
2024

ÏÐÈÊËÀÄÍÀß ÄÈÑÊÐÅÒÍÀß ÌÀÒÅÌÀÒÈÊÀ

Ìàòåìàòè÷åñêèå ìåòîäû êðèïòîãðàôèè � 64

ÌÀÒÅÌÀÒÈ×ÅÑÊÈÅ ÌÅÒÎÄÛ ÊÐÈÏÒÎÃÐÀÔÈÈ

ÓÄÊ 519.7 DOI 10.17223/20710410/64/3

STREEBOG AS A RANDOM ORACLE

L.R. Akhmetzyanova, A.A. Babueva, A.A. Bozhko

CryptoPro, Moscow, Russia

E-mail: {lah, babueva, bozhko}@cryptopro.ru

The random oracle model is an instrument used for proving that protocol has no
structural flaws when settling with standard hash properties is impossible or fairly
difficult. In practice, however, random oracles must be instantiated with some specific
hash functions that are not random oracles. Therefore, in the real world an adversary
has broader capabilities than considered in the random oracle proof: it can exploit
the peculiarities of a specific hash function to achieve its goal. In a case when a hash
function is based on some building block, one can go further and show that even if
the adversary has access to that building block, the hash function still behaves like a
random oracle under some assumptions made about the building block. Thereby, the
protocol can be proved secure against more powerful adversaries under less complex
assumptions. The notion of indifferentiability formalizes that approach. In this paper,
we show that Streebog, a Russian standardized hash function, is indifferentiable from
a random oracle under an ideal cipher assumption for the underlying block cipher.

Keywords: Streebog, GOST, random oracle, indifferentiability.

¾ÑÒÐÈÁÎÃ¿ ÊÀÊ ÑËÓ×ÀÉÍÛÉ ÎÐÀÊÓË

Ë.Ð. Àõìåòçÿíîâà, À.À. Áàáóåâà, À.À. Áîæêî

ÊðèïòîÏðî, ã. Ìîñêâà, Ðîññèÿ

Ìîäåëü ñî ñëó÷àéíûì îðàêóëîì èñïîëüçóåòñÿ äëÿ äîêàçàòåëüñòâà ñòîéêîñòè êðèï-
òîãðàôè÷åñêèõ ïðîòîêîëîâ â ñëó÷àå, êîãäà ñòàíäàðòíûå ïðåäïîëîæåíèÿ îá èñ-
ïîëüçóþùåéñÿ õåø-ôóíêöèè íå ïîçâîëÿþò ýòîãî ñäåëàòü. Îäíàêî íà ïðàêòèêå äëÿ
ðåàëèçàöèè ñëó÷àéíîãî îðàêóëà â êîíêðåòíîì ïðîòîêîëå èñïîëüçóåòñÿ íåêîòîðàÿ
äåòåðìèíèðîâàííàÿ õåø-ôóíêöèÿ, êîòîðàÿ, áåçóñëîâíî, íå ÿâëÿåòñÿ ñëó÷àéíûì
îðàêóëîì. Ñëåäîâàòåëüíî, â ðåàëüíîì ìèðå íàðóøèòåëü îáëàäàåò áîëåå øèðîêè-
ìè âîçìîæíîñòÿìè, ÷åì ïðåäïîëàãàëîñü â äîêàçàòåëüñòâå � îí ìîæåò èñïîëüçî-
âàòü îñîáåííîñòè êîíñòðóêöèè êîíêðåòíîé õåø-ôóíêöèè äëÿ îñóùåñòâëåíèÿ óãðî-
çû. Åñëè èñïîëüçóåìàÿ õåø-ôóíêöèÿ ñòðîèòñÿ íà îñíîâå íåêîòîðîãî äðóãîãî ïðè-
ìèòèâà (íàïðèìåð, áëî÷íîãî øèôðà), ìîæíî ðàññìîòðåòü íàðóøèòåëÿ, êîòîðûé
èìååò äîñòóï íàïðÿìóþ ê ýòîìó ïðèìèòèâó, è ïîêàçàòü, ÷òî äàæå îòíîñèòåëüíîãî
òàêîãî íàðóøèòåëÿ èñïîëüçóåìàÿ õåø-ôóíêöèÿ âåä¼ò ñåáÿ êàê ñëó÷àéíûé îðà-
êóë â ïðåäïîëîæåíèè îá èäåàëüíîñòè èñïîëüçóåìîãî ïðèìèòèâà. Òàêèì îáðàçîì
ìîæíî äîêàçàòü ñòîéêîñòü ïðîòîêîëà îòíîñèòåëüíî áîëåå ñèëüíûõ íàðóøèòåëåé
â ìåíåå ñèëüíûõ ïðåäïîëîæåíèÿõ îá èñïîëüçóþùèõñÿ ïðèìèòèâàõ. Õåø-ôóíêöèè,

28 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

ïðè èñïîëüçîâàíèè êîòîðûõ ìîæíî äîñòè÷ü òàêîãî ðåçóëüòàòà, íàçûâàþòñÿ íåðàç-
ëè÷èìûìè îò ñëó÷àéíîãî îðàêóëà. Â äàííîé ðàáîòå ïîêàçàíî, ÷òî õåø-ôóíêöèÿ
¾Ñòðèáîã¿ íåðàçëè÷èìà îò ñëó÷àéíîãî îðàêóëà â ìîäåëè èäåàëüíîãî áëî÷íîãî
øèôðà.

Êëþ÷åâûå ñëîâà: Ñòðèáîã, ÃÎÑÒ, ñëó÷àéíûé îðàêóë, íåðàçëè÷èìîñòü.

1. Introduction
The random oracle model introduced in [1] assumes that each party of the protocol

and an adversary has access to a random oracle, which is used instead of a hash function.
A random oracle [1] is an ideal primitive that models a random function. It provides a
random output for each new query, and identical input queries produce the same answer.
The random oracle model makes it possible to prove that the protocol has no structural �aws
in situations when it is impossible or very di�cult to deal with standard hash properties,
which is the case for many e�cient and elegant solutions. For example, such protocols
and mechanisms as TLS [2], IPSec [3], and Schnorr signature [4, 5] were analyzed in the
random oracle model; Russian standardized versions of TLS [6] and IPSec [7], as well as
SESPAKE protocol [8, 9], shortened ElGamal signature [10], to-be-standardized RSBS blind
signature [11], and postquantum Shipovnik signature [12] are also analyzed in the random
oracle model.

