *Ispol'zovanie allometricheskikh zavisimostey dlya otsenki fitomassy razlichnykh fraktsiy derev'ev i modelirovaniya ikh dinamiki* [The use of allometric dependencies for assessing the phytomass of various tree fractions and modeling their dynamics] // Bulletin of the Volga State Technological University. Ser.: Forest. Ecology. Environmental management. 2015. No. 2 (26). pp. 19–36. In Russian

Zhuchkova V.K., Rakovskaya E.M. *Metody kompleksnykh fiziko-geograficheskikh issledovaniy* [Methods of complex physical and geographical research]. Textbook for university students. Moscow: Academy. 2004. 368 p. In Russian

Mazirov M.A. *Polevye issledovaniya svoystv pochv* [Field studies of soil properties]: a textbook for field practice for students studying in the field of training – soil science. Vladimir: Publishing House of the Volga. 2012. 72 p. In Russian

Masyutenko N.P., Shekhovtsova V.V., Shekhovtsov V.I. *Nauchnye osnovy i metody otsenki energeticheskogo sostoyaniya pochv v agrolandshaftakh* [Scientific foundations and methods for assessing the energy state of soils in agricultural landscapes]. Kursk: VNIIZiZPE. 2004. 60 p. In Russian

Mel'nik M.A., Volkova E.S. *Territorial'nye osobennosti bioenergeticheskogo potentsiala lesnykh resursov Tomskoy oblasti* [Territorial features of bioenergetic potential of forest resources of the Tomsk region] // *Sovremennyye problemy nauki i obrazovaniya* [Modern problems of science and education]. 2014. No. 5. URL: http://www.science-education.ru/pdf/2014/5/717.pdf. In Russian

Parnachev V.P., Parnachev S.V. *Geologiya i poleznye iskopaemye okrestnostey goroda Tomska: Materialy k polevoy geologicheskoy ekskursii* [Geology and minerals of the surroundings of the city of Tomsk: Materials for a field geological excursion]: Reference manual. Tomsk: TSU. 2010. 144 p. In Russian

Pozdnyakov A.V. *Dinamicheskoe ravnovesie v rel'efoobrazovanii* [Dynamic equilibrium in relief formation]. Moscow: Nauka. 1988. 208 p. In Russian

Pozdnyakov A.V. *Printsipy samoorganizatsii i funktsionirovaniya geosistem* [Principles of self-organization and functioning of geosystems] (To the program of the master's course in the specialty Master of Geoecology and Environmental Management). 2008. URL: https://elib.sfu-kras.ru/handle/2311/8488 (Date of accessed: 30.04.2023). In Russian

Popper K. Logika i rost nauchnogo znaniya [Logic and the growth of scientific knowledge]. Moscow: Progress. 1983. pp. 240–245. In Russian

Rozhanets M.I., Rozhanets-Kucherovskaya S.E. *Pochvy i rastitel'nost' okrestnostey g. Tomska: s kartoy pochv i rastitel'nosti* [Soils and vegetation of the surroundings of Tomsk: with a map of soils and vegetation]. Tomsk. 1928. pp. 315–405. In Russian

Semenov S.M., Igolkina E.D. Sovremennye klimatoobuslovlennye global'nye izmeneniya okeana i kriosfery: Spetsial'nyy doklad Mezhpravitel'stvennoy gruppy ekspertov po izmeneniyu klimata [Current climate-related global ocean and cryosphere changes: Special

Report of the Intergovernmental Panel on Climate Change] (IPCC) // Fundamental 'naya i prikladnaya klimatologiya [Fundamental and Applied Climatology. 2019. No. 4. pp. 30–48. In Russian

Sungurova N.R., Babich N.A., Sungurov R.V., Lyubov V.K., Popov A.N. *Energeticheskiy potentsial kul'tur sosny i eli* [Energy potential of pine and spruce crops] // Lesnoy Zhurnal (Russian Forestry Journal). 2017. No. 3. pp. 78–84. In Russian

Usol'tsev V.A., Tsepordey I.S., Noritsin D.V. *Allometricheskie modeli biomassy derev'ev lesoobrazuyushchikh porod Urala* [Allometric models of biomass of trees of forest-forming rocks of the Urals] // *Lesa Rossii i khozyaystvo v nikh* [Forests of Russia and the economy in them]. 2022. No. 1(80). pp. 4–14. In Russian

Shvarts E.A., Knizhnikov A.Yu., A.I. Voropaev A.I., Postnova A.I., Boev P.A., Mattoon S., Wackernagel M., Zokai G., Iha K., Borucke M., Lazarus E., Ortego J., Trotter G. *Ekologicheskiy sled sub"ektov Rossiyskoy Federatsii* [Ecological footprint of the subjects of the Russian Federation]. Moscow: WWF Rossii. 2014. 88 p. In Russian

Alexander H. Resource review: Nature's Services: Social Defference on Natural Ecosystems // Corporate Environmental strategy. 1999. 6 (2). pp. 219.

Bailey J.A. Principles of worldlife management. John Wiley and Sons Inc. New York. 1984. 373 p.

Costanza R. Natural capital and sustainable development // Conservation biology. 1992. V. 6 (1). pp. 37–46.

Costanza R., Wainger L., Folke C., Mäler K.-G. Modeling Complex Ecological Economic Systems // BioScience. 1993. V. 43 (8). pp. 545–555.

Duit A. State and Environment: The Comparative Study of Environmental Governance // Global environmental politics. Cambridge. MA: MIT Press. 2016. 16 (1). pp. 108–109.

Park R.E., Burgess E.W. Introduction to the science of sociology. Chicago Press. 1921. 1010 p.

Pozdnyakov A.V. Global existential rent – the basis of sustainable development of civilization // Abstracts of reports 5th International Conference «Resources, Environment and Regional Sustainable Development in Northeast Asia». Irkutsk: Publishing House of the S.B. Sochava Institute of Geography SB RAS. 2022. pp. 70.

Pörtner H.-O., Roberts D.C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Nicolai M., Okem A., Petzold J., Rama B., Weyer N. Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press. Cambridge. UK and NY. USA. 2019. pp. 3–35.

Smaal A.C., Prins T.C., Dankers N., Ball B. Minimum requirements for modelling bivalve carrying capacity // Aquatic Ecology. 1998. No. 31. pp. 423–428.

Tansley A.G. The use and abuse of vegetational concepts and terms. Ecology. 1935. No. 16. pp. 284–307.

Информация об авторах:

Поздняков А.В., доктор географических наук, профессор, академик РАЕН и РАЕ, главный научный сотрудник, лаборатория самоорганизации геосистем, Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия.

E-mail: synergia7391@yandex.ru

Грачев И.Г., аспирант, лаборатория самоорганизации геосистем, Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия.

E-mail: grachevimces@gmail.com

Фузелла Т.Ш., кандидат географических наук, научный сотрудник, лаборатория самоорганизации геосистем, Институт мониторинга климатических и экологических систем СО РАН, Томск, Россия.

E-mail: fts10@yandex.ru

Вклад авторов:

Поздняков А.В. – концептуализация и методология исследования: анализ современных представлений в решении задач определения экологической ёмкости; разработка концептуально-феноменологической модели исследуемой проблемы; обоснование актуальности, определение целей и задач исследования, выбор объектов исследования и пр. Выбор участков для проведения экспедиционных НИР. Подготовка результатов исследования к публикации и администрирование проекта.

Грачев И.Г. – непосредственная реализация целей и задач проекта в экспедиционных и экспериментальныхых исследованиях, сопровождавшихся отбором проб для лабораторного анализа; научно-теоретическая обработка результатов аналитических исследований. Соучастие в определении целей и задач исследования и подготовке результатов НИР к публикациям.

Фузелла Т.Ш. – реферативно-аналитический обзор НИР в зарубежных публикациях; отбор образцов и их подготовка для лабораторно-аналитических исследований.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Pozdbyakov A.V., Dr. Sci. (Geography), Professor, Head of laboratory of self-organization of geosystems, Institute for Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia.

E-mail: synergia7391@yandex.ru

Grachev I.G., postgraduate student, Institute for Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia.

E-mail: grachevimces@gmail.com

Fuzella T.Sh., Cand. Sci. (Geography), Researcher, Laboratory of self-organization of geosystems, Institute for Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia.

E-mail: fts10@yandex.ru

Contribution of the authors:

Pozdnyakov A.V. – conceptualization and methodology of the research: analysis of modern ideas in solving the problems of determining the ecological capacity; development of conceptual-phenomenological model of the problem under study; justification of relevance, definition of goals and objectives of the research, selection of research objects, etc. Selection of sites for expeditionary research. Preparation of research results for publication and project administration.

Grachev I.G. — direct realization of the goals and objectives of the project in expeditionary and experimental research, accompanied by sampling for laboratory analysis; scientific and theoretical processing of the results of analytical research. Participation in defining the goals and objectives of the research and preparing the results of the research for publication.

Fusella T.S. – abstract-analytical review of research work in foreign publications; sampling and preparation for laboratory-analytical research.

The authors declare no conflicts of interests.

Статья поступила в редакцию 31.05.2023; одобрена после рецензирования 30.01.2024; принята к публикации 13.06.2024

The article was submitted 31.05.2023; approved after reviewing 30.01.2024; accepted for publication 13.06.2024

Научная статья УДК 550.461 + 556.314 doi: 10.17223/25421379/31/9

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ИЗМЕНЕНИЯ ХИМИЧЕСКОГО СОСТАВА КОМПОНЕНТОВ ВОДНЫХ ОБЪЕКТОВ В ГОРНО-ЛЕДНИКОВОМ БАССЕЙНЕ АКТРУ (ГОРНЫЙ АЛТАЙ) И НА ПРИЛЕГАЮЩИХ ТЕРРИТОРИЯХ

Олег Геннадьевич Савичев¹, Альбина Анатольевна Хващевская², Владимир Валерианович Паромов³

- ^{1, 2} Национальный исследовательский Томский политехнический университет, Томск, Россия
- ³ Национальный исследовательский Томский государственный университет, Томск, Россия
- ¹ OSavichev@mail.ru

Аннотация. Проведен анализ данных о химическом составе речных, ледниковых и подземных вод в горно-ледниковом бассейне Актру (Горный Алтай) и на прилегающих территориях в 1997-2000, 2012-2014, 2019, 2022 гг. Выявлены тенденции изменения состава природных вод в ряду «ледник – речные воды – подземные воды». Установлено увеличение минерализации, концентраций Ca^{2+} , Mg^{2+} , HCO_3^{-} в водах притоков р. Актру. Предположительно, это связано с увеличением площади соприкосновения воды с горными породами, ранее находившимися под ледниками и (или) при отрицательной температуре.

Ключевые слова: гидрохимические изменения, горно-ледниковый бассейн Актру, Алтай

Благодарности: авторы признательны сотрудникам Проблемной научно-исследовательской лаборатории гидрогеохимии Национального исследовательского Томского политехнического университета, Института нефтегазовой геологии и геофизики СО РАН, Сибирского регионального центра ФГБУ «Гидроспецгеология», сотрудникам и студентам кафедры гидрологии Национального исследовательского Томского государственного университета, участвовавшими в проведении полевых и лабораторных работ в рамках рассматриваемого исследования в 1997–2022 гг.

Источник финансирования: исследование выполнено за счет средств гранта Российского научного фонда (проект № 23-27-00039).

Для цитирования: Савичев О.Г., Хващевская А.А., Паромов В.В. Пространственно-временные изменения химического состава компонентов водных объектов в горно-ледниковом бассейне Актру (Горный Алтай) и на прилегающих территориях // Геосферные исследования. 2024. № 2. С. 143–155. doi: 10.17223/25421379/31/9

Original article

doi: 10.17223/25421379/31/9

SPATIAL AND LONG-TERM CHANGES IN THE CHEMICAL COMPOSITION OF WATER OBJECTS COMPONENTS IN THE AKTRU MOUNTAIN-GLACIER BASIN (GORNY ALTAI) AND IN THE ADJACENT TERRITORIES

Oleg G. Savichev¹, Albina A. Khvaschevskaya², Vladimir V. Paromov³

- ^{1, 2}National Research Tomsk Polytechnic University, Tomsk, Russia
- ³ National Research Tomsk State University, Tomsk, Russia
- ¹ OSavichev@mail.ru
- ² Garibova@mail.ru

Abstract. The analysis of data on the chemical composition of river, glacial and groundwater in the Aktru mountain-glacial basin (Gorny Altai, Russian Federation) and in the adjacent territories (the Tyute River, section of the Kurai Valley) in 1997–2000, 2012–2014, 2019, 2022 The data were obtained under the guidance and directly by the authors, together with employees and students of the Tomsk Polytechnic and Tomsk State Universities, the Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, the Siberian Regional Center of the Federal State Budgetary Institution "Gidrospetsgeologiya". The objects of study are the Aktru River and its tributaries (the Big and Small Aktru rivers), the Tyutyo River, the Left and Small Aktru glaciers (ablation zone and firn zone), groundwater of Quaternary deposits and Precambrian deposits. The potentiometric, conductometric, fluorimetric, titrimetric, turbidimetric, photometric, stripping voltammetric, atomic

² Garibova@yandex.ru

absorption, neutron activation, atomic emission, mass spectrometric method with inductively coupled plasma methods have been used. The analysis of temporal changes was carried out according to the data on the content of the main ions, Fe, Cu, Zn obtained by the same methods (titrimetric, turbidimetric, atomic absorption, stripping voltammetric). It has been established that spatial changes in the mineralization of natural waters of a mountain-glacial basin are characterized by its general increase in the direction "glacier \rightarrow river water \rightarrow groundwater". Against the background of this increase, there is an increase in the concentrations of a number of chemical elements in the headwaters of the tributaries of the Aktru River and at the border of the mountain-forest and mountain-steppe areas. This is due to the intense leaching of rocks during the melting of ice material at the glacier boundary with the active participation of microflora and the suspension of solid particles in the flow in the sources of mountain streams, the peculiarities of channel processes, accompanied by the accumulation of products of interaction between water and rocks. When studying long-term changes, it is shown that during 1997-2022. There is some activation of interactions in the "water - rock" system in the sources of mountain streams. It occurs, presumably, due to an increase in the area of contact between water and rocks that were previously under glaciers and/or at sub-zero temperatures. The consequence of this activation is a slight increase in the salinity of the waters of the tributaries of the Aktru River (the Bolshoi and Malyi Aktru rivers), mainly due to an increase in the concentrations of Ca²⁺, Mg²⁺ and HCO₃. Changes in the concentrations of other main ions, as well as Fe, Cu, Zn, are much less pronounced. Two to three kilometers downstream in the waters of the Aktru river, waters of different compositions mix and, possibly, part of the sediments, including poorly soluble substances, formed in the glacier ablation zone, are deposited. As a result, even in the Aktru station area, temporary changes in the chemical composition of river waters, if any, are no longer so obvious.

Keywords: hydrochemical changes, Aktru mountain-glacial basin, Altai

Acknowledgments: The authors are very grateful to the staff of the hydrogeochemical laboratory of National Research Tomsk Polytechnic University, the Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences, the Siberian Regional Center of the Federal State Budgetary Institution "Gidrospetsgeologiya", staff and students of the Department of Hydrology of National Research Tomsk State University, who participated in field and laboratory work within the framework of this study in 1997–2022.

Source of financing: The research was carried out using the Rusian Scientific Foundation grant (project no. 23-27-00039).

For citation: Savichev O.G., Khvaschevskaya A.A., Paromov V.V. (2024) Patial and long-term changes in the chemical composition of water objects components in the Aktru mountain-glacier basin (Gorny Altai) and in the adjacent territories. Geosfernye issledovaniya – Geosphere Research. 2. pp. 143–155. (In Russian). doi: 10.17223/25421379/31/9

Введение

В последние десятилетия наблюдаются заметные изменения климата во многих регионах мира, включая Сибирь и Центральную Азию [Кислов, 2006; Shiklomanov et al., 2013], что не может не сказываться на состоянии водных объектов, в том числе в горно-ледниковых бассейнах Алтая [Оледенение..., 2006; Поповнин, 2006; Тимошок и др., 2008; Паромов, Шантыкова, 2001]. В свою очередь, это должно так или иначе повлиять на состояние водных экосистем р. Объ на всем её протяжении и, соответственно, определяет актуальность исследований реакции горно-ледниковых экосистем на эволюцию климата, окружающей среды и механизмов их саморегуляции.

Далее рассматривается аспект подобных работ, связанный с изучением геохимического состояния водных объектов в бассейне р. Актру (элемент речной системы Актру – Чуя – Катунь – Обь – Карское море) и на прилегающих к нему территориях. Цель исследования — выявление пространственно-временных изменений химического состава речных и ледниковых вод в бассейне Актру на основе обобщения гидрохимических данных, полученных в 1997–2000, 2012–2014, 2019, 2022 гг., включая ранее частично опубликованные материалы за 1997–2013 гг. [Савичев и др., 2002; Savichev, Paromov, 2013; Паромов и

др., 2014; Savichev et al., 2016; Савичев и др., 2019; Пасечник и др., 2020].

Объекты и методика исследования

Район исследования — бассейн р. Актру, расположенный на северном склоне Северо-Чуйского хребта в горном узле Биш-Иирду и характеризующийся наличием семи ледников общей площадью около 16 км² (Правый, Левый и Малый Актру, Водопадный, Кар Малого Актру, висячий ледник на горе Караташ, карово-висячий ледник Стажер), и прилегающие к нему водосбор р. Тютё (также приток р. Чуя) и участок Курайской долины. Снеговая линия проходит на высоте 3 200 м и выше [Галахов и др., 1987; Нарожный и др., 2006; Тимошок и др., 2008]. При этом в последние десятилетия наблюдается её подъём и деградация оледенения в бассейне Актру [Паромов, Шантыкова, 2001; Нарожный и др., 2005; Паромов и др., 2018].

