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A k-role coloring is an assignment of k colors to the vertices of a graph such that if
any two vertices receive the same color, then the set of colors assigned to their neigh-
borhood will also be the same. Any graph with n vertices can have n-role coloring.
Although it is easy to determine whether a graph with n vertices accepts a 1l-role
coloring, the challenge of k-role coloring is known to be difficult for k£ > 2. In fact,
k-role coloring is known to be NP-complete for £ > 2 on general graphs. In this paper,
we determine k-role coloring of the rooted product of various graphs.
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POJIEBAYI PACKPACKA I'PA®OB 3 KOPHEBHIX ITPOI3BEJIEHIUN
M. Komarn, II. Parykymap

HIxona nepedosvixr nayr, Ternosroeuveckud uncmumym, 2. Bearop, Undus

k-PoneBas packpacka — 3TO HasHadUeHWe k ITBETOB BepIrHaM rpada TakuMm 00pasoM,
970 ecju JiIoOble JBE BEPIINHBI OKPAIIEHbI B OJUH M TOT K€ IIBET, TO HabOp IBETOB,
Ha3HAYEHHBIX WX COCEMsIM, Takke Oymer oamHakoBbiM. JI1060it rpad ¢ n BeprmHAME
MOXKET OBITH pacKpalieH n poasMu. JIerko onpeaeauTs, JonyckaeT jiu rpad ¢ n Bep-
muHaMK 1-poJIeByI0 pacKpacKy, HO 3aJada k-poJIeBOM pacKpacku I k > 2 Ha IIpo-
m3BOMBHBIX Tpadax sasigercs NP-monroit. B pabore ommcana k-poseBast packpacka
KOPHEBOT'O IIPOU3BEICHHSI PA3IUIHBIX IPadOB.

Kuimrouesbie ciioBa: poaesas packpacka, poseeol zpagd, xopresoe npoussedenue, bu-
HAPHOE NPOUIBEIECHUE.

1. Introduction

All graphs considered in this paper are simple, finite, and undirected (except the role
graph R; it may have loops). The graph G = (V, E) has the vertex set V(G) and the edge
set F(G). The (open) neighborhood Ng(v) = N(v) of vertex v in a graph G is the set of
all vertices in GG that are adjacent to v, v € V. The degree of a vertex v is indicated by
deg(v), and the minimum and maximum degrees of vertices in G are represented by 6(G)
and A(G), respectively. Let a(v) denote the color of the vertex v, and a(N(v)) denote the
color set of the neighborhood of v. For the standard graph terminology notions, we follow
J.A. Bondy and U.S.R. Murty [1].

Social networks are a part of everyone’s life these days. A social network is envisioned
as a graph where the edges indicate the relationships between the persons and the vertices
represent the individuals in order to research their behavior. In 1991, M. G. Everett and
S. Borgatti [2| defined role assignment under the term “role coloring” based on graph models
for social networks. A k-role coloring for any graph G is the assignment of precisely k colors
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to its vertices such that if any two vertices get the same color, then the set of colors

assigned to their neighborhood is also the same. That is, k-role coloring is a surjective map
a: V(G) = {1,...,k} such that, for all u,v € V(G), if a(u) = a(v), then a(N(u)) =
= a(N(v)) |3]. Figure 1 provides an example of role coloring of a graph G.

LA

Fig. 1. 2-Role coloring of G

In general, every graph has two trivial role coloring for £ = 1,n. The color image
graph R of a graph G is called a role graph. The role graph R is defined as the graph with
V(R) ={1,2,...k} and E(R) = {(a(u),a(v)) : (u,v) € E(G)} and |[V(R)| < |V(G)|. Also,
for all v € V(G), degn(v) = degg(a(v)) [3]. Figure 2 displays the possible role graphs for
2-role coloring of connected graphs.
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Fig. 2. Role graph

Since each color is assigned to some vertex of G, it is easy to see that if GG is connected, the
role graph R is also connected. This problem is equivalent to deciding if there exists a locally
surjective homomorphism between the graphs G and R [4]. Finding out whether a graph G
has a 2-role coloring is NP-complete, as demonstrated by F.S. Roberts and L. Sheng [5]. If
the graph is chordal, then k-role assignment can be solved in linear time for £k = 2 and NP-
complete for k& > 3 [6]. Role assignments can be computed in polynomial time for proper
interval graphs [7]. C. Purcell and P. Rombach [8] proved that k-role coloring is NP-hard
for planar graphs, while for trees and cographs it can be solved in polynomial time. They
also examined the role coloring for hereditary classes of graphs [9]. Characterization has
been done to acquire 3-role coloring in split graphs; it is one of the fascinating graph classes
where 2-role coloring is always achievable [10]. S. Pandey and V. Sahlot [3] demonstrated
that k-role coloring is NP-complete for bipartite graphs when k£ > 3. D. Castonguay et
al. [11] demonstrated that role assignments restricted to Cartesian products are invariably
2-role colorable.

