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Аннотация. Вводится понятие α, β-допустимых отображений как расширение так 

называемых α-допустимых отображений. Предложен для этого класса отображений 

новый результат о неподвижной точке в задании обобщенных ортогональных ча-

стичных метрических пространств. Чтобы проиллюстрировать широкую примени-

мость полученных выводов, устанавливаются существование и единственность  

решений для класса функциональных уравнений, возникающих в динамическом 

программировании. 
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1. Introduction 

 

The Banach contraction principle is a fundamental result in the fixed point theory, 

which has been extended in many directions. Not only contraction mappings but the con-

cept of metric space is also extended in many ways in the literature. The notion of partial 

metric spaces was initiated in 1994 by Matthews [1] in connection with logic program-

ming semantics. In specific applications of logic programming, it is required to have 

nonzero selfdistances. Moreover, via this kind of spaces, many papers have been ap-

peared [2, 3]. 

Very recently, in 2020, the authors in [4] defined the notion of generalized orthogonal 

sets by extending orthogonal sets introduced in 2017 by Gordji et al. [5]; the reader can 

see also [6]. In addition, they proved in [4] some fixed point theorems for 
F⊥ -contrac-

tions on generalized orthogonal metric spaces which generalize both F-contractions and 

F⊥ -contractions on metric spaces defined respectively in [7, 8]. For additional details, 

please refer to [9–11]. 

One of the various extensions of the celebrated Banach contraction is the α-admissible 

which is introduced in 2012 by Samet et al. [12]. In this direction, the authors in [12] 

established some fixed point theorems for such class of mappings in the setting of com-

plete metric spaces. In other words, they proved some fixed point results in a complete 

metric space X for the class of mappings T satisfying 

 ( ) ( ),  1      ,  1  , x y Tx Ty     (1.1) 

where  :     X X R+  →  is a function. As one can see in (1.1), the authors compared the 

function α with the constant 1. A very natural idea is to compare α with another function β. 

In this new proposed extension, (1.1) becomes 

 ( ) ( ) ( ) ( ),    ,    ,    ,  ,  x y x y Tx Ty Tx Ty     (1.2) 

where ,   :     X X R+   →  are two functions. Motivated by this fact (i.e., (1.2)) and due to 

the importance of α-admissible justified by the number of the papers has been published 

in this direction (see for instance [13–15] and references cited therein), in this paper  

we introduce the notion of α,β-admissible mappings. Then, a large class of mappings 

satisfying the fixed point property is added to the literature. It is worth mentioning  

that the case of partial metric spaces can be regarded as a special type of generalized 

partial metric spaces, so our results are valid in metric spaces and partial metric spaces 

as well. 

Finally, using α,β-admissible mappings, the proven fixed point theorem are applied 

to investigate the existence and uniqueness of solutions for a class of functional equations 

that arise in the context of dynamic programming. Compared with other results, we point 

out that the study of the above integral equation is done under new weak conditions. 
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2. Preliminary 

 

In this section, we recite some basic notions and results needed in the rest of the 

paper. In 1994, Matthews [1] introduced the notion of partial metric spaces as an exten-

sion of metric spaces as follows: 

Definition 2.1. ([1]) A partial metric on a nonempty set X is a function  :         p X X R+ →  

such that for all ,  ,     x y z X : 

(1) ( ) ( ) ( ),      ,      ,   p x x p x y p y y= =  if and only if x = y; 

(2) ( ) ( ),      ,  ;p x x p x y   

(3) ( ) ( )  ,      ,  ;p x y p y x=   

(4) ( ) ( ) ( ) ( ),      ,      ,      ,  .p x z p y y p x y p y z+  +   

The pair ( ), X p  is called a partial metric space. 

Definition 2.2. ([1]) Let ( ), X p  be a partial metric space. Then 

(i) A sequence  nx  in X converges to a point    x X  if and only if ( ) ( )
n
lim ,       ,  .np x x p x x
→

=


  

(ii) A sequence    nx X  is Cauchy if ( )
,
lim ,    m n

m n
p x x

→
exists and is finite. 

