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Аннотация. Рассматриваются рентгенограммы углеродных материалов, пер-

спективных для использования в качестве компонентов электродов электрохими-

ческих накопителей энергии, таких как суперконденсаторы, литий-ионные и 

постлитий-ионные аккумуляторы: графитов, графенов, углеродных нановолокон, 

нанотрубок и саж. На основании рентгенограмм рассчитаны следующие характе-

ристики углеродов: межплоскостное расстояние, размеры кристаллитов, количе-

ство ароматических слоев и атомов углерода в кристаллитах, содержание аморф-

ной фазы и кристаллографическая плотность. 

В изученных графитах доля аморфной фазы варьирует в диапазоне 0,5–10%, 

межплоскостное расстояние составляет 3,35 Å. Доля аморфной фазы в углерод-

ных нановолокнах составляет 10–15%, а межплоскостное расстояние – 3,40 Å. 

Для изученных углеродных нанотрубок межплоскостное расстояние составило 

3,45–3,48 Å, а доля аморфной фазы 40–60%. Межплоскостное расстояние в сажах 

варьирует в диапазоне 3,5–3,7 Å, а доля аморфной фазы достигает 70%.  

В структуре всех изученных углеродных материалов присутствуют высоко 

кристаллические и низко кристаллические фазы, а также аморфная фаза. На рент-

генограммах нановолокон, нанотрубок и саж наблюдаются смещение и уширение 

полос (002) по сравнению с графитом. Такое смещение свидетельствует об уве-

личении дефектности кристаллической решетки.  

Расчетная кристаллографическая плотность изученных образцов аллотроп-

ных форм углеродов составляет для графитов 2,28 г/см3, углеродных нановоло-

кон – 2,22 г/см3, углеродных нанотрубок – 2,19–2,20 г/см3, саж – 1,96–2,20 г/см3.  
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Таким образом, на основании выполненных исследований можно заключить, 

что наименьшее количество аморфной фазы наблюдается у графитов, а наиболь-

шее – у саж. Графиты обладают наименьшим межплоскостным расстоянием,  

а сажи – наибольшим. 

Ключевые слова: рентегнофазовый анализ, графит, нанотрубки, нановолокна, 

сажи 
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Abstract. In this paper it is discussed X-ray diffraction patterns of carbon materials 

that are promising for use as components of electrodes in electrochemical energy storage 

devices such as supercapacitors, lithium-ion and post- lithium-ion batteries: graphites, 

graphenes, carbon nanofibers, nanotubes and carbon blacks. Based on the X-ray dif-

fraction patterns, the following characteristics of carbons were calculated: interplanar 

distance, crystallite sizes, the number of aromatic layers and carbon atoms in crystal-

lites, the content of the amorphous phase and the crystallographic density. 

In the studied graphites, the proportion of the amorphous phase varies in the range 

of 0.5-10%, the interplanar distance is 3.35 Å. The proportion of the amorphous phase 

in carbon nanofibers is 10-15%, and the interplanar distance is 3.40 Å. For the studied 

carbon nanotubes, the interplanar distance was 3.45-3.48 Å, and the proportion of the 

amorphous phase was 40-60%. The interplanar distance in carbon blacks varies in the 

range of 3.5-3.7 Å, and the proportion of the amorphous phase reaches 70%. 
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The structure of all the studied carbon materials contains highly crystalline and low 

crystalline phases, as well as an amorphous phase. In the X-ray patterns of nanofibers, 

nanotubes and carbon blacks, a shift and broadening of the (002) bands is observed 

compared to graphite. This shift indicates an increase in the defectiveness of the crystal 

lattice. 

The calculated crystallographic density of the studied samples of allotropic forms 

of carbon is 2.28 g/cm3 for graphites, 2.22 g/cm3 for carbon nanofibers, 2.19–2.20 g/cm3 

for carbon nanotubes, and 1.96–2.20 g/cm3 for carbon black. 