Based on the work [3|, the complexity of 2-role coloring of non-bipartite graphs is
evident. So, we are intended to characterize graphs that are 2-role colorable from the rooted
product of G and H. Also, we restrict G and H by considering at least one of the graph as
non-bipartite.

The rooted product of graphs is one of the well-known binary operations. It was
introduced by C.D. Godsil and B.D. McKay [12] in 1978.
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Definition 1. The rooted product of two graphs G and H is defined as the graph
obtained from G and H by taking one copy of G and |V (G)| copies of H and identifying
the i-th vertex of G with the root vertex v in the i-th copy of H for every i = 1,...,|V(G)|.
It is denoted by G o, H.

The paper is organised as follows. The results of role coloring the rooted product of
cycles with cycles are presented in Section 2. In Section 3, we determine the role coloring
of the rooted product of graphs generated by considering at least one graph from G and H
as non-bipartite. The conclusion is given in Section 4.

2. Rooted product of C,, and C,

Theorem 1. Let G =2 (), and H = C,,, where m = 2k, k > 2 and n = 2t, t > 2. Then
G o, H is 2-role colorable with role graph R;.

Proof. Let {uy,...,uy,} =V(Cy) and {vy,...,v,} = V(C,). Let v, be any arbitrary
vertex in C,,. Now we obtain C,,0,C,, by identifying each u; € V(C,,) with v,, this produces
m copies of C,, with vertices {v11,v12,..., V10,021,022, -+, V2ns -+ Um1sUm2s -« - Umn
Let us assume v, = v;. Now define a : V(C,, 0, C,,) — {1,2} as follows:

1, ifiis odd
oe(vm):{’ LIRS Cigm

2, if 7 is even,
Now, for all vy ; € V(C) we have:

1, if jis odd, ,
a(vy) = L 1<j<n
’ 2, if j is even,

In general, for all v, ; € V(C,, o, C},) we have:

1, if 7,7 have the same parity,
a(vi;) =

2, otherwise.

This gives a 2-role coloring of C,, o, C,, with role graph R; since every vertex assigned
color 1 has color 2 in its neighborhood and every vertex assigned color 2 has color 1 in its
neighborhood. m

Theorem 2. Let G = (), and H = C,, where m > 3 and n =2t + 1, ¢t > 1. Then
G o, H is 2-role colorable with role graph Rs.

P’f‘OOf. Let {1}171, V1,2,---,01n,V21,0V22,-+-,V2n, -+, Um1,Um2, .- ,Umm} be the vertices
of Cy, o, Cy. Let v, be any arbitrary vertex in C,,. Let v, = v; and v;; be the root vertices
identified with the vertices of C,,. Since C,, is odd and non bipartite, assigning colors with
role graph R is not possible. Let us define o : V(C,, o, C,,) — V(R3).

Case (i). Let H = Cy41, where t is an odd positive integer. Let us consider a(v; ;) = 1
for all v;; € V(Cy, 0, Cy,). Here 2 ¢ a(N(v;1)), thus we have a(v;2) = a(v;3) = 2. Again
1 ¢ a(N(vi3), thus a(v;4) = a(v;5) = 1. Proceeding in this way we get

(0:.) 1, if j=0or1 (mod 4),
a\v; ) =
7 2, if j=2or 3 (mod 4).
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Case (ii). Let H = Cy1, where t is an even positive integer. If suppose a(v; 1) =1, then
there exist two vertices v; 4, v; 5, € V(Ciy, 0y Copp1), where a(v;4) = a(v; ) but a(N(v;4)) #
# (N (v;,)). Thus, we have

1, if 7 is odd,
a(viy) = o
2, if 7 is even.
In general, for all v;; € V(Cy, 0, Co441), j > 1, we have
(0:.) 1, if (iisodd, j =1or2 (mod 4)) or (i is even, j = 0 or 3 (mod 4)),
alVij) = . . .. .
K 2, if (iisodd, j=0or3 (mod 4)) or (iiseven, j =1 or2 (mod 4)).