In practice, however, being idealized primitives, random oracles do not exist and have to
be instantiated with some speci�c hash functions that are not random oracles. Therefore, in
the real world, an adversary has broader capabilities than those considered in the random
oracle proof: it can exploit the peculiarities of a speci�c hash function to achieve its goal.
To address such a situation, one can go further and consider the design of the hash function
to show that, under some less complex and more speci�c assumptions than the whole
function being a random oracle, it behaves like a random oracle. To do that, one must �rst
understand what �behaves like a random oracle� means and what assumptions you need to
make.

These questions for a particular class of hash functions are addressed by J. S. Coron et
al. in [13, 14]. They study the case when an arbitrary-length hash function is built from
some �xed-length building block (like an underlying compression function or a block cipher).
They propose a de�nition based on Maurer et al.'s notion of indi�erentiability [15] of what
it means to implement a random oracle with such a construction under the assumption
that the building block itself is an ideal primitive. The de�nition is chosen in a way that
any hash function satisfying it can securely instantiate a random oracle in a higher-level
application1 (under the assumption that the building block is an ideal primitive). Hence,
idealized assumptions are made about less complex lower-level primitive and, as a result,
more adversarial capabilities are taken into account.

In this paper, we study whether Streebog, a Russian standardized hash function [16], can
instantiate a random oracle. We recall that Streebog has always been a popular target for
analysis. An overview of the results which study standard properties of the algorithm can be
found in [17]. A recent paper [18] studies keyed version of Streebog as a secure pseudorandom
function in a related-key resilient PRF model for an underlying block cipher, highlighting
some important high-level design features of Streebog.

1We note that, as shown in [19], it only directly applies to cryptographic protocols which admit the
so-called �single-stage security proofs.�

Streebog as a random oracle 29

Since Streebog is a modi�ed Merkle �Damgard construction based on LSX-style block
cipher in Miyaguchi� Preneel mode, we adopt the notion of Coron et al. The paper's
main result is presented in Section 3: we prove that Streebog is indi�erentiable from a
random oracle under an ideal cipher assumption for the underlying block cipher. We bene�t
greatly from the work done in [13, 14] since their analysis is focused on Merkle �Damgard
constructions with a block cipher in Davis �Meyer mode. However, Streebog's design
features and a di�erent structure of the compression function do not allow us to use the
paper's results and pose several challenges.

2. De�nitions
Let |a| be the bit length of the string a ∈ {0, 1}∗, the length of an empty string is equal

to 0. For a bit string a we denote by |a|n = ⌈|a|/n⌉ the length of the string a in n-bit blocks.
Let 0u be the string consisting of u zeroes.

For a string a ∈ {0, 1}∗ and a positive integer l ⩽ |a| let msbℓ(a) be the string consisting
of the leftmost l bits of a. For nonnegative integers l and i, let strl(i) be l-bit representation of
i with the least signi�cant bit on the right, let int(M) be an integer i such that strl(i) =M .
For bit strings a ∈ {0, 1}⩽n and b ∈ {0, 1}⩽n we denote by a + b a string strn((int(a) +
+int(b)) mod 2n). If the value s is chosen uniformly at random from a set S, then we denote

it s
U←− S.
A block cipher E with a block size n and a key size k is the permutation family(

EK ∈ Perm({0, 1}n) : K ∈ {0, 1}k
)
, where K is a key.

2.1. S t r e e b o g h a s h f u n c t i o n

The Streebog hash function is de�ned in [16]. For the purposes of the paper, we will
de�ne Streebog as a modi�cation of Merkle �Damgard construction, which is applied to
a pre�x-free encoding of the message; in that we follow the approach of [13, 14]. We will
also make the use of the equivalent representation of Streebog from [20]. For Streebog the
length of an internal state in Merkle �Damgard construction is n = 512 and the length of
the output k is either 256 or 512.

Let us de�ne a compression function h : {0, 1}n × {0, 1}n → {0, 1}n, which is based on
12-rounds LSX-like block cipher E : {0, 1}n × {0, 1}n → {0, 1}n, where the �rst argument
is a key, in Miyaguchi � Preneel mode:

h(y, x) = E(y, x)⊕ x⊕ y.

We also de�ne a pre�x-free encoding g : {0, 1}∗ → ({0, 1}n, {0, 1}n)∗, which takes as an
input a message X:

g(X) = (x1,∆1)∥(x2,∆2)∥ . . . ∥(x′l∥10n−1−|x′
l|, ∆̃l)∥(L, 0)∥(Σ, 0),

where L = |X|, l = ⌊L/n⌋ + 1, X = x1∥ . . . ∥x′l, x1, . . . , xl−1 ∈ {0, 1}n, x′l ∈ {0, 1}<n,
and x′l is an empty string if L is already divisible by n; ∆i = strn(i n) ⊕ strn((i − 1)n),

∆̃i = strn((i− 1)n), and Σ =
l−1∑
i=1

xi + (x′l∥10n−1−|x′
l|). The encoding pads the message with

10n−1−|x′
l|, then it splits the message in blocks of length n, computes the counter value

for each block and appends two last blocks of the encoding, the bit length L and the
checksum Σ, which correspond to the �nalizing step of Streebog.

Finally, we de�ne the hash function Streebog on Fig. 1, where IV , |IV | = 512, is a
prede�ned constant, di�erent for k = 256 and k = 512. On Fig. 2 Streebog is depicted
schematically.

30 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

We will call a sequence of triples (y1, x1, z1), (y2, x2, z2), . . . , (yl+2, xl+2, zl+2), where zi =
= h(yi, xi) ⊕ yi ⊕ xi, which appears during a computation of Streebog on an input X, a
computational chain for X.

Streebog(X)

l← ⌊|X|/n⌋+ 1

(x1, c1)∥(x2, c2)∥ . . . ∥(xl, cl)∥(xl+1, cl+1)∥(xl+2, cl+2)← g(X)

y1 ← IV

for i = 1 . . . l + 2 do :

yi+1 ← h(yi, xi)⊕ ci
return msbk(yl+3)

Fig. 1. Streebog hash function

Fig. 2. Streebog computation, l = 3

2.2. I n d i f f e r e n t i a b i l i t y

The following strategy is often applied to prove the security of a cryptosystem with
some component (or primitive). First, it is proven that the system is secure in case of using
idealized primitive. Secondly, we prove that the real primitive is indistinguishable from an
idealized one. Informally, two algorithms A and B are computationally indistinguishable if
no (e�cient) algorithm D is able to distinguish whether it is interacting with A or B.

We consider two types of the ideal primitives: random oracles and ideal ciphers.
A random oracle [1] is an ideal primitive that models a random function. It provides
a random output for each new query, identical input queries produce the same
answer. An ideal cipher is an ideal primitive that models a random block-cipher
E : {0, 1}κ × {0, 1}n → {0, 1}n, each key K ∈ {0, 1}κ de�nes a random permutation on
{0, 1}n. The ideal cipher provides oracle access to E and E−1; that is, on query (+, K, x),
it answers c = E(K, x), and on query (−, K, c), it answers x such that c = E(K, x).