(iii) X is complete if every Cauchy sequence    nx X  converges to a point     ,x X  

that is, ( ) ( ) ( )
,
lim ,  ,   lim ,  .m n n

m n n
p x x p x x p x x

→ →
= =   

In 2009, Romaguera [16] introduced the following notions as generalization of the 

above concepts. 

Definition 2.3. ([16]) Let ( ), X p  be a partial metric space. 

(i) A sequence  nx  in ( ), X p  is called 0-Cauchy if ( )
,
lim ,  0m n

m n
p x x

→
= . 

(ii) The space ( ), X p  is called 0-complete if every 0-Cauchy sequence in X con-

verges to a point    x X  such that ( ),     0.p x x =   

Note that if ( ), X p  is complete, then it is 0-complete. The author in [13] has given 

an example which proves that the converse assertion does not hold. 

On the other hand, in 2012, Samet et al. [12] introduced the notion of α–ψ-contractive 

type mappings and established some fixed point theorems for these mappings in com-

plete metric spaces. 

Definition 2.4. (see [12]). Let ( ), X d  be a metric space,  :     T X X→  and 

 :       X X R+  →  be two given mappings. Then, T is called an α-admissible mapping if 

( ) ( ),    1      ,    1 x y Tx Ty     for all   ,      .x y X  

Theorem 2.5. (Theorem 3.2 [12]). Let be a complete metric space and  :  T X X→  

be an α–ψ-contractive mapping, that is, 

( ) ( ) ( )( ),  ,      ,  ,  ,     x y d Tx Ty d x y x y X      

where     .  Assume that 

(i) T is α-admissible; 
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(ii) there exists 0  x X  such that ( )0 0,  1 x Tx  ; 

(iii) T is continuous. 

Then, T has a fixed point. 

Here, Ψ is the family of nondecreasing functions  )  ) :  0,     0,  →   such that 

( )
1

     n t


   for all    0t  , with n  is the nth iterate of ψ (see [15]). 

Lemma 2.6. ([12]) For every function  )  ) :  0,     0,  →   the following holds: 

if ψ is nondecreasing, then for each ( )   0,  lim     0 nt t


  =  implies ( )    .t t    

Very recently, the authors in [4] introduced a new class of sets which generalizes the 

notion of orthogonal sets defined by Gordji et al. [5]. 

Definition 2.7. ([4]) Let    X   and let      g X X⊥    be a binary relation such that 

g⊥  satisfies the following condition. 

  0 0 0   0,       \  ,       , g gx y X x y x or x y   ⊥ ⊥   (2.1) 

then it is called a generalized orthogonal set. We denote it by ( ), .gX ⊥   

The element 0x  is said to be a generalized orthogonal element. 

Definition 2.8. ([4]) Let ( ), gX ⊥  be a generalized orthogonal set. Then, a sequence 

   nx X  is called a generalized orthogonal sequence if for all    n N , 

1 1 1      or    .n n n g n n g nx x x x x x+ + +  ⊥ ⊥  

Definition 2.9. ([4]) Let ( ), gX ⊥  be a generalized orthogonal space and  :    T X X→  

be a selfmapping. T is said to be generalized 
g⊥  preserving if for all ,     x y X , 

        .g gx y Tx Ty⊥  ⊥  

Now, inspired by [13] and [4], we introduce the following definitions. 

Definition 2.10. The triple ( ),  , gX p ⊥  is called generalized orthogonal partial metric 

space if ( ), gX ⊥  is a generalized orthogonal set together with ( ), X p  is a partial metric 

space. 

Definition 2.11. Let ( ),  , gX p ⊥  be a generalized orthogonal partial metric space.  

A sequence    nx X  is said to be Cauchy generalized orthogonal sequence if it satisfies 

both: 

(i)  nx  is an O-Cauchy sequence in ( ),  ,X p     

(ii)  nx  is a generalized orthogonal sequence in ( ), .gX ⊥   

Definition 2.12. Let ( ),  , gX p ⊥  be a generalized orthogonal partial metric space.  