Thus, based on the conducted studies, it can be concluded that the smallest amount 

of amorphous phase is observed in graphites, and the largest - in carbon blacks. Graphites 

have the smallest interplanar distance, and carbon blacks - the largest. 
Keywords: X-ray phase analysis, graphite, nanotubes, nanofibers, carbon black 
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Введение 

 

В современных устройствах накопления электроэнергии – литий-ионных 

аккумуляторах и суперконденсаторах – широко применяются углеродные 

материалы в различных аллотропных формах. В литий-ионных аккумулято-

ров углеродные материалы используются в составе как положительных, так 

отрицательных электродов. В положительных электродах углероды чаще 

всего применяются в качестве токопроводящих добавок, поскольку актив-

ные материалы (литированные оксиды или фосфаты переходных металлов) 

обладают очень низкой электропроводностью. Например, электронная про-

водимость Li1–xNi1–y–zMnzCoyO2 составляет 10–7 Ом–1см–1, а LiFePO4 – ниже 

10–9 Ом–1см–1 [1–4] . 

В отрицательных электродах литий-ионных аккумуляторов роль угле-

родных материалов более широка: они используются и как активные мате-

риалы, и как токопроводящие добавки. В качестве активных компонентов 

отрицательных электродов литий-ионных аккумуляторов применяют угле-

родные материалы, способные обратимо интеркалировать катион лития, – 

графиты, графены и разупорядоченные углероды типа коксов [2, 5–8]. В ка-

честве токопроводящих добавок чаще всего применяют различные сажи, 

нанотрубки и нановолокна [8]. В электродах суперконденсаторов, как пра-

вило, используют углеродные материалы с высокоразвитой поверхностью, 

такие как сажи и нанотрубки [9, 10]. Таким образом, строение углеродных 

материалов определяет области их применения. Наноструктурированные 
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углеродные материалы – углеродная сажа, углеродные волокна, многостен-

ные углеродные нанотрубки – одни из наиболее перспективных материалов.  

В представленной работе суммированы результаты исследования строе-

ния наноструктурированных углеродных материалов методами рентгенофа-

зового анализа. 

 

Методы 

 

В работе использовали следующие углеродные материалы. Графиты и 

графен: Timrex® SLP50 (TIMCAL Graphite & Carbon), синтетический гра-

фит (Dianshi, Китай), графит натуральный (NG 10, Корея), УФ-МС1 (Россия) 

и многослойный графен GLNP-0350 (GraphenLab). Углеродные волокна и 

нанотрубки: Nano fiber ENF 100АА-GFE (carbon nanofibers, Electrovac AG), 

Pyrograf IIITM (carbon fiber HT grade, highly graphitic carbon nanofiber, 

Pyrograf Products, Inc.), MWCNT Graphistrength® U100 (Arkema), MWCNT 

Graphistrength® C100 (Arkema), MWCNT BAYTUBES® C70P (Bayer AG), 

MWCNT LUCANTM CP1001M (LG Chem.), углеродные нанотрубки  

(ТАУНИТ – МД). Углеродные сажи: Ketjenblack® EC-600JD (Akzo Nobel 

Polymer Chemicals LLC), PRINTEX® XE2 (Degussa AG), Monarch® 1300 

(Cabot Corp.), Monarch® 1400 (Cabot Corp.), сажа П-803М, Super PTM Li 

(TIMCAL Graphite & Carbon). 

Структурную идентификацию углеродов проводили на рентгеновском 

дифрактометре TD-20 (Китай). Используемое излучение: CuKα (длина 

волны 1,5405 Å). Рентгенограммы регистрировали для порошков, разме-

щенных в алюминиевой кювете. Измерения проводили в диапазоне 2Θ от 20 

до 100°. Шаг сканирования 0,0286°. Скорость сканирования 0,3°/мин. 

Расстояние между соседними ароматическими слоями в пачке dm рассчи-

тывали по формуле Вольфа–Брэгга  

 𝑑𝑚 =
λ

2 sin Θ
, (1) 

где λ – длина волны рентгеновского излучения и Θ – угол, соответствующий 

максимуму полосы m.  

Средний диаметр кристаллитов (ароматического слоя) La рассчитывали 

по формулам (длина кристаллита по оси а 2Н-гексагонального графита) 

 𝐿𝑎 =
𝐿100

cosΘ
=

0,89∙λ

0,866β100∙cosΘ
 или 𝐿𝑎 =

𝐿110

cosΘ
=

0,89∙λ

0,5β110∙cosΘ
, (2) 

где β100 – полная ширина 100-полосы на полувысоте ее максимума, Θ – угол, 

соответствующий максимуму 100-полосы, или где β110 – полная ширина 

110-полосы на полувысоте ее максимума, Θ – угол, соответствующий мак-

симуму 110-полосы.  

