
2025

ÏÐÈÊËÀÄÍÀß ÄÈÑÊÐÅÒÍÀß ÌÀÒÅÌÀÒÈÊÀ

Ïðèêëàäíàÿ òåîðèÿ ãðàôîâ � 68

ÓÄÊ 519.7 DOI 10.17223/20710410/68/6

ROLE COLORING OF GRAPHS FROM ROOTED PRODUCTS

M. Komathi, P. Ragukumar

School of Advanced Sciences, Vellore Institute of Technology, Vellore, India

E-mail: komathirk2108@gmail.com, ragukumar2003@gmail.com

A k-role coloring is an assignment of k colors to the vertices of a graph such that if
any two vertices receive the same color, then the set of colors assigned to their neigh-
borhood will also be the same. Any graph with n vertices can have n-role coloring.
Although it is easy to determine whether a graph with n vertices accepts a 1-role
coloring, the challenge of k-role coloring is known to be difficult for k ⩾ 2. In fact,
k-role coloring is known to be NP-complete for k ⩾ 2 on general graphs. In this paper,
we determine k-role coloring of the rooted product of various graphs.
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ÐÎËÅÂÀß ÐÀÑÊÐÀÑÊÀ ÃÐÀÔÎÂ ÈÇ ÊÎÐÍÅÂÛÕ ÏÐÎÈÇÂÅÄÅÍÈÉ

Ì. Êîìàòè, Ï. Ðàãóêóìàð

Øêîëà ïåðåäîâûõ íàóê, Òåõíîëîãè÷åñêèé èíñòèòóò, ã. Âåëëîð, Èíäèÿ

k-Ðîëåâàÿ ðàñêðàñêà � ýòî íàçíà÷åíèå k öâåòîâ âåðøèíàì ãðàôà òàêèì îáðàçîì,
÷òî åñëè ëþáûå äâå âåðøèíû îêðàøåíû â îäèí è òîò æå öâåò, òî íàáîð öâåòîâ,
íàçíà÷åííûõ èõ ñîñåäÿì, òàêæå áóäåò îäèíàêîâûì. Ëþáîé ãðàô ñ n âåðøèíàìè
ìîæåò áûòü ðàñêðàøåí n ðîëÿìè. Ëåãêî îïðåäåëèòü, äîïóñêàåò ëè ãðàô ñ n âåð-
øèíàìè 1-ðîëåâóþ ðàñêðàñêó, íî çàäà÷à k-ðîëåâîé ðàñêðàñêè äëÿ k ⩾ 2 íà ïðî-
èçâîëüíûõ ãðàôàõ ÿâëÿåòñÿ NP-ïîëíîé. Â ðàáîòå îïèñàíà k-ðîëåâàÿ ðàñêðàñêà
êîðíåâîãî ïðîèçâåäåíèÿ ðàçëè÷íûõ ãðàôîâ.

Êëþ÷åâûå ñëîâà: ðîëåâàÿ ðàñêðàñêà, ðîëåâîé ãðàô, êîðíåâîå ïðîèçâåäåíèå, áè-

íàðíîå ïðîèçâåäåíèå.

1. Introduction
All graphs considered in this paper are simple, �nite, and undirected (except the role

graph R; it may have loops). The graph G = (V,E) has the vertex set V (G) and the edge
set E(G). The (open) neighborhood NG(v) = N(v) of vertex v in a graph G is the set of
all vertices in G that are adjacent to v, v ∈ V . The degree of a vertex v is indicated by
deg(v), and the minimum and maximum degrees of vertices in G are represented by δ(G)
and ∆(G), respectively. Let α(v) denote the color of the vertex v, and α(N(v)) denote the
color set of the neighborhood of v. For the standard graph terminology notions, we follow
J.A. Bondy and U. S.R. Murty [1].

