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Abstract. In this work, a matrix polyhedral domain is defined using a matrix ball. In this
matrix polyhedral domain, an analogue of Bishop’s formula for meromorphic functions of
a special form is obtained.
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AHHOTanms. B Teopun QyHKIMHA MHOTHX KOMIUICKCHBIX TEPEMEHHBIX HHTETPATbHBIC
(opMyIIBI 3aHUMAIOT BAYKHOE MECTO B TEOPHH T'OJIOMOP(GHBIX U MEpOMOPGHBIX (HYHKIUI
crerpanbHoro BuAa. IIpm 3TOM 3amaum MONydEeHHS HOBBIX HHTETPAIBHBIX (OpMyI
C MOMOIIBIO JIOKATBHBIX BEIYETOB, PA3JIOKEHUS B PSAABI TOTOMOP(HBIX B MEPOMOP(HBIX
(GyHKIMIT CIenUaTbHOTO THIIA C TOMOIIBIO HHTETPaIbHBIX (GOPMYII CUNTAIOTCS LIENIEBEIMU
Hay4YHBIMU HCCIIeN0BaHUAME. B naHHOI paboTe onpeesieHa MaTpuYHas MOJIHAIPUIECKast
00J1acTh ¢ MOMOIIBI0 MATPUYHOTO HIapa. B 3Toi MaTpu4HON MONIMAIAPUUECKON 007IacTH
noyrydeH aHajor gpopmyiisl bumrona s MepoMopdHBIX GyHKIMH CIIEHIHaIbHOTO BU/A.
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Introduction. Formulation of the problem

In complex analysis of multivariables, integral formulas have been studied by many
authors. These results are presented in monographs [1-3] by A.K. Tsikh. A.K. Tsikh
proved the Weyl and Bishop integral formulas in a special analytical polyhedron using
local residues of multivariables [4]. In the polyhedral domain, A. Weil [5] studied inte-
gral formulas with a holomorphic kernel. In the [6-11], a matrix analogue of the integral
formula of Cauchy—Weil, Bishop and the Carleman formula was studied.

Recall that an analytic polyhedron is defined by a family of functions

Jis fareon oy €O(G), G C" (0r by amapping f = (f;, fy»-n fo) : G —>C™), @S
I, ={zeG|f,(z)|<1,|f,(2)| < 0| Fu (2)| <, }
if it is relatively compact in G (i.e. I, = G). If m is equal to n, which is the dimension
of space C", then the analytic polyhedron I, is called special.
Let /' =(f, f5»--»fy) : D— G —holomorphic mapping of domains D = C},G < C; .
h(z)
31(2)

function, and J, (z) is the Jacobian of the mapping f : D — G which is of finite type.

Consider meromorphic functions of the form

, where h(z) is a holomorphic

In [4. P. 43], A.K. Tsikh obtained Bishop’s integral formula for a special analytic poly-
hedron an analogue of which we obtain for a generalized matrix ball.
Theorem 1 [4]. At every point z € 77, in which the Jacobian J, of the mapping f is

nonzero, the following integral formula for the meromorphic function % ,he O(ﬁr) holds,

L G LIC
pz)= ()" R

where T is the skeleton of the polyhedron 77, , weight function Q(z,&)#0, and holo-
morphic in the neighborhood (17, x 11, ) .

The main part

Let Z = (Z1, Zo, ..., Z») be a vector, whose entries are quadratic matrices Z;, 1 <j<n,
of order m over the field of complex numbers C . It can be assumed that Z is the element

of the space C"[mxm]=C™ [3].
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Define matrix “scalar” multiplication for Z,W € C"[mxm] as [3]:
(ZW)=ZW, +...+ZW,",
where Wj* is a matrix, which is conjugate and transpose of W .
The domain B, , ={Z e C"[mxm]: 1 —(Z,Z) >0}, is called a matrix ball, where |

is the identity matrix of order m.
The skeleton of this domain is a manifold of the form:

Xnn={Z2:(2,Z)=1}.
Obviously, the dimension of the skeleton is m? (2n —1) .
When m=n=1, B, isthe identity disc from C,and X,, is the identity circle.