X is said to be generalized orthogonal complete space if every Cauchy generalized or-

thogonal sequence    nx X  is convergent. 

Definition 2.13. Let ( ),  , gX p ⊥  be a generalized orthogonal partial metric space.  

A mapping  :   T X X→  is said to be generalized orthogonal continuous mapping, if for 
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every generalized orthogonal sequence      nx X  satisfying ( )lim ,  0n
n

p x u =  for some 

   u X  we have ( )lim ,  0.n
n

p Tx Tu =  

 

3. Main results 

 

In this section, we start with the following definitions. 

Definition 3.1. Let ( ),  , gX p ⊥  be a generalized orthogonal partial metric space and 

 :     T X X→  be a mapping. T is said to be generalized orthogonal α,β–ψ contractive if 

there exit ( )2,   :    0,X  →   such that for all ,     x y X   

( ) ( ) ( ) ( )( )      ,  ,    ,  ,  ,gx y x y p Tx Ty x y p x y⊥     

where      and α, β are introduced in the next definition. 

Definition 3.2. Let    :     T X X→  be a mapping, T is said to be α,β-admissible. If for all 

,     x y X  we have 

 ( ) ( ) ( ) ( ),      ,      ,      ,  .   x y x y Tx Ty Tx Ty     (3.1) 

Remark 3.3. In the above Definition, if we take ( ),    1 x y = , the concept α,β-

admissible becomes α-admissible. 

Example. Let ( )    0,X =   and  :     T X X→  be a mapping such that  Tx x=  for all     .x X  

Define 2,   : X R+  →  by 

( )
        

, 
  

x ye if x y
x y

y x else

− 
 = 

−
 

and 

( )
( )

1        
  ,   

ln       1     else

x y if x y
x y

y x

− + 
 = 

− +
 

It is easy to see that T has a fixed point, but is not an α-admissible mapping: ( )1, 2   1  ,   

however ( )1,  2 2 1 1.T T = −   On the other hand, T is an α,β-admissible mapping: 

Let ,     x y X , so we have: 

Case 1: If    x y , then ( ) ( ),    1 ,  .
x y

Tx Ty e x y Tx Ty
−

 =  − + =    

Case 2: If      x y , then ( ) ( ) ( ),             ln       1      ,  .Tx Ty y x y x Tx Ty = −  − + =   

Remark 3.4. The proposed class of α,β-admissible mappings contains a large class 

of mappings compared with the class of α-admissible mappings. 

Now, we are able to discuss the main result. 

Theorem 3.5. Let ( ),  , gX p ⊥  be a complete generalized orthogonal partial metric 

space and  :   T X X→  be a mapping satisfying 

(i) T is a generalized orthogonal α,β–ψ-contractive; 

(ii) T is α,β-admissible; 

(iii) for a generalized orthogonal element 0  x X  we have ( ) ( )0 0 0 0,    ,  ;x Tx x Tx    
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(iv) T is a generalized 
g⊥ -preserving; 

(v) T is a generalized orthogonal continuous mapping. 

Then T has a fixed point. 

Proof. Let 
0  x X  be the generalized orthogonal element satisfying (iii), so for all 

0      x y X   

 
0 0  or     . g gx y y x⊥ ⊥  (3.2) 

We can construct a sequence  nx  defined by 1    n nx Tx+ =  for all      0 .n N   

If there exists  0   0n N   such that 
0 0 1,   n nx x +=  so 

0nx  is the fixed point for T.  

Otherwise, we suppose that 
1 n nx x +  for all          0 ,n N   from (3.2) we obtain that 

0 0gx Tx⊥  or 
0 0gTx x⊥  and by the fact that T is a generalized 

g⊥ -preserving mapping 

we can conclude that  nx  is a generalized orthogonal sequence. 

