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It is well known that every stream cipher is based on a good pseudorandom generator.
For cryptographic purposes, we are interested in generating pseudorandom sequences
with the maximum possible period. A feedback register is one of the most known cryp-
tographic primitives that is used to construct stream ciphers. We consider periodic
properties of pseudorandom sequences produced by filter and combiner generators
(two known schemes of stream generators based on feedback registers). We analyze
functions in these schemes that lead to output sequences of period at least a given
number ℓ. We call such functions ℓ-suitable and count the exact number of them for
an arbitrary n.
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Î ×ÈÑËÅ ℓ-ÏÎÄÕÎÄßÙÈÕ ÁÓËÅÂÛÕ ÔÓÍÊÖÈÉ
Â ÊÎÍÑÒÐÓÊÖÈßÕ ÔÈËÜÒÐÓÞÙÅÉ È ÊÎÌÁÈÍÈÐÓÞÙÅÉ
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∗∗Èíñòèòóò ìàòåìàòèêè èì. Ñ.Ë. Ñîáîëåâà, ã. Íîâîñèáèðñê, Ðîññèÿ

Èçâåñòíî, ÷òî ëþáîé ïîòî÷íûé øèôð îñíîâàí íà õîðîøåì ãåíåðàòîðå ïñåâäîñëó-
÷àéíûõ ÷èñåë. Â êðèïòîãðàôè÷åñêèõ öåëÿõ èçó÷àþòñÿ ðàçëè÷íûå ñïîñîáû ãåíå-
ðàöèè ïñåâäîñëó÷àéíûõ ïîñëåäîâàòåëüíîñòåé ñ ìàêñèìàëüíî âîçìîæíûì ïåðèî-
äîì. Ðåãèñòð ñäâèãà ñ îáðàòíîé ñâÿçüþ� îäèí èç êðèïòîãðàôè÷åñêèõ ïðèìèòè-
âîâ, êîòîðûé èñïîëüçóåòñÿ äëÿ ïîñòðîåíèÿ ïîòî÷íûõ øèôðîâ. Â ðàáîòå èçó÷àþò-
ñÿ ïåðèîäè÷åñêèå ñâîéñòâà ïñåâäîñëó÷àéíûõ ïîñëåäîâàòåëüíîñòåé, ñîçäàâàåìûõ
ôèëüòðóþùèì è êîìáèíèðóþùèì ãåíåðàòîðàìè (èçâåñòíûìè ñõåìàìè ïîòî÷íûõ
ãåíåðàòîðîâ íà îñíîâå ðåãèñòðîâ ñäâèãà ñ îáðàòíîé ñâÿçüþ). Â ýòèõ ñõåìàõ àíà-
ëèçèðóþòñÿ ôóíêöèè, êîòîðûå ïðèâîäÿò ê âûõîäíûì ïîñëåäîâàòåëüíîñòÿì ñ ïå-
ðèîäîì íå ìåíåå çàäàííîãî ÷èñëà ℓ. Ìû íàçûâàåì òàêèå ôóíêöèè ℓ-ïîäõîäÿùèìè
è ïîäñ÷èòûâàåì èõ òî÷íîå êîëè÷åñòâî äëÿ ïðîèçâîëüíîãî n.
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1. Introduction
Symmetric ciphers are usually divided into block and stream ciphers. Stream ciphers

are considered as more fast but not as secure as block ciphers. One of the most known
cryptographic primitives that is used to construct stream ciphers is a feedback shift
register (FSR). There are many attacks and defenses on such ciphers and countermeasures
against them, see, for instance, [1, 2].

The task of studying feedback registers leads to the problem of studying a pseudorandom
sequence (gamma) generated by a feedback register [3]. Cryptographers who develop various
pseudorandom number generators study the resulting gamma for the presence of the
necessary properties. For example, it should have a large period, high linear complexity, and
a uniform bit distribution [4]. It is often important that the sequence be reproducible [5].
Only if gamma has the required properties it can be considered for use in cryptographic
applications [6]. An important property of the generated sequence is the randomness. There
should be independence of values, unpredictability and uniform distribution [7]. Before
using a pseudorandom sequence, it is necessary to evaluate its randomness. There are many
di�erent statistical tests for this, for example, NIST, Diehard, ENT test [8].

The properties of the pseudorandom sequence generated by FSR are well studied in the
case when f is a linear function (LFSR). If f is nonlinear (see [9, 10]), there are too many
open questions related to pseudorandom sequences that all are connected to analysis of
nonlinear recurrent sequences, for example, see [11] for further review. That is why some
nonlinear combinations of LFSRs are usually considered, for instance, �lter and combining
models of stream generators [6].