Social networks are a part of everyone's life these days. A social network is envisioned
as a graph where the edges indicate the relationships between the persons and the vertices
represent the individuals in order to research their behavior. In 1991, M.G. Everett and
S. Borgatti [2] de�ned role assignment under the term �role coloring� based on graph models
for social networks. A k-role coloring for any graph G is the assignment of precisely k colors
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to its vertices such that if any two vertices get the same color, then the set of colors
assigned to their neighborhood is also the same. That is, k-role coloring is a surjective map
α : V (G) → {1, . . . , k} such that, for all u, v ∈ V (G), if α(u) = α(v), then α(N(u)) =
= α(N(v)) [3]. Figure 1 provides an example of role coloring of a graph G.

Fig. 1. 2-Role coloring of G

In general, every graph has two trivial role coloring for k = 1, n. The color image
graph R of a graph G is called a role graph. The role graph R is de�ned as the graph with
V (R) = {1, 2, . . . k} and E(R) = {(α(u), α(v)) : (u, v) ∈ E(G)} and |V (R)| ⩽ |V (G)|. Also,
for all v ∈ V (G), degG(v) ⩾ degR(α(v)) [3]. Figure 2 displays the possible role graphs for
2-role coloring of connected graphs.

R1

R2

R3

1 2

1 2

1 2

1 2
(or)

Fig. 2. Role graph

Since each color is assigned to some vertex ofG, it is easy to see that ifG is connected, the
role graph R is also connected. This problem is equivalent to deciding if there exists a locally
surjective homomorphism between the graphs G and R [4]. Finding out whether a graph G
has a 2-role coloring is NP-complete, as demonstrated by F. S. Roberts and L. Sheng [5]. If
the graph is chordal, then k-role assignment can be solved in linear time for k = 2 and NP-
complete for k ⩾ 3 [6]. Role assignments can be computed in polynomial time for proper
interval graphs [7]. C. Purcell and P. Rombach [8] proved that k-role coloring is NP-hard
for planar graphs, while for trees and cographs it can be solved in polynomial time. They
also examined the role coloring for hereditary classes of graphs [9]. Characterization has
been done to acquire 3-role coloring in split graphs; it is one of the fascinating graph classes
where 2-role coloring is always achievable [10]. S. Pandey and V. Sahlot [3] demonstrated
that k-role coloring is NP-complete for bipartite graphs when k ⩾ 3. D. Castonguay et
al. [11] demonstrated that role assignments restricted to Cartesian products are invariably
2-role colorable.

Based on the work [3], the complexity of 2-role coloring of non-bipartite graphs is
evident. So, we are intended to characterize graphs that are 2-role colorable from the rooted
product of G and H. Also, we restrict G and H by considering at least one of the graph as
non-bipartite.

The rooted product of graphs is one of the well-known binary operations. It was
introduced by C.D. Godsil and B.D. McKay [12] in 1978.
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De�nition 1. The rooted product of two graphs G and H is de�ned as the graph
obtained from G and H by taking one copy of G and |V (G)| copies of H and identifying
the i-th vertex of G with the root vertex v in the i-th copy of H for every i = 1, . . . , |V (G)|.
It is denoted by G ◦v H.

The paper is organised as follows. The results of role coloring the rooted product of
cycles with cycles are presented in Section 2. In Section 3, we determine the role coloring
of the rooted product of graphs generated by considering at least one graph from G and H
as non-bipartite. The conclusion is given in Section 4.

2. Rooted product of Cm and Cn

Theorem 1. Let G ∼= Cm and H ∼= Cn, where m = 2k, k ⩾ 2 and n = 2t, t ⩾ 2. Then
G ◦v H is 2-role colorable with role graph R1.

Proof. Let {u1, . . . , um} = V (Cm) and {v1, . . . , vn} = V (Cn). Let vr be any arbitrary
vertex in Cn. Now we obtain Cm◦vCn by identifying each ui ∈ V (Cm) with vr, this produces
m copies of Cn with vertices {v1,1, v1,2, . . . , v1,n, v2,1, v2,2, . . . , v2,n, . . . , vm,1, vm,2, . . . , vm,n}.
Let us assume vr = v1. Now de�ne α : V (Cm ◦v Cn)→ {1, 2} as follows:

α(vi,1) =

{
1, if i is odd,

2, if i is even,
1 ⩽ i ⩽ m.