Let D be a bounded complete circular convex domain with Shilov boundary S, which
is smooth (of class C) manifold.

Define the family Hl(D) of all functions f, holomorphic in D, for which
sup ” f(ro)fdp < +oo,
S

O<r<1
where r{=(rg,...,r¢,) and dp is the normalized Lebesgue measure on a manifold S,

invariant under rotations.
Theorem 2 [3]. For any function f e Hl(Bm,n) , the following formula holds:

_ f(W)do(W) .
f(z)_xj e (1 —(Z. W) ZeB,, @

where do(W ) is the normalized Lebesgue measure on the skeleton X .

m,n

Take amapping f = ( f..,f ) :G —> C™  whichis holomorphic in some domain

GcC™ .
In what follows, the mapping f = ( foo f . ) :G — C™ will be considered in the form
flll(z) flin(z) flg(z) flnm(z)
f(Z)= : : : : :G—> C"[mxm].
fo(2) -+ o (2) fu(Z) - fon(2)

Definition 1. A matrix polyhedral set defined by a holomorphic mapping
f :G > C"[mxm] is the set

(B, )={Z€G:r’1-(f(2),f(2))>0,r>0},
which is relatively compactin G, i.e., f*(B,,)€G.
Definition 2. The connected component of a matrix polyhedral set f’l(Bmvn) is

called a matrix polyhedron (generalized matrix ball) which is denoted as © . The ske-
leton of the domain ©, , is defined as

T, ={ZeG:(f(2),f(2))=r1,r>0}.
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Let f(Z):D—G be a holomorphic mapping of domains D cCj [mxm],

z
GcCy[mxm] and H(Z)= % meromorphic function in D.
1
Definition 3 [4]. A mapping f(Z) has a finite type, if for any W € G the equation
f (Z) =W has the same finite number of roots (taking into account multiplicities) in

domain D.
Definition 4 [4]. The trace of a function H(Z) related to a mapping f (Z) is the

function
[TrHIW) = > H(Z" (W), W e G\ f (y =0),

where the summation is carried out over all roots (taking into account multiplicities)
of the equation f(Z)=W .
In this work, using formula (1), we obtain the Bishop integral formula in the domain

h(z
®, , foraspecial function of the form (2) , Where h(Z)eH1(®“) , 31 (Z) isthe

Ji(2)
Jacobian of the mapping f (Z), which has a finite type.
Let f:D—>G be a holomorphic mapping of a finite type of the domain
DcC)[mxm] into G Cy [mxm] and W° eG be an arbitrary point. Consider

adomain B, . (WO) in G with the center at the point W°:
B (W) = {W :rl (W -W°, W -W°) >0} €G.
Theorem 3. Let H(Z)eH*(D). Then for the trace [TrH](W) in the domain
B,y (W°) the following integral formula holds:
[TrH](W)= J — (Hdc( f<

where I, ={ZeD:(f(2).f(2))=r"1"}.

(2))
;

2), >) @

Proof. For simplicity, we prove the theorem when W° =0.
According to the proposition in [4. P. 26], for almost all W B m,n,r(WO) the roots of

the system of equations f (Z)—W =0 are simple; denote them as Z® (W),...,Z*' (W) .
Let, U, = D be the family of disjoint neighborhoods of points Z® (W) and
Ly =Tyy s ={ZeD:(f(2)-W,1(2)-W)=51"]
isacycleinU, .
Then, by the definition of the trace and Cauchy—Szegé formula (1), we have

rergw) -3 | relr2)

i, det™ (1M =t (z).w)) '
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I
Moreover, the sum ZFV is homologic to the cycle 77,  in the domain of regularity

v=1

of the subintegral form of (2). Hence, applying the Stokes formula, we obtain
Hdo(f(2)) Hdo(f(2))

;r({ detm”(l(m)—<f(z),W>)=r',[,detm”(l(m)—<f(Z),W))'

zWMw)s

n

The proof is complete.
Now, we present an integral representation for the trace of a meromorphic function
of a special form.

