2025 Nº 94 Математика и механика

Tomsk State University Journal of Mathematics and Mechanics

Original article UDC 517 55

doi: 10.17223/19988621/94/3

Bishop's formula for a matrix polyhedron with a non-piecewise smooth boundary

MSC: 32A10, 32A20, 32A25, 32A26

Erkin M. Makhkamov¹, Jurabek T. Bozorov²

¹ Non-governmental Organization of Higher Education Perfect University, Tashkent ¹ National University of Uzbekistan, Uzbekistan, Tashkent ² Termez State University, Uzbekistan, Termez ¹ erkin mahkamov83@mail.ru ² jorabek.bozorov.89@mail.ru

Abstract. In this work, a matrix polyhedral domain is defined using a matrix ball. In this matrix polyhedral domain, an analogue of Bishop's formula for meromorphic functions of a special form is obtained.

Keywords: holomorphic functions and mappings, matrix polyhedral set, matrix polyhedral domain, generalized matrix ball, meromorphic function, Bishop's integral formula

For citation: Makhkamov, E.M., Bozorov, J.T. (2025) Bishop's formula for a matrix polyhedron with a non-piecewise smooth boundary. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 94. pp. 33–39. doi: 10.17223/19988621/94/3

Научная статья

Формула Бишопа для матричного полиэдра с не кусочно гладкой границей

Эркин Мусурманович Махкамов¹, Жўрабек Тоғаймуротович Бозоров²

 1 Негосударственная организация высшего образования Perfect University, Узбекистан, Ташкент ¹ Национальный университет Узбекистана, Узбекистан, Ташкент ² Термезский государственный университет, Узбекистан, Термез

¹ erkin mahkamov83@mail.ru

² iorabek.bozorov.89@mail.ru

Аннотация. В теории функций многих комплексных переменных интегральные формулы занимают важное место в теории голоморфных и мероморфных функций специального вида. При этом задачи получения новых интегральных формул с помощью локальных вычетов, разложения в ряды голоморфных и мероморфных функций специального типа с помощью интегральных формул считаются целевыми научными исследованиями. В данной работе определена матричная полиэдрическая область с помощью матричного шара. В этой матричной полиэдрической области получен аналог формулы Бишопа для мероморфных функции специального вида.

Ключевые слова: голоморфные функции и отражения, матричное полиэдричиское множество, матричная полиэдрическая область, обобщенный матричный шар, мероморфная функция, интегральная формула Бишопа

Для цитирования: Makhkamov E.M., Bozorov J.T. Bishop's formula for a matrix polyhedron with a non-piecewise smooth boundary // Вестник Томского государственного университета. Математика и механика. 2025. № 94. С. 33–39. doi: 10.17223/19988621/94/3

Introduction. Formulation of the problem

In complex analysis of multivariables, integral formulas have been studied by many authors. These results are presented in monographs [1–3] by A.K. Tsikh. A.K. Tsikh proved the Weyl and Bishop integral formulas in a special analytical polyhedron using local residues of multivariables [4]. In the polyhedral domain, A. Weil [5] studied integral formulas with a holomorphic kernel. In the [6–11], a matrix analogue of the integral formula of Cauchy–Weil, Bishop and the Carleman formula was studied.

Recall that an analytic polyhedron is defined by a family of functions $f_1, f_2, ..., f_m \in \mathcal{O}(G)$, $G \subset \mathbb{C}^n$ (or by a mapping $f = (f_1, f_2, ..., f_n) : G \to \mathbb{C}^m$), as

$$\Pi_{r} = \left\{ z \in G : \left| f_{1}(z) \right| < r_{1}, \left| f_{2}(z) \right| < r_{2}, \dots, \left| f_{m}(z) \right| < r_{m} \right\},\,$$

if it is relatively compact in G (i.e. $\overline{\Pi}_r \subset G$). If m is equal to n, which is the dimension of space \mathbb{C}^n , then the analytic polyhedron Π_r is called special.