Now, for all v1,j ∈ V (C
(1)
n ) we have:

α(v1,j) =

{
1, if j is odd,

2, if j is even,
1 ⩽ j ⩽ n.

In general, for all vi,j ∈ V (Cm ◦v Cn) we have:

α(vi,j) =

{
1, if i, j have the same parity,

2, otherwise.

This gives a 2-role coloring of Cm ◦v Cn with role graph R1 since every vertex assigned
color 1 has color 2 in its neighborhood and every vertex assigned color 2 has color 1 in its
neighborhood.

Theorem 2. Let G ∼= Cm and H ∼= Cn, where m ⩾ 3 and n = 2t + 1, t ⩾ 1. Then
G ◦v H is 2-role colorable with role graph R3.

Proof. Let {v1,1, v1,2, . . . , v1,n, v2,1, v2,2, . . . , v2,n, . . . , vm,1, vm,2, . . . , vm,n} be the vertices
of Cm ◦v Cn. Let vr be any arbitrary vertex in Cn. Let vr = v1 and vi,1 be the root vertices
identi�ed with the vertices of Cm. Since Cn is odd and non bipartite, assigning colors with
role graph R1 is not possible. Let us de�ne α : V (Cm ◦v Cn)→ V (R3).

C a s e (i). Let H ∼= C2t+1, where t is an odd positive integer. Let us consider α(vi,1) = 1
for all vi,1 ∈ V (Cm ◦v Cn). Here 2 /∈ α(N(vi,1)), thus we have α(vi,2) = α(vi,3) = 2. Again
1 /∈ α(N(vi,3), thus α(vi,4) = α(vi,5) = 1. Proceeding in this way we get

α(vi,j) =

{
1, if j ≡ 0 or 1 (mod 4),

2, if j ≡ 2 or 3 (mod 4).
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C a s e (ii). LetH ∼= C2t+1, where t is an even positive integer. If suppose α(vi,1)= 1, then
there exist two vertices vi,g, vi,h ∈ V (Cm ◦v C2t+1), where α(vi,g) = α(vi,h) but α(N(vi,g)) ̸=
̸= α(N(vi,h)). Thus, we have

α(vi,1) =

{
1, if i is odd,

2, if i is even.

In general, for all vi,j ∈ V (Cm ◦v C2t+1), j > 1, we have

α(vi,j) =

{
1, if

(
i is odd, j ≡ 1 or 2 (mod 4)

)
or
(
i is even, j ≡ 0 or 3 (mod 4)

)
,

2, if
(
i is odd, j ≡ 0 or 3 (mod 4)

)
or
(
i is even, j ≡ 1 or 2 (mod 4)

)
.

Here, each vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. This gives a
2-role coloring of Cm ◦v Cn with role graph R3.

An example illustrating Theorem 2 is shown in Fig. 3.

v1,1 v2,1

v4,1 v3,1

v1,2

v4,4
v4,2

v1,5
v1,3

v1,4

v4,5

v4,3

v3,5

v3,2

v3,4

v3,3

v2,2

v2,5

v2,4

v2,3

Fig. 3. 2-Role coloring of C4 ◦v C5

Theorem 3. Let G ∼= Cm and H ∼= Cn, where m = 2k + 1, k ⩾ 1 and n = 2t, t ⩾ 2.
If n satis�es any of the following conditions:

(i) n ≡ 0 or 6 (mod 12),
(ii) n ≡ 2 or 8 (mod 12),
(iii) n ≡ 4 (mod 12),

then G ◦v H is 2-role colorable.