Corollary 1. Let h(Z) e H'(D), J, be the Jacobian of the mapping f:D —>G,
which has finite type. Then for the trace of the meromorphic function H =h/J, in

B, (W°) the following formula holds:
h(Z)do(Z
[ h)@) -
i, det™ (17 (1 (2),w))
Proof. do is anormalized Lebesgue measure on T',  ; therefore [6. P. 153],
do(f(Z))=J,do(Z).

By formula (2) for W € B, , (WO) we have

[Trhid, (W)= Zh/J ( z" (w))=

h/J ds(f(2))
_Z‘r{ det™ (1™ —<f(z),w))_p!,detm“(ﬂm)—(f(z),w))'

[Trh/J,J(W)=

The proof is complete.
If the equation f (Z)—-W =0 has only one root with multiplicity of 1, we can rewrite

the formula (4) as
h(W) _ J h(Z)do(Z) | 2
I W) ], det™ (17— (£ (2),W))

Corollary 1 allows us to obtain an analogue of Bishop’s formula in the matrix poly-
hedron ©, , = {Z eD:r?1m -(f(2).1(2))>0,r> 0} for the meromorphic function
h/Jd,.

Teopema 4. If h(Z)eH'(®,,), Ze®,, and J,(Z)=0 at this point, then the

following integral representation holds for the holomorphic function JL:
f

h(z) f- h(X)Q(Z.X )do(X) ©
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Proof. From the definition of trace it follows that, when W = f (X ), the integral in

formula (3) is equal to the sum of the values of the function n at points Z = X , and
f

of the values of this function in X" (f (X)), v=2,...u atpoints W = f (X ). Consider

aweight function Q(Z,X) = 0 having the following properties: for any fixed Z, form
®,, ={ZeD:r"1"~(f(2),f(2))>0,r>0}€D,

the function Q(Z, X) is equal to zero at all points Z = X, except for Z = X . This

function indeed exists. Assume W° — non-critical value of the mapping f, and 9(z) -

linear function i.e., g (XV (W°)) —are various. Then we can take the function

Q(Zax)=ﬁ[9(z)—9(x(”)}=(g(Z)—g(X(”))u..-(g(Z)—g(x(“))) ©)
v=2
where the numbering is taken as X = X (Z), with the convention that X (Z)=Z .

Thus, the product in (6) is a polynomial of g(Z), with coefficients holomorphically
dependent on X. As a result, we have

p-1
X)=2c(X)g"(2),
k=1
where ¢, (X) are holomorphic functions in @, . By construction, we have
Q(Z,X(")(Z))zo,for points X (Z)#Z.

By corollary and the constructed weight function Q(Z, X ), we obtain Bishop’s for-
mulain @ .
Indeed,

_h(z)@ @ _

W@ 3, (2 ()) )

=h(Z)Q(Z,Z)=j h(X)Q(Z.X)do(X)
3 (2) A, det™ (1M -(£(2), (X))

The proof is complete.
Corollary 2. When m=n=1and f(z)=z, the formula (5) yields the Cauchy for-

mula for a circle with a radius r in the complex plane C.
Proof. When m=n=1and f(z)=z, the Jacobian of the mapping f(z) is J, =1,

and in this case by formula (4) the formula (5) yield the Cauchy formula for a circle.
The proof is complete.
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When n=1, from the generalized matrix ball ®,, we get the matrix polyhedron in

the space (C[m X m] . In this field, B.A. Shaimkulov derived the Bishop integral formula
with a different kernel ([3. P. 227]).
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