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Введение 

 

В последние годы дробные задачи вариационного исчисления и оптимального управления при-

влекают большее внимание многих авторов (см., напр.: [1–3] и ссылки в них). Но имеющиеся резуль-

таты касаются только случая непрерывного времени. Дробные задачи оптимального управления, кото-

рые могут быть представлены обыкновенными дробными дифференциальными уравнениями, можно 

рассматривать как развитие или расширение обычных задач оптимального управления. 

Принцип максимума Понтрягина является ключевым результатом в теории необходимых усло-

вий оптимальности первого порядка. Первоначально он был доказан для задач оптимального управле-

ния, включающих обыкновенные дифференциальные уравнения [4]. Впоследствии были выведены 

различные условия оптимальности для ряда систем, охватывающих условия как первого, так и более 

высокого порядка [5]. 

Необходимые условия оптимальности для дробных дифференциальных уравнений с запаздыва-

нием включают комбинацию дробного дискретного исчисления, вариационного исчисления и адаптации 

принципов из теории оптимального управления. Полученные условия создают основу для разработки 

оптимальных стратегий управления в системах с эффектами памяти и временными задержками, которые 

часто встречаются в реальных приложениях. 

Хорошо известно, что дискретные аналоги дифференциальных уравнений могут быть очень по-

лезны в приложениях [6, 7] и что дробные дифференциальные уравнения Эйлера–Лагранжа чрезвы-

чайно трудно решить, поскольку необходимо их дискретизировать [2, 8]. 

Дискретное исчисление всегда предпочтительнее, особенно когда компьютеры используются 

для изучения свойств определенных динамических задач управления. Широко исследованы свойства 

разных обыкновенных разностных уравнений. Однако теория дробно-разностных уравнений все еще 

разработана мало. 

В работах [9, 10] рассмотрена одна задача оптимального управления, описываемая обыкновен-

ным разностным уравнением дробного порядка и получен ряд необходимых условий оптимальности 

первого и второго порядка. 

Многие сложные процессы описываются обыкновенными разностными уравнениями с запазды-

ванием дробного порядка [11–14]. Разностные уравнения дробного порядка с запаздыванием представ-

ляют собой значительную и быстро развивающуюся область исследований в более широкой области 

дробного исчисления. Традиционные разностные уравнения моделируют системы, где изменения про-

исходят на дискретных временных шагах, в то время как дробное исчисление расширяет концепцию 

производных и интегралов до нецелых порядков, охватывая эффекты памяти и зависимость на больших 

расстояниях, часто наблюдаемые в явлениях реального мира. Объединяя эти две концепции, разностные 

уравнения дробного порядка с запаздыванием включают временные задержки в динамику системы, 

еще больше повышая их способность реалистично моделировать сложные системы. 

В данной статье исследуется задача оптимального управления для модели, описываемой разност-

ными уравнениями с запаздыванием дробного порядка. 

Цель работы – при различных предположениях получить ряд необходимых условий оптималь-

ности. 

Установлены аналоги дискретного принципа максимума, линеаризованного принципа макси-

мума, получен аналог классического уравнения Эйлера. 

 

1. Основные понятия и постановка задачи 

 

Рассмотрим некоторые необходимые определения и понятия. 

Определение 1 [15–17]. Расширенный биномиальный коэффициент 
a

n
 
 
 

 определяется следую-

щим образом: 
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( )

( ) ( )

1
, 0,

1 1

1, 0,

0 0.

a
n

a n n
a

n
n

n

  +


 − +  + 
= = 

   



 

Определение 2 [18]. Для любого ,x y R  
( ) ( )

( )yx

x
x y

−+

+
=

1

1
, где   – гамма функция, для которой 

выполняется ( ) ( ).1 xxx =+

 

Пусть а – произвольное действительное число, и ,akb +=  здесь ;2,  kNk   , 1,..., ,T a a b= +  

 , 1,..., 1kT a a b= + − , а Ŧ – множество функций определенных на .T  

Определение 3. Пусть f  Ŧ. Выражения  

( )
( )

( )( )
( )

( )
11 t

a t

s a

f t t s f s
−−

=

 = +  − 
 

 ,      ( )
( )

( )( )
( )

( )
11 b

t b

s t a

f t s t f s
−−

= +

 = +  − 
 

  

называются соответственно левыми и правыми дробными суммами порядка 0  . 

Определение 4. Пусть 0 1    и 1 = −  , тогда для функции f  Ŧ левые и правые дробные 

суммы порядка   определяются в виде: 

( ) ( )( )a t a tf t f t − =   , 

( ) ( )( )t b t bf t f t − = −  . 