Proof. Let {u1, . . . , um} = V (Cm) and {v1, . . . , vn} = V (Cn). Let {v1,1, . . . , v1,n, v2,1,
. . . , v2,n, . . . , vm,1, . . . , vm,n} be the vertices of Cm◦vCn. Let vr be any arbitrary vertex in Cn.
Let vr = v1 and vi,1 be the root vertices identi�ed with the vertices of Cm. Now we de�ne
α : V (Cm ◦v Cn)→ {1, 2} as follows.

C a s e (i). Let n ≡ 0 or 6 (mod 12), then for all vi,1 ∈ V (C2k+1 ◦v C2t) we have
α(vi,1) = 1. In general, for all vi,j ∈ V (C2k+1 ◦v C2t) we have

α(vi,j) =

{
2, if j ≡ 0 (mod 3),

1, otherwise.
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C a s e (ii). If suppose n ≡ 2 or 8 (mod 12), then

α(vi,j) =

{
1, if j ≡ 0 or 1 (mod 3),

2, if j ≡ 2 (mod 3).

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood. Every
vertex assigned color 2 has color 1 in its neighborhood. Thus, it is a 2-role coloring with
role graph R2.

C a s e (iii). Let us consider the case n ≡ 4 (mod 12). Then for all vi,j ∈ V (C2k+1 ◦vC2t)
we have

α(vi,j) =

{
1, if j ≡ 0 or 1 (mod 4),

2, if j ≡ 2 or 3 (mod 4).

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. This gives a
2-role coloring of Cm ◦v Cn with role graph R3.

An example illustrating Theorem 3 is shown in Fig. 4.
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Fig. 4. 2-Role coloring of C5 ◦v C6

Theorem 4. Let G ∼= Cm and H ∼= Cn, where m = 2k + 1, k ⩾ 1 and n = 2t, t ⩾ 2.
If n ≡ 10 (mod 12), then G ◦v H is not 2-role colorable.

Proof. Let {v1,1, . . . , v1,n, v2,1, . . . , v2,n, . . . , vm,1, . . . , vm,n} be the vertices of G ◦v H.
Let vr be any arbitrary vertex in Cn. Let vr = v1 and vi,1 be the root vertices identi�ed
with the vertices of Cm. Let Cn be an even cycle, thus assigning colors with role graph R1

results in a contradiction, since the graph Cm is not bipartite. Hence, it can be role colored
with the role graph R2 or R3. By Theorem 3, the only case left is n ≡ 10 (mod 12). Let us
assume α : V (Cn)→ V (R2) with a loop on 1 such that, given the vertices v1, v2, vn ∈ V (H),

we have α(v1) = α(v2) = α(vn) = 1, where 2 /∈ α(N(v1)). Now consider v1,j ∈ V (C
(1)
n ) from

V (Cm ◦v Cn), thus we have

α(v1,j) =

{
2, if j ≡ 0 (mod 3),

1, otherwise.



Role coloring of graphs from rooted products 99

Here α(v1,1) = 1, where 2 /∈ α(N(v1,1)). Thus, we assign α(v2,1) = 2, which satis�es the
neighborhood condition. Hence, for all v2,j ∈ V (Cm ◦v Cn), 1 ⩽ j ⩽ n, we have

α(v2,j) =

{
1, if j ≡ 0 or 2 (mod 3),

2, otherwise.

Here α(v2,1) = α(v2,m) = 2 and v2,1 is adjacent to v2,m, it follows that α(N(v2,1)) =
= α(N(v2,m)) ∈ {1, 2} but this is not true for other vertices colored 2. Hence, it is not
2-role colorable with role graph R2. Now we de�ne α : V (Cn) → V (R3). Consider the
vertices v1, v2, vn−1, vn ∈ V (Cn) such that α(v1) = α(v2) = α(vn−1) = α(vn) = 1, where

2 /∈ α(N(v1)) and 2 /∈ α(N(vn)). Let us consider v1,j ∈ V (C
(1)
n ). Thus, we have

α(v1,j) =

{
1, if j ≡ 0 or 1 (mod 4),

2, otherwise.