Основными объектами исследования являются ледники Левый и Малый Актру (фирновая зона и зона абляции), водотоки Малый и Большой Актру, собственно река Актру и подземные воды (отложения четвертичного возраста и докембрия) в Курайской долине (рис. 1). Дополнительно использованы данные о химическом составе реки Тютё и подземных

вод в с. Курай [Состояние..., 2010; Пасечник и др., 2020]. Общая идея заключается в попытке оценки изменения химического состава вод от ледников до устья р. Актру за период с 1997 по 2022 г.

Методика исследования включала в себя:

1) полевые работы по отбору проб в 1997 (речных вод и льда – В.В. Паромов), 1998 (подземных и речных вод, льда – О.Г. Савичев, Е.В. Домрочева), 1999 (речных вод и льда – В.В. Паромов), 2000 (льда – В.В. Паромов), 2012 (речных вод и льда – под руководством В.В. Паромова), 2013 и 2014 (речных вод, льда и донных отложений - под руководством В.В. Паромова), 2019 (подземных вод – сотрудники Сибирского регионального центра ФГБУ «Гидроспецгеология» [Пасечник и др., 2020]), 2022 гг. (речных вод, льда и донных отложений – О.Г. Савичев, О.Г. Савичева), в том числе: 1.1) проб вод водотоков и озера Голубое (в 1997, 1998, 1999, 2012, 2013, 2014, 2022 гг.) в слое 0,1-0,3 м от водной поверхности с учетом требований [Требования..., 2002; Manual..., 2010; ГОСТ Р 59024-2020]; 1.2) подземных вод (в 1998, 2019 гг.) согласно [Требования..., 2002; Weight, 2008; Manual..., 2010; ГОСТ Р 59024-2020]; 1.3) ледового материала (в 1997, 1998, 1999, 2000, 2012, 2022 гг.) в приповерхностном слое 0,2–0,5 м с учетом [Manual..., 2010; ГОСТ 17.1.5.05-85]; 1.4) донных отложений (в 2013, 2014, 2022 гг.) в 0,2-1,0 м от уреза воды в слое 0,2 м от поверхности дна (в 2013 и 2014 гг. – точечные пробы, в 2022 г. – смешанные пробы из точечных проб в вершинах в виде равнобедренного треугольника со стороной 1 м) согласно [Требования..., 2002; Manual..., 2010; ГОСТ 17.1.5.01-80]); 1.5) подземных вод из скважин (Курай – Кызыл-Таш, в 2019 г. одна проба – из родника [Пасечник и др., 2020]) с учётом требований [Weight, 2008; Manual, 2010]; 1.6) при отборе проб воды О.Г. Савичевым проводились полевые измерения pH, удельной электропроводности EC, окислительно-восстановительного потенциала Ећ, температуры воды T_w , в 2022 г. дополнительно проведена фильтрация воды через мембранный фильтр с диаметром пор 0,45 мк для изучения соотношения растворённо-коллоидной и взвешенно-коллоидной форм миграции химических элементов; 1.7) в 2013 и 2014 гг. (под руководством В.В. Паромова) – измерения расходов воды рек Актру и Тютё; всего отобрано 47 проб воды и 12 проб донных отложений; 2) лабораторные работы по определению химического состава поверхностных и подземных вод, донных отложений в аккредитованной гидрогеохимической лаборатории Томского политехнического университета (ТПУ) непосредственно и (или) под руководством А.А. Хващевской с использованием следующих методов: 2.1) в пробах речных, подземных и талых вод: рН, F- – потенциометрический метод; удельная электропроводность EC – кондуктометрический; бихроматная окисляемость BO – флуориметрический; перманганатная окисляемость PO, содержания Ca^{2} Mg^{2+} , HCO_3^- , Cl^- , CO_2 – титриметрический; Na^+ , K^+ – атомно-эмиссионная спектрометрия с пламенной атомизацией; SO_4^{2-} – турбидиметрический; NH_4^+ , NO_2^- , NO_3^- , PO_4^{3-} , Si, Fe – фотометрический; более 30 микроэлементов – инверсионно-вольтамперометрический, атомно-абсорбционный (1997, 1998, 1999, 2000 гг.), нейтронно-активационный (микроэлементы в 1998 г. в ядерно-геохимической лаборатории ТПУ; аналитики Е.Г. Вертман, А.Ф. Судыко, Л.Ф. Богуцкая), атомно-эмиссионная спектрометрия (2013, 2014 гг.) и масс-спектрометрический метод с индуктивно-связанной плазмой (МС-ИСП) с использованием масс-спектрометра NexION 300D (в 2019 и 2022 гг.); 2.2) в водных вытяжках из донных отложений (фракция ≤ 1 мм): рН – потенциометрический метод, удельная электропроводность EC – кондуктометрический, в 2022 г. микроэлементы – МС-ИСП (NexION 300D); пробоподготовка включала в себя доведение проб до воздушно-сухого состояния, растирание в фарфоровой ступке, перемешивание в круглодонной колбе в течение 3 мин навески 50-100 г с добавлением деионизированной воды в соотношении 1:5, центрифугирование в течение 5 мин; 2.3) в кислотных вытяжках из донных отложений (фракция ≤ 1 мм) в 2013 и 2014 гг. – атомно-эмиссионная спектрометрия; пробоподготовка предполагала высушивание до воздушно-сухого состояния и растирание в фарфоровой ступке, затем навеска пробы (0,2–0,5 г) помещалась в полиэтиленовую пробирку с добавлением 3 мл азотной кислоты, очищенной с помощью системы Distillasid BSB-939-IR (Berghof, Германия) и прогревалась в микроволновой печи на минимальной мощности (100-300 W) в течение 10 мин без закипания раствора, после чего объем полученного раствора доводился деионизованной водой до 50 мл; 2.4) в 1998 г. также было проведено определение органических микропримесей хроматомасс-спектрометрическим методом (Ю.П. Туров, И.Д. Пирогова, М.П. Гузняева, Институт органической химии СО РАН) и микроорганизмов (Н.Г. Наливайко, гидрогеохимическая лаборатория ТПУ) [Савичев и др., 2002; Savichev, Paromov, 2013; Savichev et al., 2016]; исследования рентгенофазового состава донных отложений р. Актру выполнены на оборудовании Томского регионального центра коллективного пользования Национального исследовательского Томского государственного университета (Центр поддержан грантом Министерства науки и высшего образования Российской Федерации № 075-15-2021-693 (№ 13.ЦКП.21.0012)).

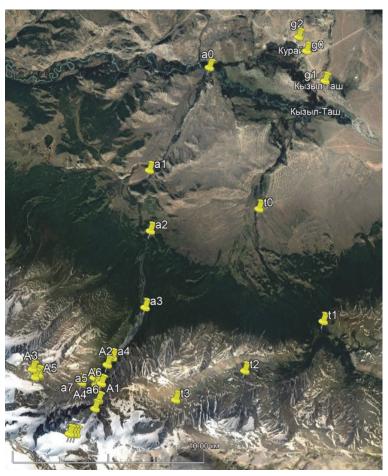


Рис. 1. Схема размещения пунктов отбора проб: g0...g2 – подземные воды; t0...t3 – р. Тютё; прочие пункты – речные воды и ледники в водосборе р. Актру, включая A1...A5 – пункты в 2022 г.

Fig. 1. Layout of sampling points: g0...g2 are groundwater; t0...t3 are the Tyutyo River; other observation points are river waters and glaciers in the Aktru River's basin including A1...A5 are points in 2022

3) статистический и визуальный анализ полученных данных, а также данных Сибирского регионального центра ФГБУ «Гидроспецгеология», полученных по данным опробования в с. Курай в летний период 1999–2001, 2003, 2004, 2019 гг. [Состояние..., 2010; Пасечник и др., 2020]), включая расчет погрешностей среднего арифметического δ_A (1) и коэффициентов корреляции δ_r (2); корреляционные и регрессионные связи принимались значимыми с уровнем значимости 5 % при выполнении условия (3):

$$\delta_A \approx \sigma \cdot N^{-0.5},$$
 (1)

$$\delta_r \approx (1 - r^2) \cdot (N - 1)^{-0.5},$$
 (2)

$$N \ge 6; |r| \ge 0.7; r \ge 2 \cdot \delta_r; k_r \ge 2 \cdot \delta_k, \tag{3}$$

где N — объем выборки; σ — среднее квадратическое отклонение; r — коэффициент корреляции; k_r и δ_k — коэффициент регрессии и погрешность его определения [СП 33-101-2003]; все расчеты выполнены в MS Excel;

4) термодинамические расчеты (расчеты индекса насыщения *SI*) с использованием программного комплекса Solution+, разработанного О.Г. Савичевым в

вычислительной среде MS Excel на основе метода констант [Савичев и др., 2003]:

$$SI = \lg PA - \lg K_{neq}, \tag{4}$$

где PA — произведение активностей группы веществ; K_{neq} — константа неустойчивости; отрицательные значения индекса SI свидетельствуют о потенциальном недосыщении, а положительные — о пересыщении раствора относительно рассматриваемого минерала).

Результаты исследования и их обсуждение

Пространственные закономерности. Талые ледниковые воды, по классификации О.А. Алекина [Алекин, 1970], – пресные с очень малой минерализацией, в среднем гидрокарбонатные кальциевые первого типа (табл. 1; 3 случая из $9-C^{Ca}_{II}$; 2 случая из $9-C^{Ca}_{III}$; 3 случая из $9-C^{Mg}_{I}$; 1 случай из $9-C^{Na}_{I}$), по величине рН — в среднем слабокислые [Гидрохимические..., 2007].

Речные воды также пресные, причем в верхнем (выше по течению от лагеря Актру) и в среднем (от

лагеря Актру до конца открытого участка поймы) течении - с очень малой минерализацией, а в нижнем течении - с малой минерализацией. Примерно такое же распределение минерализации и по длине р. Тютё, что указывает на общую тенденцию – увеличение минерализации от истоков до участка нижнего течения (от горно-ледникового к горно-лесному и горно-степному участкам), причем с некоторым снижением в горно-степной части ближе к устью (рис. 2, табл. 1). По химическому составу воды р. Актру в среднем гидрокарбонатного класса, группы кальция, второго типа (в 13 случаях из $20 - C^{Ca}_{II}$, в 3 случаях $-C^{Ca}_{I}$, в $4 - C^{Ca}_{III}$, табл. 1), воды р. Тютё – в 3 случаях из изученных $4 - C^{Ca}_{III}$ (в одном случае $- C^{Mg}_{I}$). По величине рН речные воды в летний период (время проведения работ в течение 1997-2022 гг.) - преимущественно слабощелочные, что объясняется достаточно высоким насыщением кислородом [Алекин, 1970].

Минерализация подземных вод в Курайской долине в целом закономерно выше, чем речных вод в водосборе р. Актру (согласно [Shvartsev, 2008], по причине более замедленного, по сравнению с реками,

водообменом и, следовательно, большего времени взаимодействий воды с породами). Химический состав этих вод характеризуется преобладанием ионов HCO_3^- и Ca^{2+} : в среднем для 8 проб и в 6 случаях из $8-C^{Ca}_{II}$; по одному случаю (из $8)-C^{Ca}_{III}$ и C^{Mg}_{I} . По величине pH подземные воды в целом (в летний период 1998–2001, 2003, 2004, 2019 гг.) — слабощелочные

В целом от ледников до речных вод на участках среднего и нижнего течения горных водотоков (рр. Актру и Тютё) отмечается переход от недонасыщенных (к кварцу, карбонатам и гуматам кальция и магния) талых ледниковых и снеговых вод до условно равновесных или даже перенасыщенных вод уже в истоках горных водотоков, после чего наблюдается определенная стабилизация или даже некоторое снижение индекса насыщения речных вод по целому ряду реакций. В подземных водах Курайской долины индексы реакций всех систем дополнительно возрастают и соответствуют пересыщению вод относительно кварца, гуматов кальция, кальцита и доломита (рис. 3).

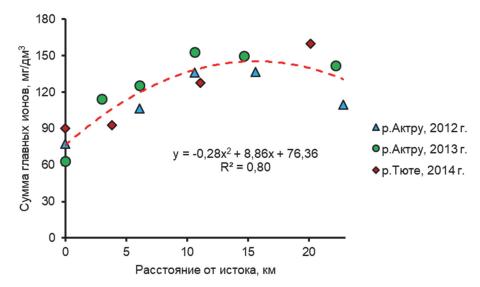


Рис. 2. Изменения суммы главных ионов в водах р. Актру в 2012 и 2013 гг. и р. Тютё в 2014 г.

Fig. 2. Changes in the sum of the main ions in the waters of the Aktru in 2012 and 2013 and the Tyutyo River in 2014

Таблица 1 Общая характеристика химического состава ледниковых, речных и подземных вод рассматриваемой территории

Таble 1

General characteristics of the chemical composition of glacial, river and groundwater in the researched area

Показатель	Единицы измерения	и Малы	и Левый й Актру, падный	Истоки р. Актру		р. Актру – участок среднего течения		р. Актру – участок нижнего течения		Подземные воды в с. Курай	
	_	A	N	A	N	A	N	A	N	A	N
pН	ед. рН	5,56	8	8,04	7	7,88	5	8,20	7	8,01	8
EC	мкС/см	10	3	68	6	98	4	121	7	275	3
Классифи- кация*	-	$C^{Ca}{}_{I}$	-	C^{Ca} II	_	$C^{Ca}{}_{II}$	_	$\mathrm{C^{Ca}_{II}}$	-	C^{Ca} II	-
Σ_{mi}	$M\Gamma/дM^3$	21	9	66	7	97	5	153	7	235	8

Показатель	Единицы измерения	и Малы	и Левый й Актру, падный	Истоки р. Актру		р. Актру – участок среднего течения		р. Актру – участок нижнего течения		Подземные воды в с. Курай	
		A	N	A	N	A	N	A	N	A	N
Ca ²⁺	То же	2,3	9	12,1	7	14,8	5	25,3	7	32,6	8
Mg^{2^+}	_//_	0,5	9	2,2	7	2,6	5	4,4	7	13,7	8
Na^+	_//_	0,7	9	0,7	7	5,4	5	6,4	7	3,5	8
K^+	_//_	0,4	9	0,7	7	1,1	5	1,5	7	0,6	8
HCO_3^-	_//_	13,4	9	40,1	7	46,6	5	83,3	7	158,7	8
CO_3^{2-}	_//_	0,0	9	1,7	7	6,7	5	6,0	7	0,4	8
$\mathrm{SO_4}^{2-}$	_//_	1,0	9	7,3	7	17,8	5	25,0	7	21,1	8
Cl-	_//_	2,6	9	1,4	7	1,9	5	1,5	7	3,9	8
NO_3^-	_//_	0,73	4	0,75	6	0,63	5	0,59	7	2,04	8
NO_2^-	_//_	0,01	4	0,01	6	0,01	5	0,00	7	0,01	8
$\mathrm{NH_{4}^{+}}$	_//_	0,29	4	0,06	6	0,05	5	0,08	7	0,08	9
PO_4^{3-}	_//_	1,00	3	0,13	5	0,10	3	0,03	4	0,02	4
F-	_//_	0,03	9	0,52	7	0,28	5	0,32	7	0,12	7
Si	_//_	0,90	9	1,77	7	1,41	5	1,49	7	3,39	7
Fe	_//_	1,16	8	3,48	7	3,95	5	2,05	7	0,05	8
PO	$M\Gamma O/дM^3$	4,4	9	1,9	7	0,6	5	0,8	7	2,4	6
Li	$MK\Gamma/дM^3$	3,7	9	3,0	7	2,7	5	3,8	7	0,02	8
Hg	То же	0,02	7	0,04	6	0,12	3	0,54	4	0,02	8
Zn	_//_	55,4	9	16,6	7	10,0	5	16,7	7	7,7	7
Cd	_//_	0,04	7	0,08	4	0,08	5	0,11	7	0,05	4
Pb	_//_	5,0	9	3,8	7	1,4	5	3,2	7	0,2	6
Cu	_//_	4,8	9	4,6	7	3,0	5	5,0	7	1,4	7
Al	_//_	812	5	1913	6	1410	5	442	7	142	7

Примечание. A — среднее арифметическое; N — объем выборки; Σ_{mi} — сумма главных ионов (Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃[−], CO₃^{2−}, SO₄^{2−}, Cl[−]); * классификация природных вод по химическому составу по О.А. Алекину [1970].

Note. A is arithmetic mean; N is the sample size; Σ_{mi} is the sum of the main ions (Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃⁻, CO₃²⁻, SO₄²⁻, Cl⁻); * classification of natural waters by chemical composition according to O.A. Alekin [1970].

