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Blind signature schemes are the essential element of many e-cash and e-voting sys-
tems. Anonymity in such systems is ensured through the blindness property of the
signature schemes. We discuss the blindness property and analyze several ElGamal-
type blind signature schemes regarding this property. We present effective attacks
violating blindness on three schemes.
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CxeMbl TOJIUCH BCJIEIYIO SBJISIIOTCS HEOTHEMJIEMBIM 3JIEMEHTOM DOJIBIIOT0 KOJIUYe-
CTBa CUCTEM 3JIEKTPOHHBIX IJIaTeKell U CUCTeM JUCTAHIIMOHHOI'O 3JIEKTPOHHOI'O I'0JIO-
coBaHUsl. AHOHUMHOCTb B TAKUX CHUCTEMaX 00eCHednBaeTCst 3a CUET CBONCTBA HEOTC/Ie-
JKMBAEMOCTH CXeM rojrnucu Besernyto. Hacrosrmast pabora mocssiiena aHain3y HEKO-
TOPBIX CXEM TOJINCU BCJIEMYI0 HA OCHOBE ypaBHEHUs JJb-laMajs ¢ TOUKHU 3peHus
obecreuenns CBOMCTBA HEOTCIEKMBAEMOCTH. 1I0CTpOEHBI aTaku, HAPYIITAONINE CBOM-
CTBO HEOTCJIEXKMBAEMOCTH, Ha TPU CXEMBbI MOJIIUCH BCAENYI0 YKa3aHHOT'O THUIIA.

KimroueBbie cioBa: cxema nodnucu 6CACTIYT0, ceotlicmeo HeEOMCAENHCUBAEMOCTIU, CTE-
Ma Nodnucy G6CAECTIYIO TMuUna Iav-Tamansa.

1. Introduction

The blind signature mechanism was originally proposed by Chaum in 1982 in [1] for
e-cash systems. Signature issuing protocol is the interactive protocol that runs between
two parties: a Signer and a Requester. As the result, the Requester receives the signature
for a message without the Signer receiving any information about the message or the
signature value. The application of blind signature schemes includes electronic voting
systems, anonymous e-cash systems, direct anonymous attestation, anonymous credentials,
etc.
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Blind signature schemes should provide two security properties: unforgeability and
blindness. The first one is standard for all signature schemes and ensures that a valid
signature can be generated only during the interaction with the secret signing key holder.
The second property is more specific for this class of signature schemes and provides that
a Signer learns no additional information during the protocol execution. However, the way
to determine this information is not obvious. Intuitively, it seems that the message to be
signed should be hidden from the Signer, but it turns out that this is not enough.

In the paper, we discuss the blindness property and analyze several blind signature
schemes based on ElGamal equation (ElGamal-type blind signature schemes) regarding this
property. We present attacks violating blindness on schemes introduced in [2—4]. It seems
that one of them [3] was broken due to a misunderstanding of blindness property.

2. Blindness property

Before we talk about blindness, let us recall the definition of a blind signature scheme.
It is determined by three algorithms:

— (sk,pk) < KeyGen(): a key generation algorithm that outputs a secret key sk and a
public key pk;

— (b,0) <« (Signer(sk),Requester(pk,m)): an interactive signing protocol that is run
between a Signer with a secret key sk and a Requester with a public key pk and a
message m; the Signer outputs b = 1, if the interaction completes successfully, and
b = 0 otherwise, while the Requester outputs a signature o, if it terminates correctly,
and a fail indicator L otherwise;

— b « Verify(pk, m, 0): a (deterministic) verification algorithm that takes a public key pk,
a message m, and a signature o, and returns 1 if o is valid on m under pk and 0
otherwise.

Blindness. Informally, the blind signature scheme provides blindness if there is no
way to link a (message, signature) pair to the certain execution of the signing protocol.
In other words, the blindness is broken if the particular protocol execution for some fixed
message leads to fixing the signature value in an unambiguous way or at least to significant
narrowing the set of possible signature values. It means that for each protocol transcription
and message there exists only the small set of valid signature values (and hence, blinding
factors values) that could be produced during such protocol execution.

For a deeper understanding, we consider the example of using blind signature schemes in
e-voting systems. Suppose, that the authenticated voter performs a blind signature protocol
with the Registrar and receives a signature for his ballot (the ballot acts as the message in
this scenario). Note that in this case the transcription of the protocol is tied to a specific
person, his full name and personal information. After receiving the signature, the voter
sends a signed ballot to the ballot box anonymously. Thus, if one can link the protocol
transcription to the (message, signature) pair, then he can link the ballot to the specific
person and violate anonymity.