Here 1 /∈ α(N(v1,1)), therefore α(v2,1) = 1. But α(v1,n) = 2, where 2 /∈ α(N(v1,n)) since
α(v1,1) = α(v1,(n−1)) = 1. Hence, Cm ◦v Cn is not 2-role colorable with role graph R3 when
n ≡ 10 (mod 12).

The following table summarizes the results from Theorem 1�4.

Role coloring of rooted product of cycles with cycles

Cycles (Cm) Cycles (Cn) k-Role coloring of cycles Cm and Cn

When m is even When n is even k = 2
When m is even When n is odd k = 2
When m is odd When n is odd k = 2
When m is odd When n is even k = 2 when n ̸≡ 10 (mod 12)

3. Rooted product on other graph classes
In this section, we �nd the role coloring of graphs that are obtained from rooted product

of other graph classes.

Theorem 5. Let G be any graph and H ∼= Kn orWn. Then G◦vH is 2-role colorable.

Proof. Let {v1,1, . . . , v1,n, v2,1, . . . , v2,n, . . . , vm,1, . . . , vm,n} be the vertices of G ◦v H.
C a s e (i). If suppose H ∼= Wn, then the root can be either a universal vertex or any

vertex in a cycle. Let vr be any arbitrary vertex in Wn or Kn. Let vi,1 be the universal
vertex in Wn and vr = vk, then vi,k be the root vertices identi�ed with the vertices of G.
Now de�ne α : V (G ◦v H)→ {1, 2} as follows:

α(vi,j) =

{
1, if j = 1,

2, otherwise.

Let us assume vr = v1. Then again α(vi,1) = 1 and α(vi,j) = 2 for j ̸= 1. If suppose vr
is a universal vertex, then every vertex assigned color 1 has both the colors 1 and 2 in its
neighborhood; similarly, every vertex assigned color 2 has both the colors 1 and 2 in its
neighborhood. Thus, we obtain a 2-role coloring with role graph R3. Otherwise, it can have
2-role coloring with role graph R2.
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C a s e (ii). Let us consider H ∼= Kn. Let vr = vk be any arbitrary vertex and vi,k be
the root vertices identi�ed with the vertices of G. Then we have

α(vi,j) =

{
1, if j = k,

2, otherwise.

Hence, G ◦vKn is 2-role colorable with role graph R3 since every vertex colored 1 has both
the colors 1 and 2 in its neighborhood; similarly, every vertex colored 2 has both the colors
1 and 2 in its neighborhood.

An example illustrating Theorem 5 is shown in Fig. 5.
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Fig. 5. 2-Role coloring of P3 ◦v K6

Theorem 6. Let G ∼= Wm or Km and H ∼= Cn, where n = 2t+1, t ⩾ 1. Then G ◦v H
is 2-role colorable with role graph R3.

Proof. Let {u1, . . . , um} = V (G) and {v1, . . . , vn} = V (H). Let {v1,1, . . . , v1,n, v2,1,
. . . , v2,n, . . . , vm,1, . . . , vm,n} be the vertices of G ◦v H. Let vr be any arbitrary vertex of Cn.
Let vr = v1 be the root. Let {v1,1, . . . , vm,1} ∈ V (G) in the graph G ◦vH. Here we have two
cases based on t.

C a s e (i). Let us consider the case where t is an odd positive integer. Now we de�ne
α : V (G ◦v H)→ {1, 2} as follows:

α(vi,j) =

{
1, if j ≡ 0 or 1 (mod 4),

2, if j ≡ 2 or 3 (mod 4).

C a s e (ii). Let us consider the case where t is an even positive integer. Let vi,1 be a
universal vertex in Wm and any arbitrary vertex in Km. Then we have

α(v1,j) =

{
1, if j ≡ 1 or 2 (mod 4),

2, if j ≡ 0 or 3 (mod 4),

α(vi,j) =

{
1, if j ≡ 0 or 3 (mod 4),

2, if j ≡ 1 or 2 (mod 4),
i > 1.

