BECTHWK TOMCKOIO rOCYAPCTBEHHOIO YHUBEPCUTETA

2024 MaTematuka n MexaHuka Ne 88
Tomsk State University Journal of Mathematics and Mechanics

MATEMATHUKA

MATHEMATICS

Original article
UDC 519.63 MSC: 65M32
doi: 10.17223/19988621/88/1

Numerical method for restoring the initial condition
for the wave equation

Khanlar M. Gamzaev

Azerbaijan State Qil and Industry University, Western Caspian University,
Baku, Azerbaijan, xan.h@rambler.ru

Abstract. The inverse problem of restoring the initial condition for the time derivative
for the one-dimensional wave equation is considered. As an additional condition, the so-
lution of the wave equation at a finite time is given. First, the discretization of the deriva-
tive with respect to the spatial variable is carried out and the initial problem is reduced
to a differential-difference problem with respect to functions depending on the time vari-
able. To solve the resulting differential-difference problem, a special representation is
proposed, with the help of which the problem splits into two independent differential-
difference problems. As a result, an explicit formula is obtained for determining the ap-
proximate value of the desired function for each discrete value of a spatial variable. The
finite difference method is used for the numerical solution of the obtained differential-
difference problems. The presented results of numerical experiments conducted for model
problems demonstrate the effectiveness of the proposed computational algorithm.
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AHHoTanus. PaccmarpuBaercss oOpaTHas 3a7a4a BOCCTAHOBJICHHS! HAYAJIBHOTO YCIOBHUS
JUTSL TIPOM3BOJIHOM 10 BPEMEHH UIsi OJHOMEPHOTO BOJHOBOTO ypaBHEHHs. B kauecTBe
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JIOTIOJTHUTEIILHOTO YCJIOBUS 3aaeTCsl PELICHUE BOJIHOBOTO YpaBHEHUS B KOHEUHBIH MO-
MeHT BpeMeHH. CHavana MpoBOANTCS AUCKPETU3aNHs IPOU3BOAHOM 10 MPOCTPAHCTBEHHOM
MEPEMEHHOH, U HCXOJHas 3ajada CBOAUTCS K auddepeHunanbHO-pa3HOCTHOH 3anaue
OTHOCUTENFHO (PYHKIMH, 3aBUCAIINX OT BPEMEHHOH MepeMeHHOU. [t pemieHus moiy-
4eHHOH I PepeHnaTbHO-Pa3HOCTHON 3314y MPeaIaracTcs ClenHalbHOe MpecTaB-
JICHUE, C MOMOIIBI0 KOTOPOTo 3ajada paclafaeTcs Ha JBe He3aBUCHUMbIE AnQQepeHnn-
aJIbHO-PAa3HOCTHBIE 3a7aul. B pesyibrare nomydeHa siBHas (GopMylia Uit onpeeneHus
MPUONIHKEHHOTO 3HAYEHNsI HICKOMOH (DYHKIUH IIPU KaXKIOM AUCKPETHOM 3HAUCHUH IIPO-
CTPaHCTBEHHOH NepeMeHHOM. [l YMCIICHHOTO pellieH s TOyYeHHbIX AnddepeHnnaibHo-
Pa3HOCTHBIX 3ajgad HCHONB3yeTcs METoJ KOHEUYHBIX pasHocTed. IIpencraBieHHBIE
pe3yabTaThl YUCICHHBIX SKCIEPHUMEHTOB, IIPOBEICHHBIX JUI1 MOJEIbHBIX 3a/1ad, IEeMOH-
CTpUPYIOT 3POEKTUBHOCTD MPEUI0KEHHOTO BEIYUCIUTENFHOTO AJITOPUTMA.

KnrodeBrble cjioBa: BOITHOBOE ypaBHEHHE, 00paTHas 3aada, BOCCTAHOBJICHHE HAYAJIbHO-
ro ycioBwus, quddepeHranbHO-pa3HOCTHAS 3a/1a9a

Jas uurupoBanusi: ['am3aeB X.M. UucneHHbI MeTOA BOCCTAHOBICHHS HAYaJIbHOTO
YCIIOBHUSA IUIsS BOJHOBOTO ypaBHEHHs // BecTHHK TOMCKOTO rocyIapCcTBEHHOTO YHHBEPCH-
Tera. Maremarrka u Mexanuka. 2024, Ne 88. C. 5-13. doi: 10.17223/19988621/88/1

Introduction

It is known that inverse problems for wave equations occur in mathematical modeling
of many physical processes in geophysics, seismics, electrodynamics, thermophysics,
medicine, and many other fields of science and technology [1-5]. In these inverse prob-
lems, in addition to solving the wave equation, it is necessary to determine either the
right-hand sides, or coefficients, or initial conditions. It should be noted that a large
number of publications have been devoted to the study of the correctness, existence,
and unambiguous solvability of coefficient inverse problems and inverse problems for
determining the right parts of wave equations [6—12]. At the same time, much less
work has been devoted to the inverse problem of restoring the initial conditions for
wave equations. In a number of papers [13—16], Dirichlet-type problems for the wave
equation are presented as an inverse problem of restoring the initial condition and gra-
dient iterative methods are proposed for the numerical solution of such problems.