Let us recall a few de�nitions. Let Fn
2 be the n-dimensional vector space over F2.

A Boolean function in n variables is a function f : Fn
2 → F2. A vector of values for

a given Boolean function f is the vector
(
f(x(1)), . . . , f(x(2

n))
)
, where x(1), . . . , x(2

n) are
binary vectors in Fn

2 that are lexicographically ordered. Any Boolean function f can be

represented uniquely in its algebraic normal form (ANF): f(x1, . . . , xn) =
⊕

I∈P(N)

aI

(∏
i∈I
xi

)
,

where P(N) is a power set of N = {1, . . . , n} and aI ∈ F2. For a Boolean function f , the
number of variables in the longest item of its ANF is called the algebraic degree of the
function. If algebraic degree of f is not more than 1, then f is called a�ne. A function is
called linear if it is a�ne and f(0) = 0. If algebraic degree of a function f is more than 1,
then f is called nonlinear.

A feedback shift register consists of two parts: a binary block x = (x1, . . . , xn) of length n
and a feedback function f , where f is a Boolean function in n variables. First, we �ll the
block x with constants, it is the initial state of the register. During the encryption process
the register is changing its state using the feedback function. Gamma is a pseudorandom
sequence generated by FSR. For functioning of the FSR the time is considered to be divided
into clock cycles. On each clock cycle, the value f(x) is calculated �rst, then the register
state x = (x1, . . . , xn−1, xn) goes to the state x

′ = (x2, . . . , xn, f(x)), while the bit x1 will
be written as the �rst bit of the generated gamma. A period is a length of repeating part
of gamma. If f is linear, we have LFSR. Similarly, nonlinear feedback shift register (NFSR)
uses nonlinear Boolean function as a feedback function. It is known that LFSR can be
also speci�ed by a feedback polynomial. It is a polynomial of degree n de�ning bits to
be summed. If f(x1, . . . , xn) = a1x1 ⊕ a2x2 ⊕ . . . ⊕ anxn, then the corresponding feedback
polynomial is de�ned as p(z) = a1z

n + a2z
n−1 + . . .+ anz + 1, where ai ∈ F2, i = 1, . . . , n.

If p(z) is a primitive polynomial, i.e., the primitive element of the �eld GF(2n) is its root,
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then the period of a pseudorandom sequence generated by LFSR is maximal, i.e., is equal
to 2n − 1. As a result, primitive polynomials are mainly used in LSFRs.

There are many stream ciphers based on LFSR and NFSR. One of them is Grain,
developed in 2004 [12]. It is constructed by combining model based on two shift registers,
one with linear feedback and one with nonlinear feedback, and a nonlinear output function.
Both linear and nonlinear shift register sizes are 80 bits. Another one is A5/1 cipher from
GSM standard [13]. It has three LSFRs of lengths 19, 22 and 23 bits with irregular clocking.
The registers are clocked in a stop/go fashion using a majority rule. The output is the sum
of the last bits of the three registers. We could also mention the Gollmann cascade [14].
This cipher is representative of åðó combining model. It consists of a series of LFSRs that
are clock-controlled by the previous LFSR. If all the LFSRs have the same length n, the
linear complexity of a system with k LFSRs is equal to n(2n − 1)k−1. Other examples of
ciphers that are based on LFSR and NFSR are Ge�e generator, Jennings generator, and
Beth �Piper Stop-and-Go generator.

In this paper, we analyze pseudorandom sequences produced by �lter and combiner
generators. Namely, we study functions in these schemes that lead to pseudorandom
sequences with a period not less than a given ℓ. We call such functions ℓ-suitable and
count the exact number of them for an arbitrary n.

This paper is a modi�ed continuation of the previous one [15].

2. The analysis of gamma for linear feedback shift register generators
2.1. F i l t e r g e n e r a t o r s

The �lter generator consists of a single LFSR of length n and uses a primitive polynomial
to change states. A Boolean function h(x1, . . . , xn) applied to the current state generates
a pseudorandom sequence (gamma). Let us note that the number of all possible functions
h(x1, . . . , xn) is equal to 22

n
. The work of the �lter generator is shown in [16].

