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AnnoTtamus. B 2015 r. Xukamu u VHOye TOCTpOMIN TpeACTaBICHHE TPYMITBI KOC Bn

B TEpMHHAX KJIaCTEPHOIl anreOphl, CBA3aHHOM ¢ pa30MeHHUEM TOTONHEHUsSI COOTBETCTBY-
IOLIETO y3Jla Ha HUACaNbHBIE THIEPOOINIECKUE TETPadAphl. JTO MPEACTABICHAE PUBO-
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JIUT K BBIYUCIICHUIO TUIEPOOINUECKOro o0beMa JOMOIHEHHUS K Y311y, SBISIOLIEMYCs 3a-
MBIKAHHEM COOTBETCTBYIOIIEH KOCH. B maHHOIT paboTe, OCHOBBIBAsCH Ha 00CYKIaeMOM
BbILIIE NIpe/icTaBIeHud XukaMu—VIHOye, Mbl CTPOUM IIpeCTaBIEHUE JUId IPYMIIbl BUPTY-
anpHBIX Koc VBn. MBI I0Ka3bIBaeM, 4To B 00pa3e MOIydeHHOTO NpeICTaBICHUS HEe OyXyT
BBINOJIHATHCS TaK Ha3bIBaeMble «3allpellieHHbIe COOTHOLICHUs», KOTOpBIE, KaK U3BECTHO,
B rpynme VBn He BBIMomHAIoTcA. KpoMme Toro, Ha ocHOBE pa3pabOTaHHOTO METOIA MBI
CTPOUM HPEJCTABICHUS VIS TPYIIIBI INIOCKUX Koc FBn M rpymmbl mI0CKuX BUPTYaIbHBIX
koc FVBn.

KiroueBble cjioBa: rpymnmna Koc, TpyIia BUPTYaJIbHBIX KOC, KJIACTEpHbIE alreOpsl

Baarogapnocru: MccnenoBaHnue BBINOJIHEHO Npu mojuaepkke IIporpammsl pazButus
Tomckoro rocynapcTBenHoro yausepcurera (mpoekt HY 2.0.1.23 OHT Ilpunopurer-2030).

Jnst untupoBanusi: Eropos A.A. BupryanbHble KOCHI M KiacTepHble anreOpsr // Bect-
HUK TOMCKOTO roCyIapCTBEHHOTO YHHBepcUTeTa. Maremarnka u Mexanuka. 2024. Ne 91.
C. 18-30. doi: 10.17223/19988621/91/2

1. Introduction

Let us start with recalling braid groups and related groups. For n>2, the braid
group B, is defined as a group with generators o,,...,0,_; and the following defining
relations [1]:

60,10} = Gj,10iCi,1» i=12,...,n=-2, (1)

j:GjGi, ||—J|22 (2)

A geometric interpretation of B, is well known, it is isomorphic to a group of ge-

G;o

ometric braids on n strings, and a mapping class group of an n-punctured disc [2]. By
adding the relations

ol=1, i=12,..,n-1. (3)
we get the flat braid group FB;, on n strings.

The virtual braid group VB, on n strings is the group with two families of genera-
tors, classical and virtual, denoted by o,...,0,_; and p,,...,p,_;, With the following
defining relations: (1) and (2) for classical generators; (4), (5) and (6) for virtual gener-
ators,

PiPiIPi = PixiPiPiv,  1=12,...,n=2, “4)
pipj=pipi  fi—i[=2 5)
pi=1, i=12,...,n-1, (6)

and mixed relations (7) and (8) for classical and virtual generators both.
GiP; =P;0i> li-j[>2, (7
PiPi+10i = Giy1PiPiyi» i=12,...,n-2. (3)

It was observed in [3] that relations (9) u (10)

PiCi+10i = Ci41CiPi1> ©)
Pi+10i0i41 = GiCi41Pi (10)

do not hold in VB, so these relations are called forbidden relations. By adding relation (3)
to VBn, we obtain the flat virtual braid group FVB, on n strings.
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The relation described above between braid groups and virtual braid groups admits
to construct representations of VB, by extending known representations of By by corre-
sponding to p; suitable involutions. In particular, Bardakov, Vesnin, and Wiest [4]
constructed a representation of VB, by extending Dynnikov representation [5], and
demonstrated that the representation from [4] is faithful for n = 2 and distinguish virtual
braids on three strings good enough. Gotin [6] constructed a representation of VB
by extending a representation of By through rook algebras given by Bigelow, Ramos,
and Yi[7].