Obviously, a random oracle (ideal cipher) is easily distinguishable from a hash function
(block cipher) if one knows its program and the public parameter. Thus, in [15] the extended
notion of indistinguishability � indi�erentiability �was introduced. It was proven, that if a
component A is indi�erentiable from B, then the security of any cryptosystem C(A) based
on A is not a�ected when replacing A by B. According to the authors, indi�erentiability
is the weakest possible property that allows security proofs of the generic type described
above. Thus, to prove the security of some cryptosystem using hash function, we may prove
its security in the random oracle model, and then prove that hash function is indi�erentiable
from a random oracle within some underlying assumptions. We assume that the base block
cipher is modelled as an ideal cipher.

Let us de�ne formally what the indi�erentiability from an ideal primitive means. We give
the de�nition directly for the hash function (based on the ideal cipher) and random oracle.

Streebog as a random oracle 31

This de�nition is a particular case of more general indi�erentiability notion introduced
in [15].

De�nition 1. A hash function H with oracle access to an ideal cipher E is said to be
(TD, qH , qE, ε)-indi�erentiable from a random oracle H if there exists a simulator S such
that for any distinguisher D with binary output it holds that:∣∣Pr[DH,E → 1

]
− Pr

[
DH,S → 1

]∣∣ < ε.

The simulator has oracle access to H. The distinguisher runs in time at most TD and makes
at most qH and qE queries to its oracles.

The indi�erentability notion is illustrated in Fig. 3. The distinguisher interacts with
two oracles, further we denote them by left and right oracles respectively. In one world,
left oracle implements the hash function H (with oracle access to the ideal cipher), while
the right oracle directly implements the ideal cipher E . In another world, the left oracle
implements the random oracle H and the right oracle is implemented by the simulator S.
The task of the simulator is to model the ideal cipher using the oracle access to H so that
no distinguisher could notice the di�erence. To achieve that, the output of S must match
what the resolver can get from H. Note that the simulator does not have access to the
queries of the distinguisher to H.

Fig. 3. The indi�erentiability of hash function H and random oracle H

3. Streebog indi�erentiability
In this section, we present the main result of the paper, which shows that Streebog is

indi�erentiable from a random oracle in the ideal cipher model for the base block cipher.
First, we discuss the choice of the underlying assumption. Indeed, the straightforward

solution is to prove Streebog indi�erentiability in assumption that the compression function
is a random oracle. Although such proof may be constructed much easier than in the
ideal cipher model, we show that the Miyaguchi � Preneel compression function cannot be
modeled as a random oracle. Indeed, for this function the following condition always holds:

x = E−1(y, h(y, x)⊕ x⊕ y).

Thus, the distinguisher can easily identify whether it interacts with the real compression
function or the random one by making the query (y, x) to the left oracle and the query
(−, y, h(y, x)⊕ x⊕ y) to the right oracle.

We give an indi�erentiability theorem for Streebog. The full proof is provided for
the Streebog variant with output size k = 512. For the shortened Streebog variant
argumentation is completely similar. Formally, the only thing which has to be adjusted is
the construction of the simulator; we will highlight the di�erence in the proof. The general
structure of the proof and some techniques are adopted from [13, 14].

32 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

Theorem 1. The hash function Streebog with k = 512 or 256 using a cipher E :
{0, 1}n × {0, 1}n → {0, 1}n is (tD, qH , qE, ε)-indi�erentiable from a random oracle in the
ideal cipher model for E for any tD with

ε =
(1 + lm)q

2n−4
+

(1 + n+ lm)q
2

2n−7
,

where q = qE + qH(lm + 2) and lm is the maximum message length (in blocks, including
padding) queried by the distinguisher to its left oracle.

Proof. The main goal of the proof is to show that no distinguisher can tell apart two
words: in the �rst one, it has access to the Streebog construction using an ideal cipher as
an underlying block cipher and to the ideal cipher itself; in the second one it has access to
a random oracle and a simulator. The �rst step of the proof is to present a simulator for
which it would be possible to achieve that goal.

Our simulator for the ideal cipher E is quite elaborate. On every distinguisher query, it
tries to detect whether the distinguisher seeks to compute Streebog for some message itself.
If this is the case, it chooses the answer consistently with the random oracle; otherwise, it
chooses the answer randomly.

The simulator. Before we proceed with the simulator itself, let us de�ne an auxiliary
function g0 : {0, 1}∗ → ({0, 1}n, {0, 1}n)∗:

g0(X) = (x1,∆1)∥(x2,∆2)∥ . . . ∥(x′l∥10n−1−|x′
l|, ∆̃l)∥(L, 0),

where L = |X|, l = ⌊L/n⌋ + 1, X = x1∥ . . . ∥x′l, x1, . . . , xl−1 ∈ {0, 1}n, x′l ∈ {0, 1}<n, and

x′l is an empty string if L is already divisible by n. Clearly, if Σ =
l−1∑
i=1

xi + (x′l∥10n−1−|x′
l|),

then g0(X)∥(Σ, 0) = g(X).
The simulator accepts two types of queries: either a forward ideal cipher query (+, y, x),

where x ∈ {0, 1}n corresponds to a plaintext and y ∈ {0, 1}n to a cipher key, on which
it returns a ciphertext z ∈ {0, 1}n; or an inverse query (−, y, z), on which it returns a
plaintext x. The simulator maintains a table T , which contains triples (y, x, z) ∈ {0, 1}n ×
× {0, 1}n × {0, 1}n.

Forward query.When the simulator gets a forward query (+, y, x), it looks up the table T
for a triple (y, x, z) for some z. It returns z if such a triple exists. If there is no such triple,
the simulator chooses z randomly, puts the triple (y, x, z) in the table, and returns z to the
distinguisher. Additionally, in that case the simulator proceeds with the following routine.
It looks up the table for a sequence (y1, x1, z1), . . . , (yl, xl, zl) of length l = ⌊int(x)/n⌋ + 1
such that:

� there exists X such that g0(X) = (x1,∆1)∥(x2,∆2)∥ . . . ∥(xl, ∆̃l)∥(x, 0);
� it is the case that y1 = IV ;
� for each i = 2, . . . , l, it is the case that yi = xi−1 ⊕ yi−1 ⊕ zi−1 ⊕∆i−1;
� it is the case that y = xl ⊕ yl ⊕ zl ⊕ ∆̃l.