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood; similarly,
every vertex assigned color 2 has both the colors 1 and 2 in its neighborhood. Hence, this
is a 2-role coloring of G ◦v H with role graph R3.

Lemma 1. Let Pn be a path, where n ⩾ 2. If Pn is 2-role colorable with role graph R2,
then |E(Pn)| = 3k, where k is a positive integer.



Role coloring of graphs from rooted products 101

Proof. Let {v1, . . . , vn} = V (Pn). Let us assume that |E(Pn)| ≠ 3k, k = 1, 2, . . . Let
us de�ne α : V (Pn)→ V (R2). Thus, |V (Pn)| ⩾ 4, and hence the length of Pn should be at
least 3. Now assume |E(Pn)| > 3k and |V (Pn)| > 3k + 1. Let us de�ne α : V (Pn)→ {1, 2}
as follows:

α(vi) =

{
2, if i ≡ 0 or 2 (mod 3),

1, otherwise.

Thus, each vertex assigned color 1 must have color 2 in its neighborhood, and each vertex
assigned color 2 must have both the colors 1 and 2 in its neighborhood. Here, α(vn) = 2 and
either 2 /∈ α(N(vn)) or 1 /∈ α(N(vn)), since n ≡ 0 or 2 (mod 3). This gives a contradiction
that Pn is 2-role colorable. Hence, |E(Pn)| = 3k.

Theorem 7. Let G be a non-bipartite graph and H ∼= Pn be a path where n ⩾ 2.
Let vr be a root vertex in Pn. If Pn satis�es any of the following conditions:

(i) |V (Pn)| = 3k + 1, where k is a positive integer and vr = vs, s ≡ 0 or 2 (mod 3);
(ii) |V (Pn)| = 3k + 2 and vr = vn,

then G ◦v H is 2-role colorable with role graph R2.

Proof. Let {u1, . . . , um} = V (G) and {v1, . . . , vn} = V (Pn). Let {v1,1, . . . , v1,n, v2,1, . . . ,
v2,n, . . . , vm,1, . . . , vm,n} be the vertices of G◦vPn. Let us de�ne a mapping α : V (G◦vPn)→
→ {1, 2}. Here, assigning colors to Pn with role graph R1 is not possible because G is
non-bipartite. Hence, we consider the role graph R2.

C a s e (i). Let |V (Pn)| = 3k + 1 and vr = vs, s ≡ 0 or 2 (mod 3). By Lemma 1, it is
obvious that Pn of length 3k is 2-role colorable by role graph R2. Thus, for all vi ∈ V (Pn), if
α(vi) = 1, then α(N(vi)) = 2, and if α(vi) = 2, then α(N(vi)) ∈ {1, 2}. If suppose vr = v1,
then α(v1) = 1. Now for all vi,1 ∈ V (G◦vPn) we have α(vi,1) = 1, where α(N(vi,1)) ∈ {1, 2},
but for all vi,j ∈ V (G ◦v Pn), j ̸= 1, s, we have α(vi,j) = 1, where 1 /∈ α(N(vi,j)). Thus, we
consider vr = vs, here α(vs) = 2 for all s ≡ 0 or 2 (mod 3) such that for all vi,s ∈ V (G◦vPn)
we have α(vi,s) = 2 and α(N(vi,s)) ∈ {1, 2}. This gives a 2-role coloring of G◦v Pn with role
graph R2.

C a s e (ii). Let |V (Pn)| = 3k+2 and vr = vn. Here 2 /∈ α(N(vn)), but vi,n ∈ V (G◦v Pn)
be the root vertices identi�ed with vertices of G such that α(vi,n) = 2 and α(N(vi,n)) ∈
∈ {1, 2}, which satis�es the adjacency condition with role graph R2.

Theorem 8. Let G be a non-bipartite graph and H ∼= Sn be a star where n ⩾ 2.
Let vr be a root vertex in Sn. Then G ◦vH is 2-role colorable if and only if vr is the central
vertex.

Proof.