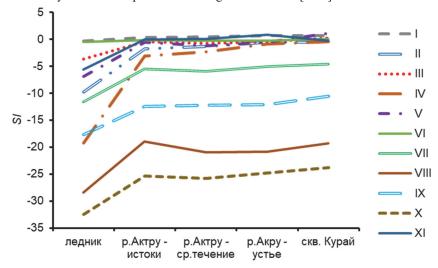


Рис. 3. Изменения индексов насыщения; реакции

$$\begin{split} I) & \text{Ca}(\Gamma K) = \text{Ca}^{2+} + \Gamma K; \text{II}) \text{ Ca} \text{CO}_{3(\text{кальцит})} = \text{Ca}^{2+} + \text{CO}_3^{2-}; \text{III}) \text{ Ca} \text{CO}_{3(\text{кальцит})} + \text{CO}_2 + \text{H}_2\text{O} = \text{Ca}^{2+} + 2 \cdot \text{HCO}_3^{-}; \text{IV}) \text{ CaMg}(\text{CO}_3)_{2(\text{долюмит})} = \text{Ca}^{2+} + \text{Mg}^{2+} + 2 \cdot \text{CO}_3^{2-}; \text{V}) \text{ CaMg}(\text{CO}_3)_{2(\text{долюмит})} + 2 \cdot \text{CO}_2 + 2 \cdot \text{H}_2\text{O} = \text{Ca}^{2+} + \text{Mg}^{2+} + 4 \cdot \text{HCO}_3^{-}; \text{VI}) \text{ SiO}_{2(\text{квари})} + 2 \cdot \text{H}_2\text{O} = \text{H}_4\text{SiO}_4^0; \text{VII}) \text{ CaAl}_2\text{Si}_2\text{O}_{8(\text{анортит})} + 2 \cdot \text{H}_2^+ + 6 \cdot \text{H}_2\text{O} = \text{Al}_2\text{O}_3 \cdot 3 \cdot \text{H}_2\text{O}_{(\text{гиббсит})} + 2 \cdot \text{H}_4\text{SiO}_4^0 + \text{Ca}^{2+}; \text{VIII}) \text{ CaAl}_2\text{Si}_2\text{O}_{8(\text{анортит})} + 2 \cdot \text{H}_2^+ + \text{H}_2\text{O} = \text{Al}_2\text{Si}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{Na}^+ + 2 \cdot \text{HCO}_3^- + 4 \cdot \text{H}_4\text{SiO}_4^0; \text{X} \\ \text{X}) 3 \cdot \text{KAlSi}_3\text{O}_{8(\text{ортоклаз})} + 2 \cdot \text{H}_2^+ + 12 \cdot \text{H}_2\text{O} = \text{KAl}_3\text{Si}_3\text{O}_{10}\text{OH}_{2(\text{мусковит})} + 2 \cdot \text{K}_2^+ + 6 \cdot \text{H}_4\text{SiO}_4^0; \text{XII}) 2 \cdot \text{KAl}_3\text{Si}_3\text{O}_{10}\text{OH}_{2(\text{мусковит})} + 2 \cdot \text{H}_2^+ + 3 \cdot \text{H}_2\text{O} = 3 \cdot \text{Al}_2\text{Si}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O} = 3 \cdot \text{Al}_2\text{Si}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O} = 3 \cdot \text{Al}_2\text{Si}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{(\text{каолинит})} + 2 \cdot \text{K}_2^+ + 3 \cdot \text{H}_2\text{O}_7 \cdot 2 \cdot \text{H}_2\text{O}_{($$

Fig. 3. Saturation index changes; reactions

$$\begin{split} I) & \quad Ca(HA) = Ca^{2+} + HA_{(humic\ acids)}; \quad II) \quad CaCO_{3(calcite)} = Ca^{2+} + CO_3^{2-}; \quad III) \quad CaCO_{3(calcite)} + CO_2 + H_2O = Ca^{2+} + 2\cdot HCO_3^{-}; \\ IV) & \quad CaMg(CO_3)_{2(dolomite)} = Ca^{2+} + Mg^{2+} + 2\cdot CO_3^{2-}; \quad V) \quad CaMg(CO_3)_{2(dolomite)} + 2\cdot CO_2 + 2\cdot H_2O = Ca^{2+} + Mg^{2+} + 4\cdot HCO_3^{-}; \quad VI) \quad SiO_{2(quartz)} + 2\cdot H_2O = H_4SiO_4^0; \quad VII) \quad CaAl_2Si_2O_{8(anorthite)} + 2\cdot H^+ + 6\cdot H_2O = Al_2O_3\cdot 3\cdot H_2O_{(gibbsite)} + 2\cdot H_4SiO_4^0 + Ca^{2+}; \quad VIII) \quad CaAl_2Si_2O_{8(anorthite)} + 2\cdot H^+ + H_2O = Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + Ca^{2+}; \quad IX) \quad 2\cdot NaAlSi_3O_{8(albite)} + 11\cdot H_2O + 2\cdot CO_2 = Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot Na^+ + 2\cdot HCO_3^- + 4\cdot H_4SiO_4^0; \\ X) \quad 3\cdot KAlSi_3O_{8(orthoclase)} + 2\cdot H^+ + 12\cdot H_2O = KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O = 3\cdot Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O = 3\cdot Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O = 3\cdot Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O = 3\cdot Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O = 3\cdot Al_2Si_2O_7\cdot 2\cdot H_2O_{(kaolinite)} + 2\cdot K^+ + 6\cdot H_4SiO_4^0; \quad XI) \quad 2\cdot KAl_3Si_3O_{10}OH_{2(muscovite)} + 2\cdot H^+ + 3\cdot H_2O_{(kaolinite)} + 3\cdot H_2O_{(kaolinite)} +$$

Возможное объяснение этого факта заключается в максимальном: 1) выщелачиванием горных пород при таянии ледового материала на границе ледников при активном участии микрофлоры и взвешивании в потоке твердых частиц в истоках горных водотоков; 2) выносе глинистых частиц на участке от нижнего конца открытой поймы до выхода из горно-лесного в горно-степной участок, на границе которого происходит аккумуляция речных наносов и сорбция на частицах ряда микроэлементов; 3) размыве русла рек на горно-степных участках и переотложении наносов и увеличении притока в русло вод с большим временем и площадью контакта с горными породами.

Эти предположения подтверждаются данными, во-первых, о распределении содержаний главных ионов Σ_{mi} и взвешенных веществ C_{ss} по длине р. Тютё в июле 2014 г. (на выходе с ледника и в середине горного участка: $\Sigma_{\text{mi}} = 90-93 \text{ мг/дм}^3 \text{ и } C_{\text{ss}} = 100 \text{ мг/дм}^3;$ на границе горного и горно-степного участков: $\div \Sigma_{mi} =$ 128 мг/дм³ и $C_{ss} = 50$ мг/дм³; в 20,1 км от устья: $\Sigma_{mi} =$ $160 \text{ мг/дм}^3 \text{ и } C_{ss} = 125 \text{ мг/дм}^3$). Во-вторых, по материалам изучения донных отложений в июле 2013 г. [Savichev et al., 2016] отмечено значительное (более 20 %) присутствие каолинита во фракции донных отложений с диаметром частиц менее 0,01 мм на участках верхнего и нижнего течения р. Актру при том, что речные воды на всем протяжении реки обычно близки к равновесию с этим минералом. В-третьих, в 1998 г. выявлено последовательное увеличение в ряду «лёд в зоне абляции ледника Левый Актру – водоток ниже ледника Левый Актру – р. Актру (граница горно-лесного и горно-степного участков)» содержания денитрифицирующих микроорганизмов (1 000; 100; 1 кл/мл соответственно), значительная часть которых представлена хемоорганотрофами, окисляющими органическое вещество до СО2 и Н2О [Савичев и др., 2002]. В-четвертых, в июле 2022 г. в ряду «лёд – речные воды – озёрные воды» отмечены, с одной стороны, самые высокие валовые концентрации PO_4^{3-} , NH_4^+ и ряда микроэлементов в ледниковой воде (Ti, Zn, Sb, Pb) и (или) в твёрдых отложениях (Ti, Zn, Sb, Pb, B, Sc, V, Cr, Co, Y, La, Ce, Nd, Sm, Gd, Dy, Yb, Er, U) в зоне абляции ледника Левый Актру, а с другой – общее увеличение от ледника вниз по течению валовых содержаний (в ряду $A5 \rightarrow A4 \rightarrow A2$) в речной воде Al, Rb, Pb, Y, La, Ce, Nd, Sm и ряда других элементов и некоторого снижения доли их растворённо-коллоидной форм по сравнению со взвешенно-коллоидной. Вниз по течению от ледника Левый Актру также уменьшается доля растворённоколлоидных форм Fe, B, Ti, V, Cr, Co, Cu (табл. 2).

В изменении содержаний химических элементов в кислотных и водных вытяжках из донных отложений в 2013 и 2022 гг. хорошо заметные однонаправленные тенденции в целом не выявлены [Savichev et al., 2016]. Хотя нельзя не отметить зафиксированные в 2022 г. максимумы концентраций Fe, Si, P, B, Sc, Ti, V, Cr, Co, Cu, As, Y, Sb, La, Ce, Nd, Sm, Eu, Gd, Dy, Er, Yb, Pb, U в твердых отложениях на поверхности (языка) ледника Левый Актру (табл. 2), что с учетом указанных выше фактов свидетельствует об интенсивном выщелачивании частиц горных пород в зоне абляции ледника в результате их взаимодействия с талыми водами и микроорганизмами.

Химический состав поверхностных вод и водных вытяжек из донных отложений в водосборе реки Актру в 2022 г.

Chemical composition of surface waters and water extracts from bottom sediments in the catchment area of the Aktru River in 2022

Table 2

Таблица 2

		Пункт отбора проб (см.рис. 1)								
Поморожани	Единицы	A1	A6	A4	A2	A3	A5			
Показатель	измерения	Ручей	Истоки р. Ма-	Истоки р. Ма- р. Большой Актру,		Голубое	Ледник			
		Водопадный лый Актр		верхнее течение	лагерь Актру	озеро	Левый Актру			
Дата	I	18.07.2022	21.07.2022	19.07.2022	18.07.2022	19.07.2022	19.07.2022			
Широта	0	50,071	50,070	50,072	50,080	50,079	50,077			
Долгота	0	87,772	87,768	87,758	87,776	87,724	87,728			
Высота	M	2 290	2 234	2 334	2 147	2 840	2 722			
T_{w}	°C	7,5	6,3	5,6	8,0	7,4	_			
Eh	мВ	101	166	130	121	118	120			
pН	ед. рН	7,43	7,74	8,04	7,89	7,61	6,40			
CO_2	$M\Gamma/ДM^3$	3,5	1,8	0,0	1,8	5,3	1,8			
PO	$M\Gamma O/дM^3$	0,5	0,7	0,3	0,6	0,5	1,6			
$\Sigma_{ m mi}$	$M\Gamma/ДM^3$	55	101	91	96	109	16			
$Ca^{2+}(a)$	$M\Gamma/дM^3$	11,5	16,4	18,0	18,2	18,0	1,2			
Ca(w)	$M\Gamma/K\Gamma$	58	46	41	43	47	40			
$Mg^{2+}(a)$	$M\Gamma/ДM^3$	1,4	6,1	3,1	3,7	6,3	0,9			
Mg(w)	$M\Gamma/K\Gamma$	4,2	7,4	4,0	5,0	2,2	1,4			
Na ⁺ (a)	$M\Gamma/дM^3$	0,3	0,4	0,4	0,5	0,3	1,3			

		Пункт отбора проб (см.рис. 1)									
П	Единицы	A1	A6	A4	A2	A3	A5				
Показатель	измерения	Ручей	Истоки р. Ма-	р. Большой Актру,	р. Актру,	Голубое	Ледник				
	•	Водопадный	лый Актру	верхнее течение	лагерь Актру	озеро	Левый Актру				
Na(w)	мг/кг	1,7	1,2	1,2	2,6	0,9	1,3				
K ⁺ (a)	$M\Gamma/дM^3$	0,2	0,6	1,1	0,8	1,0	0,9				
K(w)	мг/кг	3,3	3,7	6,1	5,8	7,6	5,1				
$HCO_3^-(a)$	$M\Gamma/дM^3$	38	63	53	59	64	9				
$CO_3^{2-}(a)$	$M\Gamma/дM^3$	<0,5	<0,5	1,2	<0,5	<0,5	<0,5				
$SO_4^{2-}(a)$	$M\Gamma/дM^3$	2,3	14,0	13,0	12,5	18,0	0,5				
Cl ⁻ (a)	$M\Gamma/дM^3$	0,9	0,9	0,8	1,0	0,9	2,3				
F-(a)	$M\Gamma/дM^3$	2,88	0,05	0,17	1,01	0,05	0,05				
$NH_4^+(a)$	$M\Gamma/дM^3$	0,25	0,06	0,09	0,09	0,04	0,87				
$NO_2^-(a)$	$M\Gamma/дM^3$	0,10	0,10	0,10	0,10	0,10	0,10				
NO_3 (a)	$M\Gamma/дM^3$	0,66	1,30	1,26	1,01	1,95	0,29				
$PO_4^{3-}(a)$	$M\Gamma/дM^3$	0,50	0,13	0,13	0,13	0,36	2,92				
P(a)	$M\Gamma/дM^3$	70	1	446	1309	18	4977				
P(s)	%	20,0	20,0	2,9	1,1	20,0	20,0				
P(w)	мкг/кг	97	92	28	407	89	1571				
Si(a)	$M\Gamma/дM^3$	0,80	0,23	4,21	10,62	0,48	4,38				
Si(s)	%	32,8	86,2	6,7	3,0	42,1	1,9				
Si(w)	мг/кг	1,86	5,69	2,84	3,81	1,85	5,92				
Fe(a)	$M\Gamma/дM^3$	1,29	0,06	5,96	24,56	0,38	6,98				
Fe(s)	%	1,5	64,0	0,5	0,2	8,5	0,7				
Fe(w)	мг/кг	0,80	2,70	0,63	1,23	1,27	3,46				
Al(a)	мкг/дм ³	779	35	3688	11929	202	3519				
Al(s)	%	1,0	77,7	0,8	0,4	4,8	0,9				
Al(w)	мкг/кг	2344	3553	2669	3082	3946	3419				
Cu(a)	мкг/дм ³	3,0	0,1	11,3	42,5	0,7	30,0				
Cu(s)	%	3,8	53,2	1,4	0,4	23,4	15,0				
Cu(w)	мкг/кг	18,0	14,5	12,0	23,3	24,4	179,0				
Zn(a)	$MK\Gamma/дM^3$	6,8	<0,1	26,0	80,5	3,1	141,6				
Zn(s)	%	36,4	20,0	3,4	0,8	3,3	2,5				
Zn(w)	мкг/кг	0,73	6,93	2,53	45,17	10,00	27,81				
Ti(a)	$MK\Gamma/дM^3$	8,60	0,37	83,01	143,26	7,03	178,44				
Ti(s)	%	1,2	55,6	0,7	0,4	3,9	1,8				
Ti(w)	мкг/кг	11,7	111,3	13,5	33,9	45,7	133,5				
La(a)	мкг/дм ³	2,61	0,02	4,35	18,09	0,08	4,17				
La(s)	%	0,2	67,0	0,3	0,1	6,8	1,5				
La(w)	мкг/кг	0,36	0,87	0,23	0,49	0,92	2,96				
Ce(a)	$MK\Gamma/дM^3$	5,40	0,03	9,34	43,80	0,13	8,57				
Ce(s)	%	0,2	59,3	0,3	0,1	5,4	1,3				
Ce(w)	мкг/кг	0,92	2,27	0,34	1,02	1,27	5,15				
)		1								

Примечание. (а) – валовое содержание; (s) – растворенная форма и часть коллоидной формы (после мембранного фильтра 0,45 мк); (w) – содержание в водной вытяжке из донных отложений.

Note. (a) is gross content; (s) is dissolved form and part of the colloidal form (after the membrane filter 0,45 microns); (w) is content in water extract from bottom sediments.

Временные (многолетние) закономерности. Количество пунктов сопоставления гидрохимических данных за разные годы весьма ограничено (два пункта на р. Малый Актру и по четыре пункта на леднике Левый Актру, рр. Большой Актру и Актру (лагерь Актру)). Тем не менее визуальный анализ материалов наблюдений позволяет говорить об определенном увеличении со второй половины 1990-х гг. суммы главных ионов Σ_{mi} , концентраций HCO_3^- , Ca^{2+} , Mg^{2+} в водах рек Большой и Малый Актру (рис. 4).

Не столь однозначно изменение в указанных водотоках концентраций Na^+ , K^+ , SO_4^{2-} , Cl^- , Fe, Cu, Zn. Менее очевидна динамика гидрохимических показателей

вод р. Актру у лагеря Актру и в водах, полученных при таянии проб льда ледника Левый Актру (рис. 4).

С учётом этих и указанных выше данных можно предположить, что наблюдается некоторое увеличение выноса ряда веществ при деградации ледников (судя по увеличению в поверхностных водах на этих участках концентраций Са, К, Р, Аl, Fe, Cu, Zn, Pb), причем непосредственно вблизи них. Вопрос об их источнике требует специальных исследований, но можно отметить, что, по данным [Savichev et al., 2016; Савичев и др., 2019], во фракциях донных отложений 0,01–5 мм присутствует кварц, плагиоклаз, калиевый полевой шпат, слюда, кальцит, хлорит; во фракции с диаметром частиц

менее 0,01 мм – кварц, слюда, хлорит, часто – каолинит, иногда альбит, кальцит, цеолит, в верхнем и среднем течении р. Актру – калиевый полевой шпат.

Уже в 2–3 км от ледников происходит: 1) смешение водных масс с химическим составом, формирующимся в условиях различных соотношений дождевых, талых вод и вод, фильтирующихся через морен-

ные отложения ледников с разной скоростью деградации; 2) отложение части наносов, в том числе малорастворимых веществ, образующихся при взаимодействии воды с горными породами. Косвенным подтверждением последнего предположения служат результаты расчета индекса насыщения речных вод относительно гуматов кальция (рис. 5).