Now, since T is α,β-admissible, by (iii) we have 

 ( ) ( )1 1,    ,  , n n n nx x x x+ +   (3.3) 

for all          0 .n N   

Applying (i), we obtain 

 ( ) ( ) ( ) ( )( )1 1 2 1 1,  ,    ,  ,   n n n n n n n nx x p x x x x p x x+ + + + +    (3.4) 

for all        {0}n N  . 

We have ( )1,    0n np x x +   for all          0 ,n N   this fact with the monotony of ψ imply 

that 

 ( ) ( )( )1

1 2 0 1,      , n

n np x x p x x+

+ +   (3.5) 

for all          0 .n N    

In this step, let ,    n m N  be such that 2m  , so we have 

 ( ) ( ) ( )
1 1

1

1

,    ,  ,  , 
n m n m

n n m k k k k

n n

p x x p x x p x x
+ − + −

+ +

+

 −   (3.6) 

which implies by (3.5) and the definition of the function ψ that  nx  is a Cauchy genera-

lized orthogonal sequence. Since X is a complete generalized orthogonal partial space, 

there exists    u X  such that ( ) ( ) ( )   lim ,  ,   lim   ,   0.n n n m np u x p u u p x x→ →= = =  Now 

by (v), we have ( )  lim   ,  0,n np Tu Tx→ =  and hence 

( ) ( ) ( ) ( )1 1,    ,    ,    , n n n np u Tu p u x p x x p x Tu+ + + +   

                 ( ) ( ) ( )1  ,    ,    ,  ,  n n n np u x p x x p Tx Tu+ + +  (3.7) 

for all     .n N  Letting     ,n→  we get ( ),     0p u Tu =  which implies that     .u Tu=  □ 

In the above Theorem, if we take ( ),     0p x x =  for all    x X  (in other words, since 

every metric space is a partial metric space), we obtain the following result 

Corollary 3.6. Let ( ),  , gX d ⊥  be a complete generalized orthogonal metric space 

and  :     T X X→  be a mapping satisfying 
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(i) T is a generalized orthogonal α,β–ψ-contractive mapping; 

(ii)  T is α,β-admissible; 

(iii) for a generalized orthogonal element 
0  x X  we have 

( ) ( )0 0 0 0,    ,  ;x Tx x Tx   

(iv) T is a generalized 
g⊥ -preserving; 

(v) T is a generalized orthogonal continuous mapping. 

Then T has a fixed point. 

If we replace the condition “generalized orthogonal α,β–ψ-contractive” by “α,β–ψ-

contractive,” we obtain the following result. 

Corollary 3.7. Let ( ), X p  be a complete partial metric space and  :     T X X→  be  

a mapping satisfying 

(i) T is α,β–ψ-contractive; 

(ii) T is α,β-admissible; 

(iii) for some 
0  x X  we have 

( ) ( )0 0 0 0,    ,  ;x Tx x Tx   

(iv) T is a continuous mapping. 

Then T has a fixed point. 

If we take   1  ,=  we obtain the famous result 

Corollary 3.8. (Theorem 2.2 [12]) Let ( ), X d  be a complete metric space and 

 :     T X X→  be an α–ψ-contractive mapping satisfying the following conditions: 

(i) T is α-admissible; 

(ii) there exists 
0  x X  such that ( )0 0,  1 x Tx  ; 

(iii) T is continuous. 

Then, T has a fixed point. 

Example. Let  )    0, ,X =   we endow X with the partial metric ( )  ,    max , p x y x y= . 

Define a mapping :  T X X→  by 

( )
  ( )

( 

2   if       0,1    2,

  if      1,2

x x
T x

x x

  
= 



  

and two functions  

( )

 
( 

1    if    ,      0,1 

,  0   f    ,     1, 2

2
  else,

3

x y

x y i x y


 


 = 




 

( )

 
( 

 

3   if    ,      0,1 

,  0   if    ,     1, 2

max 2 , 2  else. 

x y

x y x y

x y

 


 = 



 

Since for all ,     x y X  such that ( ),      ( ,  )x y x y   implies 

( ) ( ) ( ) ( ),      ,     0   0    ,      ,  .Tx Ty x y x y Tx Ty = =  = =  
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So, T is an α,β-admissible mapping. 