In the present note we construct a representation of VB, by extending a representa-
tion of B, given by Hikami and Inoue in [8] in terms of a cluster algebra (Theorem 3.1.).
It was demonstrated in [9] that the representation from [8] allows to compute the volume
of a hyperbolic knot which is the closer of a braid. Further, we also construct represen-
tations for a flat braid group and virtual flat braid groups (Theorems 5.1. and 6.1.).

2. Cluster mutations

Let V be a complex vector space. An automorphism R of the tensor product V ®V
is said to be an R-operator if it satisfies the following Yang—Baxter equation

(R®I1d)(Id®R)(R®Id)=(Id®R)(R®Id)(Id®R),

where Id is the identity operator Id: V —»V .
Let us recall the construction of the R-operator from [8]. Denote by [Fy the field

of rational functions over C of N algebraically independent variables x = (Xl,..., Xy ) .
A cluster seed is a pair (X, B) , Where

o X=(X,...,Xy ) is an ordered set of N algebraically independent variables,

e B= (b” ) is an antisymmetric N x N-matrix of integers.

Forany k=1,...,N define a mutation p, of a seed (X, B) in direction K as follows
M (%,B) = (%.B)

where X =(X,...,Xy) is defined by the rule

Xi, ifi =k,
Xi = . b, 11
Tl T T |-k (b
Xk jby >0 jiby <0
and matrix B = (Bij) is calculated by the formula
—bij, ifi=k orj=Kk,
bii =1 by | +by b (12)
bij +—| Ik| 4 5 'k| kj|, otherwise.

A pair (X, é) is a cluster seed again.
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Using cluster variables X we define cluster variables y =(y;,..., Yy ) by setting

N
by:
Vi :kak'. (13)
k=1

Mutation W, induces a mutation of a pair (y, B),uk (y, B) =(¥,B), where B is given
by formula (12) and ¥ =(y,,..., ¥y ) is given by the following formulas:

V' ifi=k,

Y oy e L

Yi = yi(1+yk ) , ifi=kandb, >0, (14)
Yi (1+yk)7bki, ifi #k and b; <0.

In [8], a matrix B was taken equal to the adjacency matrix of a quiver (oriented graph) I
presented in figure 1. Graph I" has N = 3n + 1 vertices. Namely B is (3n+1)x(3n+1)-
matrix with enters determined by the quiver I':

1 if there is an edge going from vertex i to vertex j,
bi =<—1, ifthere is an edge from vertex j to vertex i,

0, ifverticesi and ] are not adjacent.

3 6 3n—-3 3n
1 3n+1
2 5 3i—1 3n—4 n-—1
Fig. 1. Quiver I" with 3n + 1 vertices
In particular, if n = 2, then matrix B is of the form
0O 1 -1 0 O 0
-1 0O 1 0 0
1 0 0 -1 O 0
B=0 -1 1 0 1 -1 0 (15)
0O 0 0 -1 0 0 1
o 0o o 1 0 0 -1
O 0 0 0 -1 1 0

Let us denote by @ :F;,,, = F;,,;, N =2, the operator defined in [8, Formula 2-13]
as a composition of mutations. If n = 2 then we get X = (Xl, Xy, X3, X4, X5, Xg X7) and @

is of the form
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(Dl (X)
@,(X)
®,(x)
®4 (X)
(DS (X)
@ (x)
@, ()

D(x) =

We denote by ¥ : IF,,., = F,,,,n =2, the operator inverse to ®. If n = 2 then

¥, ()
‘112 (X)
¥,(X)
\P4(X)
P5(X)
P (X)
¥, (%)

Y(x) =

T X5

X

X, X5 Xs + Xy Xy Xs + X, X, X,

X, X,

2
X, Xy Xy Xs F X3 X3 Xs + X, Xs X5 X + Xy Xy X Xy + X, Xy X X5

X, X, X
X, X5 Xs + Xy Xy Xs + X, X, X
X, Xg

X

X

Xl
X, Xy X+ X, X, Xg + X, X, X,
X, X,

Xs

2
X Xy X, X Xy X3 X + X Xy X5 X+ X, Xy X X + X, X, X X,

X, X, Xs
X2
X, X, Xg + Xs X5 Xy + X, X X,
X, X

X

T

Following [8, Formula 2-13] we go from X-variables to y-variables. If n = 2, then