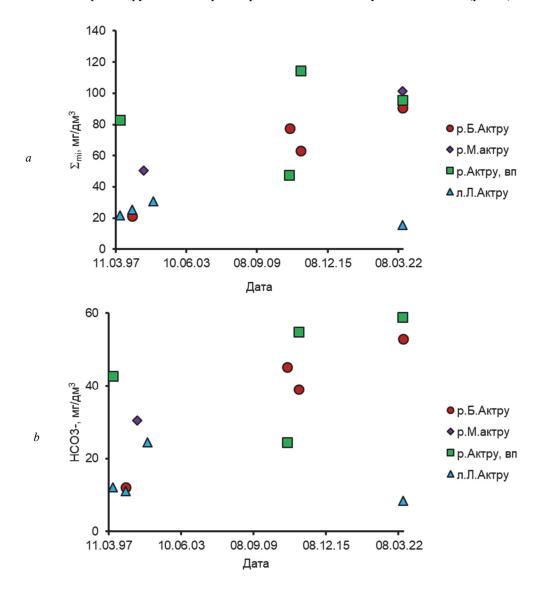
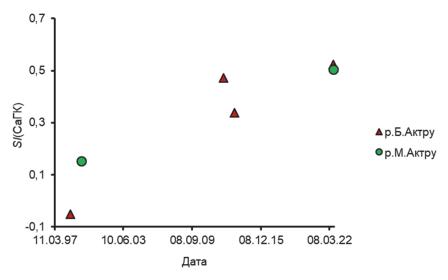



Рис. 4. Изменения суммы главных ионов $\Sigma_{\rm mi}$ (*a*) и содержания ${\rm HCO_3}^-(b)$ в водах р. Актру в 1997–2022 гг.

Fig. 4. Changes in the sum of the main ions Σ_{mi} and (a) μ HCO₃⁻ (b) in the waters of the Aktru River in 1997–2022

Puc. 5. Изменения индексов насыщения речных вод относительно гумата кальция (Ca(Γ K) = Ca²⁺+ Γ K) Fig. 5. Changes in the saturation indices of river waters relative to calcium humate (Ca(Π A) = Ca²⁺+ Π A)

Более полное представление о временных изменениях могло бы быть получено при анализе динамики водного стока при допущении постоянства параметров, установленной в [Паромов и др., 2014] зависимости между модулем водного стока M_Q (л/(с×км²)) и величины $\Sigma_{\rm mi}$:

 $\Sigma_{\rm mi} = \exp((5,4377\pm0,3620) - (0,0071\pm0,0028) \cdot M_{\it Q});$ квадрат корреляционного отношения $R^2 = 0,66$.

Однако в настоящее время есть ряд вопросов по восстановлению пропусков гидрометеорологических наблюдений, проводившихся до 1994 г. специалистами Росгидромета, а в последние годы — в ТГУ и ИМКЭС СО РАН [Вершинин и др., 2014; Zemtsov, Savichev, 2015], что определяет актуальность соответствующего отдельного исследования.

Заключение

Пространственные изменения минерализации природных вод горно-ледникового бассейна характеризуются её общим увеличением в направлении «ледник → речные воды → подземные воды», на фоне которого отмечается рост концентраций ряда химических элементов в истоках притоков р. Актру и на границе горно-лесного и горно-степного участков.

Это объясняется интенсивным выщелачиванием горных пород при таянии ледового материала на границе ледников при активном участии микрофлоры и взвешивании в потоке твердых частиц в истоках горных водотоков, особенностями русловых процессов, сопровождающимися аккумуляцией продуктов взаимодействия вод с горными породами.

В течение 1997–2022 гг. наблюдается некоторая активизация взаимодействий в системе «вода - порода» в истоках горных водотоков. Она происходит, предположительно, за счет увеличения площади соприкосновения воды с горными породами, ранее находившимися под ледниками и (или) при отрицательной температуре. Как следствие этой активизации – некоторое увеличение минерализации вод притоков р. Актру – рек Большой и Малый Актру, причем преимущественно из-за роста концентраций ${\rm Ca}^{2+},$ ${\rm Mg^{2^+}}$ и ${
m HCO_3^-}$. Изменение концентраций других главных ионов, а также Fe, Cu, Zn выражено гораздо хуже. В 2-3 км ниже по течению в водах р. Актру происходит смешение вод разного состава и, возможно, отложение части наносов, включая малорастворимых веществ, образующихся в зоне абляции ледников. В результате этого уже в районе лагеря Актру временные изменения химического состава речных вод если и есть, то уже не столь очевидны.

Для уточнения полученных выводов целесообразно расширение программы исследований на стационарах Актру с целью: 1) восстановления рядов водного стока и выявления их временной изменчивости; 2) систематического изучения химического состава речных вод на разном удалении от ледников и в разные фазы водного режима; 3) изучения содержания углекислого газа в приземных слоях атмосферного воздуха и в речных водах с учетом необходимости более глубокого понимания поведения карбонатной системы как одного из важных факторов эволюции геохимического состояния объектов рассматриваемой территории; 4) оценки роли микрофлоры в формировании химического состава природных вод на границе ледников.

Список источников

Алекин О.А. Основы гидрохимии. Л.: Гидрометеоиздат, 1970. 444 с.

Вершинин Д.А., Уйманова В.А., Овсянников С.А. Сток взвешенных наносов р. Актру и особенности его режима за последние 50 лет // Вестник Томского государственного университета. 2014. № 381. С. 226–231.

Галахов В.П., Нарожнев Ю.К., Никитин С.А., Окишев П.А., Севастьянов В.В., Севастьянова Л.М., Шантыкова Л.Н., Шуров В.И. Ледники Актру (Алтай). Водно-ледовый и тепловой баланс горно-ледниковых бассейнов / отв. ред. Д.А. Бураков. Л.: Гидрометеоиздат, 1987. 120 с.

Гидрохимические показатели состояния окружающей среды / под ред. Т.В. Гусевой. М.: ФОРУМ, ИНФРА-М, 2007. 192 с. ГОСТ 17.1.5.01-80. Общие требования к отбору проб донных отложений водных объектов для анализа на загрязненность. General requirements for sampling of bottom sediments of water objects for their pollution analysis. М.: Изд-во стандартов, 1984. 7 с.

ГОСТ 17.1.5.05-85. Общие требования к отбору проб поверхностных и морских вод, льда и атмосферных осадков. General requirements for surface and sea waters, ice and atmospheric precipitation sampling. М.: Изд-во стандартов, 2000. 11 с.

ГОСТ Р 59024-2020. Вода. Общие требования к отбору проб. Water. General requirements for sampling. M.: Стандартинформ, 2020. 35 с.

Кислов А.В. Изменения и изменчивость глобального климата // Современные глобальные изменения природной среды : в 2 т. Т. 1. М. : Научный мир, 2006. С. 118–129.

Нарожный Ю.К., Никитин С.А., Лукьянов А.А., Осипов А.В. Горно-ледниковый бассейн Актру: новые морфометрические и ресурсные характеристики // Вопросы географии Сибири. Вып. 26. Томск: Изд-во Том. ун-та, 2006. С. 67–74.

Нарожный Ю.К., Паромов В.В., Шантыкова Л.И. Возможные тенденции изменения режима ледников и климата высокогорья Алтая до 2010 г. // Материалы гляциологических исследований. 2005. Вып. 98. С. 220–224.

Оледенение Северной и Центральной Евразии в современную эпоху / под ред. В.М. Котлякова. М.: Наука, 2006. 482 с.

Паромов В.В., Нарожный Ю.К., Шантыкова Л.Н. Оценка современной динамики и прогноз гляциологических характеристик ледника Малый Актру (Центральный Алтай) // Лёд и Снег. 2018. Т. 58, № 2. С. 171–182. doi: 10.15356/2076-6734-2018-2-171-182

Паромов В.В., Савичев О.Г., Шантыкова Л.Н., Торгашева К.А. Ионный сток и химический состав вод ледниковой реки Актру (Горный Алтай) // Вестник Томского государственного университета. 2014. № 383. С. 227–231.

Паромов В.В., Шантыкова Л.И. Динамика гидрометеорологических характеристик высокогорья Алтая во второй половине XX века // Материалы гляциологических исследований. 2001. Вып. 90. С. 112–116.

Пасечник Е.Ю., Гусева Н.В., Савичев О.Г., Льготин В.А., Балобаненко А.А., Домаренко В.А., Владимирова О.Н. Микроэлементный состав подземных вод верхней гидрогеодинамической зоны в бассейне Верхней Оби как фактор формирования их эколого-геохимического состояния // Известия Томского политехнического университета. Инжиниринг георесурсов. 2020. Т. 331, № 4. 54–63. doi: 10.18799/24131830/2020/4/2593

Поповнин В.В. Современная эволюция ледников Земли // Современные глобальные изменения природной среды : в 2 т. Т. 1. М. : Научный мир. 2006. С. 507–577.

Савичев О.Г., Домаренко В.А., Арбузов С.И., Пшеничкин А.Я., Вильгельм Е.А. Условия выноса и аккумуляции химических элементов в горно-ледниковом бассейне Актру (Горный Алтай) // Разведка и охрана недр. 2019. № 3. С. 55–62.

Савичев О.Г., Колоколова О.В., Жуковская Е.А. Состав и равновесие донных отложений р. Томь с речными водами // Геоэкология. 2003. № 2. С. 108–119.

Савичев О.Г., Нарожный Ю.К., Паромов В.В., Фахрутдинов Р.Ф. Химический и микробиологический состав водноледниковых объектов в бассейне р.Актру (Горный Алтай) // Материалы гляциологических исследований. 2002. Вып. 92. С. 187–191.

Состояние геологической среды (недр) на территории Сибирского федерального округа в 2009 г. / гл. ред. В.А. Льготин. Томск : Томскгеомониторинг, 2010. Вып. 6. 193 с.

СП 33-101-2003. Свод правил по проектированию и строительству. Определение основных расчетных гидрологических характеристик. М.: Госстрой России, 2004. 72 с.

Тимошок Е.Е., Нарожный Ю.К., Диркс М.Н., Скороходов С.Н., Березов А.А. Динамика ледников и формирование растительности на молодых моренах Центрального Алтая. Томск: Изд-во НТЛ, 2008. 208 с.

Требования к производству и результатам многоцелевого геохимического картирования масштаба 1 : 200000 / отв. ред. Э.К. Буренков. М. : ИМГРЭ, 2002. 92 с.

Manual on Stream Gauging. V. I. Fieldwork. WMO. No. 1044. Geneva, Switzerland: World Meteorological Organization, 2010. 252 p.

Savichev O., Matveenko I., Paromov V. Chemical Composition of Bottom Sediments in Small Mountain Rivers (Altai, the Russian Federation) // MATEC Web of Conferences. 2016. No. 85 (2): 01031. P. 1–7. doi: 10.1051/matecconf/20168501031

Savichev O.G., Paromov V.V. Chemical composition of glacial meltwaters and river waters within the Aktru river basin (Gornyi Altai) // Geography and Natural Resources. 2013. V. 34, No. 4. P. 364–370. doi: 10.1134/S1875372813040100

Shiklomanov A.I., Lammers R.B., Lettenmaier D.P., Polischuk Yu.M., Savichev O.G., Smith L.G. Hydrological Changes: Historical Analysis, Contemporary Status, and Future Projections // Environmental Changes in Siberia: Regional Changes and their Global Consequences / Groisman and Gutman (eds). Springer, 2013. Ch. 4. P. 111–154. URL: http://link.springer.com/chapter/10.1007/978-94-007-4569-8 4

Shvartsev S.L. Geochemistry of fresh Groundwater in the Main Landscape Zones of the Earth // Geochemistry International. 2008. V. 46, No. 13, P. 1285–1398.

Weight W.D. Hydrogeology Field Manual. 2nd ed. 2008. USA: The McGraw-Hill Companies, Inc., 2008. 751 p.

Zemtsov V.A., Savichev O.G. Resources, regime and quality of surface waters in the Ob River basin: history, current state and problems of research // International Journal of Environmental Studies. 2015. V. 72, No. 3. P. 386–396. doi: 10.1080/00207233.2015.1019299

References

Alekin O.A. Osnovy gidrohimii [Fundamentals of hydrochemistry]. Leningrad: Gidrometeoizdat. 1970. 444 p. In Russian

Vershinin D.A., Uimanova V.A., Ovsyannikov S.A. *Stok vzveshennykh nanosov r. Aktru i osobennosti yego rezhima za posledniye* 50 let [The runoff of suspended sediments of the Aktru river and features of his regime over the past 50 years] // Bulletin of the Tomsk State University. 2014. 381. pp. 226–231. In Russian

Galakhov V.P., Narozhnev Yu.K., Nikitin S.A., Okishev P.A., Sevastyanov V.V., Sevastyanova L.M., Shantykova L.N., Shurov V.I. Ledniki Aktru (Altay). Vodno-ledovyy i teplovoy balans gorno-lednikovykh basseynov [Glaciers Aktru (Altai). Water-ice and thermal balance of mountain-glacial basins] / eds. D.A. Burakov. Leningrad: Gidrometeoizdat. 1987.120 p. In Russian

Gidrokhimicheskiye pokazateli sostoyaniya okruzhayushchey sredy [Hydrochemical indicators of the state of the environment] (2007) ed. T.V. Guseva. Moscow: FORUM, INFRA-M. 192 p. In Russian

GOST 17.1.5.01-80. Obshchiye trebovaniya k otboru prob donnykh otlozheniy vodnykh ob"yektov dlya analiza na zagryaznennost'. General requirements for sampling of bottom sediments of water objects for their pollution analysis. Moscow: Publishing house of standards. 1984. 7 p. In Russian

GOST 17.1.5.05-85. Obshchiye trebovaniya k otboru prob poverkhnostnykh i morskikh vod, l'da i atmosfernykh osadkov. General requirements for surface and sea waters, ice and atmospheric precipitation sampling. Moscow: Publishing house of standards. 2000. 11 p. In Russian

GOST R 59024-2020. Voda. Obshchiye trebovaniya k otboru prob. Water. General requirements for sampling. Moscow: Standartinform. 2020. 35 p. In Russian

Kislov A.V. *Izmeneniya i izmenchivost' global'nogo klimata* [Changes and variability of the global climate]. In: *Sovremennyye global'nyye izmeneniya prirodnoy sredy* [Modern global changes in the natural environment]. In 2 volumes, V.1. Moscow: Nauchnyy mir. 2006. pp. 118–129. In Russian

Narozhnyy Yu.K., Nikitin S.A., Luk'yanov A.A., Osipov A.V. *Gorno-lednikovyy basseyn Aktru: novyye morfometricheskiye i resursnyye kharakteristiki* [The Aktru mountain-glacial basin: new morphometric and resource characteristics]. *Voprosy geografii Sibiri* – Problems of Geography of Siberia. Issue. 26. Tomsk: Publishing House of Tomsk University. 2006. pp. 67–74. In Russian

Narozhny Yu.K., Paromov V.V., Shantykova L.I. *Vozmozhnyye tendentsii izmeneniya rezhima lednikov i klimata vysokogor'ya Altaya do 2010* [Possible trends in changes in the regime of glaciers and climate in the Altai highlands up to 2010]. *Materialy glyatsiologicheskikh issledovaniy* – Materials of glaciological research. 2005. 98, pp. 220–224.

Oledeneniye Severnoy i Tsentral'noy Yevrazii v sovremennuyu epokhu [Glaciation of Northern and Central Eurasia in the modern era] / ed. V.M. Kotlyakov. Moscow: Nauka. 2006. 482 p. In Russian

Paromov V.V., Narozhnyy YU.K., Shantykova L.N. Otsenka sovremennoy dinamiki i prognoz glyatsiologicheskikh kharakteristik lednika Malyy Aktru (Tsentral'nyy Altay) [Assessment of modern dynamics and forecast of glaciological characteristics of the Maly Aktru glacier (Central Altai)] // Lod i sneg – Ice and snow. 2018. 58 (2). pp. 171–182. doi: 10.15356/2076-6734-2018-2-171-182. In Russian

Paromov V.V., Savichev O.G., Shantykova L.N., Torgasheva K.A. *Ionnyy stok i khimicheskiy sostav vod lednikovoy reki Aktru (Gornyy Altay)* [Ion sink and chemical composition of the waters of the Aktru glacial river (Gorny Altai)] // Vestnik Tomskogo gosudarstvennogo universiteta – Bulletin of the Tomsk State University. 2014. 383. pp. 227–231. In Russian

Paromov V.V., Shantykova L.I. Dinamika gidrometeorologicheskikh kharakteristik vysokogor'ya Altaya vo vtoroy polovine XX veka [Dynamics of hydrometeorological characteristics of the Altai highlands in the second half of the 20th century. Materialy glyatsiologicheskikh issledovaniy – Materials of glaciological research. 2001. 90. pp. 112–116. In Russian

Pasechnik E.Yu., Guseva N.V., Savichev O.G., Domarenko V.A., Vladimirova O.N. Trace elements composition of underground waters of the upper hydrogeodynamic zone in the basin of upper ob as a factor of formation of their ecological-geochemical condition // Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2020. 331 (4). pp. 54–63. doi: 10.18799/24131830/2020/4/2593. In Russian

Popovnin V.V. Sovremennaya evolyutsiya lednikov Zemli [Modern evolution of the Earth's glaciers]. In: Sovremennyye global'nyye izmeneniya prirodnoy sredy [Modern global changes in the natural environment]. In 2 volumes, V.1. Moscow: Nauchnyy mir. 2006. pp. 507–577. In Russian

Savichev O.G., Domarenko V.A., Arbuzov S.I., Pshenichkin A.Ya., Wilhelm E.A. *Usloviya vynosa i akkumulyatsii khimicheskikh elementov v gorno-lednikovom basseyne Aktru (Gornyy Altay)* [Conditions for the removal and accumulation of chemical elements in the Aktru mountain-glacial basin (Gorny Altai)]. *Razvedka i okhrana nedr* – Exploration and protection of mineral resources. 2019. 3. pp. 55–62. In Russian

Savichev O.G., Kolokolova O.V., Zhukovskaya E.A. Composition and balance of bottom sediments of the river. Tom with river waters] // Geoekologiya – Geoecology. 2003. 2. pp. 108–119. In Russian

Savichev O.G., Narozhny Yu.K., Paromov V.V., Fakhrutdinov R.F. *Khimicheskiy i mikrobiologicheskiy sostav vodno-lednikovykh ob"yektov v basseyne r.Aktru (Gornyy Altay)* [Chemical and microbiological composition of water-glacial objects in the Aktru river basin (Gorny Altai)]. *Materialy glyatsiologicheskikh issledovaniy* – Materials of glaciological research. 2002. 92. pp. 187–191. In Russian

Sostoyanie geologicheskoy sredy (nedr) na territorii Sibirskogo federalnogo okruga v 2009 [A condition of the geological environment (subsoil) in the territory of Siberian Federal District in 2009]. Ed. by V.A. Lgotin. Tomsk. Tomskgeomonitoring Publ. 2010. 6. 193 p. In Russian

SP 33-101-2003. Opredelenie osnovnykh gidrologicheskikh kharakteristik [Rulebook 33-101-2003. Definition of the main hydrological characteristics]. Mosocw: Gosstroy Rossii Publ., 2004. 72 p. In Russian

Timoshok E.E., Narozhny Yu.K., Dirks M.N., Skorokhodov S.N., Berezov A.A. *Dinamika lednikov i formirovaniye rastitel'nosti na molodykh morenakh Tsentral'nogo Altaya* [Glacier dynamics and vegetation formation on young moraines of the Central Altai]. Tomsk: NTL Publishing House. 2008. 208 p. In Russian

Trebovaniya k proizvodstvu i rezultatam mnogotselevogo geokhimicheskogo kartirovaniya masshtaba 1:200000 [Requirements to production and results of multi-purpose geochemical mapping of scale 1:200000] Ed. by E.K. Bkurenkov. Moscow: IMGRE Publ. 2002. 92 p. In Russian

Manual on Stream Gauging. V. I. Fieldwork. WMO. No. 1044. Geneva, Switzerland: World Meteorological Organization. 2010. 252 p.