Средняя толщина кристаллитов (высота пачки ароматических слоев) рас-

считывалась по формуле (длина кристаллита по оси с 2Н-гексагонального 

графита) [11, 12] 

 𝐿𝐶 =
0,89∙λ

β002∙cosΘ 
,  (3) 

где β002 – полная ширина 002-полосы на полувысоте ее максимума. 



Углеродные материалы для электрохимических накопителей энергии 

61 

Количество ароматических слоев в кристаллите рассчитывали по урав-

нению [11, 12] 

 𝑁 =
𝐿𝐶+𝑑002

𝑑002
  (4) 

Среднее количество атомов углерода на ароматические ламели (кристал-

литах) [11] 

 n = 0,32 N2. (5) 

Кристаллографическую плотность рассчитывали по уравнению [13] 

 ρ =
0,762

𝑑002
.  (6) 

Значение рассчитанной таким образом плотности кристаллического  

вещества характеризует идеализированную кристаллическую решетку с ре-

альными параметрами. 

Для расчета структурных параметров (d00l, Lc, ρ, N) графитов были ис-

пользованы как рефлекс (002), так и рефлексы более дальних порядков – 

(004) и (006). 

Доли кристаллической фазы (кристаллических углеродных нанокласте-

ров) и аморфной фазы (аморфных углеродных нанокластеров) рассчиты-

вали с использованием следующих уравнений [14, 15]: 

 𝑃крист =
𝐼крист∙100%

𝐼общее
  (7) 

 𝑃аморф =
𝐼аморф∙100%

𝐼общее
,  (8) 

где Ркрист – доля кристаллических углеродных фракций, %; Раморф – доля 

аморфных углеродных фракций, %; Iкрист – высота пика, соответствующая 

доле кристаллической фазы; Iаморф – высота пика, соответствующая доле 

аморфной фазы; Iобщее – общая высота пика. Примеры оценки Iкрист и Iаморф 

представлены на рис. 1. 
 

 

Рис. 1. Пример расчета доли кристаллической и аморфной фаз в углеродах 
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Результаты и обсуждение 

 

Обзорные рентгенограммы углеродных материалов различной природы 

представлены на рис. 2–4. В табл. 1–3 суммированы результаты обработки 

и индицирования рентгенограмм изученных углеродов. 

 

 

Рис. 2. Рентгенограммы графитов различных производителей, графена и алюминиевой 

кюветы. В легенде указаны образцы, в скобках указаны марки графитов.  

РФА зарегистрированы на алюминиевой кювете 
 

Рентгенограммы графитов представлены на рис. 2. На рентгенограммах 

графитов и графена наблюдаются характерные узкие четкие пики, обуслов-

ленные кристаллической структурой. Рефлексы (002) (2Θ = 26,6°), (004)  

(2Θ = 54,7°) и (006) (2Θ = 87,1°) значительно отличаются своей интенсивно-

стью и являются отражениями полиареновых слоев. Рефлексы (004) и (006) 

характеризуют более дальний порядок, а рефлексы (100) (2Θ = 44,2°) и (101) 

(2Θ = 44,6°) отражают продольный размер структурных элементов. Ре-

флексы на рентгенограммах обладают слабовыраженной асимметричностью, 

что указывает на наличие фаз с различными степенью упорядоченности и 

структурными характеристиками. 

Рассчитанная по уравнению (7) общая доля кристаллической фазы в изу-

ченных графитах варьирует в диапазоне 96–99%, за исключением УФ-МС1, 

для которого доля кристаллической фазы 82,1%. (см. табл. 1). Межплоскост-

ное расстояние, рассчитанное по рефлексу (002), для всех изученных графи-

тов составляет 3,35 Å.  

Размеры кристаллитов близки: Lc изменяется в диапазоне 360–900 Å,  

а La – в диапазоне 270–520 Å Количество ароматических слоев изменяется 

от 1 000 до 2 000. Количество атомов углерода в кристаллитах составляет 

(4–5)·105. 

Рассчитанная кристаллографическая плотность составила 2,28 г/см3. 