y= (yl, Y25 Y35 Y4 ¥s» Yo y7) and R-operator ® will take a form ¢, where

o(y) =

T

yl(1+ y2 + y2y4)
Y2Y4Ys Y
(P(Y) T 1+y2+y6+y2y6+y2y4y6
QW) T+Y, + Y, + Y, Y+ VoY Ye
2
A
0,(Y) ;4
_ 4
?g; A+Y, +Y,y)A+ Y +Y.Ye) |
JW) L+Y, + Yo+ Yo Y + Yo YaYe
6
AL
) Y25 YaYe
L4y, + Yo+ Yo Ys + Y2 YaYs
A+ Y + Y. Ye)Ys

as well as W will takes a form y, where

22
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yl y} y4
1+y,+Y;Y,
T Ys
xiﬁ SRR AES AR AA
gy | Y IYa Yy £ Y Yy (17)
v =l | =] GV Y, YY)
\lji (y) Y3 y4 y5
g h0+w+%h;W%+%W%)
3
¥ 0) Ty, Y2V YeYs + Y2V, Ys
YaYsYs
1Y, + VY5

The following property easily follows from the above formulae.
Lemma 2.1. By setting y, =Yy, =Yy, =—1 in formulae (16) and (17), we get

Q=04 =0;=—1 and y; =y, =y; =-1
3. Virtual braid groups

For a vector 2=(2;,2,,23,2,) = (Y2, Y3, Ys5» Y ) of length four, we define two opera-

tors
.
L%,
B . .
1+2,+2, z,
T T - -
Z, vz 47, Z, Z,+2,+1,7,
z z oz —(z,+12,+12,2,)2
S 2 — 1 , Sl 2 — 2 3 273774 (18)
z, l+z+7, Z -2,(2, +2,+ 2,Z;)
z, z, z, B z,
Lz, Z,+2,+1,7,
1+z, +z,
and an involution
T(ZI:ZZ>Z3’Z4):(23’Z4ﬂzl>22)' (]9)

Now for n>2 we define operators Sii1 and T;,i=1...,n—1, which act on vector
z =(zl,22,...,22n) of length 2n by the following rule. Operators S;"' and T; act on
4-tuple (Zyi_;, 2y, 2si,15 25142 ) in the same way as operators S*! and T act on 4-tuple
(2,2,,23,24 ) , and do not change other components of Z :
st = 122 @ gtl @ | 2022 T = 122 @T @ | 20212

For n>2, we denote by ®, the group generated by S;,T;,i=1,...,n—1, with compo-
sition as a group operation. Define a map F :VB, — ®, by setting

F(ci)=Si,F(pi)zTi,izl,...,n—l. (20)
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Lemma 3.1. Let W be a word in VB,. Then for a vector of algebraically independ-
ent variables Z =(Zl,22,...,22n) in the image of F (W)(Z) no coordinate turns into
zero or infinity.

Proof. Consider 2n-tuple z'= (—1,—1,...,—1). It is easy to see from (18) and (19)
that S;*! (z')=2' and T;(z')=2" for each i. Hence F(w)(z')=2'=(-1,-1,...,-1).
Therefore, in the image of F(W)(z) no coordinate can turn into zero or infinity be-
cause for z; =—1,i =1,...,2n, all coordinates of the image will be equal to —1.

Theorem 3.1. Map F :VB, —» ®,,n>2, defined by (20) is a homomorphism.

Proof. Let us check that the operators S; and T,,i=1,...,n—1, act on z in such
a way that the following identities hold:

() S;Si,,S; =S;,,S;S;.,, where i =1,2,...,n-2.

(2)  §;S;=S;5;, where |i— j|22.

3) TT,T =T, TT.,,where i=12,...,n-2.
(4) TT; =T;T;, where |i—j|>2.

(5) T?=1,where i=12,...,n-1.
(6) T|T|+IS| = S|+1TITI Whel‘e | = 1, 2,. “es n-— 2 .
Obviously, it is enough to consider the case i=1. Identities (1) and (2) are particular

cases of [8, Theorem 2.3]. Nevertheless, we present a straightforward proof of (1) for
the reader’s convenience. Let z =(z,,7,,23,24,25,2, ) . Consider the left-side part of (1)

S,5,5,(z)=S5,5,5,(2,,2,,2,,2,,2,,2,) =

12529435545 %50 %6

+1>»

37576

_[ 22,2z, l-zz,+z, 7,(1-22,+2)) z,(0+2 -2,2,) 1+2,-2,2, 7,2,2,7, j
Ni—zz, 42, 2z, l+z-z2, | l-zz,+2, 7,2, l+z,-2,2, )
The right-side part of (1) is equal