Towards formalizing. Let describe the regular blindness security notion introduced
in [5, 6]. An adversary acts as a malicious Signer and is powered to run the signing protocol
with the Requester twice. It is assumed that the Requester behaves correctly (according
to the protocol). After two successful interactions the Requester outputs two (message,
signature) pairs simultaneously. If at least one of the interactions failed, the Requester
outputs fail indicator.
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The adversary’s task (threat) is to link the transcription to the corresponding (message,
signature) pair with a probability of success significantly greater than 1/2. A strong and a
weak attacks may be also distinguished by the following criteria |7]:

— by key generation way (weak attack — the adversary generates key pair according to the
protocol, strong — in the malicious way);

— by the method of choosing messages, the signature for which the adversary should
distinguish (weak attack —the messages are chosen by the Requester, strong — by the
adversary).

Note that regular blindness assumes that all interactions terminates successfully.
However, extended security notions, that allow an adversary to initiate aborts, were
also introduced: a-posteriori blindness [8], selective-failure blindness [9]. The latter notion
was also extended to the multiple interaction case [10]. A-posteriori blindness originally
considers blindness of multiple executions between the Signer and the Requester, and
guarantees unlinkability of execution with (message, signature) pairs only for non-aborted
sessions. An adversary is powered to control the distribution on the signed messages, but not
to choose them. However, a-posteriori blindness does not imply ordinary blindness and vice
versa [8]. Selective-failure blindness guarantees that adversary could not force Requester
to abort the signing protocol because of a certain property of the Requester message,
which would disclose some information about the message to the adversary. Selective-failure
blindness is a strictly stronger notion than regular blindness [10].

3. Broken schemes

This section presents three ElGamal-type blind signature schemes that do not provide
blindness and the corresponding attacks. To address specific schemes, we name them by
the authors’ initials and the date of paper publication.

All considered schemes are based on the elliptic curve discrete logarithm problem. If p is
a prime number, then the set Z, is a finite field with characteristic p. We assume the
canonic representation of the elements in Z, as a natural number in the set {0,...,p —1}.
We define Z; as the set Z, without zero element. We denote the group of points of elliptic
curve over the field Z, by G, the order of the prime subgroup of G by ¢ and elliptic curve
point of order ¢ by P. For simplicity, we assume that p < g. A key generation algorithm
KeyGen in all schemes involves picking random d from Z; (secret signing key) and defining
@ = dP (public verifying key). We denote by H the hash function that maps binary strings
to elements from Z, and assume that all field operations are performed modulo g.

To avoid trivial attacks, we assume that during the signing protocol both the Signer
and the Requester check that field elements are nonzero, points belong to the used elliptic
curve and are not equal to the zero point. Moreover, the Requester should always check
that the values obtained from the Signer are valid for its query. If one of these checks fails,
the participant should abort the protocol with fail indicator.

All the proposed attacks are applied in the weak security model:

— key pair is generated correctly;

— Requester chooses the messages for signing on its own;

— an adversary does not need to know secret signing key;

— an adversary does not need to initiate aborts on the Requester side.

In fact, all these attacks may be performed by any external observer, not only the Signer.
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31. GYP16 schemes

Four blind signature schemes, based on ECDSA, GDSA, KCDSA, and DSTU schemes,
were proposed in [2]| in 2016. We present the definition of ECDSA-based scheme and attack
on it. The attacks on other schemes are constructed similarly.

Scheme description. The signing protocol is defined at Fig. 1.

The signing protocol

Signer(d, Q) Requester(Q,m)
ks Zy,
R+ kP
R
a8 Zy,
R <+ aR

r <— R.x mod ¢

r’ < R .x mod ¢

e < H(m)

e r(r)te (1)

r < R.x mod q
s« k7 (dr +e)

s sa tr/rt

o« (r', )

Fig. 1. GYP16 scheme: the signing protocol

The verification procedure for the message m and the signature (r, s) assumes computing
point R = s7}(rQ + eP), where ¢ = H(m), and verifying the equality R.z mod q = r.

Attack. We show that for fixed protocol transcription and message there exists only
the small set of valid signature values that could be produced during the given protocol
execution. Indeed, if the protocol transcription (R, e, s) and message m are fixed, then the
r = R.xmod g and ¢ = H(m) values are also fixed. The line (1) allows to define the 7’
component of the signature unambiguously as ' = re !¢/ and thus R’ point is fixed up
to sign. For each possible value R', there exists the unique a such that R' = aR. But
the « values are chosen uniformly at random, so the probability to choose «, such that
(aR).x mod ¢ = re~ e/, during several protocol executions is negligible. Therefore, with
overwhelming probability there exist only one signature with ' component satisfied the
condition in line (1).

Hence, the line (1) provides the criteria to break the blindness property. The exact
transcription (R, e, s) corresponds to the certain message m with signature (1, s) iff the
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following condition holds:
e=r(r)""e,
where ¢ = H(m).
3.2. RO0O scheme

Two blind signature schemes based on Schnorr and ElGamal (specifically, GOST)
signatures were proposed in [3] in 2000. Both of them are vulnerable to the same attack.
Let us show it on the GOST-based blind signature example.