Now, we define a binary relation on    X X  by 

   gx y x y⊥    

and hence ( ),  , gX p ⊥  is a complete generalized orthogonal partial metric space and 
3

2
 

is a generalized orthogonal element satisfying  

3 3 3 3 3 3 3 3
  ,        ,    0   0      ,           ,      .
2 2 2 2 2 2 2 2

T T
       

 = =  = =       
       

 

Clearly, T is a generalized 
g⊥ -preserving and a generalized orthogonal continuous 

mapping. 

Finally, if we take ( )
2

   
3

t t =  for all     ,t R+  then T is a generalized orthogonal α,β–ψ-

contractive. Indeed: let ,     x y X  such that   ,gx y⊥  and hence     ,x y  so we have the fol-

lowing cases: 

Case 1: if [,  0 1 ,],x y   then 

( ) ( )  ,  ,     max , x y p Tx Ty Tx Ty =  

                                                                          max 2 , 2x y=  

                                                                         2y=   

                                                                        
2

 3 
3

y   

                                                                        ( )  
2

  ,    max , 
3

x y x y=   

                                                                        ( ) ( )( )  ,  , x y p x y=    

Case 2: if      0,1   x  and    2y , so 

( ) ( )  
2

,  ,    max , 
3

x y p Tx Ty Tx Ty =  

                                                                       
2

max 2 , 2
3

x y=   

                                                                      
4

3
y=  

                                                                      
24

3
y  

                                                                      ( )  
2

  ,    max , 
3

x y x y=   

                                                                      ( ) ( )( )  ,  ,  .x y p x y=   

Case 3: if ,     2x y , then 

( ) ( )  
2

,  ,    max , 
3

x y p Tx Ty Tx Ty =  
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                                                                       
2

max 2 , 2
3

x y=  

                                                                      
4

3
y=  

                                                                      24

3
y  

                                                                      
2

 2
3

y y  

                                                                      ( )  
2

  ,    max , 
3

x y x y=   

                                                                      ( ) ( )( )  ,  ,  .x y p x y=   

Case 4: if ( ,     1, 2 ,x y  then 

( ) ( ),  ,     0x y p Tx Ty =  

                                                                                  ( ) ( )( )  ,  ,  .x y p x y   

Remark 3.9. It is clear to see that Corollary 3.8 (Theorem 2.2 in [12]) does not ensure 

the existence of a fixed point since T  is not an α-admissible mapping. Indeed: 

 
3 7 3 7 3 7

, 1  ,  however   ,      ,   0  1  . 
4 8 4 8 2 4

T T
     

   = =      
     

 (3.8) 

 

4. Application in Dynamic Programming  

 

The theory of dynamic programming traces its origins to the study of multistage de-

cision processes. Inspired by [17, 18], we study the existence and uniqueness of  

a solution of a class of functional equations arising in dynamic programming. For this 

purpose, suppose that X and Y are Banach spaces, 𝑆 ⊂ 𝑋 is the state space, and 𝐷 ⊂  𝑌 

is the decision space. Let 𝜌: 𝑆 ×  𝐷 →  𝑆, 𝑔: 𝑆 ×  𝐷 → ℝ+ and 𝐺: 𝑆 ×  𝐷 × ℝ → ℝ+, 
where ℝ is the field of real numbers and ℝ+ is the set of non-negative real numbers.. 

𝐵(𝑆)+ denotes the set of all continuous bounded and non-negative real-valued functions 

on 𝑆. For ℎ, 𝑘 ∈  𝐵(𝑆)+, let 

𝑝(ℎ, 𝑘) = sup𝑥∈𝑆{|ℎ(𝑥) − 𝑘(𝑥)|} + max{sup𝑥∈𝑆|ℎ(𝑥)| , sup𝑥∈𝑆|𝑘(𝑥)|}. 