S,55,(z)=S5,55,(z2,,2,,2,,2,,2,,2,) =

22,22, 1-zz,+2, 2,(0-22,+2,) z,(1+2,—2,2) 1+2,-2,2, 2,2,2,2,
= b b b b 9 .
-2z, +z2, z,2, 1+2,-2,2, 1-2,z,+2, z,z, 1+2,-2,2,

Thus, the identity (1) holds.
Let us demonstrate that identity (6) holds. Indeed, on the one hand,

T1,8,(2)=T,S,(2.2,. 25,24, 25,26 ) =TT, (S(zl),S(zz),S (23),8(24),25,26) =
=T, (S(z] ),S(22),25,27,8(23),8(24)) :(25,26,8 (,).5(2,),5(23),S (24)).
and, on the other hand,
ST (2) =S, T (21. 250 23, 24, 25,26 ) = STy (245 25, 25, 26, 23, 24 ) =
=5,(25.2.2.2,.23,2,) = (25.26,5(2,).5(2,).8(25).S (24)).
Remaining identities (2), (3), (4), and (5) hold obviously.

Theorem 3.1. allows to distinguish elements of the virtual braid group VBn by com-
puting their images which are vectors of lengths 2n.
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Example 3.1. 1t is known [10] that a generalized Burau representation does not dis-
2
tinguish a braid w, = (Gfplcl’lplcl’lpl) €VB, from a trivial braid. By acting F (Wz)
on the vector (1,2,2,1) we get
4 19 19 44
F(w,)(1,2,2,1)=| —,—,—,— [#(1,2,2,1).
(ve)( ) ( 19° 227 22 19) ( )

Therefore, the homomorphism F distinguishes W from a trivial braid.

Example 3.2. Consider

W; =1p,0,0; 610,01 P10,p01P20] 203 Of G201 P,0; " €VB;.
It is known that a representation from [4] does not distinguish w3 from a trivial braid.
By acting F (W3) on (1,2,2,1,1,2) we get
F (W3 )(1’ . 2’1’1’2) _( 2488285076682521504 ’ 1290542656863845663 ,
1290542656863845663 1244142538341260752

1290542656863845663 1127136134852291178 574648281 2537206816)

563568067426145589 " 1290542656863845663 " 1268603408 574648281
#(1,2,2,1,1,2).

Therefore, the homomorphism F distinguishes ws from a trivial braid.
4. Forbidden relations

In this section we demonstrate that the forbidden relations do not hold in the group ®,, .
Lemma4.l. Let 2=(2,2,,..., 2501, 25, ) and $;,5;,,,T;. Ty €9,
(1) The forbidden relation
151151 (2) = 5i415iTia (2) 21)
does not hold if and only if the vector Z is such that zj # -1 for j=2i—-1,2i+2,2i+4.
(2) The forbidden relation
Ti+lsi Si+1 (Z) = Si Si+1Ti+] (Z) (22)

does not hold if and only if the vector z is such that z; # -1 for j=2i-12i+1,2i+4.

Proof. (a) Without loss of generality, we can assume i = 1. The left-hand side
of (21) is
1S,S,(z) =T5S,5,(z,,2,,2,,2,,2,,2,) =
| (+z+z)z,2, 1+27,-2,2, 22,2, I+z,+z, 1+z,-2,2, 7,2,2,7,
_[_ l+z,-2,2, = l+z,+z,  l+z,+z, 2, 2z ’1+z]—2426J

and the right-hand side is equal

S$,5T,(z)=S,5T,(z,,2,,2,,2,,2,,2,) =
_( 22z, 1+ +z, (+z,+2))2,2, 1+z-22, 1+2,-22, 22,22, j
- > ’ s > ’ .
1+2 +2, z 1+2z,-2,2, 1+2 +2, z,z, 1+2 -2z,

Here we used formulae for S,S,(z) from Theorem 3.1. The fifth and sixth coordinates

are equal. Comparison of the third and fourth coordinates leads to the equation
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2, (1+2 - 2425 ) = (1+ 2, + 24 ) (1+ 2, + Z¢), (23)

which is equivalent to
(z,+1)(z4 +1)(z5 +1)=0. (24)
Therefore, to obtain the relation (a), the necessary condition is that at least one of
numbers z;,2,, or Z, is equal to —1. But if at least one of the numbers z,,z,, or z; is

equal to —1, then the left- and right-hand sides of (a) coincide. Indeed, if z; =—1, then
T1S,8,(—1.2,,23,24,25.26 ) = $,8 T, (-1, 25, 23, 24, 25, 26 ) = (25, 265 23, 24,1, 2, ).
Similarly, if z, = -1, then
T,5,5,(z,2,, z;,-1,25,25) = S,5T,(2,,2,, z,,-1,25,2¢) =