⇒: Let G ◦v Sn be 2-role colorable. On the contrary, we assume vr = v1 as the leaf
vertex in Sn. Let us de�ne a mapping α : V (G ◦v Sn)→ {1, 2}. Let vi,1 be the root vertices
identi�ed with the vertices of G and vi,2 be the central vertex of S

(i)
n . Let (vi,j), j ̸= 1, 2,

be the leaf vertices of S
(i)
n . Now, we assume that α(vi,j) = 1 for j ̸= 1, 2 and α(vi,2) = 2.

Here, vi,1 cannot be colored with role graph R1, since the graph G is non-bipartite. Thus,
if we assign color 1 to vi,1, then α(N(vi,1)) ∈ {1, 2} but this is not true for all (vi,j), since
1 /∈ α(N(vi,j)) for j ̸= 1, 2. And if we assign color 2 to vi,1 then 1 /∈ α(N(vi,1)). Thus,
the color of vi,1 cannot be the same as the color of (vi,j) for j ̸= 1, which contradicts the
assumption that G ◦v Sn is 2-role colorable. Hence, vr must be the central vertex.
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⇐: Let vr = v1 be the central vertex. Let us de�ne α : V (G ◦v Sn)→ {1, 2} as follows:

α(vi,j) =

{
1, j = 1,

2, otherwise.

Here, every vertex assigned color 1 has both the colors 1 and 2 in its neighborhood. Every
vertex assigned color 2 has color 1 in its neighborhood. Hence, it is a 2-role coloring with
role graph R2.

4. Conclusion
In this paper, we explored the role coloring of non-bipartite graphs generated by rooted

products between various generic graph classes. Since k-role coloring is NP-complete on
non-bipartite graphs when k = 2, we characterized graphs obtained from rooted product
that are 2-role colorable.

Acknowledgement
The �rst author expresses her gratitude to the Vellore Institute of Technology, Vellore,

for providing �nancial support that enabled the author to carry out the research work.

REFERENCES

1. Bondy J.A. and Murty U. S.R. Graph Theory. London, Springer, 2008.

2. Everett M.G. and Borgatti S. Role colouring a graph. Math. Social Sci., 1991, vol. 21, no. 2,
pp. 183�188.

3. Pandey S. and Sahlot V. Role coloring bipartite graphs. Discrete Appl. Math., 2022, vol. 322,
pp. 276�285.

4. Fiala J. and Paulusma D. A complete complexity classi�cation of the role assignment problem.
Theor. Comput. Sci., 2005, vol. 349, no. 1, pp. 67�81.

5. Roberts F. S. and Sheng L. How hard is it to determine if a graph has a 2 role assignment?
Networks, 2001, vol. 37, no. 2, pp. 67�73.

6. Van't Hof P., Paulusma D., and van Rooij J.M. Computing role assignments of chordal
graphs. Theor. Comput. Sci., 2010, vol. 411, no. 40�42, pp. 3601�3613.

7. Heggernes P., van't Hof P., and Paulusma D. Computing role assignments of proper interval
graphs in polynomial time. LNCS, 2011, vol. 6460, pp. 167�180.

8. Purcell C. and Rombach P. On the complexity of role colouring planar graphs, trees and
cographs. J. Discrete Algorithms, 2015, vol. 35, pp. 1�8.

9. Purcell C. and Rombach P. Role colouring graphs in hereditary classes. Theor. Comput. Sci.,
2021, vol. 876, pp. 12�24.

10. Dourado M.C. Computing role assignments of split graphs. Theor. Comput. Sci., 2016,
vol. 635, pp. 74�84.

11. Castonguay D., Dias E. S., Mesquita F.N., and Nascimento J. R. Computing role assignments
of cartesian product of graphs. RAIRO-Operations Research, 2023, vol. 57, no. 3, pp. 1075�
1086.

12. Godsil C.D. and McKay B.D. A new graph product and its spectrum. Bull. Australian Math.
Society, 1978, vol. 18, no. 1, pp. 21�28.