If such sequence exists, the simulator forms a pair (yl+2, xl+2) such that yl+2 = x ⊕

⊕ y ⊕ z and xl+2 =
l−1∑
i=1

xi + x′l, where X = x1∥ . . . ∥x′l. It is easy to see that g(X) =

= (x1,∆1)∥ . . . ∥(xl, ∆̃l)∥(x, 0)∥(xl+2, 0). The simulator does nothing if there already exists
a triple (yl+2, xl+2, z

′) for some z′ in the table T . Otherwise, it computes z′ to form a triple
(yl+2, xl+2, z

′), which will be consistent with a random oracle output onX, in advance. To do

Streebog as a random oracle 33

this, it queries the random oracle to get the output Z = H(X), computes z′ = Z⊕xl+2⊕yl+2

and stores the triple (yl+2, xl+2, z
′) in the table T 2.

Inverse query. On an inverse query (−, y, z) the simulator acts almost similarly. It looks
up the table T for a triple (y, x, z) for some x. It returns x if such triple exists. If there is
no such triple, the simulator chooses x randomly, puts the triple (y, x, z) in the table, and
returns x to the distinguisher. In this case, it proceeds with completely the same routine
as described above.

We will denote the number of entries in the table T by q. It is clear that qE ⩽ q ⩽ 2qE,
since for each adversarial query to S, at most one additional record can be added to the
table T besides the answer to the query itself.

Proof of indi�erentiability. Due to the de�nition of indi�erentiability, if the following
inequality holds for every distinguisher D:∣∣Pr[DH,E → 1

]
− Pr

[
DH,S → 1

]∣∣ ⩽ ε,

then the theorem follows. So we have to prove that no discriminator D can distinguish
between these two words except with probability ε. We will do that using the game hopping
technique, starting in the world with the random oracle H and the simulator S and moving
through the sequence of indistinguishable games to the world with the Streebog construction
and the ideal cipher E .

Game 1 → Game 2. The Game 1 is the starting point, where D has access to the
random oracle H and the simulator S. In the Game 2 (Fig. 4), we give D access to the relay
algorithm R0 instead of direct access to H. R0, in its turn, has access to the random oracle
and on distinguisher's queries simply answers with H(X). Let us denote by Gi the events
that D returns 1 in Game i. It is clear that Pr[G1] = Pr[G2].

Fig. 4. Game 2

Game 2 → Game 3. In the Game 3, we modify the simulator S by introducing failure
conditions. The simulator explicitly fails (i.e., returns an error symbol ⊥) when answering to
the distinguisher's query, if it computes the response satisfying one of the following failure
conditions. Let S0 denote the modi�ed simulator.

We introduce two types of failure conditions. Each condition captures di�erent relations
between the simulator's answers that could be exploited by the distinguisher. By failing,
the simulator �gives� the distinguisher an immediate win. Our longterm goal is to show
that, unless the failure happens, distinguisher cannot tell apart Game 2 form the ideal
cipher world. The simulator S0 chooses response to the forward or inverse query similarly
to the simulator S and then checks the resulting triple (y, x, z) for the conditions de�ned
below. For each type of conditions we also provide a brief motivation behind it, i.e., how
the distinguisher can exploit corresponding situations to tell apart two worlds.

2In the case of k = 256, the simulator �rst pads Z with 256 randomly chosen bits and then computes
z′ = Z ⊕ xl+2 ⊕ yl+2.

34 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

Conditions of type 1. Conditions of type 1 are checked if the answer to the query
was chosen randomly or the discriminator was �rst returned with a value selected by the
simulator as corresponding to a random oracle and previously tabulated:

1) Condition B11: x⊕ y ⊕ z = IV .
2) Condition B12: there exists l ∈ {1, . . . , lm} such that x⊕ y ⊕ z ⊕ ∆̃l = IV .
3) Condition B13: there exist a triple (y′, x′, z′) ∈ T and i ∈ {1, . . . , lm − 1} such that

x⊕ y ⊕ z = x′ ⊕ y′ ⊕ z′ ⊕∆i. Note that
∣∣{∆i : i ∈ {1, 2, . . .}}

∣∣ ⩽ n.
4) Condition B14: there exist a triple (y′, x′, z′) ∈ T and l ∈ {1, . . . , lm} such that

x⊕ y ⊕ z = x′ ⊕ y′ ⊕ z′ ⊕ ∆̃l.
5) Condition B15: there exists a triple (y

′, x′, z′) ∈ T such that x⊕ y⊕ z = x′⊕ y′⊕ z′.
The type 1 conditions correspond to the situation when the internal states of two

Streebog computational chains for di�erent messages collide. The distinguisher can exploit
that situation in a number of ways, for example, it can force these two chains to end with
the same block, which will give the same result for two di�erent messages. From this,
the distinguisher can easily distinguish between the two worlds by querying its left oracle
with these messages. Other bad situations which correspond to this type of conditions are
analyzed in the proof of Lemma 1.

Conditions of type 2. Conditions of type 2 are checked if only the answer to the query
was chosen by the simulator randomly (i.e., the answer was not taken from the table):

1) Condition B21: there exists a triple (y
′, x′, z′) ∈ T such that x⊕ y ⊕ z = y′.

2) Condition B22: there exist a triple (y′, x′, z′) ∈ T and i ∈ {1, . . . , lm − 1} such that
x⊕ y ⊕ z = y′ ⊕∆i.

3) Condition B23: there exist a triple (y′, x′, z′) ∈ T and l ∈ {1, . . . , lm} such that
x⊕ y ⊕ z = y′ ⊕ ∆̃l.

The conditions of type 2 correspond to a situation when some block in the computational
chain is queried sometime after the query corresponding to the next block was made. In this
case, this query can be made even after the query for the last block in the chain was. The
distinguisher can then easily tell two worlds apart, because the simulator did not choose the
answer to the last query to be consistent with the random oracle. Notice that conditions
of that type are only checked when the simulator chooses the answer randomly itself.
Otherwise, the distinguisher can easily force the failure event using the random oracle, for
example, it can choose an arbitrary X, query the random oracle for Z = H(X), then query
the right oracle with (+, Z, x) for some x, and �nally compute the Streebog construction for
X using its right oracle. The simulator would then fail due to condition B21 when answering
for the last block of the computational chain. However, such a situation will not help the
distinguisher, since this is in a sense an extension of the computational message chain with
new blocks, which will not lead to another valid computational chain due to our pre�x-free
encoding g. Bad situations which correspond to this type of conditions are analyzed in the
proof of Lemma 2.

The probability of the event that the simulator fails due to one of the failure conditions
is estimated as follows:

Pr[S0 fails] ⩽
(1 + lm)qE

2n−1
+

(1 + n+ lm)q
2
E

2n−4
.

That bound directly follows from Lemma 3 with qS = qE, which is given in Appendix
Appendix A. The proof of this statement is rather technical and is also provided in Appendix
Appendix A.