Here, each vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. This gives a
2-role coloring of C,, o, C,, with role graph R3;. m

An example illustrating Theorem 2 is shown in Fig. 3.
V1,4 V2.3

V1,3 Q V2.4

V1,2 O vy 5

V3,2

V4,4 O V3,3

V4,3 V3.4

Fig. 3. 2-Role coloring of Cy o, C5

Theorem 3. Let G =C,, and H = C,, where m =2k + 1, k> 1and n =2t, t > 2.
If n satisfies any of the following conditions:
(i) n=0or6 (mod 12),
(i) n=2or8 (mod 12),
(iii) n=4 (mod 12),
then G o, H is 2-role colorable.
Proof. Let {uy,...,un} = V(Cy) and {vy,...,v,} = V(C,). Let {vi1,..., 01,021,
ey U2y ooy Umily - - - s Umn } be the vertices of Cy, 0, C,,. Let v, be any arbitrary vertex in C,,.
Let v, = v; and v;; be the root vertices identified with the vertices of C,,. Now we define
a:V(Cy 0, Ch) — {1,2} as follows.
Case (i). Let n = 0 or 6 (mod 12), then for all v;; € V(Caxy1 0, Co) we have
a(v;1) = 1. In general, for all v; ; € V(Caj4q 0, Cot) we have

(0:.) 2, if 5 =0 (mod 3),
a\V; ) =
7 1, otherwise.
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Case (ii). If suppose n = 2 or 8 (mod 12), then

(0:.) 1, if j=0o0r1 (mod 3),
a\v; ) =
7 2, if j =2 (mod 3).

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood. Every
vertex assigned color 2 has color 1 in its neighborhood. Thus, it is a 2-role coloring with
role graph Rs.

Case (iii). Let us consider the case n = 4 (mod 12). Then for all v; ; € V(Cojy10,Co)
we have

(0:.) 1, if j=0or1 (mod 4),
a\v; ) =
7 2, if j=2or3 (mod 4).

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. This gives a
2-role coloring of C,, o, C,, with role graph R3;. m

An example illustrating Theorem 3 is shown in Fig. 4.

V4.4 U3 4

Fig. 4. 2-Role coloring of C5 o, Cp

Theorem 4. Let G = C,, and H = C,, where m =2k + 1, k> 1and n =2t, t > 2.
If n =10 (mod 12), then G o, H is not 2-role colorable.

Proof. Let {vi1,...,010,U21,- - V2p,..sUmis--.,Umn} be the vertices of G o, H.
Let v, be any arbitrary vertex in C,. Let v, = v; and v;; be the root vertices identified
with the vertices of C,,. Let C,, be an even cycle, thus assigning colors with role graph R;
results in a contradiction, since the graph C,, is not bipartite. Hence, it can be role colored
with the role graph Ry or R3. By Theorem 3, the only case left is n = 10 (mod 12). Let us
assume « : V(C,,) — V(Rz) with a loop on 1 such that, given the vertices vy, vo, v, € V(H),
we have a(vy) = a(vg) = a(v,) = 1, where 2 ¢ (N (v;)). Now consider v, ; € V(C'T(Ll)) from
V(Cp, 0, Cy,), thus we have

(01.) 2, if =0 (mod 3),
a(vy ;) =
b 1, otherwise.
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Here a(vy1) = 1, where 2 ¢ (N (v11)). Thus, we assign a(vq;1) = 2, which satisfies the
neighborhood condition. Hence, for all vy ; € V(C,, 0, C,), 1 < j < n, we have

(02,) 1, if j=0or2 (mod 3),
a(vg ) =
2 2, otherwise.

Here a(ve1) = a(vem) = 2 and wve; is adjacent to vy, it follows that a(N(ve;)) =
= a(N(va,,)) € {1,2} but this is not true for other vertices colored 2. Hence, it is not
2-role colorable with role graph R,. Now we define a : V(C),,) — V(R3). Consider the
vertices vy, v, Up_1,v, € V(C,) such that a(vy) = a(vy) = a(v,—1) = a(v,) = 1, where
2¢ a(N(vy)) and 2 ¢ a(N(v,)). Let us consider v ; € V(C,sl)). Thus, we have

(01.) 1, ifj=0or1 (mod 4),
a(vy ) =
b 2, otherwise.