In this paper, a non-iterative computational algorithm is proposed for the numerical
solution of the inverse problem of restoring the initial condition for the time derivative
for a one-dimensional wave equation.

1. Problem statement and solution method

Let a one-dimensional wave equation
2’u(xt) H_2o au(x t)

e (k(x) ——)+f(x,t), O0<x<l O0<t<T, (1
be considered with the 1n1tlal Condltlons
u(x,0) =o(x), (2)
ou(x,0)
——==v(X), 3
p (x) 3)

and boundary conditions
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u(,1)=q(), (4)

u@Lt)=p(). o)

It is known that the direct problem for equation (1) consists in determining a func-

tion u(x,t) from equation (1) with a given coefficient k(x), the right side f(x,t) and
conditions (2)—(5).

Suppose that in addition to the function u(X,t), the function v(x) is also unknown

and the restoration of this function is required. In this case, as an additional condition,
the solution of equation (1) is given at a finite time

u(x,T)=w(x) , (6)
where y(X) is the given function.
Thus, the task is to determine the functions u(x,t) and v(x) satisfying equation (1)

and conditions (2)—(6). The problem belongs to the class of inverse problems associated
with the restoration of initial conditions for partial differential equations.
First, we transform the assigned task to a semi-discrete task. To this end, we intro-

duce a uniform difference grid in the domain [0 <x< 1] of a variable X
o, ={%=iAx i=012,..,n
with a step AX = 1
n

é’u(x t)

The differential expression —(k() ——=) in equation (7) for x=Xx,

i=12,..,n-1 is approximated by the central” drfference

—(k( )au(x t)) e
~i[k(xi Ax)w_km_&)w]
2 Ax 2 AX

Denoting U, (t) = u(X;,t), Ky, = k(xi i%}, equation (1) and conditions (2)—(5)

are written as the following system of ordinary differential equations
dzui(t) _ ki+112

|1/2 )
2 A uM(t)— b+ UL O+ O, 0<t<T,i=1n-1, (7)
u0) =9, i=0,n, (@)
du; (0) L —
o TR 9)
U, (t) =a(t), (10)
u, ) = p(®), an
u (M) =v;, i=0,_n’ (12)

where ki = (Ko +Ki 12)/2, V. 2V(X), @ =0(X), v, =w(x), ft)="f(x,t).
In the resulting differential-difference problem, the approximate values of the desired
functions v(x) in the nodes of the difference grid o, , i.e. v, and the functions u,(t),
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i=1 2,..,n-1, act as unknown. For the decomposition of the differential-difference

problem (7)—(12) into mutually independent subtasks, each of which can be solved
independently, its solution for each fixed value i=0,1, 2,..., n, is represented as

[17, 18]
u () =w(t)+v,0,(t), i=0,12, ..., n, (13)
where W (t), 6,(t) are unknown functions. Substituting the representation U, (t) into
equation (7), we obtain
2w (t 0,(t) kK
4w |, 00 _ Ko
dt dt AX?

W, 0+, kA e.ﬂ(t)—— (1) k'e(t)+

ki_ ki_
+F1/22\Ni—1(t)+vi—l A;/22 0., () + fi(t).

Replacing v,_, and v,,; with v;, the latter relation is represented as

i+1

d Wi(t)_km/z 2k; _ -1/2
{T w0+ WO - w0 - f(t)}

+Vi 29 (t) I(|+1/22
dt? AX
Substitution of representation (13) into (8)7(1 1) yields
W (0)+Vv, 6,(0) = ¢,
dw ), 40.0)_ -
dt dt
Wo )+ Voeo ®=q(),
W, (1) +v,0, (1) = p(t)-
From the obtained relations, it is possible to obtain differential-difference problems for
determining auxiliary functions w,(t), 6, (t) i=0,12..,n