Let $f = (f_1, f_2, ..., f_n) : D \to G$ – holomorphic mapping of domains $D \subset \mathbb{C}_{\tau}^n, G \subset \mathbb{C}_{w}^n$.

Consider meromorphic functions of the form $\frac{h(Z)}{J_f(Z)}$, where h(z) is a holomorphic

function, and $J_f(z)$ is the Jacobian of the mapping $f:D\to G$ which is of finite type. In [4. P. 43], A.K. Tsikh obtained Bishop's integral formula for a special analytic polyhedron an analogue of which we obtain for a generalized matrix ball.

Theorem 1 [4]. At every point $z \in \Pi_r$ in which the Jacobian J_f of the mapping f is

nonzero, the following integral formula for the meromorphic function
$$\frac{h}{J}$$
, $h \in \mathcal{O}(\overline{\Pi}_r)$ holds,
$$\frac{h}{J}\Omega(z,z) = (2\pi i)^{-n} \int_{z}^{h} \frac{h(\xi)\Omega(z,\xi)d\xi}{f(\xi) - f(z)},$$

where Γ is the skeleton of the polyhedron Π_r , weight function $\Omega(z,\xi) \not\equiv 0$, and holomorphic in the neighborhood $(\Pi_r \times \Pi_r)$.

The main part

Let $Z = (Z_1, Z_2, ..., Z_n)$ be a vector, whose entries are quadratic matrices Z_j , $1 \le j \le n$, of order m over the field of complex numbers $\mathbb C$. It can be assumed that Z is the element of the space $\mathbb C^n[m \times m] \cong \mathbb C^{nm^2}$ [3].

Define matrix "scalar" multiplication for $Z,W \in \mathbb{C}^n[m \times m]$ as [3]:

$$\langle Z, W \rangle = Z_1 W_1^* + \ldots + Z_n W_n^*,$$

where W_i^* is a matrix, which is conjugate and transpose of W.

The domain $B_{m,n} = \{Z \in \mathbb{C}^n[m \times m] : I - \langle Z, Z \rangle > 0\}$, is called a *matrix ball*, where I is the identity matrix of order m.

The skeleton of this domain is a manifold of the form:

$$X_{m,n} = \{Z : \langle Z, Z \rangle = I\}.$$

Obviously, the dimension of the skeleton is $m^2(2n-1)$.

When m = n = 1, $B_{1,1}$ is the identity disc from \mathbb{C} , and $X_{1,1}$ is the identity circle.

Let D be a bounded complete circular convex domain with Shilov boundary S, which is smooth (of class C^1) manifold.

Define the family $H^1(D)$ of all functions f, holomorphic in D, for which

$$\sup_{0 < r < 1} \int_{S} |f(r\zeta)| d\mu < +\infty,$$

where $r\zeta = (r\zeta_1, ..., r\zeta_n)$ and $d\mu$ is the normalized Lebesgue measure on a manifold S, invariant under rotations.

Theorem 2 [3]. For any function $f \in H^1(B_{m,n})$, the following formula holds:

$$f(Z) = \int_{X_{m,n}} \frac{f(W)d\sigma(W)}{\det^{mn} \left(I^{(m)} - \langle Z, W \rangle\right)}, \quad Z \in B_{m,n}$$
 (1)

where $d\sigma(W)$ is the normalized Lebesgue measure on the skeleton $X_{m,n}$.

Take a mapping $f=\left(f_1,\ldots,f_{nm^2}\right)\colon G\to\mathbb{C}^{nm^2}$, which is holomorphic in some domain $G\subset\mathbb{C}^{nm^2}$.