_(_ 2,27, 1+7,+1

_1_1+zz+z6 47,2

1+2,+2, z, U7 z, vz +z, )

and if z, =—1, then
Tlszs1(zlﬂ22’239249259_1):8281T1(21922523724’259_1):

_( . 22,2, l+z,+z, l+7,+7,  7,2,2, j
B .

>

- 5 >
1+2,+2, Z, z, 1+2,+2,

Therefore, the above necessary condition is also sufficient.
(b) The left-hand side of relation (22) is equal to
1,55S,(2)=T,5S,(z,,2,,2,,2,,2,,2,) =

37476

_( 22,2z, l-z27,+1, 1+2,+1, 2,2,1 -2z, +1, _zlzz(l+23+26)j
- s L s > >
-2z, +2, 2z, z, l+z,+z, 1+z,+2, -2z, +2,

and the right-hand side is equal to
§$S,T(z2)=S8S8,T(z.2,,2,,2,,2,,2,) =

17576

2,22z, l1-z,2,+z, 1-zz2,+2, 7,2,(1+2,+2,) 1+7 +1Z, 2,2,2,
:(1—z3z]+26’ 7,7, T 1+z +2z, T 1-z,2 +1, " z, ’1+zl+26]'
Here we used formulae for S;S, (Z) from Theorem 3.1. By comparing the third and

fourth coordinates, we get the equation
(1+23+2,) (142, +2,) = 2, (1- 225 + Z¢), (25)
which is equivalent to
(z,+1)(z3+1)(z5 +1)=0. (26)
Therefore, to obtain (b), the necessary condition is that at least one of z;,z;, or z,

is equal to —1. But if at least one of these numbers is equal to —1, then left- and right-
hand sides of (22) coincide. Indeed, if z; = -1, then

Tzslsz(_la Z,,23,24,1s, 26) = stsz(_la 2,,23,24,2s, Za) =

=(_ 2,22, l+z,+z, l+z,+7,  2,2,2 _1ZJ
s &y |

B

b b b
1+, + 2z, z, Z, 1+12,+2z,

Similarly, if z; =—1, then
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1,5,5,(2,,2,,-1,2,,25,2,) = S,S.1,(2,,2,,-1,2,,2,,2,) =

_|__ 7% 7474 17 l+zi+zg 712,74
1+2,+2, Z ! z, 142, +2,
and if z; =-1, then
T,8,5, (21,2523, 24, 25,=1) = $,8,T5 (21, 25, 23, 24, 25,—1) = (25,1, 23, 24, 2, 2,).
Therefore, the above necessary condition is also sufficient.
The obvious consequence of this lemma is the following theorem, which concludes

the section.

Theorem 4.1. Let S;,S;,,,T;,Ti €0, .

(a) Operators T,S;,,S; and S;,;S;T;,, are different.
(b) Operators T;,,S;S;,, and S;S;,T;,, are different.

So, the forbidden relations do not hold in ®,, .

5. Flat braid groups

. 1 1 .
Let us consider vector z of the form [Zl,—, 23,—] . Notice that
z z

1 3
1 1
S = s o s |
(2 [cl e, C}j
where
2,23

G =

—_—— =—(1+23+272;).
1+z3+zlz3’€3 (+z+22)

Also notice that > (Z) =z . These observations inspire to obtain the representation for

flat braids.
Consider a vector of algebraically independent variables t = (tl,tz,...,tn) . Let us

define the operators R;,i=1,...,n—1, according to the rule

ti - _L’
R I+, +tt,,
G > _(1+ti+1 +titi+1)'
Let Frg be a map that match operators R; with generators o;,i=1,...,n—1, of the flat

braid group Thy:
Frs (G i ) =R
For n>2, denote by Qn the group generated by operators R;,i=1,...,n—1, with com-

position as a group operation.
Lemma 5.1. Let w be a word in FBy. Then for a vector of algebraically independent

variables t=(t,,t,,...,t;) in the image of Frg (W)(t) no coordinate turns into zero or

infinity.
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Proof. Consider n-tuple t'=(-1,—1,...,—1). It is easy to see that R*! (t')=t" for
each i. Hence Fgg (W)(t')=t'. Hence, in the image of Fg (W)(t) no coordinate can

turn into zero or infinity because for t; =—1,i=1,...,n, all coordinates of the image
will be equal to —1.