Let gamma be de�ned as γ = (y1, y2, . . . , y2n−1), where y1 = h(x1, . . . , xn), y2 = h(x2,
. . . , xn, f(x1, . . . , xn)), etc., and f(x1, . . . , xn) is the feedback function. Since the number of
all nonzero states is equal to 2n−1, the maximum possible value of the gamma period is also
2n−1. We would like to determine all ℓ-suitable Boolean functions h in n variables. Functions
which lead to gammas with a period less than a given ℓ we would call ℓ-unsuitable. Note that
the number of such functions does not depend on a linear feedback function. But whether
the function is ℓ-suitable or not for the given generator, depends on the feedback function.
When we count the number of ℓ-suitable functions h, we do not consider a speci�c set of
states. We say that there is a certain number of di�erent states used by the generator (all
sets that are generated by primitive polynomials �t this de�nition). Next, we study which
pseudorandom sequences have the period not less than a given ℓ. We analyze the number of
ℓ-unsuitable functions and the number of ℓ-suitable functions. Thus, our reasonings do not
a�ect the speci�c order of the states. Therefore, there will be the exact calculated number
of ℓ-suitable functions h for any set of states used by the generator.

Let us provide some examples of ℓ-suitable and ℓ-unsuitable functions. Let n = 4 be
the length of a shift register, f(x1, x2, x3, x4) = x1 ⊕ x2 be a feedback function, and p(z) =
= z4 + z3 + 1 be a corresponding primitive polynomial. Let h1(x1, x2, x3, x4) = x2x1 ⊕
⊕x3x1⊕x3x2⊕x4x1⊕x1⊕x2⊕x3⊕1 and h2(x1, x2, x3, x4) = x4x2x1⊕x2x1⊕x3x2⊕x3⊕1
be Boolean functions in n variables. We present generated gamma for these functions in
the Table.
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States 0001 0010 0100 1001 0011 0110 1101 1010
h1(x1, x2, x3, x4) 1 0 0 1 0 0 1 0
h2(x1, x2, x3, x4) 1 0 1 1 0 1 1 0

States 0101 1011 0111 1111 1110 1100 1000 0001
h1(x1, x2, x3, x4) 0 1 0 0 1 0 0 1
h2(x1, x2, x3, x4) 1 0 1 1 0 0 1 1

Note that h1 and h2 generate the gamma with periods 3 and 15. If ℓ = 15, i.e., we
need a gamma with maximum period, then h1 is an ℓ-unsuitable function, h2 is a ℓ-suitable
function.

To begin with, we show the calculation of the number of ℓ-unsuitable sequences.
The number of aperiodic Boolean sequences has been studied in [17], we present our calcu-
lations of the number Uℓ of sequences with a period less than ℓ (ℓ-unsuitable sequences).

Lemma 1. Let ℓ = qω1
1 q

ω2
2 . . . qωk

k , where qi are pairwise distinct prime numbers,
ωi ∈ N. Then the number of ℓ-unsuitable sequences is equal to

Uℓ =
∑

β∈Fk
2 ,β ̸=0

(
(−1)β1+...+βk+12q

ω1−β1
1 ...q

ωk−βk
k

)
, where β = (β1, . . . , βk).

Proof. We can count the number of ℓ-unsuitable sequences of length ℓ only. Consider
sequences of length ℓ = qω1

1 q
ω2
2 . . . qωk

k with a period less than ℓ. Let Ai be a set of sequences
that can be divided on qi identical subsequences, i = 1, . . . , k. Then Ai ∩ Aj is a set of
sequences that can be divided on qi·j identical subsequences, where i ̸= j, i, j = 1, . . . , k.
Then Ai ∪ Aj is a set of sequences that can be divided on qi or qj identical subsequences,

where i ̸= j, i, j = 1, . . . , k. Hence, all ℓ-unsuitable sequences belong to the set
k⋃

i=1

Ai, and

Uℓ = |
k⋃

i=1

Ai|. When a sequence is divided into qi identical subsequences, the length of the

subsequence is equal to qω1
1 q

ω2
2 . . . qωi−1

i . . . qωk
k . Since the elements of the subsequences are

in {0, 1}, then

|Ai| = 2q
ω1
1 q

ω2
2 ...q

ω(i−1)
(i−1)

q
ωi−1
i q

ω(i+1)
(i+1)

...q
ωk
k ,

|Ai ∩ Aj| = 2q
ω1
1 q

ω2
2 ...q

ω(i−1)
(i−1)

q
ωi−1
i q

ω(i+1)
(i+1)

...q
ω(j−1)
(j−1)

q
ωj−1

j q
ω(j+1)
(j+1)

...q
ωk
k ,

. . .∣∣∣ k⋂
i=1

Ai

∣∣∣ = 2q
ω1−1
1 q

ω2−1
2 ...q

ωk−1

k .