Savichev O., Matveenko I., Paromov V. Chemical Composition of Bottom Sediments in Small Mountain Rivers (Altai, the Russian Federation) // MATEC Web of Conferences. 2016. 85 (2): 01031. pp. 1–7. doi: 10.1051/matecconf/20168501031.

Savichev O.G., Paromov V.V. Chemical composition of glacial meltwaters and river waters within the Aktru river basin (Gornyi Altai) // Geography and Natural Resources. 2013. 34 (4). pp. 364–370. doi: 10.1134/S1875372813040100.

Shiklomanov A.I., Lammers R.B., Lettenmaier D.P., Polischuk Yu.M., Savichev O.G., Smith L.G. Hydrological Changes: Historical Analysis, Contemporary Status, and Future Projections. In: Environmental Changes in Siberia: Regional Changes and their Global Consequences / Groisman and Gutman (eds). Springer. 2013. Ch. 4. pp. 111–154. http://link.springer.com/chapter/10.1007/978-94-007-4569-8 4.

Shvartsev S.L. Geochemistry of fresh Groundwater in the Main Landscape Zones of the Earth. Geochemistry International. 2008. 46(3). pp. 1285–1398.

Weight W.D. Hydrogeology Field Manual. 2-nd edition, 2008. USA: The McGraw-Hill Companies, Inc. 2008. 751 p.

Zemtsov V.A., Savichev O.G. Resources, regime and quality of surface waters in the Ob River basin: history, current state and problems of research. International Journal of Environmental Studies. 2015. 72(3). pp. 386–396. doi: 10.1080/00207233.2015.1019299.

Информация об авторах:

Савичев О.Г., доктор географических наук, профессор отделения геологии, Национальный исследовательский Томский политехнический университет, Томск, Россия.

E-mail: OSavichev@mail.ru

Хващевская А.А., кандидат геолого-минералогических наук, заведующая проблемной научно исследовательской лабораторией гидрогеохимии, Национальный исследовательский Томский политехнический университет, Томск, Россия E-mail: Garibova@vandex.ru

Паромов В.В., кандидат географических наук, доцент кафедры гидрологии, геолого-географический факультет, Национальный исследовательский Томский государственный университет, Томск, Россия.

Вклад авторов:

Савичев О.Г. – научное руководство; концепция исследования; полевые работы; анализ данных; написание исходного текста; итоговые выводы.

Хващевская А.А. – руководство и непосредственное участие в лабораторных работах; доработка текста; итоговые выводы. **Паромов В.В.** – проведение полевых работ.

Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Savichev O.G., Dr. Sci. (Geography), Professor, Department of Geology, National Research Tomsk Polytechnic University, Tomsk, Russia.

E-mail: OSavichev@mail.ru

Khvashchevskaya A.A., Cand. Sci. (Geol.-Miner.), Head of the Problem Research Laboratory of Hydrogeochemistry, National Research Tomsk Polytechnic University, Tomsk, Russia.

E-mail: Garibova@mail.ru

Paromov V.V., Cand. Sci. (Geography), Associate Professor, Department of Hydrology, Faculty of Geology and Geography, National Research Tomsk State University, Tomsk, Russia.

Contribution of the authors:

Savichev O.G. – scientific guidance; research concept; field work; data analysis; writing the original text; final conclusions.

Khvaschevskaya A.A. – leadership and direct participation in laboratory work; text revision; final conclusions.

Paromov V.V. – carrying out field work.

The authors declare no conflicts of interests.

Статья поступила в редакцию 10.11.2022; одобрена после рецензирования 02.02.2023; принята к публикации 13.06.2024

The article was submitted 10.11.2022; approved after reviewing 02.02.2023; accepted for publication 13.06.2024

Научная статья УДК 550.424

doi: 10.17223/25421379/31/10

ХИМИЧЕСКИЙ СОСТАВ ВОД КАК ИНДИКАТОР ПРИРОДНО-ТЕХНОГЕННОГО ВЗАИМОДЕЙСТВИЯ ВОДА – ПОРОДА НА ПРИМЕРЕ РУДНИКА БЕКК (ПИТКЯРАНТСКИЙ РАЙОН, КАРЕЛИЯ)

Евгения Сергеевна Сидкина¹, Елена Владимировна Черкасова², Евгения Александровна Солдатова³, Артем Александрович Конышев⁴, Денис Николаевич Догадкин⁵, Ирина Николаевна Громяк⁶

- $^{I,\,3}$ Γ еологический институт РАН, Москва, Россия
- ^{2, 5, 6} Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия
- 3 Тюменский государственный университет, Тюмень, Россия
- 4 Институт геологии, Карельский научный центр РАН, Петрозаводск, Россия
- ¹ SidkinaES@yandex.ru
- ² wri-lab@geokhi.ru
- ³ 2a61@mail.ru
- 4 icelopa@gmail.com

Аннотация. Химический состав природных вод исторического рудника Бекк (Питкярантский район, Карелия) рассматривается как результат взаимодействия системы вода — порода — органическое вещество. Комплексный подход, заключающийся в использовании представительного набора аналитических методов для изучения природных вод и пород техногенного объекта в совокупности с геохимическим моделированием, позволил подробно рассмотреть процессы формирования химического состава вод. Показано, что основной механизм поступления Fe, Cu, Zn, Ni, Pb — окислительное растворение сульфидных минералов, а комплексообразование с органическим веществом является процессом, удерживающим металлы в растворе, что в первую очередь характерно для Fe.

Ключевые слова: тяжелые металлы, фульвокислота, гуминовая кислота, термодинамическое моделирование, кинетика растворения, затопленная горная выработка

Благодарности: Авторы выражают искреннюю благодарность М.В. Мироненко и Ю.В. Шварову за возможность использования программ GEOCHEQ и HCh, А.С. Торопову за помощь в проведении химического анализа воды, Лоренцу К.А. за помощь в проведении сканирующей электронной микроскопии.

Источник финансирования: Полевые работы проводились при поддержке государственного задания Института Геологии Карельского научного центра РАН. Изменение базы данных кинетических параметров и равновесно-кинетическое моделирование, а также анализ природных вод методами ICP-AES и MS проведены за счет средств государственного задания ГЕОХИ РАН. Обсуждение химического состава и расчет форм нахождения элементов сделаны за счет средств гранта Российского научного фонда № 22-77-10011.

Для цитирования: Сидкина Е.С., Черкасова Е.В., Солдатова Е.А., Конышев А.А., Догадкин Д.Н., Громяк И.Н. Химический состав вод как индикатор природно-техногенного взаимодействия вода-порода на примере рудника Бекк (Питкярантский район, Карелия) // Геосферные исследования. 2024. № 2. С. 156—167. doi: 10.17223/25421379/31/10

Original article

doi: 10.17223/25421379/31/10

WATER CHEMICAL COMPOSITION AS AN INDICATOR OF NATURAL-ANTHROPOGENIC INTERACTION IN WATER-ROCK SYSTEM: CASE STUDY OF THE MINE "BECK" PITKYARANTSKY DISTRICT, KARELIA)

Evgeniya S. Sidkina¹, Elena V. Cherkasova², Evgeniya A. Soldatova³, Artem A. Konyshev⁴, Denis N. Dogadkin⁵, Irina N. Gromyak⁶

^{1, 3, 4} Institute of Geology, RAS, Moscow, Russia

^{2, 4, 5, 6} Vernadsky Institute of Geochemistry and Analytical Chemistry, RAS, Moscow, Russia

³ University of Tyumen, Tyumen, Russia

Abstract. Natural water is one of the most vulnerable to anthropogenic impact among environmental components. It undergoes the negative impact of the development of mineral deposits not only during the exploitation period, but also for a long time after its completion. In general, the chemical composition of natural waters can be considered as a result of the interaction in the water-rock-organic matter system. A large number of factors influences on the accumulation of pollutants in natural waters: temperature, water-rock ratio, water exchange in the system, which in other words can be called the time of water-rock interaction, etc. Besides of many factors, there are two main processes of formation of the chemical composition of natural waters: dissolution-precipitation of minerals and complexation-ionization. This paper focuses on the behavior of chemical elements that are potentially toxic to humans and animals: Fe, Ni. Cu, Zn, Pb, As.

The contents of Ca, Mg, Na, K, Fe, S were determined by ICP-AES; the contents of Ni, Cu, Zn, Cd, Pb, As and other trace elements were analyzed by ICP-MS. The components of carbonate equilibrium were determined by potentiometric titration. The content of Cl⁻ was measured by ion chromatography. Mineral composition of dump rocks was determined by scanning electron microscopy. The elemental composition of rocks was determined by X-ray fluorescent analysis. Equilibrium-kinetic modeling was used to study dissolution-precipitation of minerals. Equilibrium thermodynamic modeling was applied to analyze the complexation-ionization processes.

The main sources of studied toxic elements are sulfide minerals (pyrite, chalcopyrite, sphalerite, galena). Equilibrium-kinetic modeling showed that the main mechanism of toxic element intake is the oxidative dissolution of sulfide minerals. In the classical case, this process leads to the formation of acid drainage. In our case, acid drainage is not formed due to the low content of sulfide minerals in the rocks, as well as the neutralizing effect of carbonate dissolution. However, despite neutral pH levels, heavy metals enter the solution and in some cases accumulate in significant concentrations. The growth of toxic element concentrations was inhibited by formation of secondary mineral phases. In our case, formation of secondary goethite and smithsonite was shown by computer equilibrium-kinetic modeling. Arsenic enters natural waters due to the dissolution of loellingite. It does not form its own secondary mineral phases and accumulates linearly over time. The process that restrains the precipitation of secondary minerals is the complexation of metals with organic matter. Iron has the strongest affinity to organic matter among considered elements, so the presence of organic ligands in the system determines its behavior. In the case of low organic matter content in natural waters, Fe coming due to the dissolution of minerals is not retained in solution, but precipitated as goethite. In case of high organic matter content, formation of stable organomineral complexes occurs and Fe accumulates in the solution. Calculations showed that under high organic matter content and low Fe content in solution, Zn and Cu also form complexes with organic ligands. Probably, higher levels of Zn and Cu accumulation in waters occur due to runoff from dumps to the wetland, where natural waters have an exceptionally high content of organic matter.

Keywords: heavy metals, fulvic acid, humic acid, thermodynamic modelling, dissolution kinetics, abandoned mine

Acknowledgments: The authors are grateful to Mikhail V. Mironenko for opportunity of using GEOCHEQ software, Yuri V. Shvarov for opportunity of using HCh software, to Andrey S. Toropov for help with water sample analysis, to Cyril A. Lorenz for help with scanning electron microscopy.

Source of financing: Field work was carried out with the support of the State Assignment of the Institute of Geology of the Karelian Scientific Center RAS. Improvement of kinetics parameters database, equilibrium-kinetic modeling and water sample analysis (ICP-AES, ICP-MS) were supported by the State Assignment of the Vernadsky Institute of Geochemistry and Analytical Chemistry RAS. Discussion of chemical composition of natural waters and modeling of speciation of chemical elements were supported by the Russian Science Foundation (project № 22-77-10011).

For citation: Sidkina E.S., Cherkasova E.V., Soldatova E.A., Konyshev A.A., Dogadkin D.N., Gromyak I.N. (2024) Water chemical composition as an indicator of natural-anthropogenic interaction in water-rock system: case study of the mine "Beck" (Pitkyarantsky District, Karelia). *Geosfernye issledovaniya – Geosphere Research.* 2. pp. 156–167. (In Russian). doi: 10.17223/25421379/31/10

Введение

Негативное воздействие разработки полезных ископаемых на окружающую среду не заканчивается на этапе эксплуатации рудников. Заброшенные техногенные объекты также являются источником токсичных элементов, которые могут поступать в поверхностные и подземные воды, почвы. Эта проблема широко распространена во всем мире [Navarro et al., 2008; Moyé et al., 2017; Banks et al., 2019; Wang et al., 2019; Tomiyama et al., 2020].

В первую очередь внимание уделяется натурным наблюдениям загрязнения окружающей среды, в особенности природных вод районов разработки рудных месторождений [Замана, Чечель, 2014; Елохина и др., 2016; Bortnikova et al., 2021; Даувальтер и др., 2022; Moiseenko, 2022]. Для исследования процессов формирования химического состава вод техногенных объектов, в том числе для прогнозных оценок содержания токсичных элементов, используются экспериментальные (статические и кинетические) тесты [Гаськова, Бортникова, 2007; Алексеев и др., 2011] и

⁴ Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Karelia, Russia

¹ SidkinaES@yandex.ru

² wri-lab@geokhi.ru

³ 2a61@mail.ru

⁴ icelopa@gmail.com

расчетные методы [Ryzhenko et al., 2016; Лиманцева и др., 2018; Рыбникова, Рыбников, 2019].

Однако в силу неравновесности систем в зоне гипергенеза в расчетах необходимо учитывать скорости растворения минералов. Данный подход ранее успешно использовался для прогнозных оценок химического состава подотвальных вод на месторождениях, подготавливаемым к этапу эксплуатации [Sidkina et al., 2020; Черкасова и др., 2021]. Другой немаловажный аспект, который необходимо учитывать, обсуждая процессы формирования химического состав природных, это органическое вещество. Растворенные в воде фульво- и гуминовые кислоты образуют устойчивые комплексы с некоторыми металлами, удерживая их таким образом в растворе [Dinu, 2021; Лепокурова и др., 2022].

В настоящем исследовании современными аналитическими методами изучен химический состав вод заброшенного рудника Бекк, расположенного в Питкярантском районе Карелии (рис. 1). Для выявления процессов формирования химического состава вод и его особенностей проведено равновесно-кинетическое моделирование, которое позволило рассмотреть взаимодействие вода — порода в заданном отрезке времени. Кроме того, выполнен расчет комплексообразования металлов с органическим веществом.

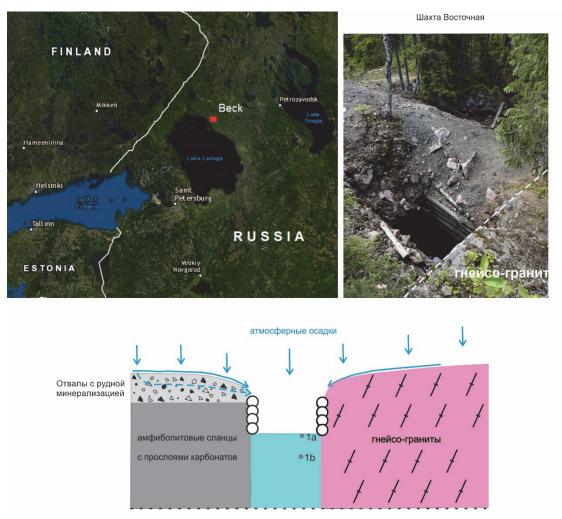
Историческая справка и современное состояние объекта исследований

Добыча руды на руднике Бекк производилась шахтным способом в течение нескольких месяцев в 1896 г., но оказалась нецелесообразна с экономической точки зрения. Качество руды, по данным [Trüstedt, 1907], соответствовало требованиям, а причиной остановки добычи была незначительная мощность рудного тела. В настоящее время рудник представляет в первую очередь исторический интерес, как природно-техногенный объект разработки полезных ископаемых, сохранившийся с XIX в.

Техногенные объекты Бекк доступны для осмотра и отбора проб. В работе [Trüstedt, 1907] упоминается только одна шахта под названием Веск, однако на территории рудника Бекк расположены две шахты. Стволы обеих укреплены деревянным срубом. Данный объект изучался региональным Музеем Северного Приладожья и КРООСИ в 1997–2010 гг., а также Карельской региональной общественной организацией спелеологических исследований «Колос» в 2008–2011 гг. Исследователи пришли к выводу, что исторической шахтой является западная (далее – западная шахта), а восточный ствол (далее – восточная шахта) — разведочный, времен СССР [Щипцов и др., 2014]. Обе шахты окружены отвалами и затоплены

предположительно, атмосферными осадками, дренирующимися через породы отвалов.