In what follows, the mapping $f = (f_1, ..., f_{nm^2}): G \to \mathbb{C}^{nm^2}$ will be considered in the form

$$f\left(Z\right) = \left(\left(\begin{array}{cccc} f_{11}^{1}\left(Z\right) & \cdots & f_{1m}^{1}\left(Z\right) \\ \vdots & \ddots & \vdots \\ f_{m1}^{1}\left(Z\right) & \cdots & f_{mm}^{1}\left(Z\right) \end{array} \right), \dots, \left(\begin{array}{cccc} f_{11}^{n}\left(Z\right) & \cdots & f_{1m}^{n}\left(Z\right) \\ \vdots & \ddots & \vdots \\ f_{m1}^{n}\left(Z\right) & \cdots & f_{mm}^{n}\left(Z\right) \end{array} \right) \right) : G \to \mathbb{C}^{n}\left[m \times m\right].$$

Definition 1. A matrix polyhedral set defined by a holomorphic mapping $f: G \to \mathbb{C}^n [m \times m]$ is the set

$$f^{-1}(B_{m,n}) = \{Z \in G : r^2I - \langle f(Z), f(Z) \rangle > 0, r > 0\},$$

which is relatively compact in G, i.e., $f^{-1}ig(B_{\mathrm{m,n}}ig) {\in} G$.

Definition 2. The connected component of a matrix polyhedral set $f^{-1}(B_{m,n})$ is called a matrix polyhedron (generalized matrix ball) which is denoted as $\Theta_{f,r}$. The skeleton of the domain $\Theta_{f,r}$ is defined as

$$\Gamma_{f,r} = \left\{ Z \in G : \left\langle f\left(Z\right), f\left(Z\right) \right\rangle = r^2 I, r > 0 \right\}.$$

Let $f(Z): D \to G$ be a holomorphic mapping of domains $D \subset \mathbb{C}_Z^n [m \times m]$, $G \subset \mathbb{C}_W^n [m \times m]$ and $H(Z) = \frac{\varphi(Z)}{\psi(Z)}$ meromorphic function in D.

Definition 3 [4]. A mapping f(Z) has a finite type, if for any $W \in G$ the equation f(Z) = W has the same finite number of roots (taking into account multiplicities) in domain D.

Definition 4 [4]. The trace of a function H(Z) related to a mapping f(Z) is the function

$$[\operatorname{Tr} H](W) = \sum_{v} H(Z^{(v)}(W)), \ W \in G \setminus f(\psi = 0),$$

where the summation is carried out over all roots (taking into account multiplicities) of the equation f(Z) = W.

In this work, using formula (1), we obtain the Bishop integral formula in the domain $\Theta_{f,r}$ for a special function of the form $\frac{h(Z)}{J_f(Z)}$, where $h(Z) \in H^1(\Theta_{f,r})$, $J_f(Z)$ is the Jacobian of the mapping f(Z), which has a finite type.

Let $f: D \to G$ be a holomorphic mapping of a finite type of the domain $D \subset \mathbb{C}_Z^n[m \times m]$ into $G \subset \mathbb{C}_W^n[m \times m]$ and $W^0 \in G$ be an arbitrary point. Consider a domain $B_{m,n,r}(W^0)$ in G with the center at the point W^0 :

$$B_{m,n,r}\left(W^{\scriptscriptstyle 0}\right) = \left\{W: r^2I - \left\langle W - W^{\scriptscriptstyle 0}, W - W^{\scriptscriptstyle 0}\right\rangle > 0\right\} \subseteq G.$$

Theorem 3. Let $H(Z) \in H^1(D)$. Then for the trace $[\operatorname{Tr} H](W)$ in the domain $B_{m,n,r}(W^0)$ the following integral formula holds:

$$[Tr H](W) = \int_{\Gamma_{f,r}} \frac{H d\sigma(f(Z))}{\det^{mn} \left(I^{(m)} - \langle f(Z), W \rangle\right)}, \qquad (2)$$

where $\Gamma_{f,r} = \left\{ Z \in D : \left\langle f(Z), f(Z) \right\rangle = r^2 I^{(m)} \right\}$.