Therefore, we can compute |
k⋃

i=1

Ai| using the inclusion-exclusion principle:

∣∣∣ k⋃
i=1

Ai

∣∣∣ = k∑
i=1

|Ai| −
∑

1⩽i<j⩽k

|Ai ∩ Aj|+
∑

1⩽i<j<t⩽k

|Ai ∩ Aj ∩ At| − . . .

+(−1)k−1|A1 ∩ A2 ∩ . . . ∩ Ak| =
k∑

i=1

2q
ω1
1 q

ω2
2 ...q

ω(i−1)
(i−1)

q
ωi−1
i q

ω(i+1)
(i+1)

...q
ωk
k −

−
∑

1⩽i<j⩽k

2q
ω1
1 q

ω2
2 ...q

ω(i−1)
(i−1)

q
ωi−1
i q

ω(i+1)
(i+1)

...q
ω(j−1)
(j−1)

q
ωj−1

j q
ω(j+1)
(j+1)

...q
ωk
k +
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. . .+ (−1)k−12q
ω1−1
1 q

ω2−1
2 ...q

ωk−1

k =
∑

β∈Fk
2 ,β ̸=0

(
(−1)β1+···+βk+12q

ω1−β1
1 ...q

ωk−βk
k

)
,

where β = (β1, . . . , βk).

Let us prove the main result for �lter generators.

Theorem 1. Let n ∈ N and ℓ is a divisor of 2n − 1, ℓ = qω1
1 q

ω2
2 . . . qωk

k , where qi are
pairwise distinct prime numbers, ωi ∈ N. Then the number of ℓ-suitable Boolean functions
in n variables for the �lter generator with LFSR based on a primitive polynomial of degree n
is equal to

22
n − 2

∑
β∈Fk

2 ,β ̸=0

(
(−1)β1+...+βk+12q

ω1−β1
1 ...q

ωk−βk
k

)
, where β = (β1, . . . , βk).

Proof. From Lemma 1 we know the number Uℓ of ℓ-unsuitable sequences of the length
2n − 1. We can write all states of the register one by one and from one state we get the
second one as the next state. Consider the vector of values of a Boolean function h that
generates our gamma. Since there is no zero state in the set of states (it generates the cycle
of length 1), function h can take any value (0 or 1) on zero vector. That is why there are
exactly two Boolean functions that generate the same sequence.

Hence, the number of ℓ-unsuitable functions is equal to 2Uℓ. Then, the number of ℓ-sui-
table functions is 22

n − 2Uℓ.

Similarly, we propose to count the number of Boolean functions in n variables leading
to gammas with period exactly equal to ℓ.

Theorem 2. Let n ∈ N and ℓ is a divisor of 2n − 1, ℓ = qω1
1 q

ω2
2 . . . qωk

k , where qi
are pairwise distinct prime numbers, ωi ∈ N. Then the number of Boolean functions
in n variables that lead to gammas with period exactly equal to ℓ for the �lter generator
with LFSR based on a primitive polynomial of degree n is equal to

2ℓ+1 − 2
∑

β∈Fk
2 ,β ̸=0

(
(−1)β1+...+βk+12q

ω1−β1
1 ...q

ωk−βk
k

)
, where β = (β1, . . . , βk).

Proof. To calculate the number of functions that lead to gammas with a period exactly
equal to ℓ, we take the number of functions that lead to gammas with a period not greater
than ℓ and subtract the number of functions that lead to gammas with a period less than ℓ.

The number of functions that lead to gammas with a period not greater than ℓ is equal
to 2ℓ+1. The remaining arguments are similar to those given in the proof of Theorem 1.

2.2. C o m b i n i n g m o d e l

Combiner generators use several LFSRs. Each register has its own length ni and uses its
own primitive polynomial for changing states. A Boolean function h(X1, . . . , Xm) generates
a pseudorandom sequence gamma, where Xi is a bit string of register i. The work of the
combiner generator is shown in [16].

Since we do not use zero state in LFSR, the total number of states does not exceed
N = (2n1−1)(2n2−1) . . . (2nm−1). In this case, the maximum is reached when (ni, nj) = 1
for all i, j ∈ {1, . . . ,m}, i ̸= j, and if all LFSRs have primitive feedback polynomials. Then
a Boolean function can generate a gamma with a period ranging from 1 to N .