It is easy to see that (𝐵(𝑆)+, 𝑝, ⟂𝑔: =≤) is a complete generalized orthogonal partial 

metric space with 𝑥0 ≡ 0.  

Now, consider the following functional equation 

 𝑓(𝑥) = sup {𝑔(𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑓(𝜌(𝑥, 𝑦)))}, (4.1) 

where 𝑔 and 𝐺 are bounded. We define 𝑇: 𝐵(𝑆)+ →  𝐵(𝑆)+ by 

 𝑇𝑓(𝑥) = sup {𝑔(𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, 𝑓(𝜌(𝑥, 𝑦)))}. (4.2) 

In the following, we prove the existence and uniqueness of the solution for functional 
(4.1). This is equivalent to proving the existence and uniqueness of the mapping T de-

fined in (4.2). 
Theorem 4.2. Suppose that there exist θ: 𝐵(𝑆)+ × 𝐵(𝑆)+ → ℝ and ψ ∈ Ψ such that 

for all ℎ, 𝑘 ∈ 𝐵(𝑆)+  we have the following: 
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(i) 𝜃(𝑥0, 𝑇𝑥0) ≤ 0, 

(ii) 𝜃(ℎ, 𝑘) ≤ 0 ⇒ 𝜃(𝑇ℎ, 𝑇𝑘) ≤ 0, 
(iii) ℎ⟂𝑔𝑘 ⇒

{
|𝐺(𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) − 𝐺(𝑥, 𝑦, 𝑘(ρ(𝑥, 𝑦)))| + max{sup𝑥∈𝑆|𝑇ℎ(𝑥)|, sup𝑥∈𝑆|𝑇𝑘(𝑥)|} ≤ ψ(𝑝(ℎ, 𝑘)),

𝐺(𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) ≤ 𝐺(𝑥, 𝑦, 𝑘(ρ(𝑥, 𝑦))),
 

for all (𝑥, 𝑦) ∈ 𝑆 × 𝐷. 
Then, T has a unique fixed point. 

Proof. We will proceed by adhering to the following steps: 

• Let ε be an arbitrary positive number, let 𝑥 ∈ 𝑆 and ℎ, 𝑘 ∈ 𝐵(𝑆)+ with ℎ⟂𝑔𝑘; 

therefore there exist 𝑦, 𝑧 ∈  𝐷 such that 

 𝑇ℎ(𝑥) < 𝑔(𝑥, 𝑦) + G (𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) + ε, (4.3) 

 𝑇𝑘(𝑥) < 𝑔(𝑥, 𝑧) + G (𝑥, 𝑧, 𝑘(ρ(𝑥, 𝑧))) + ε. (4.4) 

At the same time, from the definition of T, we get 

 𝑇ℎ(𝑥) ≥ 𝑔(𝑥, 𝑧) + 𝐺 (𝑥, 𝑧, ℎ(ρ(𝑥, 𝑧))), (4.5) 

 𝑇𝑘(𝑥) ≥ 𝑔(𝑥, 𝑦) + 𝐺 (𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))). (4.6) 

It follows from (4.3) and (4.6) that 

𝑇ℎ(𝑥) − 𝑇𝑘(𝑥) <  G (𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) − G (𝑥, 𝑦, 𝑘(ρ(𝑥, 𝑦))) + ε 

< |G (𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) − G (𝑥, 𝑦, 𝑘(ρ(𝑥, 𝑦))) | + ε. 

Thus by condition (iii), we obtain 

𝑇ℎ(𝑥) − 𝑇𝑘(𝑥) <  ψ(𝑝(ℎ, 𝑘)) − max{sup𝑥∈𝑆|𝑇ℎ(𝑥)|, sup𝑥∈𝑆|𝑇𝑘(𝑥)| + ε. 
Similarly, from (4.4) and (4.5), we have 