Here 1 ¢ a(N(vq,)), therefore a(ve;) = 1. But a(v1,) = 2, where 2 ¢ «(N(v1,,)) since
a(vi,1) = o(vi,(m—1y) = 1. Hence, C,, o, C, is not 2-role colorable with role graph R3 when
n =10 (mod 12). m

The following table summarizes the results from Theorem 1-4.

Role coloring of rooted product of cycles with cycles

Cycles (Cy) Cycles (Cy,) k-Role coloring of cycles C), and C,
When m is even When n is even k=2

When m is even When n is odd k=2

When m is odd When n is odd k=2

When m is odd When n is even k =2 when n # 10 (mod 12)

3. Rooted product on other graph classes

In this section, we find the role coloring of graphs that are obtained from rooted product
of other graph classes.

Theorem 5. Let GG be any graph and H = K,, or W,,. Then G o, H is 2-role colorable.

Proof. Let {vi1,...,V1n,V21,.-,V2n,--Um1,---,Unn} be the vertices of G o, H.

Case (i). If suppose H = W, then the root can be either a universal vertex or any
vertex in a cycle. Let v, be any arbitrary vertex in W,, or K. Let v;; be the universal
vertex in W, and v, = vy, then v;; be the root vertices identified with the vertices of G.
Now define a: V(G o, H) — {1,2} as follows:

1, =1,
(v ;) = {

2, otherwise.

Let us assume v, = v;. Then again a(v;;) = 1 and «o(v;;) = 2 for j # 1. If suppose v,
is a universal vertex, then every vertex assigned color 1 has both the colors 1 and 2 in its
neighborhood; similarly, every vertex assigned color 2 has both the colors 1 and 2 in its
neighborhood. Thus, we obtain a 2-role coloring with role graph Rj3. Otherwise, it can have
2-role coloring with role graph Rs.
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Case (ii). Let us consider H = K,,. Let v, = vj, be any arbitrary vertex and v, be
the root vertices identified with the vertices of GG. Then we have

1, ifj =k,
(v ;) = {

2, otherwise.

Hence, G o, K, is 2-role colorable with role graph R3 since every vertex colored 1 has both
the colors 1 and 2 in its neighborhood; similarly, every vertex colored 2 has both the colors
1 and 2 in its neighborhood. m

An example illustrating Theorem 5 is shown in Fig. 5.

V1,1 V2,1 V3,1

V1,6 V1,2 V26 V2,2 U36 V3,2
V1,5 V1,3 V25 V2,3 U35 V3,3

)

V1,4 V2,4 V3,4
Fig. 5. 2-Role coloring of Ps o, Kg

Theorem 6. Let G=W,, or K,, and H = C,,, where n =2t+1,t > 1. Then Go, H
is 2-role colorable with role graph Rj;.

Proof. Let {u1,...,un} = V(G) and {vy,...,v,} = V(H). Let {v11,...,01,021,
ey V2ny ey Uml,s - - - Umn } be the vertices of G o, H. Let v, be any arbitrary vertex of C,.
Let v, = vy be the root. Let {vy1,...,v,1} € V(G) in the graph G o, H. Here we have two
cases based on t.

Case (i). Let us consider the case where ¢ is an odd positive integer. Now we define
a:V(Go, H) — {1,2} as follows:

(0:.) 1, if j=0or1 (mod 4),
a\v; ) =
7 2, if j=2or3 (mod 4).

Case (ii). Let us consider the case where ¢ is an even positive integer. Let v;; be a
universal vertex in W, and any arbitrary vertex in K,,. Then we have

(0, 1, ifj=1or2 (mod 4),

avy ) =

b 2, if j=0o0r3 (mod 4),

a(vn) = 1, ifj=0or3 (mod 4), i1
" 2, if j=1or2 (mod 4),

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. Hence, this
is a 2-role coloring of G o, H with role graph R3. m

Lemma 1. Let P, be a path, where n > 2. If P, is 2-role colorable with role graph R,
then |E(P,)| = 3k, where k is a positive integer.
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Proof. Let {vy,...,v,} = V(P,). Let us assume that |F(P,)| # 3k, k = 1,2,... Let
us define a: V(P,) — V(Ry). Thus, |V(P,)| = 4, and hence the length of P, should be at
least 3. Now assume |E(P,)| > 3k and |V(P,)| > 3k + 1. Let us define o : V(P,) — {1,2}
as follows:

afe) = {2, if i = 0 or 2 (mod 3),

1, otherwise.