We consider a more general model of a combiner generator. This generalized combining
model is used in ciphers such as Grain [12]. Note that the classical combining model does
not allow to describe a number of modern stream ciphers based on the more complicated
operating with bits from di�erent registers.
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Theorem 3. Let n,m, n1, . . . , nm ∈ N,
m∑
i=1

ni = n, and ℓ is a divisor of (2n1 − 1) . . .×

× (2nm−1), ℓ = qω1
1 q

ω2
2 . . . qωk

k , where qi are pairwise distinct prime numbers, ωi ∈ N, k ∈ N.
Then the number of ℓ-suitable Boolean functions in n variables for the combiner generator
with LFSRs of lengths n1, . . . , nm all based on primitive polynomials is equal to

22
n − 22

n−(2n1−1)...(2nm−1)
∑

β∈Fk
2 ,β ̸=0

(
(−1)β1+...+βk+12q

ω1−β1
1 ...q

ωk−βk
k

)
,

where β = (β1, . . . , βk).

Proof. Number of ℓ-unsuitable sequences for the combiner generators is equal to Uℓ, in
view of Lemma 1. Since we use only (2n1−1)(2n2−1) . . . (2nm−1) states and the total number
of states is equal to 2n1 2n2 . . . 2nm = 2n, then we have 2n − (2n1 − 1)(2n2 − 1) . . . (2nm − 1)
states, where our function can be equal to 0 or 1. Therefore, for one of these states we
have two functions. Thus, the number of ℓ-unsuitable Boolean functions in n variables for
the combiner generators equals 22

n−(2n1−1)(2n2−1)...(2nm−1) Uℓ. Then, the number of ℓ-suitable
functions is equal to 22

n − 22
n−(2n1−1)...(2nm−1) Uℓ.

Similarly, we propose to count the number of Boolean functions in n variables that lead
to gammas with period exactly equal to ℓ for the combiner generator with LFSRs of lengths
n1, . . . , nm.

Theorem 4. Let n,m, n1, . . . , nm ∈ N,
m∑
i=1

ni = n, and ℓ is a divisor of (2n1 − 1) . . .×

× (2nm−1), ℓ = qω1
1 q

ω2
2 . . . qωk

k , where qi are pairwise distinct prime numbers, ωi ∈ N, k ∈ N.
Then the number of Boolean functions in n variables that lead to gammas with period
exactly equal to ℓ for the combiner generator with LFSRs of lengths n1, . . . , nm all based
on primitive polynomials is equal to

2ℓ+(2n−(2n1−1)...(2nm−1)) − 22
n−(2n1−1)...(2nm−1)

∑
β∈Fk

2 ,β ̸=0

((−1)β1+...+βk+12q
ω1−β1
1 ...q

ωk−βk
k ),

where β = (β1, . . . , βk).

Proof. The proof is similar to that of Theorem 2 with the remark that the
number of functions that lead to gammas with a period not greater than ℓ is equal to
2ℓ+(2n−(2n1−1)...(2nm−1)).

3. Functions for models with nonlinear registers
A nonlinear feedback shift register (NFSR) consists of two parts: a binary vector x =

(x1, . . . , xn) of length n and a nonlinear state function f : Fn
2 → F2 in n variables.

Similarly to the linear case, let us consider the �lter generator. We assume that NFSR
passes over all 2n states, i.e., it has the maximum possible period.

Theorem 5. Let n ∈ N and ℓ = 2t, t ⩽ n. Then the number of ℓ-suitable Boolean
functions in n variables for the �lter generator with NFSR of the maximum possible period
is equal to 22

n − 22
t−1
.

Proof. The number of ℓ-unsuitable sequences for the �lter generator with NFSR is
equal to 22

t−1
. Since we use all the states then the number of ℓ-unsuitable sequences is equal

to the number of ℓ-unsuitable Boolean functions. Hence, the number of ℓ-unsuitable Boolean
functions in n variables for the �lter generator with NFSR is equal to 22

t−1
. Therefore, the

number of ℓ-suitable functions is 22
n − 22

t−1
.
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Similarly, we propose to count the number of Boolean functions in n variables that lead
to gammas with period exactly equal to ℓ for the �lter generator with NFSR.

Theorem 6. Let n ∈ N and ℓ = 2t, where t ⩽ n. Then the number of ℓ-suitable
Boolean functions in n variables that lead to gammas with period exactly equal to ℓ for the
�lter generator with NFSR of the maximum possible period is equal to 2ℓ − 22

t−1
.

Proof. To calculate the number of functions that lead to gammas with period exactly
equal to ℓ, we take the number of functions that lead to gammas with a period not greater
than ℓ (i.e., 2ℓ) and subtract the number of functions that lead to gammas with a period
less than ℓ (i.e., 22

t−1
).

There is another question related to NFSRs: how to determine for which nonlinear
feedback functions NFSR of length n generates gamma with the maximum possible
period 2n? This question is still open.
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