Proof. For simplicity, we prove the theorem when $W^0 = 0$.

According to the proposition in [4. P. 26], for almost all $W \in B_{m,n,r}(W^0)$ the roots of the system of equations f(Z)-W=0 are simple; denote them as $Z^{(1)}(W),...,Z^{(\mu)}(W)$. Let, $U_v \subset D$ be the family of disjoint neighborhoods of points $Z^{(v)}(W)$ and

$$\Gamma_{v} = \Gamma_{f(Z)-W,\delta} = \left\{ Z \in D : \left\langle f(Z) - W, f(Z) - W \right\rangle = \delta^{2} I^{(m)} \right\}$$

is a cycle in U_{y} .

Then, by the definition of the trace and Cauchy-Szegő formula (1), we have

$$[Tr H](W) = \sum_{v=1}^{\mu} \int_{\Gamma_{Z^{(v)}(W),\delta}} \frac{H d\sigma(f(Z))}{\det^{mn} (I^{(m)} - \langle f(Z), W \rangle)}.$$

Moreover, the sum $\sum_{\nu=1}^{\mu} \Gamma_{\nu}$ is homologic to the cycle $\Gamma_{f,r}$ in the domain of regularity of the subintegral form of (2). Hence, applying the Stokes formula, we obtain

$$\sum_{v=1}^{\mu} \int_{\Gamma_{Z^{(v)}(W),\delta}} \frac{H \, d\sigma(f(Z))}{\det^{mn}\left(I^{(m)} - \langle f(Z), W \rangle\right)} = \int_{\Gamma_{f,x}} \frac{H \, d\sigma(f(Z))}{\det^{mn}\left(I^{(m)} - \langle f(Z), W \rangle\right)}.$$

The proof is complete.

Now, we present an integral representation for the trace of a meromorphic function of a special form.

Corollary 1. Let $h(Z) \in H^1(D)$, J_f be the Jacobian of the mapping $f: D \to G$, which has finite type. Then for the trace of the meromorphic function $H = h/J_f$ in $B_{n,m,r}(W^0)$ the following formula holds:

$$[\operatorname{Tr} h/J_f](W) = \int_{\Gamma_{f,r}} \frac{h(Z)d\sigma(Z)}{\det^{mn}(I^{(m)} - \langle f(Z), W \rangle)}.$$
 (3)

Proof. $d\sigma$ is a normalized Lebesgue measure on $\Gamma_{f,r}$; therefore [6. P. 153],

$$d\sigma(f(Z)) = J_f d\sigma(Z).$$

By formula (2) for $W \in B_{m,n,r}(W^0)$ we have

$$\begin{split} & \left[\operatorname{Tr} h/J_{f}\right]\!\left(W\right) = \sum_{\mathbf{v}} h/J_{f}\left(Z^{(\mathbf{v})}\left(W\right)\right) = \\ & = \sum_{\mathbf{v}} \int_{\Gamma_{Z^{(\mathbf{v})}(W),\delta}} \frac{h/J_{f} \, d\sigma\!\left(f\left(Z\right)\right)}{\det^{mn}\left(I^{(m)} - \left\langle f\left(Z\right),W\right\rangle\right)} = \int_{\Gamma_{f,x}} \frac{h \, d\sigma\!\left(Z\right)}{\det^{mn}\left(I^{(m)} - \left\langle f\left(Z\right),W\right\rangle\right)}. \end{split}$$

The proof is complete.

If the equation f(Z)-W=0 has only one root with multiplicity of 1, we can rewrite the formula (4) as

$$\frac{h(W)}{J_f(W)} = \int_{\Gamma_{f,r}} \frac{h(Z)d\sigma(Z)}{\det^{mn}\left(I^{(m)} - \langle f(Z), W \rangle\right)}.$$
 (4)

Corollary 1 allows us to obtain an analogue of Bishop's formula in the matrix polyhedron $\Theta_{f,r} = \left\{ Z \in D : r^2 I^{(m)} - \left\langle f(Z), f(Z) \right\rangle > 0, r > 0 \right\}$ for the meromorphic function h/J_f .