Streebog as a random oracle 35

Since Game 2 and Game 3 are di�erent only in situations, where the simulator S0 fails,
it is clear that∣∣Pr[G2]− Pr[G3]

∣∣ ⩽ Pr[S0 fails] ⩽
(1 + lm)qE

2n−1
+

(1 + n+ lm)q
2
E

2n−4
.

Now, before we proceed to the next game, our aim is to show that unless the simulator
fails, its outputs are always consistent with random oracle outputs, i.e., it does not matter
if the distinguisher is computing the Streebog construction with its right oracle (maybe in
some unsual way) or queries the random oracle, the results would be the same. To do this,
we prove two lemmas, where Lemma 2 formalizes the outlined goal.

The �rst lemma states that in the table T there are no two sequences of triples
corresponding to computational chains with two di�erent inputs such that the last block of
one chain is the �rst, middle, or last block of another, unless S0 fails.

Lemma 1. If the simulator S0 does not fail, then in the table T there are no
two di�erent sequences of triples (y1, x1, z1), . . . , (yl+2, xl+2, zl+2) and (y′1, x

′
1, z

′
1), . . . ,

(y′p+2, x
′
p+2, z

′
p+2), where l, p ⩽ lm, such that the following conditions hold:

� there exist X and X ′ such that g(X) = (x1,∆1)∥ . . . ∥(xl+1, 0)∥(xl+2, 0) and g(X ′) =
= (x′1,∆1)∥ . . . ∥(x′p+1, 0)∥(x′p+2, 0);

� it is the case that y1 = y′1 = IV ;
� for each i = 2, . . . , l and j = 2, . . . , p, it is the case that yi = xi−1 ⊕ yi−1 ⊕ zi−1 ⊕∆i−1

and y′j = x′j−1 ⊕ y′j−1 ⊕ z′j−1 ⊕∆j−1;

� it is the case that yl+1 = xl ⊕ yl ⊕ zl ⊕ ∆̃l and y
′
p+1 = x′p ⊕ y′p ⊕ z′p ⊕ ∆̃l;

� it is the case that yl+2 = xl+1 ⊕ yl+1 ⊕ zl+1 and y
′
p+2 = x′p+1 ⊕ y′p+1 ⊕ z′p+1;

� there exists s ∈ {1, . . . , l + 2} such that (ys, xs, zs) = (y′p+2, x
′
p+2, z

′
p+2).

Proof. Let us suppose that there exist two sequences (y1, x1, z1), . . . , (yl+2, xl+2, zl+2)
and (y′1, x

′
1, z

′
1), . . . , (y

′
p+2, x

′
p+2, z

′
p+2) in the table T , which satisfy conditions of the lemma.

Then there exists the maximum r ∈ {1, . . . ,min(s, p+ 2)} such that

(ys−i, xs−i, zs−i) = (y′p−2−i, x
′
p−2−i, z

′
p−2−i), i = 0, . . . , r − 1.

In other words, r is the length of the subsequence of equal triples ending with (ys, xs, zs) =
= (y′p+2, x

′
p+2, z

′
p+2). We will now consider several cases depending on values of r and l.

Notice that r ⩽ s ⩽ l + 2.
T h e c a s e r = 1. Since it is true that (ys, xs, zs) = (y′p+2, x

′
p+2, z

′
p+2), we can deduce

that one of the following equalities has to hold:

1) if s = 1, then ys = IV . Hence, x′p+1 ⊕ y′p+1 ⊕ z′p+1 = y′p+2 = ys = IV ;
2) if s ∈ {2, . . . , l}, then ys = xs−1 ⊕ ys−1 ⊕ zs−1 ⊕∆s−1. Hence, x

′
p+1 ⊕ y′p+1 ⊕ z′p+1 =

= xs−1 ⊕ ys−1 ⊕ zs−1 ⊕∆s−1;
3) if s = l + 1, then ys = xs−1 ⊕ ys−1 ⊕ zs−1 ⊕ ∆̃s−1. Hence, x

′
p+1 ⊕ y′p+1 ⊕ z′p+1 =

= xs−1 ⊕ ys−1 ⊕ zs−1 ⊕ ∆̃l;
4) if s = l+2, then ys = xs−1⊕ys−1⊕zs−1. Hence, x

′
p+1⊕y′p+1⊕z′p+1 = xs−1⊕ys−1⊕zs−1.

However, it is easy to see that the above equalities correspond to the failure conditions
B11, B13, B14, B15, respectively. Therefore, one of these failure conditions would have been
triggered if a forward or inverse query which corresponds to the triple (ys−1, xs−1, zs−1) or
(y′p+1, x

′
p+1, z

′
p+1) (depending on which of them was made later) was made.

T h e c a s e r ⩾ 2, l > 1 and r = 3, l = 1. Since r ⩾ 2, it is easy to see that the
same inequality holds for s. Thereof, from y′p+2 = ys and the lemma statement we have

36 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

that x′p+1 ⊕ y′p+1 ⊕ z′p+1 ⊕ 0 = xs−1 ⊕ ys−1 ⊕ zs−1 ⊕ c for some c ∈ {∆1, . . . ,∆l−1, ∆̃l, 0}.
However, since from r ⩾ 2 we have (ys−1, xs−1, zs−1) = (y′p+1, x

′
p+1, z

′
p+1), the constant c has

to be equal to 0. It is also easy to see that none of the values {∆1, . . . ,∆l−1, ∆̃l} is equal
to 0 when l > 1. Hence, due to the encoding g, it is only possible that the triple (ys, xs, zs)
is the last one in the sequence and s = l + 2.

Thereof, xl+1 = x′p+1, where, due to the de�nition of g, xl+1 and x
′
p+1 are equal to |X| and

|X ′| correspondingly. Consequently, since by de�nition l = ⌊|X|/n⌋+1 and p = ⌊|X ′|/n⌋+1,
we have that p = l.

Finally, consider triples (yl+2−r, xl+2−r, zl+2−r) ̸= (y′l+2−r, x
′
l+2−r, z

′
l+2−r). Notice that r <

< l + 2 or else the considered sequences are equal (that excludes the r = 3, l = 1 case at
all). Since yl+2−r+1 = y′l+2−r+1, the following equality has to hold:

yl+2−r ⊕ xl+2−r ⊕ zl+2−r ⊕ c = y′l+2−r ⊕ x′l+2−r ⊕ z′l+2−r ⊕ c,

where c is equal either to ∆l+2−r or ∆̃l+2−r. However, it is easy to see that in either way
the equality matches the failure condition B15. Therefore, it would have been triggered
if a forward or inverse query which corresponds to the triple (yl+2−r, xl+2−r, zl+2−r) or
(y′l+2−r, x

′
l+2−r, z

′
l+2−r) (depending on which of them was made later) was made.