Theorem 5.1. Correspondence Fgg : FB, — Q,, is a homomorphism forany n>2.

Proof. Let us check that for the operators R;,i=1,...,n—1, act on t in such a way
that the following identities hold.

(1) R*=1,where i=1,2,..,n-2.

2) RR,R =R, RRy;,where i=12,...,n-2.

(3) RiR; =R;R;, where [i—j|>2.

We present a proof for the case of i=1, which also works for an arbitrary
i=1...,n-1.Consider t= (t1 ,tz,t3) . Relation (1) is easily verified. Indeed,

RE(t)=RZ(t,t,t) =R, L— —(1+1, +t1t2),t3J =((t.t,.15)).

Let us now prove identity (2). Its left-hand side is
ttt 1+t -ttt
RleRl(t):R]Rle(t]’tz’tz): 1273 , 3 1494

I+t -ttt -1+ttt +ttt

i+1 +1>

L
1+t +1t,

—l+tt, +t1t2t3j.

The right-hand side is

ttt, I+t -ttt

123 10 1+t + L |
I+t -ttt -1+ttt +ttt,

Thus, identity (2) holds. The fulfillment of identity (3) is obvious.

R,RR,(t)=R,RR,(t,t,,t,) :[

6. Flat virtual braid groups

Consider a vector of algebraically independent variables t = (t;,t,,...,t,) . In addi-
tion to the operators R;,i=1,...,n—1 introduced in the previous section, we define the

operators V;,i =1,...,n—1, according to the rule:

v, :{ti - G,
iy —> &

Let Frve be a map that match operators R; and V; with generators o; and
pi,i =1,...,n—1, of the virtual flat braid group Tx:
Feve (Gi ) =R, Frp (Pi ) =V;.
For n>2, denote by A, the group generated by operators R;,V,,i=1,...,n—1, with

composition as a group operation.
Lemma 6.1. Let w be a word in FVB,. Then for a vector of algebraically independent

variables t =(t;,t,,....t;) in the image of Fryg (W)(t) no coordinate turns into zero or

infinity.
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Proof. Consider n-tuple t'=(—1,-1,...,—1). It is easy to see that R*! (t')=t" and
V"' (') =t’ for each i. Hence Fryg (W)(t')=1". Hence, in the image of Feyg (W)(t)

I
no coordinate can turn into zero or infinity, because for t; =—1,i=1,...,n, all coordi-

nates of the image will be equal to —1.
Theorem 6.1. Correspondence Fpy : FVB, - A, is a homomorphism for any

n>2.
Proof. Let us check that the operators R; and V;,i=1,...,n—1, act on t in such a way

that the following identities hold.
(1) R?*=1,where i=12,...,n-2;
2) RR R =R, RR;,;,where i=12,...n-2;
(3) RR; =R;R;, where |i—j|22;
4) VVi,Vi=Vi ViV, ,where i=12,...,n-2;
(5) ViVj=V)\V;, where |i—j|>2;

(6) Vi2 =1, where i=1,2,...,n—1;

(7) V|V|+1 RI = RiHViViH N Whel‘e | = 1, 2,. cey n _2 .

Identities (1), (2), and (3) are proved in Theorem 5.1. The fulfillment of identities
(5) and (6) is obvious. It remains to prove the relations (4) and (7). We present a proof
for the case of i=1, which also works for an arbitrary i=1,...,n—1. Consider

t=(t,,t,,t;). Let us now prove the identity (4). Its left-hand side is

VLV, (1) =VIVLV (bt 1) = VIV, (Gt 1) =V (bt t ) = (G.t01)
The right-hand side is

VLWV, (1) =V VY, (.6, 8) = VoV (16,0 ) = Vs (Gt ) = (. 6,1 )
So, identity (4) holds. Let us now prove identity (7). Its left-hand side is

tt
VV,R, (t)=V\V,R, (t,t,.t) =| t;,——2— —(1+t, +tt,) | .
VR () =VIVAR, (80 = b (4 i) |
The right-hand side is
tt
RVV,(t) =RVV,(t,t,,t)= Lts,—#,—(l +t, +t1t2)J.
I+t +tt,

So, identity (8) holds.
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