Геологический очерк


Питкярантский рудный район расположен в юговосточной части Фенноскандинавского щита в месте сочленения крупных геоблоков: Свекофеннской складчатой области и Карельского кратона. Район имеет протяжённость около 50 км вдоль северо-западного контакта Салминского батолита [Neymark et al., 1994; Amelin et al., 1997; Ларин, 2011]. Наиболее распространённые объекты в данном рудном районе – скарновые и апоскарновые месторождения и рудопроявления с комплексным Fe-Sn-редкометалльно-полиметаллическим и флюоритовым оруденением. Все эти скарновые объекты приурочены к метакарбонатным толщам людиковия - Сортавальской серии (Питкярантской свите). Наибольшее количество рудных объектов этого типа расположены в зоне пологого погружения кровли магматических пород Салминского батолита вдоль своего северо-западного контакта. К подобным объектам относится и объект исследования.

Методика исследований

Аналитические методы исследований. При проботборе *in situ* определены показатели рН и Еh, температура воды (PH-200, ORP-200, HM Digital соответственно), а также измерено содержание растворенного кислорода (AZ8401, AZ Instruments, Гонконг). Пробы для элементного анализа на точке опробования фильтровали через ацетат-целлюлозные мембранные фильтры с размером пор 0,45 мкм в аналитически чистые полипропиленовые пробирки типа Falcon объемом 15 мл с добавлением 0,45 мл HNO₃ ос. ч. (Merck, Германия). Для определения компонентов карбонатной системы и хлорид-иона пробы отобраны в бутылки объемом 500 мл, предварительно трижды промытые исследуемой водой.

Содержания Ca, Mg, Na, K, Fe, S определяли методом ICP-AES с помощью плазменного спектрометра iCAP 6500 DUO (Thermo Scientific), содержания Ni, Cu, Zn, Cd, Pb, As и других микроэлементов определены методом ICP-MS на квадрупольном масс-спектрометре X-series 2 (Thermo Scientific, США) в ГЕОХИ РАН.

Компоненты карбонатного равновесия (CO₂, HCO₃⁻, CO₃²⁻) определялись методом потенциометрического титрования с использованием высокоточного анализатора Эксперт-001 (ООО «Эконикс-Эксперт», Россия). Содержание Cl⁻ определено методом ионной хроматографии на приборе ICS-3000 (Thermo Scientific, CIIIA). Концентрация сульфат-иона установлена расчетным методом из валового содержания серы.

Puc. 1. Рудник Бекк: расположение объекта исследований, вид восточной шахты и схема модели Fig. 1. Beck Mine: location of the study site, view of the eastern mine and modelling scheme

Равновесно-кинетическое моделирование, принципы которого изложены в работах [Barton et al., 1963; Helgeson, 1968; Helgeson et al., 1970], проведено на примере восточной шахты в программе GEOCHEQ M [Мироненко и др., 2008] с использованием обновленной кинетической базы данных. В модифицированную базу были введены кинетические параметры из критической компиляции [Palandri, Kharaka, 2004], содержащей результаты математической обработки большого массива экспериментальных данных по кинетике конгруэнтного растворения минералов. Подробное описание методики равновесно-кинетического моделирования GEOCHEQ М приведено в [Мироненко, Золотов, 2012]. Система состояла из следующих химических элементов: О, H, K, Mg, Ca, Al, C, Si, S, Na, F, Cl, Fe, Ni, Cu, Zn, Pb, As. В расчетах был учтен представительный перечень ионов и комплексных водорастворенных частиц, а также возможность образования вторичных минеральных фаз. Расчеты были проведены при температуре 10 °С в системе, открытой к атмосфере.

За исходный состав воды в модели был принят состав атмосферных осадков [Обзор..., 2016]: Ca^{2+} – 1,2; Mg^{2+} – 0,3; Na^+ – 1,4; K^+ – 0,5; HCO_3^- – 4; SO_4^{2-} – 2,4; Cl^- – 1,8 мг/л. Исходный минералогический состав приведен в подразделе «Минералогический состав пород отвалов».

Соотношение вода — порода было рассчитано исходя из размера кусков пород отвалов, их плотности и количества атмосферных осадков. Полагалось, что вода после снеготаяния и ливневых осадков стекает в шахту по поверхности (поверхностный сток с минимальным взаимодействием с породами отвалов).

Поэтому мы вычисляли модельный состав воды в шахте в два этапа: 1) равновесно-кинетическое моделирование взаимодействия дренируемой части пород отвалов с атмосферными осадками, поступающими в течение теплого периода года (6 месяцев); 2) смешение полученного на первом этапе модельного состава раствора с водой снеготаяния и ливневых осадков в пропорции 1:1 для имитации природных условий.

Этот результирующий состав был использован для сравнения с водами шахты.

Расчет форм нахождения металлов с учетом органического вещества был проведен в программе НСһ [Шваров, 2008]. За исходные данные взяты аналитические определения химического состава природных вод рудника Бекк. Количество фульво- и гуминовой кислот было пересчитано исходя из содержания Сорг, согласно методике, предложенной в [Методы..., 1988]. Подход к учету комплесообразования с органическим веществом и подборки эффективных констант устойчивости комплексов опубликованы ранее [Липатникова, Гричук, 2011; Конышев и др., 2021].

Полученные результаты и обсуждение

Химический состав вод шахты. В ходе полевых работ было отобрано шесть проб воды: 1a и 1b – вода восточной шахты (с поверхности и с глубины 2 м соответственно), 2 – вода из пруда, 3 – вода западной шахты, 4 и 5 – вода из канавы до и после отвалов соответственно.

Все изучаемые воды (таблица) являются ультрапресными с крайне низкими значениями минерализации (до 50 мг/л). Значения рН варьируют от 6,42 (в верхнем слое воды восточной шахты) до 7,71 и 7,74 (в канаве после отвалов и пруду соответственно). Наиболее низкие значения величины рН определены в водах шахт, отобранных с поверхности, что, вероятно, связано со стоком воды, дренирующей отвалы. Содержание растворенного кислорода во всех опробованных точках практически одинаковое (3,4—

5,7 мг/л). Резко выделяется величина растворенного кислорода в пробе 1а (12 мг/л).

По химическому составу воды шахт рудника Бекк относятся к гидрокарбонатно-сульфатным и сульфатно-гидрокарбонатным магниево-кальциевым (название дано с учетом содержания ионов более 20 мг-экв/%). Воды пруда гидрокарбонатные кальциевые, воды дренажной канавы гидрокарбонатные и хлоридно-гидрокарбонатные магниево-натриево-кальпиевые.

В воде восточной шахты в поверхностном слое (проба 1а) среди анионов доминирует SO_4^{2-} , его содержание составляет 7,88 мг/л. На глубине 2 м (проба 1b) его концентрация снижается до 3,88 мг/л. В поверхностном слое западной шахты (проба 3) концентрация сульфат-иона составляет 6,85 мг/л, он перестает быть доминирующим анионом, однако его доля в анионном составе по-прежнему остается высокой на фоне низких значений общей минерализации. Кроме сульфат-иона в воде восточной шахты высокими концентрациями отличаются Zn и Cu (таблица).

В воде западной шахты повышено только содержание Си. Высокая концентрация Zn наблюдается также в воде пруда (проба 2). Концентрация сульфатиона в воде пруда также довольно высока и достигает 8,15 мг/л, однако при общей минерализации 50 мг/л относительное содержание сульфат-иона уже не так велико, как в пробах, отобранных из стволов шахт. Следует также отметить, что в воде западной шахты наблюдается увеличение концентрации Fe (до 2,08 мг/л), а также отмечается появление Аs в концентрации выше предела обнаружения.

Химический состав воды техногенных объектов рудника Бекк Chemical composition of water of Beck mine technogenic objects

TC	Точки опробования							
Компоненты	и показатели	1a	1b	2	3	4	5	
T	°C	15	13	15	15	14	14	
pН	ед.	6,42	7,12	7,74	6,88	6,94	7,71	
Eh	мВ	182	176	171	188	102	201	
O_2		12	5,7	5,05	3,4	4,8	4,84	
Минерализация		15	12	50	25	23	15	
CO_2		11,5	2,9	5,1	5,9	6,5	8,8	
HCO ₃ -		5,7	6,1	40,3	16,3	15,5	13,8	
$\mathrm{SO_4^{2-}}$		7,88	3,66	8,15	6,85	2,1	2,17	
Cl-	мг/л	0,5	0,8	3	0,5	4,6	0,6	
$\mathrm{Ca^{2^{+}}}$ $\mathrm{Mg^{2^{+}}}$		2,28	2,76	14,8	4,8	3,39	2,3	
Mg^{2^+}		0,57	0,67	1,8	1,81	1,4	0,81	
Na^+		0,65	0,72	1,92	1,7	3,57	2,34	
K^{+}		0,23	0,38	0,53	0,79	0,51	0,12	
Fe		0,07	0,13	0,11	2,08	1,35	1,34	
Ni		0,55	0,85	0,75	1,25	1,55	1,05	
Cu		6	4,5	0,3	2,7	0,8	1,3	
Zn	мкг/л	2661	2587	342	45	6	41	
Pb		< 0,01	< 0,01	< 0,01	< 0,01	0,07	1,3	
As		<0,2	<0,2	<0,2	0,45	0,65	1,25	

Отдельно следует рассмотреть поведение микроэлементов в водах дренажной канавы (пробы 4 и 5). Здесь отмечается увеличение концентраций почти всех рассматриваемых микроэлементов по течению. В первую очередь это касается Zn, содержание которого увеличивается с 6 до 41 мкг/л. В воде канавы отмечается появление Pb, концентрация которого также возрастает в пробе, отобранной после отвалов. Вниз по течению увеличиваются и содержания Cu и As. Это наблюдение указывает на вероятность выноса химических элементов из пород отвалов.

Минералогический состав пород отвалов. Породы отвалов, главным образом, скарнированы, магнетит представлен псевдоморфозами по гематиту (мушкетовит), распространены сфалерит, кварц и флюорит. По данным [Trüstedt, 1907], сфалерит, кварц и флюорит содержатся в рудных телах неправильной формы и гнездах, но несмотря на их широкое распространение, эти скопления не имеют промышленно значимой ценности. Гранитогнейсы обогащены хлоритовым агрегатом, развивающимся по полевым шпатам, появляется флогопит совместно с небольшим количеством флюорита.

Железная руда рудника Бекк, по данным [Trüstedt, 1907], — это массивная магнетитовая руда с крупнов-крапленным халькопиритом и сфалеритом при малом количестве других сульфидных минералов. Из второстепенных минералов рудного тела постоянно присутствуют флогопит, флюорит, шеелит и кальцит. Магнетитовые руды образовались в результате замещения карбонатов, так как в рудной массе встречаются его реликты. Также отмечаются единичные находки везувиана.

Отвалы восточной шахты, на примере которой проводилось моделирование, по визуальной оценке представлены на одну треть метасоматизированными гранитогнейсами, а на две трети — скарнированной породой с большим количеством сульфидной, как правило сфалеритовой, минерализации. Отвалы к западу от шахты представлены пироксенсодержащими скарнами с псевдоморфозами магнетита по гематиту (мушкетовит) и незначительным количеством сульфидной минерализации.

Для равновесно-кинетического моделирования в качестве исходного был принят следующий минералогический состав (%): кварц (32), магнетит (25,2), микроклин (15), хризотил (6), дафнит (4,378), флогопит (3,69), альбит (3), флюорит (2,65), сфалерит (2,33), клинохлор (2,1), диопсид (2), аннит (1,32), пирит с 0,002 %-м содержанием Ni (0,21), кальцит (0,05), доломит (0,05), халькопирит (0,01), галенит (0,01), лёллингит (0,002).

Процессы формирования химического состава природных вод. Одним из наиболее значимых процес-

сов формирования природных вод является растворение-осаждение минералов. Для его изучения проведено равновесно-кинетическое моделирование взаимодействия в системе вода – порода. Поскольку отвалы сложены преимущественно малорастворимыми минералами, состав породы практически не меняется. При этом изменения в химическом составе воды после взаимодействия с породами отвалов значительны. В макрокомпонентном составе воды изменения коснулись в большей степени Ca^{2+} , HCO_3^- и SO_4^{2-} . Содержание SO₄²⁻ в воде после взаимодействия с породой и разбавления дождевой водой, произведенной согласно схеме, описанной в разделе «Методика исследований», весьма близко к содержаниям, определенным в воде восточной шахты (рис. 2). Содержание Ca^{2+} и HCO_3^- в модельном растворе оказалось выше, чем в воде шахты, что, возможно, связано с несколько более «быстрым» растворением карбонатных минералов в модели, чем в природных условиях, либо с недостаточно точной (т.е. несколько завышенной) оценкой содержаний минералов в исходной породе.

Содержания Zn, As, Ni в модельном растворе возросли до наблюдаемых в водах восточной шахты, а содержание Cu превысило наблюдаемые натурные значения. Накопление Zn, Cu, As и Ni в растворе происходит при растворении сульфидных минералов (сфалерит, пирит, халькопирит), а также арсенидов (лёллингит), содержащихся в породах отвалов. Накопление Cu, As и Ni происходит во всем интервале взаимодействия равномерно. В то время как Zn, начиная с 132-го дня взаимодействия, образует вторичную минеральную фазу (смитсонит) и рост его концентрации в растворе несколько замедляется.

В породах отвалов был обнаружен галенит. Однако ввиду его невысокого содержания в породах, за период взаимодействия концентрация Рb в модельном растворе остается очень низкой. В водах шахт и пруду концентрация Рb находится ниже предела обнаружения. Однако его появление в воде дренажной канавы после отвалов свидетельствует о дополнительном источнике контаминации. Увеличение содержания Рb по потоку может быть связано с локальным увеличением количества галенита в отвале возле канавы.

Железо не задерживалось в растворе: практически все растворенное Fe выпадало в виде гетита. Накопление Fe в природных водах связано с образованием органоминеральных комплексов. Более подробно этот вопрос будет рассмотрен ниже.

В целом результаты равновесно-кинетического моделирования демонстрируют возможность накопления химических элементов в растворе за период теплого времени года в концентрациях, сопоставимых с наблюдаемыми в природе (рис. 2).

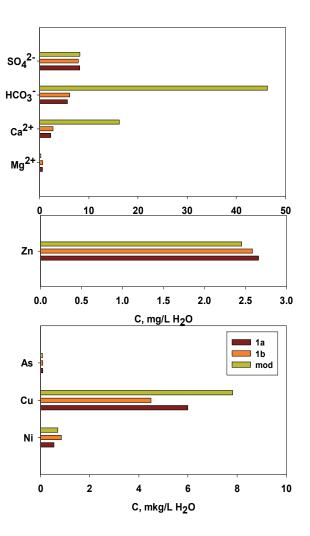


Рис. 2. Сравнение результатов моделирования с природными наблюдениями mod – модельные данные, 1а и 1b – вода восточной шахты с поверхности и с глубины 2 м соответственно

Fig. 2. Comparison of the modelling results with natural observation

mod – the modelling data, 1a and 1b – water of the eastern mine, from the surface and from depth of 2 m, respectively

Комплексообразование металлов с органическим веществом рассмотрено с помощью равновесного расчета химического состава изучаемых природных вод. Широко известен факт образования органо-минеральных комплексов металлов в природных водах различных типов [Борзенко, Федоров, 2019; Zhang et al., 2020; Shah, 2021]. Однако химические элементы обладают разной степенью сродства к органическому веществу [Крайнов и др., 2012]. В работе [Моисеенко и др., 2013] показано, что для водных систем различных природно-климатических зон конкурентные ряды связывания металлов с органическим веществом отличаются друг от друга и определяются не столько константами устойчивости комплексов, сколько общим химизмом природных вод. В первую очередь формы нахождения тяжелых металлов в при-

родных водах зависят от содержания и типов органического вещества, которым свойственны различные функциональные особенности, и концентрации неорганических лиганлов.

Согласно расчетам, Fe образует комплексы с фульвокислотой (рис. 3, *a*), что согласуется с ранее полученными результатами по другим природно-техногенным объектам Карелии [Конышев и др., 2021], а также для вод других регионов: болотных вод Томской области [Солдатова и др., 2022], озер Московской и Воронежской областей, Кольского полуострова [Моисеенко и др., 2013] и др. В нашем случае гидроксофульватный комплекс доминирует в распределении фульватных форм во всех изученных пробах. При этом содержание Fe и фульвокислоты коррелируют между собой.

Отдельного внимания заслуживает распределение фульвокислоты по формам в воде, отобранной с поверхности восточной шахты. При низком содержании Fe в этой пробе фульвокислота распределяется и на другие органоминеральные комплексы: более 96 мол. % Си связано с фульвокислотой. Но ввиду низкой концентрации Cu по сравнению с Fe и Zn, содержание комплекса CuFu⁰ в общем балансе распределения форм фулькислоты не выглядит значительно.

С цинком наблюдается обратная картина. Основная его часть находится в ионной форме Zn^{2+} (96 мол. %), а в форме $ZnFu^0$ только 1,74 мол. %. Однако из-за высокой концентрации цинка комплекс $ZnFu^0$ занимает одну из доминирующих позиций в распределении фульватных форм.

Распределение гуминовых форм более разнообразно (рис. 3, b).

В воде восточной шахты доминирующим комплексом в распределении гуминовых форм является ZnHu⁺ ввиду высокой концентрации Zn. В остальных пробах увеличивается доля гуматных форм основных катионогенных элементов (Mg и Ca). CuHu⁺ занимает незначительную долю в распределении гуматных форм из-за относительно низкой концентрации меди. Ввиду очень низких содержаний Рв не вносит значительный вклад в распределение органических форм. В пробах, отобранных из дренажной канавы, где наблюдаются более высокие концентрации Рь, доля гуминового комплекса не превышает 10 % относительно содержаний Рb, а относительно содержания органического вещества она ничтожна и поэтому не показана на рис. 3. Отмечается, что с увеличением содержания гуминовых кислот увеличивается доля Hu⁻.