Further, we assume that elliptic curve points can be represented as binary strings

(corresponding to their coordinates) and therefore may be passed as input to the hash
function H.

Scheme description. The signing protocol is defined at Fig. 2.

The signing protocol

Signer(d, Q) Requester(Q, m)
ks Zy,
R+ kP
r <« H(R)
R
a <87y
R + aR (1)
v« H(R) (2)
r <« H(R)
B rirt (3)
e < H(m)
e« afte (4)
e
s+ ke+dr
s
s« sf8
o+« (R,

Fig. 2. R0O0 scheme: the signing protocol

The verification procedure for the message m and the signature (R, s) assumes verifying
the equality sP = H(R)Q + eR, where e = H(m).

Attack. Similar to the previous scheme, we show that for a fixed protocol transcription
and message there are only few valid signatures that could be produced during the given
protocol execution. Indeed, if the protocol transcription (R, e, s) and message m are fixed,
then the r = H(R) and ¢/ = H(m) values are also fixed. Consider the line (4) of the protocol
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keeping in mind the relations from lines (1)—(3):
e=ap e =alr ) e =al) re = aH(aR) re.

The equation e = aH(aR)™'re’ for a has only few roots. However, o values are chosen
uniformly at random, so the probability to choose «, that satisfies the equation above,
during several protocol executions is negligible. Therefore, with overwhelming probability
there exists only one signature with R' = aR component for which « satisfies the condition
in line (4).

Hence, the criteria for breaking blindness can be constructed from the lines (1)—(4). The
exact transcription (R, e, s) corresponds to the certain message m with hash-value ¢’ and
signature (R',s’) iff the following condition holds:

aR =R,

where a = e(e/) " 'H(R')H(R) ™.
The attack on Schnorr-based blind signature [3] is defined using the same considerations.
Blindness understanding. The attack seems to become possible due to
misunderstanding of blindness property. The authors of [3| considered blindness as the
resistance to the attacks that lead to the disclosure of message m after the protocol
execution. However, blindness property is much wider. Indeed, the protocol transcription
may leak information about the signature value that also may violate blindness.

33. TNHV18 scheme

The similar attack is applicable to the aggregate blind signature scheme that was
proposed in 2018 in [4] (more precisely, two cases of Signing protocol differring on the
Requester side were proposed). It is also GOST-based scheme. Without loss of generality,
we omit the aggregation property and present the description of the scheme in the case of
a single Signer. Indeed, the following attack does not need the secret key knowledge and
can be performed by anyone who can view the set of protocol transcriptions and the set of
generated (message, signature) pairs.

Scheme description. The signing protocol is defined at Fig. 3.

The verification procedure for message m and signature (r,s) in both cases assumes
computing point R = e"'sP — e7!rQ, where e = H(m), and verifying the equality R.x =
r mod q.

Attack. Consider the first case of the scheme. As usual, we show that for a fixed
protocol transcription and message there are only few valid signatures that could be
produced during the given protocol execution. If the protocol transcription (R, 7, e, s) and
message m are fixed, then the ¢/ = H(m) value is also fixed. Consider the line (4) of the
protocol keeping in mind the relations from lines (1)—(3):

r=7r"la=(R.rmod q)B 'e(e)" = (BR+ aP).x mod q)3 'e(e/) ! =
= ((BR+e(¢) ' P).x mod q)B e(e/) .

The equation
r=((BR +e(¢') "' P).z mod ¢)5e(¢') !

for  has only few roots. However, § values are chosen uniformly at random, so the
probability to choose (3, such that the equation above is satisfied, during several protocol
executions is negligible. Therefore, with overwhelming probability there is only one signature
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The signing protocol

Signer(d, Q) Requester(Q, m)
Case 1 Case 2
ks Z,
R <+ kP
R
o, B +$7Z, o, B +$7Z,
¢ < H(m) e < H(m)
e+ ac’ e « B¢ (1)
R+ BR+aP R < a'R+P+Q(2)
'+ R.zmodq '+ R .zmodq (3)
r 'l r+ af(r' +¢€') (4)
e
5 < ke +dr
s

1 /

s Bats+ae s — B lals+e

o+ () o+ (s

Fif. 3. TNHV18 scheme: the signing protocol

with 7 component equal to (SR + e(¢/)"'P).x mod ¢, for which /3 satisfies the condition in
line (4).

Hence, lines (1)—(4) provide the following criteria for breaking blindness. The exact
transcription (R,r,e,s) corresponds to the certain message m with hash-value ¢ and
signature (r’,s’) iff the following condition holds:

R'.z mod ¢ =1,

where R = SR+ aP,a=e(e)™, B =rrla.

The attack on the second case of the scheme is justified similarly. The exact transcription
(R, 7, e,s) corresponds to the certain message m with hash-value ¢’ and signature (r/,s’) iff
the following condition holds:

R .x mod q =1,

where R = a 'R+ P+ Q,a=r371(r"+€)7!, B=ec(c).
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