T h e c a s e r = 2 and l = 1. We have that ∆̃l is equal to 0, hence two situations are
possible. The �rst one is when s = 3, the reasoning here is exactly the same as in the last
case, since equal triples are the last two triples in the sequences.

The second one is when s = 2. From that and since r = 2, we have that (y1, x1, z1) =
= (y′p+1, x

′
p+1, z

′
p+1). From the lemma statement, y1 = IV and y′p+1 = x′p ⊕ y′p ⊕ z′p ⊕ ∆̃p,

thereof the following equality has to hold:

x′p ⊕ y′p ⊕ z′p ⊕ ∆̃p = IV.

However, it is easy to see that the equality matches the failure condition B12. Hence, it
would have been triggered, when a forward or inverse query which corresponds to the triple
(y′p, x

′
p, z

′
p) was made.

We have considered all possible pairs (r, l). Hence, we can conclude that no such
sequences can exist if the simulator S0 does not fail.

Now we prove that the outputs of the simulator are consistent with the random oracle
unless it fails. To do this, we show that if the distinguisher at some point computes the
Streebog construction itself, it has to do that block-by-block, with the last triple of the
computational chain being consistent with the random oracle.

Lemma 2. Consider any sequence of triples (y1, x1, z1), . . . , (yl+2, xl+2, zl+2), where
l ⩽ lm, from the table T such that the following conditions hold:

� there exists X such that g(X) = (x1,∆1)∥ . . . ∥(xl+1, 0)∥(xl+2, 0);
� it is the case that y1 = IV ;
� for each i = 2, . . . , l, it is the case that yi = xi−1 ⊕ yi−1 ⊕ zi−1 ⊕∆i−1;
� it is the case that yl+1 = xl ⊕ yl ⊕ zl ⊕ ∆̃l;
� it is the case that yl+2 = xl+1 ⊕ yl+1 ⊕ zl+1.

If the simulator S0 does not fail, then it must be the case the triples (y1, x1, z1), . . . ,
(yl+1, xl+1, zl+1) were put in the table T exactly in that order and answers to the
corresponding queries were chosen randomly by the simulator. It is also necessary that the
triple (yl+2, xl+2, zl+2) was put in the table simultaneously with the triple (yl+1, xl+1, zl+1),
chosen to be consistent with the random oracle output H(X).

Streebog as a random oracle 37

Proof. Let us suppose that there exists i ∈ {1, . . . , l+1} such that the triple (yi, xi, zi)
was put in the table as a result of the corresponding forward or inverse query, when the
triple (yi+1, xi+1, zi+1) already existed in the table T . For that pair of triples the following
equality holds:

yi ⊕ xi ⊕ zi ⊕ c = yi+1,

where c is one of the values {∆i, ∆̃i, 0}, depending on the value of i. From Lemma 1 it
follows that the triple (yi, xi, zi) could not be the last in the computational chain of some
message X ′ ̸= X. In other words, the answer to the corresponding query was not chosen to
be consistent with the random oracle, but was chosen randomly by the simulator. Hence,
on the query corresponding to the triple (yi, xi, zi) one of the failure conditions of type 2
would have been triggered.

Thereby, when the query corresponding to the triple (yl+1, xl+1, zl+1) is made, triples
(y1, x1, z1), . . . , (yl, xl, zl) already exist in the table and the triple (yl+2, xl+2, zl+2) does not.
These triples satisfy the conditions of the simulator's routine and it has to choose the triple
(yl+2, xl+2, zl+2) to be consistent with the random oracle and put it in the table with the
triple (yl+1, xl+1, zl+1).

Game 3→ Game 4. In Game 4 (Fig. 5), we modify the relay algorithm R0. Let R1 denote
the modi�ed algorithm. It does not have access to the random oracle. On a distinguisher
query X, R1 applies the Streebog construction to X using the simulator for the block
cipher E. Notice that now at most qE + qH(lm + 2) queries are made to S0.

Fig. 5. Game 4

Let fail3 and fail4 denote the events when the simulator fails in the corresponding
game. From Lemma 2 it follows that, unless the simulator does not fail, answers of the
modi�ed relay algorithm R1 are exactly the outputs of the random oracle on corresponding
messages, since the simulator's answers are consistent with the random oracle. Hence, if
the simulator does not fail in either world, the view of the distinguisher remains unchanged
from Game 3 to Game 4:

Pr
[
G3 | fail3

]
= Pr

[
G4 | fail4

]
.

Probability of the event fail3 was estimated earlier in the transition from Game 2 to Game 3.
Probability of the event fail4 is estimated from Lemma 3, where qS = qE + qH(lm + 2).
Thus, we have:∣∣Pr[G3]− Pr[G4]

∣∣ = ∣∣Pr[G3 | fail3
]
Pr
[
fail3

]
+ Pr[G3 | fail3] Pr[fail3]−

−Pr
[
G4 | fail4

]
Pr
[
fail4

]
− Pr[G4 | fail4] Pr[fail4]

∣∣ ⩽ Pr
[
G3 | fail3

]
·
∣∣Pr[fail3]−

−Pr
[
fail4

] ∣∣+ ∣∣Pr[G3 | fail3] Pr[fail3]− Pr[G4 | fail4] Pr[fail4]
∣∣ ⩽

⩽
∣∣Pr[fail4]− Pr[fail3]

∣∣+ ∣∣Pr[G3 | fail3] Pr[fail3]− Pr[G4 | fail4] Pr[fail4]
∣∣ ⩽

⩽ max(Pr[fail3] ,Pr[fail4])+max(1·Pr[fail3]−0·Pr[fail4] , 0·Pr[fail3] +1·Pr[fail4]) ⩽

38 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

⩽ 2max (Pr[fail3] ,Pr[fail4]) ⩽ 2

(
(1+lm)(qE+qH(lm+2))

2n−1
+

(1+n+lm)(qE+qH(lm+2))2

2n−4

)
.

Game 4 → Game 5. In Game 5 (Fig. 6) we modify the simulator. Let S1 denote the
modi�ed simulator. It does not consult the random oracle when answering the query, it
still maintains a table T of triples (x, y, z). On a forward query (+, y, x), it searches the
table T for a triple (y, x, z) for some z. It returns z if such triple exists. If there is no such
triple, the simulator chooses z randomly, puts the triple (y, x, z) in the table and returns z
to the distinguisher. It acts similarly to answer the inverse query (−, y, z), but chooses a
random x, if there is no corresponding triple.