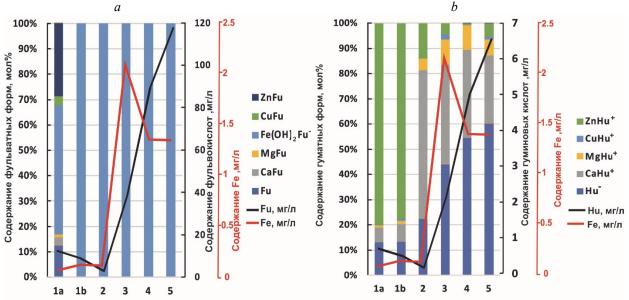


Рис. 3 Распределение фульватных (а) и гуминовых (b) форм в изучаемых водах

Расшифровка номеров проб: 1a и 1b – вода восточной шахты (с поверхности и с глубины 2 м соответственно), 2 – вода из пруда, 3 – вода западной шахты, 4 и 5 – вода из канавы до и после отвалов соответственно

Fig. 3 Fulvic (a) and humic (b) species in the depth waters

Decoding of the samle numbers: 1a and 1b – water of the eastern mine (from the surface and from depth of 2 m, accordingly), 2 – water from the pond, 3 – water of the western mine, 4 and 5 – water from a ditch before and after s waste rock stockpiles, accordingly

Заключение

Формирование химического состава природных вод рудника Бекк, в том числе накопление потенциально токсичных элементов, связано в первую очередь с взаимодействием с горными породами. На рассмотренном объекте основным процессом поступления тяжелых металлов (Zn, Cu, Pb, Ni) является окислительное растворение сульфидных минералов (пирит, халькопирит, галенит, сфалерит). В данном слу-

чае кислотный дренаж не образуется благодаря низкому содержанию сульфидных минералов и нейтрализующему действию растворения карбонатов. Несмотря на нейтрализующий эффект, тяжелые металлы накапливаются в природных водах. Интенсивность накопления прежде всего обусловлена соотношением вода — порода, временем взаимодействия и скоростью растворения минералов, которая, в свою очередь, зависит от температуры, рН, концентрации растворенного кислорода в растворе. Эти условия

учтены при равновесно-кинетическом моделировании, благодаря чему полученные результаты адекватны наблюдаемым в природе концентрациям. Однако в природных условиях существуют некоторые нюансы, которые в настоящее время не учтены в модели, но могут влиять на скорости растворения минералов. Это, например, образование «рубашки» из вторичных минералов на поверхности первичных, которая замедляет процесс растворения, как это описано в работах [Zippa, Zuddas, 2020; Алексеев, 2022].

Ключевую роль в накоплении Fe в природных водах играет комплексообразование с фульвокислотой, продемонстрированное посредством термодинамического моделирования. Показано, что в конкурентном ряду металлов Fe занимает первое место. Однако в случае высокого содержания органических веществ и низкой концентрации Fe в растворе, Zn и Cu также охотно образуют комплексы с органическими лигандами. Кроме этого, с высоким содержанием органических веществ также коррелирует и содержание As.

Таким образом, можно сделать вывод, что при увеличении концентраций фульво- и гуминовых кислот рассматриваемый ряд металлов будет накапливаться в природных водах. Можно предположить, что частным случаем такого механизма может выступать накопление тяжелых металлов в водах заболоченных участков района, на которые поступает поверхностных сток с рудного поля.

Для комплексной оценки антропогенного загрязнения природных вод Питкярантского района тяжелыми металлами и другими потенциально токсичными элементами необходимо изучение других исторических рудников и разрабатываемых в настоящее время месторождений.

Однако проведенное изучение геохимии природных вод техногенного объекта Бекк показывает, что исторические рудники района являются источниками локального загрязнения, а при наличии гидрографической связи с ручьями или реками загрязнение может распространяться на значительные территории.

Список источников

Алексеев В.А. Причины образования кислых дренажных вод в отвалах сульфидсодержащих пород // Геохимия. 2022. № 1. С. 69–83.

Алексеев В.А., Кочнова Л.Н., Бычкова Я.Н., Кригман Л.В. Экспериментальное исследование – извлечения нормируемых элементов водой из загрязненных пород // Геохимия. 2011. № 12. С. 1317–1342.

Борзенко С.В., Федоров И.А. Основные формы миграции металлов в присутствии гуминовых веществ в содовых озерах Восточного Забайкалья // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 3. С. 18–27.

Гаськова О.Л., Бортникова С.Б. К вопросу о количественном определении нейтрализующего потенциала вмещающих пород // Геохимия. 2007. № 4. С. 461–464.

Даувальтер В.А., Денисов Д.Б., Слуковский З.И. Влияние стоков апатит-нефелинового производства на биогеохимические процессы в арктическом горном озере // Геохимия. 2022. Т. 67, № 10. С. 1013–1028.

Замана Л.В., **Чечель** Л.П. Геохимия дренажных вод горнорудных объектов вольфрамового месторождения Бом-Горхон (Забайкалье) // Химия в интересах устойчивого развития. 2014. Т. 22, № 3. С. 267–273.

Елохина С.Н., Арзамасцев В.А., Арзамасцев А.А. Изменение химического состава дренажных вод при отработке Сафьяновского медноколчеданного месторождения // Известия высших учебных заведений. Горный журнал. 2016. № 2. С. 85–92.

Конышев А.А., Сидкина Е.С., Солдатова Е.А., Догадкин Д.Н., Громяк И.Н. (Особенности поведения химических элементов в системе вода-порода района разрабатываемого карьера бутового камня в Питкярантском рудном районе (Карелия) // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332, № 3. С. 7–19.

Крайнов С.Р., Рыженко Б.Н., Швец В.М. Геохимия подземных вод. Теоретические, прикладные и экологические аспекты. М.: ЦентрЛитНефтеГаз, 2012. 672 с.

Ларин А.М. Граниты рапакиви и ассоциирующие породы. СПб. : Наука, 2011. 402 с.

Лепокурова О.Е., Иванова И.С., Трифонов Н.С., Колубаева Ю.В., Соколов Д.А. Растворенные формы миграций гумусовых кислот в поверхностных водных объектах Ямало-Ненецкого автономного округа // Известия Томского политехнического университета. Инжиниринг георесурсов. 2022. Т. 333, № 5. С. 56–69.

Лиманцева О.А., Рыженко Б.Н., Черкасова Е.В. Моделирование гидрогеохимических процессов на Усинском месторождении марганцевых руд для оценки экологической опасности при разработке // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2018. № 4. С. 113–124.

Липатникова О.А., Гричук Д.В. Термодинамическое моделирование форм нахождения тяжелых металлов в донных отложения на примере Иваньковского водохранилища // Вестник Московского университета Сер. 4. Геология. 2011. № 2. С. 5–59.

Методы геохимического моделирования и прогнозирования в гидрогеологии // [С.Р. Крайнов, Ю.В.Шваров, Д.В. Гричук и др.]; под ред. С.Р. Крайнова. М.: Недра, 1988. 252 с.

Мироненко М.В., Золотов М.Ю. Равновесно-кинетическая модель взаимодействий вода-порода // Геохимия. 2012. № 1. С. 3–9.

Мироненко М.В., Мелихова Т.Ю., Золотов М.Ю., Акинфиев Н.Н. GEOCHEQ_М – комплекс для термодинамического и кинетического моделирования геохимических процессов в системе вода – порода – газ. 2008.

Моисеенко Т.И., Дину М.И., Гашкина Н.А., Кремлева Т.А. Формы нахождения металлов в природных водах в зависимости от их химического состава // Водные ресурсы. 2013. Т. 40, № 4. С. 375–385.

Обзор состояния и загрязнения окружающей среды в Российской Федерации за 2016 год. М., 2017. 216 с.

Рыбникова Л.С., **Рыбников П.А.** Закономерности формирования качества подземных вод на отработанных медноколчеданных рудниках Левихинского рудного поля (Средний Урал, Россия) // Геохимия. 2019. № 3. С. 282–299.

Солдатова Е.А., Сидкина Е.С., Савичев О.Г. Моделирование изменения геохимической обстановки под влиянием сброса коммунально-бытовых сточных вод на примере Обского болота (Западная Сибирь) // Геосферные исследования. 2022. № 1. С. 126–136. doi: 10.17223/25421379/22/10

Черкасова Е.В., Мироненко М.В., Сидкина Е.С. Кинетико-термодинамическое моделирование кислотного дренажа объединенной технологической пробы с месторождения Павловское (архипелаг новая земля, о. Южный). Предварительная оценка // Геохимия. 2021. № 2. С. 183–190.

Шваров Ю.В. НСh: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. С. 898–903.

Щипцов В.В., Гольденберг М.Л., Луукконен Э., Марин М. Дорога горных промыслов. Петрозаводск : Карельский научный центр РАН, 2014. 362 с.

Amelin Yu.V., Larin A.M., Tucker R.D. Chronology of multiphase emplacement of the Salmi rapakivi graniteanorthosite complex, Baltic Shield: implications for magmatic evolution // Contrib. Mineral. Petrol. 1997. V. 127, No. 4. P. 353–368.

Banks D., Athresh A., Habaibeh A., Burnside N. Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom // Sustainable Water Resources Management. 2019. V. 5. P. 29–50.

Barton P.L., Benthke P.M., Toumin P. Equilibrium in ore deposits // Min. Soc. Am. Spes. 1963. V. 1. P. 171–185.

Bortnikova S.B., Yurkevich N.V., Gaskova O.L., Volynkin S.S., Edelev A.V., Grakhova S.P., Kalnaya O.I., Khusainova A.Sh, Gora M.P., Khvashchevskaya A.A., Saeva O.P., Podolynnaya V.A., Kurovskaya V.V. Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage // Chemical Geology. 2021. V. 586. Art. number 120623.

Dinu M.I. Element specification in small lakes of the Kola Peninsula: Geochemical and technogenic factors // Environmental Research Letters. 2021. V. 16 (6). Art. number 065005.

Helgeson H.C. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations // Geochim. Cosmochim. Acta. 1968. V. 32. P. 569–592.

Helgeson H.C., Brown T.H., Nigrini A., Jones T.A. Calculation of mass transfer in geochemical processes in volving aqueous solutions // Geochim. Cosmochim. Acta. 1970. V. 34. P. 569–592.

Moiseenko T.I. Surface Water under Growing Anthropogenic Loads: From Global Perspectives to Regional Implications // Water. 2022. V. 14 (22). Art. number 3730.

Moyé J., Picard-Lesteven T., Zouhri L., Amari K., Hibti M., Benkaddour A. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco) // Environmental Pollution. 2017. V. 231. P. 1. P. 899–907.

Navarro M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Vidal J., Tovar P.J., Bech J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone // Journal of Geochemical Exploration. 2008. V. 96 (2–3). P. 183–193.

Neymark L.A., Amelin Yu.V., Larin A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite-anorthosite batholith (Karelia, Russia) // Mineral. Petrol. 1994. V. 50. P. 173–193.

Palandri J.L., Kharaka Y.K. A Report "Compilation of Rate Parameters of Water-Mineral Interaction Kinetics For Application to Geochemical Modeling". California, 2004.

Ryzhenko B.N., Belova T.P., Ryabenko A.E., Cherkasova E.V. Evaluation of Acid Drainage in Ore Deposits // Water Resources. 2016. V. 43, No. 7. P. 964–973.

Shah S.B. Heavy Metals in the Marine Environment—An Overview // Heavy Metals in Scleractinian Corals. SpringerBriefs in Earth Sciences. Springer, Cham., 2021. doi: 10.1007/978-3-030-73613-2 1

Sidkina E.S., Mironenko M.V., Cherkasova E.V. Application of equilibrium-kinetic modeling for predicting the chemical composition of subdump waters of the Udokan deposit (Russia) // Geochemistry International. 2020. V. 58, No. 13. P. 1419–1429.

Tomiyama S., Igarashi T., Tabelin C.B., Tangviroon P., Ii H. Modeling of the groundwater flow system in excavated areas of an abandoned mine // Journal of Contaminant Hydrology. 2020. V. 230. Art. number 103617.

Trüstedt O. Die Erzlagerstütten von Pitküranta am Ladoga-See // Bull. La Comm. Güologique Finl. 1907. No. 19. P. 333. In German Wang P., Sun Z., Hu Y., Cheng H. Leaching of heavy metals from abandoned mine tailings brought by precipitation and the associated environmental impact // Science of The Total Environment. 2019. V. 695. Art. number 133893.

Zhang X., Li B., Deng J., Qin B., Wells M., Tefsen B. Advances in freshwater risk assessment: improved accuracy of dissolved organic matter-metal speciation prediction and rapid biological validation // Ecotoxicology and Environmental Safety. 2020. V. 202. Art. number 110848.

Zippa E., Zuddas P. Estimation the reactive surface area of minerals during fluid-rock interaction in hydrothermal Jiangxi Province (SE China) // Applied Geochemistry. 2020. V. 120. Art. number 104675.

References

Alekseyev V.A. Reasons for the formation of acidic drainage water in dumps of sulfide-containing rocks // Geokhimiya [Geochemistry International]. 2022. No. 1. pp. 69–83. In Russian

Alekseyev V.A., Kochnova L.N., Bychkova Y.V., Krigman L.V. Extraction of hazardous elements by water from contaminated rocks: an experimental study // *Geokhimiya* [Geochemistry International]. 2011. No. 12. pp. 1317–1342. In Russian

Borzenko S.V., Fedorov I.A. Basic forms of metals migration in the presence of humic substances in soda lakes of Eastern Transbaikalia // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019. V. 330. 3. pp. 18–27. In Russian

Gas'kova O.L., Bortnikova S.B. On the quantitative evaluation of the neutralizing potential of host rocks // Geokhimiya [Geochemistry International]. 2007. T. 45. No. 4. pp. 461–464. In Russian

Dauvalter V.A., Denisov D.B., Slukovskii Z.I. Impact of Wastewaters from Apatite-Nepheline Production on the Biogeochemical Processes in an Arctic Mountain Lake // Geokhimiya [Geochemistry International]. 2022, V. 60. No. 10. pp. 1013–1028. In Russian

Zamana L.V., Chechel' L.P. Geokhimiya drenazhnykh vod gornorudnykh ob"ektov vol'framovogo mestorozhdeniya Bom-Gorkhon (Zabaykal'e) [Geochemistry of drainage waters of mining objects of the Bom-Gorkhon tungsten deposit (Transbaikalia)] // Khimiya v interesakh ustoychivogo razvitiya. 2014. T. 22. No.3. pp. 267–273. In Russian

Elokhina S.N., Arzamastsev V.A., Arzamastsev A.A. *Izmenenie khimicheskogo sostava drenazhnykh vod pri otrabotke Saf'yanovskogo mednokolchedannogo mestorozhdeniya* [Changes in the chemical composition of drainage water during the development of the Safyanovsky copper pyrite deposit] // Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2016. No. 2. pp. 85–92. In Russian

Konyshev A.A., Sidkina E.S., Soldatova E.A., Dogadkin D.N., Gromyak I.N. Features of chemical element behavior in the water-rock system of the rubble stone quarry in Pitkaranta district (Karelia) // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021.V. 332. 3. pp. 7–19. In Russian

Krainov S.R., Ryzhenko B. N, Shvets V.M. *Geokhimiya podzemnykh vod. Teoreticheskiye, prikladnyye i ekologicheskiye aspekty* [Geochemistry of ground waters. Theoretical, applied and environmental aspects]. Moscow: CentrLitNefteGas, 2012. 672 p. In Russian Larin A.M. *Granity rapakivi i assotsiiruyushchie porody* [Rapakivi granites and associated rocks] St. Petersburg: Nauka. 2011. 402 p. In Russian

Lepokurova O.E., Ivanova I.S., Trifonov N.S., Kolubaeva Yu.V., Sokolov D.A. Dissolved forms of migration of humic substances in surface water bodies of the Yamal-Nenets autonomous district // Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022. V. 333. 5. pp. 56–69. In Russian

Limantseva O.A., Ryzhenko B.N., Cherkasova E.V. Simulation of hydrogeochemical processes on Usinsky manganeze deposit for estimation of ecological situation during the deposit mining // Geoecology. Engineering geology. Hydrogeology. Geocryology. 2018. No. 4. pp. 113–124. In Russian

Lipatnikova O.A., Grichuk D.V. *Termodinamicheskoe modelirovanie form nakhozhdeniya tyazhelykh metallov v donnykh otlozheniya na primere Ivan'kovskogo vodokhranilishcha* [Thermodynamic modeling of the forms of heavy metals in bottom sediments on the example of the Ivankovo reservoir] // Moscow University Geology Bulletin. 2011. No. 2. pp. 51–59. In Russian

Metody geokhimicheskogo modelirovaniya i prognozirovaniya v gidrogeologii [Methods of geochemical modeling and forecasting in hydrogeology] // [S.R. Kraynov, Yu.V.Shvarov, D.V. Grichuk i dr.]; Pod red. S.R. Kraynova. Moscow: Nedra. 1988. 252 p.