e|+1(t) I e (t)_ I 2 e| 1(t):|

dZWi (t) _ I(m/z Zk | 1/2 _ i_1n-1
T AXZ |+1(t)+ W(t) W, 1(t) f (t)_07 i=ln-1, (14)
Wi (0) =i (15)
dw; (0) _
=0 (16)
Wy (t) =a(t) , (17)
w, (t) = p(t) . (18)
dzei (t) _ k|+1/2 2k _ | -2 _1nhn_1
pre N 6,+1(t)+ 50,(t) 6, L@M)=0, i=Ln-1, (19)
9i 0)= 0, (20)
d6,(0) _
T =1, 21
0,(t) =0, (22)
0,(t)=0. (23)
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And substituting representation (13) into (12), we have
W (T)+v; 6,(T) =wy;.
From here we get a formula for determining the value of the desired function v(x) for

each fixed value X = X,

V. = Vi =W, (T)
S
Thus, the computational algorithm for the numerical solution of the differential-
difference problem (7)—(12), by definition u,(t), v,, i=1,2,..,n—1, consists of the
following:
— the solutions of two independent differential-difference problems (14)—(18) and
(19)—~(23) with respect to auxiliary functions wi(t), 6,(t), i=0,1 2, ..., n, are deter-

, i=Ln-1 (24)

mined on the segment [0,T];

—according to formula (24), approximate values of the desired function v(x) are
determined for X=X, ,1.e. v,, i =1, 2,...,n-1;

— the formula (13) determines the values of the functions u,(t), i=0,1,2,...,n, on
the segment [0,T].

It should be noted that the approximate values of the desired function v(x) at the
boundary points X, =0 and X, =1 cannot be determined by formula (24) due to the

fulfillment of conditions (22) and (23). Therefore, the values of the desired function
v(x) at the boundary points can be determined by interpolation.
It should be noted that the applicability of the proposed computational algorithm is
associated with the fulfillment of the condition
0,(T)#0, i=1n-1.
For an equation with a constant coefficient, it is possible to find out in advance the ful-

fillment of this condition. To do this, it is enough to write a differential approximation
of the differential-difference problem (19)—(23) for the case k(x) =k, = const

2 2
aeai)z(’t):koag():’t), 0<x<1 0<t<0.1,
X
0(x,0)=0, wza(x)zl,

6(0,t)=0, 6(1t)=0.
The exact solution of this problem is determined by the explicit formula
2

o(x,t) = Zoj: nr\/k_ “a(&)sin nréd &,}sin nr\/gtsin X .

It follows that when T #1/ \/E the condition 6,(T)#0, i=1n-1 is satisfied. How-

ever, for an equation with variable coefficients, due to the complexity of constructing

an analytical solution, the condition 6,(T)#0, i=1,n-1 can be fulfilled using a nu-

merical experiment.
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For the numerical solution of problems (14)—(18) and (19)—(23), the finite difference
method can be used. We introduce a uniform difference grid with a step At on the

segment [0,T] in the variable t
@, ={t;= jAt, j=0,12,..,m, At=T/m}.
The discrete analogs of problems (14)—(18) and (19)—(23) on the grid ®, are repre-

sented as
Wj+1 _ 2W—j + Wj_l k. " 2k iy ki— j+ J+

W =g, (26)

wh—w!
i -0, 27
v (27)
W0j+1 — qj+1’ (28)
W[:‘A _ pj+1’ (29)

07" -20) +0)" Ky ain 2K Lia K j

i i i D+ 6_]+1 +_Ie_l+1 _|—_1/29_]+1 =0 s 30
A A TTAETT AT 0
0’ =0, 31

ot —0°
A B R 32
- (32)
0" =0, (33)
0" 0, (34)

where W) ~w, (t;), o) ~0,(t;), fit =1 (t;.0)-

The obtained difference problems (25)—(29) and (30)—(34) for each fixed value
j=1,2,...,m=1 are systems of linear algebraic equations with a tridiagonal matrix,
the solutions of which can be found by the Thomas method [17].

2. Numerical examples

To find out the effectiveness of the proposed computational algorithm, numerical
experiments were carried out for model problems. Calculations were carried out on

a space-time difference grid with steps Ax =0.05, At=0.0001.
Example 1.
2 2
m :%M+e°5t(l.5+30052nx), 0<x<l 0<t<O.,
ot 8n”  oX

u(x,0) =2(3+2cos2nx),

aug,O) —v(¥).

u(0,t) =10e*, u(Lt)=10e°*,
u(x,0.1) = 2e*%(3+ 2cos 27x).

This problem has an exact solution
u(x,t) =2e**(3+2cos2nx), V(X) =3+ 2c0s2nx.
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Example 2.