Teopema 4. If $h(Z) \in H^1(\Theta_{f,r})$, $Z \in \Theta_{f,r}$ and $J_f(Z) \neq 0$ at this point, then the following integral representation holds for the holomorphic function $\frac{h}{J_f}$:

$$\frac{h(Z)}{J_f(Z)} = \int_{\Gamma_{f,x}} \frac{h(X)\Omega(Z,X)d\sigma(X)}{\Omega(Z,Z)\det^{mn}\left(I - \left\langle f(Z), f(X)\right\rangle\right)}.$$
 (5)

Proof. From the definition of trace it follows that, when W = f(X), the integral in formula (3) is equal to the sum of the values of the function $\frac{h}{J_f}$ at points Z = X, and of the values of this function in $X^{\vee}(f(X))$, $\nu = 2,...,\mu$ at points W = f(X). Consider a weight function $\Omega(Z,X) \neq 0$ having the following properties: for any fixed Z, form

$$\Theta_{f,r} = \left\{ Z \in D : r^2 I^{(m)} - \left\langle f(Z), f(Z) \right\rangle > 0, r > 0 \right\} \subseteq D,$$

the function $\Omega(Z,X)$ is equal to zero at all points $Z=X^{(v)}$, except for Z=X. This function indeed exists. Assume W^0 – non-critical value of the mapping f, and $g\left(Z\right)$ – linear function i.e., $g\left(X^v\left(W^0\right)\right)$ – are various. Then we can take the function

$$\Omega(Z,X) = \prod_{\nu=2}^{\mu} \left[g(Z) - g(X^{(\nu)}) \right] = \left(g(Z) - g(X^{(2)}) \right) \cdot \dots \cdot \left(g(Z) - g(X^{(\mu)}) \right)$$
(6)

where the numbering is taken as $X^{(v)} = X^{(v)}(Z)$, with the convention that $X^{(1)}(Z) = Z$. Thus, the product in (6) is a polynomial of g(Z), with coefficients holomorphically dependent on X. As a result, we have

$$\Omega(Z,X) = \sum_{k=1}^{\mu-1} c_k(X) g^k(Z),$$

where $c_k(X)$ are holomorphic functions in $\overline{\Theta}_{f,r}$. By construction, we have $\Omega(Z, X^{(v)}(Z)) = 0$, for points $X^{(v)}(Z) \neq Z$.

By corollary and the constructed weight function $\Omega(Z,X)$, we obtain Bishop's formula in $\Theta_{f,r}$.

Indeed,

$$\sum_{\mathbf{v}} \frac{h(Z^{(\mathbf{v})}(X)) \Omega(Z, Z^{(\mathbf{v})}(X))}{J_{f}(Z^{(\mathbf{v})}(X))} =$$

$$= \frac{h(Z) \Omega(Z, Z)}{J_{f}(Z)} + \frac{h(Z^{(2)}(X)) \Omega(Z, Z^{(2)}(X))}{J_{f}(Z^{(2)}(X))} + \dots =$$

$$= \frac{h(Z) \Omega(Z, Z)}{J_{f}(Z)} = \int_{\Gamma_{f, x}} \frac{h(X) \Omega(Z, X) d\sigma(X)}{\det^{mm} (I^{(m)} - \langle f(Z), f(X) \rangle)}.$$

The proof is complete.

Corollary 2. When m = n = 1 and f(z) = z, the formula (5) yields the Cauchy formula for a circle with a radius r in the complex plane \mathbb{C} .

Proof. When m = n = 1 and f(z) = z, the Jacobian of the mapping f(z) is $J_f = 1$, and in this case by formula (4) the formula (5) yield the Cauchy formula for a circle. The proof is complete.