Thus, each vertex assigned color 1 must have color 2 in its neighborhood, and each vertex
assigned color 2 must have both the colors 1 and 2 in its neighborhood. Here, a(v,,) = 2 and
either 2 ¢ a(N(v,)) or 1 ¢ a(N(v,)), since n =0 or 2 (mod 3). This gives a contradiction
that P, is 2-role colorable. Hence, |E(P,)| = 3k. m

Theorem 7. Let G be a non-bipartite graph and H = P, be a path where n > 2.
Let v, be a root vertex in P,. If P, satisfies any of the following conditions:

(i) |V(P,)| = 3k + 1, where k is a positive integer and v, = vs, s =0 or 2 (mod 3);

(i) [V(P,)| =3k +2 and v, = v,,

then G o, H is 2-role colorable with role graph Rs.

Proof. Let {uy,...,un} =V(G)and {vy,...,v,} =V (P,). Let {v11,...,010,021,...,
V2 -y Umls -« - s Umn t De the vertices of Go, P,. Let us define a mapping o : V(Go, P,) —
— {1,2}. Here, assigning colors to P, with role graph R; is not possible because G is
non-bipartite. Hence, we consider the role graph Rs.

Case (i). Let [V(P,)| =3k+1 and v, = vs, s = 0 or 2 (mod 3). By Lemma 1, it is
obvious that P, of length 3k is 2-role colorable by role graph Ry. Thus, for all v; € V(B,), if
a(v;) = 1, then a(N(v;)) = 2, and if a(v;) = 2, then a(N(v;)) € {1,2}. If suppose v, = vy,
then a(v;) = 1. Now for all v;; € V(Go, P,) we have a(v; 1) = 1, where a(N(v;1)) € {1, 2},
but for all v;; € V(G o, P,), j # 1,s, we have o(v; ;) = 1, where 1 ¢ a(N(v;;)). Thus, we
consider v, = vs, here a(vs) = 2 for all s = 0 or 2 (mod 3) such that for all v; ; € V(Go, P,)
we have a(v;s) = 2 and a(N(v;5)) € {1,2}. This gives a 2-role coloring of G o, P, with role
graph Rs.

Case (ii). Let |V(P,)| = 3k+2 and v, = v,,. Here 2 ¢ o(N(v,)), but v;,, € V(Go, P,)
be the root vertices identified with vertices of G such that a(v;,) = 2 and a(N(v;,)) €
€ {1, 2}, which satisfies the adjacency condition with role graph Ry. m

Theorem 8. Let G be a non-bipartite graph and H = §,, be a star where n > 2.
Let v, be a root vertex in S,. Then G o, H is 2-role colorable if and only if v,. is the central
vertex.

Proof.

=: Let G o, S,, be 2-role colorable. On the contrary, we assume v, = v; as the leaf
vertex in S,,. Let us define a mapping o : V(G o, S,,) — {1,2}. Let v;; be the root vertices
identified with the vertices of G and v; 2 be the central vertex of SY. Let (vij), 7 # 1,2,
be the leaf vertices of S%). Now, we assume that a(v;;) = 1for j # 1,2 and a(v;2) = 2.
Here, v;; cannot be colored with role graph R;, since the graph G is non-bipartite. Thus,
if we assign color 1 to v;1, then a(N(v;1)) € {1,2} but this is not true for all (v;;), since
1 ¢ a(N(v;;)) for j # 1,2, And if we assign color 2 to v;; then 1 ¢ a(N(v;1)). Thus,
the color of v;; cannot be the same as the color of (v; ;) for j # 1, which contradicts the
assumption that G o, S, is 2-role colorable. Hence, v, must be the central vertex.
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<: Let v, = v; be the central vertex. Let us define a: V(G o, S,,) — {1,2} as follows:

(v) L j=1
a\V;5) = .
K 2, otherwise.

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood. Every
vertex assigned color 2 has color 1 in its neighborhood. Hence, it is a 2-role coloring with
role graph R,. m

4. Conclusion
In this paper, we explored the role coloring of non-bipartite graphs generated by rooted
products between various generic graph classes. Since k-role coloring is NP-complete on
non-bipartite graphs when k& = 2, we characterized graphs obtained from rooted product
that are 2-role colorable.
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