На рентгенограммах углеродных нанотрубок и нановолокон (см. рис. 3) 

подобно графиту наблюдаются рефлексы (002) (см. рис. 2).  
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Т а б л и ц а  1   

Характеристики рентгенограмм графитов  

№ 2Θ, ° h k l d, Å 
ρ, 

г/см3 

Ркрист, 
% 

Раморф, 

% 
I/Imax, % β, ° 

Графит синтетический (Timrex® SLP50) 

1 26,639 002 3,346 

2,277 99,6 0,4 

100,0 0,373 

2 42,547 100 2,125 2,7 0,373 

3 54,720 004 1,677 3,9 60,011 

Графит синтетический (Dianshi, Китай) 

1 26,606 002 3,350 

2,275 97,9 2,1 

100,0 0,448 

2 42,536 100 2,125 2,7 0,516 

3 54,653 004 1,679 4,6 0,736 

Графит натуральный (NG 10, Корея) 

1, 26,61 002 3,35 

2,275 99,4 0,6 

100,0 0,43 

2, 44,63 100 2,03 2,0 0,73 

3, 54,72 004 1,68 4,6 0,56 

4, 87,13 006 1,12 0,7 0,52 

Многослойный графен (Graphene Lab, Россия) 

1, 26,777 002 3,329 

2,289 99,6 0,4 

100,0 0,266 

2, 42,566 100 2,124 0,5 0,280 

3, 54,909 004 1,672 4,0 0,499 

Графит (УФ-МС1, Россия) 

1, 26,44 002 3,371 

2,260 82,1 17,9 

100,0 0,699 

2, 43,81 100 2,066 22,0 0,315 

3, 54,45 004 1,685 3,9 0,948 

 

  
 а                                                                          б 

Рис. 3. Рентгенограммы углеродных нанотрубок и нановолокон,  

зарегистрированые на алюминиевой кювете 
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нановолокон составило 3,404 Å (см. табл. 2), что превышает соответствую-

щее межплоскостное расстояние графитов 3,35 Å (см. табл. 1).  

Важно отметить, что полоса (002) – более уширенная и несимметричная 

по сравнению с графитом. Таким образом, можно заключить, что в углерод-

ных нановолокнах содержатся фазы со структурой графита и более дефект-

ные кристаллические структуры [11, 12, 15]. Доля аморфной фазы составила 

14–16% (см. табл. 2). 

Положение рефлекса (002) на рентгенограмме нанотрубок более сме-

щено по сравнению с рефлексом графитов и составляет 2Θ = 25,6–25,8°. 

Наблюдаемые на рентгенограммах нанотрубок рефлексы (002) на (2Θ = 25,6–

25,8°), (004) (2Θ = 54,7°) более деформированы по сравнению с рефлексами 

углеродных нановолокон (см. рис. 3), что указывает на большее количество 

различных дефектов и количество аморфной фазы. Также на большую де-

фектность нанотрубок по сравнению с графитом и нановолокнами указывают 

отсутствие рефлекса (006) и сильная деформация рефлекса (004). Рассчитан-

ная доля аморфной фазы в нанотрубках составила порядка 50% (см. табл. 2).  

Рассчитанная кристаллографическая плотность нановолокон и нанотру-

бок составляет порядка 2,2 г/см3. 

Т а б л и ц а  2  

Характеристики рентгенограмм углеродных нанотрубок и нановолокон  

№ 2Θ, ° h k l d, Å 
ρ, 

г/см3 

Ркрист, 

% 

Раморф, 

% 
I/Imax, % β, ° 

Углеродные нановолокна (NanoFibers ENF-100AA GFE) 

1 25,963 002 3,432 
2,220 83,6 16,4 

100,0 1,334 

2 43,819 100 2,066 14,5 0,322 

Углеродные нановолокна (Pyrograf III Carbon fiber) 

1 25,916 002 3,348 
2,216 86,3 13,7 

100,0 1,248 

2 43,861 100 2,064 33,2 0,307 

Углеродные нанотрубки (BAYTUBES C70P) 

1 25,791 002 3,454 
2,206 51,9 48,1 

13,4 2,089 

2 43,833 100 2,065 100,0 0,313 

Углеродные нанотрубки (ТАУНИТ – МД) 

1 25,582 002 3,482 
2,188 46,3 53,7 

2,8 2,701 

2 43,859 100 2,064 100,0 0,263 

Углеродные нанотрубки (GRAPHISTRENGTH C100) 