When n=1, from the generalized matrix ball $\Theta_{f,r}$ we get the matrix polyhedron in the space $\mathbb{C}[m \times m]$. In this field, B.A. Shaimkulov derived the Bishop integral formula with a different kernel ([3. P. 227]).

References

- 1. Aizenberg L.A., Yuzhakov A.P. (1983) *Integral Representations and Residues in Multidimensional Complex Analysis*. American Mathematical Society.
- Arnold V.I., Gusein-Zade S.M., Varchenko A.N. (1988) Singularities of Differentiable Maps. Boston: Birkhauser.
- 3. Khudayberganov G, Kytmanov A.M., Shaimkulov B.A. (2017) *Analysis in Matrix Domains*. Krasnoyarsk: Siberian Federal University.
- 4. Tsikh A.K. (1992) Multidimensional Residues and Their Applications. American Mathematical Society.
- 5. Weil A. (1935) L'intégrale de Cauchy et les fonctions de plusieurs variables. *Mathematische Annalen*. 111. pp. 178–182. DOI: 10.1007/BF01472212.
- Aizenberg L.A. (1993) Carleman's Formulas in Complex Analysis. Dordrecht: Kluwer Academic Publishers.
- Shaimkulov B.A. (2002) Ob odnom integral'nom predstavlenii dlya sleda meromorfnoy funktsii [On an integral representation for the trace of a meromorphic function]. *Uzbek Mathematical Journal*. 1. pp. 84–86.
- 8. Shaimkulov B.A. (2002) A Special Integral Representation for a Local Residue. *Siberian Mathematical Journal*. 43. pp. 963–966. DOI: 10.1023/A:1020123311262.
- 9. Shaimkulov B.A. (2003) The integral Cauchy–Weyl representation for matrix functions. *Russian Mathematics (Izvestiya VUZ. Matematika)*. 47(2). pp. 67–70.
- 10. Shaimkulov B.A., Makhkamov E.M. (2011) On an analog of the Weyl integral formula for the polyhedra having not piecewise smooth boundaries. *Siberian Mathematical Journal*. 52(2). pp. 377–380. DOI: 10.1134/S0037446611020224.
- 11. Shoimkhulov B.A., Bozorov J.T. (2015) Carleman's formula for a matrix polydisk. *Journal of Siberian Federal University. Mathematics & Physics*. 8(2). pp. 371–374. DOI: 10.17516/1997-1397-2015-8-3-371-374.

Information about the authors:

Makhkamov Erkin M. (Doctor of Philosophy (PhD) in Physical and Mathematical Sciences, Associate Professor of the Department of Digital Technologies, Non-Governmental Organization of Higher Education Perfect University; Associate Professor of the Department of Mathematical Analysis, National University of Uzbekistan, Uzbekistan, Tashkent). E-mail: erkin_mahkamov83@mail.ru Bozorov Jurabek T. (Doctor of Philosophy (PhD) in Physical and Mathematical Sciences, Associate Professor of the Department of Mathematical Analysis, Termez State University, Uzbekistan, Termez). E-mail: jorabek.bozorov.89@mail.ru

Сведения об авторах:

Махкамов Эркин Мусурманович — доктор философии (PhD) по физико-математическим наукам, доцент кафедры цифровых технологий Негосударственной организации высшего образования Perfect University; доцент кафедры математического анализа Национального университета Узбекистана им. Мирзо Улугбека (Ташкент, Узбекистан). E-mail: erkin_mahkamov83@mail.ru

Бозоров Жўрабек Тоғаймуротович – доктор философии (PhD) по физико-математическим наукам, заведующий кафедрой математического анализа Термезского государственного университета (Термез, Узбекистан). E-mail: jorabek.bozorov.89@mail.ru

The article was submitted 08.01.2024; accepted for publication 10.04.2025

Статья поступила в редакцию 08.01.2024; принята к публикации 10.04.2025