2’u(xt)
a2

=0.025

2
a;(“) "5 (10x—10x2 +2), O<x<1 0<t<0.,
X

u(x,0) = 40x —40x?, =v(x),

ou(x,0)
ot
u(@0,t)=0, u(@t)=0,
u(x,0.1) = e*® (40x — 40x?).
The exact solution to this problem has the form
u(x,t) =e®" (40x—40x?), v(x) = 20x —20x>.

Example 3.
2
%:g(xe“x 6’uéx t))+5|n3t(l 45e°) 0<x<1, 0<t<0.1,
X

u(x,0)=0,

v(x),

u(0,t)=5sin3t, u(Lt)=>5e""*sin3t,
u(x,0.1) =5e°*sin0.3.
The exact solution of the problem has the form
u(x,t) =5e%*sin3t, v(x)=15e"%.
The results of numerical experiments to determine the approximate values of the
desired function v(x) at x=X, i=1 2,...,n—1, for the examples given are presented

ou(x,0)
o

in the table. The data in the 2nd and 3rd columns refer to the first example; the data
in the 4th and 5th columns, to the second example; and data in the 6th and 7th columns,
to the third example.

Numerical results on the determination of the function v(x)

% v(X) = 3+ 2c0s 2nx V(X) = 20x — 20x2 V(x) =157
' Exact Calculated Exact Calculated Exact Calculated
0.05 4.902 4.899 0.950 0.952 14.851 14.844
0.10 4.618 4.616 1.800 1.799 14.703 14.699
0.15 4.176 4.174 2.550 2.548 14.557 14.552
0.20 3.618 3.617 3.200 3.198 14.412 14.407
0.25 3.000 3.000 3.750 3.748 14.268 14.264
0.30 2.382 2.383 4.200 4.198 14.126 14.122
0.35 1.824 1.826 4.550 4.548 13.986 13.982
0.40 1.382 1.384 4.800 4.798 13.847 13.842
0.45 1.098 1.100 4.950 4.948 13.709 13.705
0.50 1.000 1.003 5.000 4.998 13.573 13.568
0.55 1.098 1.100 4.950 4.948 13.438 13.433
0.60 1.382 1.384 4.800 4.798 13.304 13.299
0.65 1.824 1.826 4.550 4.548 13.171 13.167
0.70 2.382 2.383 4.200 4.198 13.040 13.036
0.75 3.000 3.000 3.750 3.748 12911 12.906
0.80 3.618 3.617 3.200 3.198 12.782 12.778
0.85 4.176 4.174 2.550 2.548 12.655 12.655
0.90 4.618 4.616 1.800 1.799 12.529 12.535
0.95 4.902 4.899 0.950 0.952 12.404 12.411

1
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The results of numerical experiments indicate that the values of the desired func-
tions U(x,t) and v(x) are determined with a sufficiently high accuracy. At the same

time, the maximum relative error in determining the desired function v(x) in the first

example does not exceed 0.08%; in the second example, 0.3%; and in the third example,
0.06%. Analysis of results of the numerical experiments shows that to increase the ac-
curacy of solutions, it is sufficient to use small steps of the difference grid.

Conclusion

The problem of determining the initial condition for the time derivative for a one-
dimensional wave equation, according to an additionally specified condition at a finite
time, is considered. The proposed computational algorithm, based on the discretization
of the problem by a spatial variable and the use of a special representation to solve the
resulting differential-difference problem, allows us to find by an explicit formula the
approximate value of the desired function for each discrete value of the spatial variable.
The proposed computational algorithm can also be used to restore the initial condition
in time for the one-dimensional wave equation.

References

1. Kabanikhin S.I. (2011) Inverse and Il1-Posed Problems. Berlin: Walter de Gruyter.

2. Isakov V. (2017) Inverse Problems for Partial Differential Equations. Berlin: Springer.

3. Alifanov O.M., Artioukhine E.A., Rumyantsev S.V. (1995) Extreme Methods for Solving
11l-Posed Problems with Applications to Inverse Heat Transfer Problems. Danbury: Begell
House.

4. Prilepko A.L, Orlovsky D.G., Vasin I.A. (2000) Methods for Solving Inverse Problems in
Mathematical Physics. New York: Marcel Dekker.

5. Hasanov A.H., Romanov V.G. (2021) Introduction to Inverse Problems for Differential Equa-
tions. Springer.

6. Borukhov V.T., Zayats G.M. (2015) Identification of a time-dependent source term in nonlinear
hyperbolic or parabolic heat equation. International Journal of Heat and Mass Transfer. 91.
pp. 1106-1113.

7. Vabishchevich P.N. (2019) Computational identification of the time dependence of the right-
hand side of a hyperbolic equation. Computational Mathematics and Mathematical Physics.
59(9). pp. 1475-1483.