Fig. 6. The ideal cipher world and Game 5

The simulator responses in both games are identical except for the S0 failure condition.
This is true because even when S0 chooses the answer using the random oracle, all its
answers look uniformly distributed to the distinguisher as it does not have a direct access
to the random oracle in Game 4. Hence, the view of the distinguisher is identical in both
games if the simulator does not fail in Game 4, and if in Game 5 the simulator does not give
a response, which would have led to failure in Game 4. The probabilities of these events
are equal, since the number of queries to the simulators in both games is the same, and
the distribution of the responses of the simulators is identical. Let us denote the event
�S1 should have failed� by fail5. Hence, the following inequality holds:∣∣Pr[G4]− Pr[G5]

∣∣ = ∣∣Pr[G4 | fail4
]
Pr
[
fail4

]
+ Pr[G4 | fail4] Pr[fail4]−

−Pr
[
G5 | fail5

]
Pr
[
fail5

]
− Pr[G5 | fail5] Pr[fail5]

∣∣ =
=
∣∣Pr[G4 | fail4] Pr[fail4]− Pr[G5 | fail5] Pr[fail5]

∣∣ ⩽
⩽ Pr[G4 | fail4] Pr[fail4] + Pr[G5 | fail5] Pr[fail5] ⩽ Pr[fail4] + Pr[fail5] =

= 2Pr[fail4] ⩽ 2

(
(1 + lm)(qE + qH(lm + 2))

2n−1
+

(1 + n+ lm)(qE + qH(lm + 2))2

2n−4

)
.

Game 5→ Game 6. In the �nal game we replace the simulator S1 with the ideal cipher E .
Since the relay algorithm R1 is the Streebog construction and now it uses the ideal cipher
for E, the Game 6 is exactly the ideal cipher model.

We now have to show that the view of the distinguisher remains almost unchanged.
The outputs of the ideal cipher and the simulator S1 have di�erent distributions: the ideal
cipher is a permutation for each key and S1 chooses its answers randomly. Hence, the
distinguisher can tell apart two games only if forward/inverse outputs of the simulator
collide for the same key. The probability of that event is at most the birthday bound
through all queries. Thus, we have

∣∣Pr[G5]− Pr[G6]
∣∣ ⩽ (qE + qH(lm + 2))2

2n
.

Streebog as a random oracle 39

Finally, combining all the transitions and since Game 6 is exactly the ideal cipher model,
we can deduce that∣∣Pr[DH,E → 1

]
− Pr

[
DH,S → 1

] ∣∣ ⩽ (1 + lm)qE
2n−1

+
(1 + n+ lm)q

2
E

2n−4
+

+4

(
(1 + lm)(qE + qH(lm + 2))

2n−1
+

(1 + n+ lm)(qE + qH(lm + 2))2

2n−4

)
+

(qE + qH(lm + 2))2

2n
.

The statement of Theorem 1 hence follows.

4. Conclusion
In the paper, we prove that the Streebog hash function is indi�erentiable from a random

oracle under the ideal cipher assumption for the underlying block cipher. From a practical
point of view, under this assumption Streebog can be considered as a random oracle as long
as computational power of the adversary remains much less than 2n/2 operations. However,
it is still an open problem to determine if it is possible to prove indi�erentiability of Streebog
and other hash functions under idealized assumptions for even lower-level objects than a
block cipher.

Acknowledgement
The authors are very grateful to Vitaly Kiryukhin for useful discussions and valuable

comments, which greatly contributed to the quality of the paper, as well as for verifying
the results.

REFERENCES

1. Bellare M. and Rogaway P. Random oracles are practical: A paradigm for designing e�cient
protocols. Proc. 1st ACM Conf. CCS'93, N.Y., ACM, 1993, pp. 62�73.

2. Rescorla E. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August
2018, https://datatracker.ietf.org/doc/html/rfc8446.

3. Kaufman C., Ho�man P., Nir Y., et al. Internet Key Exchange Protocol Version 2 (IKEv2).
RFC 7296, October 2014, https://datatracker.ietf.org/doc/html/rfc7296.

4. Schnorr C. P. E�cient identi�cation and signatures for smart cards. LNCS, 1990, vol. 435,
pp. 239�252.

5. Pointcheval D. and Stern J. Security proofs for signature schemes. LNCS, 1996, vol. 1070,
pp. 387�398.

6. Smyshlyaev S., Alekseev E., Griboedova E., et al. GOST Cipher Suites for Transport Layer
Security (TLS) Protocol Version 1.3. RFC 9367, February 2023, https://datatracker.ietf.
org/doc/rfc9367.

7. Smyslov V. Using GOST Ciphers in the Encapsulating Security Payload (ESP) and Internet
Key Exchange Version 2 (IKEv2) Protocols. RFC 9227, March 2022, https://datatracker.
ietf.org/doc/rfc9227.

8. Smyshlyaev S., Alekseev E., Oshkin I., and Popov V. The Security Evaluated Standardized
Password-Authenticated Key Exchange (SESPAKE) Protocol. RFC 8133, March 2017,
https://datatracker.ietf.org/doc/html/rfc8133.

9. Alekseev E.K. and Smyshlyaev S.V. O bezopasnosti protokola SESPAKE [On security of
the SESPAKE protocol]. Prikladnaya Diskretnaya Matematika, 2020, no. 50, pp. 5�41. (in
Russian)

10. Akhmetzyanova L.R., Alekseev E.K., Babueva A.A., and Smyshlyaev S.V. On methods of
shortening ElGamal-type signatures. Mat. Vopr. Kriptogr., 2021, vol. 12, no. 2, pp. 75�91.

40 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

11. Tessaro S. and Zhu C. Short pairing-free blind signatures with exponential security. LNCS,
2022, vol. 13276, pp. 782�811.

12. Vysotskaya V.V. and Chizhov I. V. The security of the code-based signature scheme based
on the Stern identi�cation protocol. Prikladnaya Diskretnaya Matematika, 2022, no. 57,
pp. 67�90.

13. Coron J. S., Dodis Y., Malinaud C., and Puniya P. Merkle-Damg�ard revisited: How to
construct a hash function. LNCS, 2005, vol. 3621, pp. 430�448.

14. Coron J. S., Dodis Y., Malinaud C., and Puniya P. Merkle-Damg�ard revisited: How to
construct a hash function. Full version, 2005. https://cs.nyu.edu/~dodis/ps/merkle.pdf.

15. Maurer U.M., Renner R., and Holenstein C. Indi�erentiability, impossibility results on
reductions, and applications to the random oracle methodology. LNCS, 2004, vol. 2951,
pp. 21�39.