𝑇𝑘(𝑥) − 𝑇ℎ(𝑥) <  ψ(𝑝(ℎ, 𝑘)) − max{sup𝑥∈𝑆|𝑇ℎ(𝑥)|, sup𝑥∈𝑆|𝑇𝑘(𝑥)| + ε. 
Then 

|𝑇ℎ(𝑥) − 𝑇𝑘(𝑥)| <  ψ(𝑝(ℎ, 𝑘)) − max{sup𝑥∈𝑆|𝑇ℎ(𝑥)|, sup𝑥∈𝑆|𝑇𝑘(𝑥)| + ε, 

Equivalently 

|𝑇ℎ(𝑥) − 𝑇𝑘(𝑥)| + max{sup𝑥∈𝑆|𝑇ℎ(𝑥)|, sup𝑥∈𝑆|𝑇𝑘(𝑥)| <  ψ(𝑝(ℎ, 𝑘)) + ε, 

This implies that 

𝑝(𝑇ℎ, 𝑇𝑘) < ψ(𝑝(ℎ, 𝑘)) + ε. 

Since ε is taken arbitrary, we obtain 

 𝑝(𝑇ℎ, 𝑇𝑘) ≤ ψ(𝑝(ℎ, 𝑘)). (4.7)  

Now, let 

𝛼(ℎ, 𝑘) = {
1   if θ(ℎ, 𝑘) ≤ 0
0         otherwise

 

and   

𝛽(ℎ, 𝑘) = {
1   if θ(ℎ, 𝑘) ≤ 0,
2         otherwise.

 

Then  

𝛼(ℎ, 𝑘)𝑝(𝑇ℎ, 𝑇𝑘) ≤ β(ℎ, 𝑘)ψ(𝑝(ℎ, 𝑘)). 

Therefore, T is generalized orthogonal α,β–ψ-contractive. 

• If α(ℎ, 𝑘) ≥  β(ℎ, 𝑘), then θ(ℎ, 𝑘) ≤ 0. Then, from condition (ii), we obtain 

θ(𝑇ℎ, 𝑇𝑘) ≤ 0 which implies that α(𝑇ℎ, 𝑇𝑘) ≥  β(𝑇ℎ, 𝑇𝑘). Hence, T  is α,β-admissible. 

• If θ(𝑥0, 𝑇𝑥0) ≤ 0, then α(𝑥0, 𝑇𝑥0) = 1 ≥ 1 = β(𝑥0, 𝑇𝑥0). Then condition (iii) 

from Theorem 3.5 holds. 
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• From condition (iii), we have  ℎ⟂𝑔𝑘 leads to 

𝐺 (𝑥, 𝑦, ℎ(ρ(𝑥, 𝑦))) ≤ 𝐺 (𝑥, 𝑦, 𝑘(ρ(𝑥, 𝑦))), 

and so by the definition of T we get 𝑇ℎ⟂𝑔𝑇𝑘. This means that the mapping T is genera-

lized 
g⊥ -preserving. 

It remains to prove that T is a generalized orthogonal continuous mapping.  

• Let {ℎ𝑛} be a generalized orthogonal sequence of functions of 𝑋 such that 

lim
𝑛

𝑝(ℎ𝑛, 𝑢) = 0 for some 𝑢 ∈ 𝐵(𝑆)+. Since ⟂𝑔=≤, we have  

ℎ𝑛 ≤ ℎ𝑛+1 or  ℎ𝑛+1 ≤ ℎ𝑛, then ℎ𝑛 ≤ u or 𝑢 ≤ ℎ𝑛. 

Therefore, according to (4.7), we have 

𝑝(𝑇ℎ𝑛, 𝑇𝑢) ≤ ψ(𝑝(ℎ𝑛, 𝑢)) 

< 𝑝(ℎ𝑛, 𝑢). 

Then lim
𝑛

𝑝(𝑇ℎ𝑛, 𝑇𝑢) = 0 and  𝑇 is a generalized orthogonal continuous mapping. 

Finally, all conditions of Theorem 3.5 hold and 𝑇 has a unique fixed point. □ 

Remark 4.3. In a future work, we will compare our results with the famous Caristi’s 

fixed point theorem [19]. Moreover, we will study the existence of solutions for certain 

differential equations via the proven results. 
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