1 25,558 002 3,485 
2,187 42,5 57,5 

7,7 2,522 

2 43,836 100 2,065 100,0 0,289 

Углеродные нанотрубки (GRAPHISTRENGTH U100) 

1 25,659 002 3,472 
2,195 53,9 46,1 

32,5 2,954 

2 43,821 100 2,066 100,0 0,328 
 

На рис. 4 представлены рентгенограммы саж и нефтяного кокса. На рент-

генограммах саж наблюдается наибольшее уширение рефлексов (002) для 

изученных углеродных материалов, что указывает на большую дефектность 

саж по сравнению с графитами, нановолокнами и нанотрубками. Уширение 

полосы (002) обусловлено наличием высокристаллической фазы и кристал-

лической фазы с дефектами [11, 12, 15].  
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Рис. 4. Рентгенограммы саж и нефтяного кокса на стеклянной кювете 

 
Т а б л и ц а  3  

Характеристики рентгенограмм саж и нефтяного кокса 

№ 2Θ, ° h k l d, Å 
ρ, 

г/см3 

Ркрист, 

% 

Раморф, 

% 
I/Imax, % β, ° 

Термообработаный нефтяной кокс 

1 25,713 002 3,465 
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100 12,67691 
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3 80,22128 006 1,197 5,01 7,91157 
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2 43,56 100 2,08 29,0 4,25 

3 79,55 006 1,21 10,9 7,13 

Сажа (Super PTM Li) 

1 25,20 002 3,53 

2,156 62,3 37,7 

100,0 4,31 

2 43,74 100 2,07 22,7 4,09 

3 79,46 006 1,21 7,8 10,70 
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3 52,11 006 1,75 5,2 6,60 
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Рентгенограммы саж содержат сильно деформированные уширенные  

рефлексы (002) и (100). Положение рефлекса (002) на рентгенограмме саж 

(2Θ = 23–24°) существенно отличается от положения рефлекса (002) графи-

тов (2Θ = 26,6°), нановолокон (2Θ = 26,2°) и нанотрубок (2Θ = 25,6–25,8°), 

что указывает на большее наличие дефектных кристаллических фаз. Рассчи-

танные межплоскостные расстояния, соответствующие необработанному 

рефлексу (002), варьируют в диапазоне 3,53–3,70 Å (см. табл. 3), а плотность 

саж – в диапазоне 1,96–2,17 г/см3. Среди изученных торговых марок угле-

родов наибольшим межплоскостным расстоянием обладает сажа марки  

Carbot Monarch 1300 – 3,881 Å. Доля аморфной фазы в сажах составляет бо-

лее 50%. Размер кристаллитов варьирует в диапазоне 10–50 нм, а количество 

слоев – в диапазоне 50–100. 

На рентгенограмме термообработанного нефтяного кокса наблюдается 

три дифракционных максимума при 25,7°, 42,9°, 52,4°, соответствующие 

межплоскостным расстояниям d002 = 3,462 Å, d100 = 2,106 Å, d004 = 1,745 Å. 

Доля кристаллической фазы составляет порядка 77%. Размеры кристалли-

тов составляют 130 на 70 нм. Рассчитанная плотность составила 2,20 г/см3. 

На рентгенограммах алюминиевой кюветы (см. рис. 3), используемой для 

анализа, наблюдаются рефлексы кристаллической структуры алюминия. 

Два основных дифракционных максимума при углах 2Θ = 37,6°, 43,9°, соот-

ветствующие межплоскостным расстояниям d111 = 2,389 Å, d200 = 2,062 Å. 

 

Выводы 

 

В работе были проанализированы рентгенограммы различных форм уг-

леродов: графитов, нановолокон, нанотрубок и саж.  

Положения рефлексов на рентгенограммах нановолокон, нанотрубок и 

саж смещены по сравнению с рефлексами графитов, что отражает увеличе-

ние дефектности кристаллической решетки. Количество аморфной фазы от 

0,5% до 70% увеличивается в ряду  

графиты < нановолокна < нанотрубки < сажи. 

В структуре углеродов наряду с аморфной фазой существуют фазы с раз-

ной степенью кристалличности, на что указывают уширение и деформация 

рефлексов на рентгенограммах. 
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