16. GOST R 34.11-2012. Informatsionnaya tekhnologiya. Kriptogra�cheskaya zashchita
informatsii. Funktsiya kheshirovaniya [Information Technology. Cryptographic Data Security.
Hash Function]. Moscow, Standartinform Publ., 2012. (in Russian)

17. Smyshlyaev S.V., Shishkin V.A., Marshalko G.B., et al. Obzor rezul'tatov analiza khesh-
funktsii GOST R 34.11-2012 [Overview of hash-function GOST R 34.11-2012 cryptoanalysis].
Problemy Informatsionnoy Bezopasnosti. Komp'yuternye Sistemy, 2015, vol. 4, pp. 147�153.
(in Russian)

18. Kiryukhin V. Keyed Streebog is a Secure PRF and MAC. 2022, Cryptology ePrint Archive,
2022. https://eprint.iacr.org/2022/972.

19. Ristenpart T., Shacham H., and Shrimpton T. Careful with composition: Limitations of the
indi�erentiability framework. LNCS, 2011, vol. 6632, pp. 487�506.

20. Guo J., Jean J., Leurent G., et al. The usage of counter revisited: Second-preimage attack on
new Russian standardized hash function. LNCS, 2014, vol. 8781, pp. 195�211.

Appendix A. Probability of the simulator's failure event
Lemma 3. Let S0 be a simulator de�ned in the proof of Theorem 1. Then the

probability of the event that the simulator S0 explicitly fails due to one of the failure
conditions B11, . . . , B23, de�ned in the proof of Theorem 1, satis�es the following bound:

Pr[S0 fails] =
(1 + lm)qS

2n−1
+

(1 + n+ lm)q
2
S

2n−4
,

where qS is a number of queries made to the simulator.

Proof. Let us denote by q the maximum number of entries in the table T , qS ⩽ q ⩽
⩽ 2qS. To estimate the desired probability, we consider each failure condition and bound
the probability that there exists a query to the simulator satisfying the condition. Let us
begin with conditions of type 1.

� Condition B11. It is the probability that one of at most q random n-bit strings (where
the randomness is due to either the simulator's random choice or the random oracle
output) is equal to �xed IV . Hence,

Pr[∃ query satisfying B11] ⩽
q

2n
.

� Condition B12. It is the probability that one of at most q random n-bit strings is equal
to one of lm strings IV ⊕ ∆̃l, l ∈ {1, . . . , lm}:

Pr[∃ query satisfying B12] ⩽
lm q

2n
.

Streebog as a random oracle 41

� Condition B13. To estimate the probability of this event, we will consider three separate
situations.
The �rst one is that there exists a query satisfying the condition, the answer to which was
chosen by the simulator randomly. The probability of that situation is the probability
that one of at most qS ⩽ q random n-bit strings is equal to one of less than nq strings
x′⊕y′⊕z′⊕∆i, (y

′, x′, z′) ∈ T , i ∈ {1, . . . , lm−1} (recall that |{∆i : i ∈ {1, 2, . . .}| ⩽ n).
Hence,

Pr[∃ query satisfying B13 and Situation 1] ⩽
n q2

2n
.

The second one is that there exists a query satisfying the condition, the answer to
which was chosen by the simulator to be consistent with the random oracle (then
x ⊕ y ⊕ z is exactly the random oracle output), and the triple (y′, x′, z′) ∈ T was
constructed independently from the random oracle (the answer to the corresponding
query was chosen randomly by the simulator itself). The probability of that situation is
the probability that one of at most qS ⩽ q random oracle n-bit outputs is equal to one
of less than nq strings x′ ⊕ y′ ⊕ z′ ⊕∆i, (y

′, x′, z′) ∈ T , i ∈ {1, . . . , lm − 1}. Hence,

Pr[∃ query satisfying B13 and Situation 2] ⩽
n q2

2n
.

The third one is that there exists a query satisfying the condition, the answer to which
was chosen by the simulator to be consistent with the random oracle, and the triple
(y′, x′, z′) ∈ T was also constructed to be consistent with the random oracle. Then both
x⊕ y⊕ z and x′⊕ y′⊕ z′ are the random oracle outputs on di�erent messages X and X ′

(they are di�erent since both triples have to be the last blocks of some computational
chains and there is only one computational chain for every X). The probability of that
situation is the probability that two random oracle outputs Z and Z ′ from at most
qS ⩽ q satisfy any of the less than n equalities Z ⊕ Z ′ = ∆i. Hence,

Pr[∃ query satisfying B13 and Situation 3] ⩽
n q2

2n
.

Finally, it is easy to see that

Pr[∃ query satisfying B13] ⩽ Pr[∃ query satisfying B13 and Situation 1] +

+Pr[∃ query satisfying B13 and Situation 2] + Pr[∃ query satisfying B13 and Situation 3] .

Hence,

Pr[∃ query satisfying B13] ⩽ 3
n q2

2n
.

� Condition B14. The probability of that event is estimated similarly to the previous one
with the di�erence that |{∆̃l : l = 1, . . . , lm}| = lm. Hence,

Pr[∃ query satisfying B14] ⩽ 3
lm q

2

2n
.

� Condition B15. The probability of that event is estimated similarly to the previous two:

Pr[∃ query satisfying B15] ⩽ 3
q2

2n
.

We proceed with conditions of type 2:

42 L. R. Akhmetzyanova, A. A. Babueva, A. A. Bozhko

� Condition B21. It is the probability that one of at most qS ⩽ q random n-bit strings,
where the randomness is due to either the simulator's random choice or the random
oracle output and is independent of the distinguisher's random tape, is equal to one
of q strings y′, (y′, x′, z′) ∈ T , where all y′ are chosen by the distinguisher. Hence,

Pr[∃ query satisfying B21] ⩽
q2

2n
.

� Condition B22. The probability of that event is estimated similarly to the previous one,
with the only di�erence that there are at most nq di�erent strings y′⊕∆i, (y

′, x′, z′) ∈ T ,
i ∈ {1, . . . , lm − 1}. Hence,

Pr[∃ query satisfying B22] ⩽
n q2

2n
.

� Condition B23. The probability of that event is estimated similarly to the previous ones,
with the di�erence that there are at most lm q di�erent strings y

′ ⊕ ∆̃l, (y
′, x′, z′) ∈ T ,

l ∈ {1, . . . , lm}. Hence,

Pr[∃ query satisfying B23] ⩽
lm q

2

2n
.

Finally, we estimate the probability of the event that the simulator fails:

Pr[S0 fails] ⩽ Pr[∃ query satisfying some bad condition] ⩽

⩽
(1 + lm)q

2n
+

(4 + 4n+ 4lm)q
2

2n
=

(1 + lm)qS
2n−1

+
(1 + n+ lm)q

2
S

2n−4
,

where the last inequality is due to q ⩽ 2qS.