Mironenko M.V., Zolotov M.Y. Equilibrium-kinetic model of water-rock interaction // Geokhimiya [Geochemistry International]. 2012. V. 50. No. 1. pp. 3–9. In Russian

Mironenko M.V., Melihova T.Y., Zolotov M.Y., Akinfiev N.N. GEOCHEQ_M: Program complex for thermodynamic and kinetic modeling of geochemical processes in rock-water-gas systems. Version 2008. 2008. Vestn Otd Nauk o Zemle RAN. In Russian

Moiseenko T.I., Dinu M.I., Gashkina N.A., Kremleva T.A. Occurrence forms of metals in natural waters depending on water chemistry // Vodnyye resursy [Water Resources]. 2013. T. 40. No. 4. pp. 375–385. In Russian

Obzor sostoyaniya i zagryazneniya okruzhayushchey sredy v Rossiyskoy federatsii za 2016 god. [Review of the state and pollution of the environment in the Russian Federation for 2016] 2017. 216 p. In Russian

Rybnikova L.S., Rybnikov P.A. Regularities in the evolution of groundwater quality at abandoned copper sulfide mines at the levikha ore field, central urals, russia // *Geokhimiya* [Geochemistry International]. 2019. V. 57. No. 3. pp. 282–299. In Russian

Soldatova E.A., Sidkina E.S., Savichev O.G. Modeling the changes of geochemical conditions under municipal sewage discharge on the example of Obskoye fen (Western Siberia) // Geosfernye issledovaniya – Geosphere Research. 2022. 1. pp. 126–136. doi: 10.17223/25421379/22/10 In Russian

Cherkasova E.V., Mironenko M.V., Sidkina E.S. Equilibrium–kinetic modeling an acid mine drainage of integrated technological sample from the pavlovskoe ore deposit (novaya zemlya archipelago, southern island). A preliminary estimation // *Geokhimiya* [Geochemistry International]. 2021. V. 59. No. 2. pp. 183–190. In Russian

Shvarov Yu.V. Hch: New potentialities for the thermodynamic simulation of geochemical systems offered by Windows // Geokhimiya [Geochemistry International]. 2008. V. 46. No 8. pp. 898–903. In Russian

Shciptsov V.V.., Goldenberg M. L, Luukkonen E., Marin M. *Doroga gornykh promyslov* [Mining road] // Petrozavodsk: the Karelian centre of science of the RAS. 2014. 362 p. In Russian.

Amelin Yu.V., Larin A.M., Tucker R.D. Chronology of multiphase emplacement of the Salmi rapakivi graniteanorthosite complex, Baltic Shield: implications for magmatic evolution // Contrib. Mineral. Petrol. 1997. V. 127. No. 4. pp. 353–368.

Banks D., Athresh A., Habaibeh A., Burnside N. Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom // Sustainable Water Resources Management. 2019. V. 5. pp. 29–50.

Barton P.L., Benthke P.M., Toumin P. Equilibrium in ore deposits // Min. Soc. Am. Spes. 1963. 1. 171-185.

Bortnikova S.B., Yurkevich N.V., Gaskova O.L., Volynkin S.S., Edelev A.V., Grakhova S.P., Kalnaya O.I., Khusainova A.Sh, Gora M.P., Khvashchevskaya A.A., Saeva O.P., Podolynnaya V.A., Kurovskaya V.V. Arsenic and metal quantities in abandoned arsenide tailings in dissolved, soluble, and volatile forms during 20 years of storage // Chemical Geology. 2021. V. 586. 120623.

Dinu M.I. Element specification in small lakes of the Kola Peninsula: Geochemical and technogenic factors // Environmental Research Letters. 2021. 16(6). 065005.

Helgeson H.C. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions. I. Thermodynamic relations // Geochim. Cosmochim. Acta. 1968. 32. pp. 569–592.

Helgeson H.C., Brown T.H., Nigrini A., Jones T.A. Calculation of mass transfer in geochemical processes in volving aqueous solutions // Geochim. Cosmochim. Acta. 1970. 34. pp. 569–592.

Moiseenko T.I. Surface Water under Growing Anthropogenic Loads: From Global Perspectives to Regional Implications // Water. 2022. 14(22). 3730.

Moyé J., Picard-Lesteven T., Zouhri L., Amari K., Hibti M., Benkaddour A. Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco) // Environmental Pollution. 2017. V. 231. P. 1. pp. 899–907.

Navarro M.C., Pérez-Sirvent C., Martínez-Sánchez M.J., Vidal J., Tovar P.J., Bech J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone // Journal of Geochemical Exploration. 2008. V. 96 (2–3). pp. 183–193.

Neymark L.A., Amelin Yu.V., Larin A.M. Pb-Nd-Sr isotopic and geochemical constraints on the origin of the 1.54–1.56 Ga Salmi rapakivi granite-anorthosite batholith (Karelia, Russia) // Mineral. Petrol. 1994. V. 50. pp. 173–193.

Palandri J.L., Kharaka Y.K. A Report "Compilation of Rate Parameters of Water-Mineral Interaction Kinetics For Application to Geochemical Modeling"// Menlo Park, California. 2004.

Ryzhenko B.N., Belova T.P., Ryabenko A.E., Cherkasova E.V. Evaluation of Acid Drainage in Ore Deposits // Water Resources. 2016. V. 43. No. 7. pp. 964–973.

Shah S.B. Heavy Metals in the Marine Environment – An Overview / In: Heavy Metals in Scleractinian Corals. SpringerBriefs in Earth Sciences. Springer, Cham. 2021 https://doi.org/10.1007/978-3-030-73613-2 1

Sidkina E.S., Mironenko M.V., Cherkasova E.V. Application of equilibrium-kinetic modeling for predicting the chemical composition of subdump waters of the Udokan deposit (Russia) // Geochemistry International. 2020. V. 58. No. 13. pp. 1419–1429.

Tomiyama S., Igarashi T., Tabelin C.B., Tangviroon P., Ii H. Modeling of the groundwater flow system in excavated areas of an abandoned mine // Journal of Contaminant Hydrology. 2020. V. 230. 103617.

Zhang X., Li B., Deng J., Qin B., Wells M., Tefsen B. Advances in freshwater risk assessment: improved accuracy of dissolved organic matter-metal speciation prediction and rapid biological validation // Ecotoxicology and Environmental Safety. 2020. V. 202. 110848.

Zippa E., Zuddas P. Estimation the reactive surface area of minerals during fluid-rock interaction in hydrothermal Jiangxi Province (SE China) // Applied Geochemistry. 2020. V. 120. 104675.

Информация об авторах:

Сидкина Е.С., кандидат геолого-минералогических наук, ведущий научный сотрудник, лаборатория тепломассопереноса, Геологический институт РАН, Москва, Россия.

E-mail: SidkinaES@yandex.ru

Черкасова Е.В., старший научный сотрудник, лаборатория моделирования гидрохимических и гидротермальных процессов, Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия.

E-mail: wri-lab@geokhi.ru

Солдатова Е.А., кандидат геолого-минералогических наук, младший научный сотрудник, Геологический институт РАН, Москва, Россия; старший научный сотрудник, Тюменский государственный университет, Тюмень, Россия.

E-mail: 2a61@mail.ru

Коньшев А.А., кандидат геолого-минералогических наук, старший научный сотрудник, Институт геологии, Карельский научный центр РАН, Петрозаводск, Россия.

E-mail: icelopa@gmail.com

Догадкин Д.Н., кандидат химических наук, научный сотрудник, лаборатория методов исследования и анализа веществ и материалов, Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия.

E-mail: dogadkin.dn@geokhi.ru

Громяк И.Н., научный сотрудник, лаборатория методов исследования и анализа веществ и материалов, Институт геохимии и аналитической химии им. В.И. Вернадского РАН, Москва, Россия.

E-mail: gromyak @geokhi.ru

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии конфликта интересов.

Information about the authors:

Sidkina E.S., Cand. Sci. (Geol.-Miner.), Leading Researcher, Laboratory of Heat and Mass Transfer, Institute of Geology of the Russian Academy of Sciences, Moscow, Russia.

E-mail: Sidkina ES@yandex.ru

Cherkasova E.V., Senior Researcher, Laboratory for Modeling Hydrochemical and Hydrothermal Processes, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia.

E-mail: wri-lab@geokhi.ru

Soldatova E.A., Cand. Sci. (Geol.-Miner.), Junior Researcher, Institute of Geology of the Russian Academy of Sciences, Moscow, Russia; Senior Researcher, University of Tyumen, Tyumen, Russia.

E-mail: 2a61@mail.ru

Konyshev A.A., Cand. Sci.(Geol.-Miner.), Senior Researcher, Institute of Geology, Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Karelia, Russia.

E-mail: icelopa@gmail.com

Dogadkin D.N., Cand. Sci. (Chemistry), Researcher, Laboratory of Research Methods and Analysis of Substances and Materials, Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia.

E-mail: dogadkin.dn@geokhi.ru

Gromyak I.N., Researcher, Laboratory of Research Methods and Analysis of Substances and Materials Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia.

E-mail: gromyak @geokhi.ru

Contribution of the authors: the authors contributed equally to this article.

The authors declare no conflicts of interests.

Статья поступила в редакцию 05.06.2023; одобрена после рецензирования 22.11.2023; принята к публикации 17.06.2024

The article was submitted 05.06.2023; approved after reviewing 22.11.2023; accepted for publication 17.06.2024

ПЕРСОНАЛИИ

УДК 56 + 929

doi: 10.17223/25421379/31/11

К ЮБИЛЕЮ ЗАСЛУЖЕННОГО ПРОФЕССОРА ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ВЕРЫ МИХАЙЛОВНЫ ПОДОБИНОЙ: УЧЕНЫЙ С МИРОВЫМ ИМЕНЕМ

Геннадий Михайлович Татьянин

Национальный исследовательский Томский государственный университет, Томск, Россия, gmt@mail.tsu.ru

Аннотация. Лидер томской школы палеонтологов, заслуженный профессор ТГУ Вера Михайловна Подобина известна в России и за рубежом своими фундаментальными исследованиями ископаемых фораминифер – важнейшей группы микроорганизмов при изучении геологии нефтегазоносных провинций мира. Основные работы В.М. Подобиной посвящены исследованиям фораминифер и стратиграфии крупнейшей нефтегазоносной провинции России – Западной Сибири.

Ключевые слова: палеонтология, стратиграфия, фораминиферы, профессор

Для цитирования: Татьянин Г.М. К юбилею заслуженного профессора Томского государственного университета Веры Михайловны Подобиной: ученый с мировым именем // Геосферные исследования. 2024. № 2. С. 168–170. doi: 10.17223/25421379/31/11

Original article doi: 10.17223/25421379

TO THE ANNIVERSARY OF THE EMERITED PROFESSOR OF TOMSK STATE UNIVERSITY VERA MIKHAILOVNA PODOBINA: WORLD-REMEMBER SCIENTIST

Gennady M. Tatyanin

National Research Tomsk State University, Tomsk, Russia, gmt@mail.tsu.ru

Annotation. The leader of the Tomsk school of paleontologists, Honored Professor of TSU Vera Mikhailovna Podobina is known in Russia and abroad for her fundamental research on fossil foraminifera - the most important group of microorganisms in the study of the geology of the oil and gas provinces of the world. The main works of V.M. Podobina is devoted to studies of foraminifera and stratigraphy of the largest oil and gas province in Russia - Western Siberia.

Keywords: paleontology, stratigraphy, foraminifera, professor

For citation: Tatyanin G.M. (2024) To the anniversary of the Honored Professor of Tomsk State University Vera Mikhailovna Podobina: a world-famous scientist. *Geosfernye issledovaniya – Geosphere Research*. 2. pp. 168–170. (In Russian). doi: 10.17223/25421379/31/11

Заслуженный профессор ТГУ В.М. Подобина, 2010 г.

Подобина Вера Михайловна родилась 8 июня 1934 года в г. Калуга. Её родители неоднократно меняли место жительства: Калуга, Смоленск, Казань, Гомель и др.

После окончания в 1957 г. с отличием Московского нефтяного института Вера Михайловна по распределению начала трудовую деятельность в качестве инженера-геолога тематической экспедиции Новосибирского геологического управления. За девять лет работы на производстве она внесла существенный вклад в разработку стратиграфических схем верхнемеловых отложений Западной Сибири и по праву является автором большого числа стратиграфических подразделений. Сочетая производственную деятельность с обучением в заочной аспирантуре, подготовила и успешно защитила в 1965 г. кандидатскую диссертацию. В 1967 г. В.М. Подобина перешла на преподавательскую работу в Томский университет.

В 1968 г. В.М. Подобина организовала лабораторию микропалеонтологии для выполнения тематических научных исследований и хоздоговорных работ по обеспечению аналитическими материалами поисков нефти и газа в Томской области. В 1998 г. В.М. Подобина выступила инициатором создания Сибирского палеонтологического научного центра (СПНЦ). За 56 лет в лаборатории, а позднее в СПНЦ выполнены крупные исследования по заказам нефтегазоразведочных и добывающих предприятий Западной и Восточной Сибири, а также по заказам геологоразведочных предприятий (Горно-Алтайской ГРЭ, Рудно-Алтайской ГРЭ, Томской ГРЭ и др.).

В 1980—1985 гг. в рамках международной программы она активно участвовала в изучении материалов глубоководного бурения в южной части Атлантического и Индийского океанов (сейчас это Южный океан).

В.М. Подобина лично и в соавторстве с другими учеными опубликовала в российских и зарубежных издательствах более 630 научных и методических работ, в том числе первое в России учебное пособие «Микропалеонтология» (1985 г., 2006 г.) и 18 личных научных монографий.

В.М. Подобина – пятикратный победитель конкурсов ТГУ за лучшие монографии и учебные пособия. Удачно сочетая талант исследователя и прекрасные человеческие качества, она заслужила широкую известность как многогранный исследователь.

Вера Михайловна — почетный член Российского палеонтологического общества, действительный член РЕАН и Международной академии высший школы, дважды лауреат конкурса Администрации Томской области в сфере образования и науки, награждена орденом Дружбы и почетной грамотой Томской области; имеет полный набор наград Томского государственного университета.

Президиум Российского геологического общества в 2013 г. отметил заслуги В.М. Подобиной в геологии и подготовки специалистов высшей наградой общества — медалью «Геолог Игорь Грамберг».

Домик Ч. Дарвина в Андах, Аргентина, 1994 г.

Испания, Каравака, 2003 г.

В.М. Подобина на геологических экскурсиях

Более 60 лет В.М. Подобина поддерживает научные контакты, обмен литературой и коллекциями палеонтологических объектов с палеонтологами ведущих научных центров России, многих государств СНГ и стран дальнего зарубежья. Она активно участвовала и более 25 раз выступала лично с докладами на международных конгрессах и симпозиумах во многих странах всех континентов. Во время таких форумов, принимая участие в геологических экскурсиях, увидела Анды и Кордильеры, Атлантическое побережье Великобритании и Германскую впадину, Карпаты и горы Египта, карьеры Бельгии и Юга Испании и другие интересные уникальные объекты. Свои наблюдения она использовала в лекциях по исторической геологии для студентов ГГФ.

Эту часть своей деятельности она замечательно описала в книге «Через тернии – к успеху» (Повесть о моей жизни), 2011 г. Накануне своего юбилея в издательстве Томского государственного университета опубликована её новая книга воспоминаний «Записки геолога о жизни и судьбе» (2024 г.).

В 1990 году В.М. Подобина была избрана на должность заведующей кафедрой палеонтологии и исто-

рической геологии и возглавляла ее 28 лет, одновременно выполняя обязанности научного руководителя палеонтологического музея. Она организатор создания многих экспозиций, витрин, диорам и палеоботанического отдела.

В.М. Подобина 25 лет была организатором и бессменным председателем диссертационного совета по защите докторских и кандидатских диссертаций по специальностям «Палеонтология и стратиграфия» и «Геоэкология (геолого-минералогические и географические науки)». Под ее руководством защищена 21 кандидатская диссертация.

Вера Михайловна — почетный работник высшего образования и почетный разведчик недр. Среди выпускников-геологов Томского университета, которым В.М. Подобина передала свой богатый опыт исследователя и педагога, руководители крупных геологических предприятий и объединений, доктора и кандидаты наук, заслуженные геологи России, почетные разведчики недр и отличники разведки недр.

Коллеги и воспитанники поздравляют Веру Михайловну с юбилеем, желают крепкого здоровья и творческого долголетия!

Информация об авторе:

Татьянин Г.М., кандидат геолого-минералогических наук, доцент, кафедра палеонтологии и исторической геологии, заведующий лабораторией микропалеонтологии, геолого-географический факультет, Национальный исследовательский Томский государственный университет, Томск, Россия.

E-mail: gmt@mail.tsu.ru

Автор заявляет об отсутствии конфликта интересов.

Information about the authors:

Tatyanin G.M., Cand. Sci. (Geol.-Miner.), Associate Professor, Department of Paleontology and Historical Geology, Head of the Laboratory of Micropaleontology, Faculty of Geology and Geography, National Research Tomsk State University, Tomsk, Russia. E-mail: gmt@ggf.tsu.ru

The author declares no conflicts of interests.

Статья поступила в редакцию 08.06.2024; принята к публикации 24.06.2024

The article was submitted 08.06.2024; accepted for publication 24.06.2024

Научный журнал

ГЕОСФЕРНЫЕ ИССЛЕДОВАНИЯ GEOSPHERE RESEARCH 2024. № 2

Редактор Ю.П. Готфрид Оригинал-макет А.И. Лелоюр Редактор-переводчик С.И. Гертнер Дизайн обложки Л.Д. Кривцовой

Для оформления обложки использована проекция Земного шара из работы: Stampfli G.M., Borel G.D. / Earth and Planetary Science Letters 196 (2002) 17-33. http://dx.doi.org/10.1016/S0012-821X(01)00588-X

Подписано к печати 21.06.2024 г. Формат $60 \times 84^{1}/_{8}$. Гарнитура Times. Печ. л. 21,5; усл. печ. л. 19,9. Тираж 50 экз. Заказ № 5958. Цена свободная.

Дата выхода в свет 19.07.2024 г.

Журнал отпечатан на полиграфическом оборудовании Издательства Томского государственного университета 634050, г. Томск, Ленина, 36 Тел. 8(382-2)–52-98-49; 8(382-2)–52-96-75 Сайт: http://publish.tsu.ru; E-mail: rio.tsu@mail.ru