8. Denisov A.M. (2015) Problems of determining the unknown source in parabolic and hyperbolic
equations. Computational Mathematics and Mathematical Physics. 55(5). pp. 829-833.

9. Ismailov M.I., Tekin, I. (2016) Inverse coefficient problems for a first order hyperbolic system.
Applied Numerical Mathematics. 106. pp. 98—115.

10. Liao W. (2011) A computational method to estimate the unknown coefficient in a wave
equation using boundary measurements. Inverse Problems in Science and Engineering.
19(6). pp. 855-877.

11. Jiang D., Liu Y., Yamamoto M. (2017) Inverse source problem for the hyperbolic equation
with a time-dependent principal part. Journal of Differential Equations. 262. pp. 653—681.

12. Safiullova R.R. (2013) Obratnaya zadacha dlya giperbolicheskogo uravneniya vtorogo poryad-
ka s neizvestnym koeffitsiyentom, zavisyashchim ot vremeni [Inverse problem for the second
order hyperbolic equation with an unknown time-dependent coefficient]. Vestnik Yuzho-
Ural’skogo Gosudarstvennogo Universiteta. Seriya Matematicheskoye modelirovaniye i pro-
grammirovaniye — Bulletin of the South Ural State University. Mathematical Modelling,
Programming & Computer Software. 6(4). pp. 73-86.



Gamzaev K.M. Numerical method for restoring the initial condition for the wave equation

13. Kabanikhin S.I., Bektemesov M.A., Nurseitov D.B., Alimova A.N. (2011) Resheniye zadachi
Dirikhle dlya dvumernogo volnovogo uravneniya metodom iteratsiy Landvebera [Solving the
Dirichlet problem for a two-dimensional wave equation by the Landweber iteration method].
Vestnik Kazakhskogo natsional ' nogo universiteta Seriya Matematika, Mekhanika, Informa-
tika. — Journal of Mathematics, Mechanics and Computer Science. 69(2). pp. 102-110.

14. Kabanikhin S.I., Bektemesov M.A., Nurseitov D.B., Krivorotko O.I., Alimova A.N. (2012)
An optimization method in the Dirichlet problem for the wave equation. Journal of Inverse
and 1l1-Posed Problems. 20(2). pp. 193-211.

15. Kabanikhin S.I., Krivorotko O.I. (2013) A numerical method for solving the Dirichlet problem
for the wave equation. Journal of Applied and Industrial Mathematics. 7(2). pp. 187-198.

16. Vasilev V. 1., Kardashevsky A.M., Popov V.V. (2017) Iteratsionnyy metod resheniya zadachi
Dirikhle i yeye modifikatsiy [Iterative method for solving the Dirichlet problem and its modi-
fications]. Matematicheskiye zametki SVFU. 24(3). pp. 38-51.

17. Samarskii A.A., Vabishchevich P.N. (2008) Numerical Methods for Solving Inverse Prob-
lems of Mathematical Physics. Berlin: Walter de Gruyter.

18. Gamzaev Kh.M., Huseynzade S.O., Gasimov G.A. (2018). Numerical method to solve identifi-
cation problem for the lower coefficient and the source in the convection-reaction equation.
Cybernetics and Systems Analysis. 54(6). pp. 971-976.

Information about the author:

Gamzaev Khanlar M. (Doctor of Technical Sciences, Professor, Department of General and
Applied Mathematics, Azerbaijan State Oil and Industry University, Baku, Azerbaijan; Research
Associate, Research and Innovation Center, Western Caspian University, Baku, Azerbaijan).
ORCID: 0000-0002-1228-7892. E-mail: xan.h@rambler.ru

Ceedenus 06 asmope:

TI'am3aeB Xansnap MexBaju orjly — JOKTOp TEXHHYECKHUX Hayk, mpodeccop kadenpst «OO6mas
U TIPHKJIAIHAsT MaTeMaTHka» A3epOaii[PkaHCKOro roCcyIapCTBEHHOTO YHUBEpCUTeTa He(hTH U TIPo-
MBIIUICHHOCTH, baky, A3epOaii/kaH; HaydHbIl cOTpyaHUK HaydHO-KOOPIMHAIMOHHOTO LIEHTpA
3anaaHo-Kacnuiickoro yHuBepcurera, baky, AsepOaitxan. ORCID: 0000-0002-1228-7892.
E-mail: xan.h@rambler.ru

The article was submitted 04.06.2023; accepted for publication 10.04.2024

Cmamuws nocmynuaa 6 peoaxyuio 04.06.2023; npunsma x nyénuxayuu 10.04.2024

13