Приведем некоторые известные свойства дробной суммы и дробной разности из [15–17]:  

1. ( ) ( );f t f t  +  =   

2. ( ) ( ) ( )0 ;f t f t f−   = −  

3. ( ) ( );f t f t −  =  

4. ( )0 0f =  и ( ) ( ) ( ) ( )1 1 0 1 .f f f f = − =   

Перейдем к формулировке постановки задачи. Пусть управляемый процесс описывается систе-

мой нелинейных разностных уравнений с запаздыванием дробного порядка   

 ( ) ( ) ( ) ( )( )1 , , , ,x t f t x t x t h u t + = −      0 0 1, 1,..., 1t T t t t = + − , (1) 

с начальным условием 

   ( )
0 0 0 0 0 0( ) ( ), , 1,..., 1 , .tx t t t E t h t h t x t x=   = − − + − =  (2) 

Здесь ( )x t  – n-мерный вектор фазовых переменных, 0 1,t t  – заданные числа, 0x  – заданный постоянный 

вектор, ( ), , ,f t x y u  – заданная n-мерная вектор-функция, дискретная по t и непрерывная по ( ), ,x y u  

вместе с ( ) ( ), , , , , , , ,x yf t x y u f t x y u  h – заданное натуральное число (запаздывание), 
00 , ( ), tx t t E   за-

даны, ( ) (0 1)x t     – дробный оператор  порядка  , а ( )u t  – r-мерный дискретный вектор управ-

ляющих воздействий со значениями из заданного непустого и ограниченного множества U, т.е. 

 ( ) ru t U R  , t T . (3) 

Такие управляющие функции называем допустимыми управлениями. 

Цель состоит в том, чтобы минимизировать функционал 

 ( ) ( )( )1S u x t=  , (4) 

определенный на решениях системы (1), порожденных всевозможными допустимыми управлениями.  

Здесь ( )x  – заданная непрерывно дифференцируемая скалярная функция.  
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Задача (1)–(4) называется задачей дискретного терминального управления с запаздыванием 

дробного порядка. 

Допустимое управление ( ),u t  доставляющее минимум функционалу (4) при ограничениях (1)–(3), 

называется оптимальным управлением, а допустимый процесс ( ) ( )( ),u t x t  – оптимальным процессом. 

 

2.Формула приращения критерия качества и необходимое условие оптимальности 

 

Пусть ( ) ( )( ),u t x t  – фиксированный допустимый процесс, а ( )( ( ) ( ),u t u t u t= +  ( ) )( ) ( )x t x t x t= +   – 

произвольный допустимый процесс. Тогда ясно, что )(tx  будет решением следующей системы:  

 ( )( 1) ( , ( ), ( ), ( )) ( , ( ), ( ), ( )), ,x t f t x t x t h u t f t x t x t h u t t T  + = − − −   (5) 

.0)(,...,0)( 00 ==− txhtx  

Пусть ( )t  – пока неизвестный n-мерный дискретный вектор-столбец,  

( , , , , ) '( ) ( , , , )H t x y u t f t x y u =   

дискретный аналог функции Гамильтона–Понтрягина, где ).()( htxty −=    

Умножая обе части тождества (5) слева скалярно на пока неизвестную вектор-функцию ( )t , 

затем суммируя обе части полученного тождества по t от 0t  до 11 −t  и при этом учитывая вид функции 

Гамильтона–Понтрягина, получим  

( )  
1 1

0 0

1 1

'( ) ( 1) ( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( )) .
t t

t t t t

t x t H t x t x t h u t t H t x t x t h u t t
− −



= =

   + = −  − −    

Поэтому приращение функционала ( )S u  можно записать в виде: 

( ) ( ) ( ) ( )( ) ( )( ) ( )
1

0

1

1 1 '( ) ( 1)
t

t t

S u S u S u x t x t t x t
−



=

 = − =  −  +    + −  

  
1

0

1

( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( )) .
t

t t

H t x t x t h u t t H t x t x t h u t t
−

=

− −  − −   (6) 

Используя формулу Тейлора, приращение функционала (6) представим в виде: 

( ) ( ) ( ) ( )( ) ( ) ( )
1

0

1

1 1 '( ) ( 1)
t

x

t t

S u S u S u x t x t t x t
−



=

 = − =   +    + −  

1 1

0 0

1 1
'( , ( ), ( ), ( ), ( )) '( , ( ), ( ), ( ), ( ))

( ) ( )
( ) ( )

t t

t t t t

H t x t y t u t t H t x t y t u t t
x t y t

x t y t

− −

− −

   
−  −  −

 
   

1 1

0 0

1 1'( , ( ), ( ), ( ), ( )) '( , ( ), ( ), ( ), ( ))
( ) ( )

( ) ( )

t t

u u

t t t t

H t x t y t u t t H t x t y t u t t
x t y t

x t y t

− −

− −

   
−  −  −

 
   

 
1 1

0 0

1 1

2 1 1'( , ( ), ( ), ( ), ( )) ( ( ) ) ( ( ) ),
t t

u

t t t t

H t x t y t u t t o z t o x t
− −

− =

−   −  +    (7) 

где по определению  

 ( ) ( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( )),u H t H t x t y t u t t H t x t y t u t t =  −   

  ( , ( ), ( ), ( ), ( )),x xH t H t x t y t u t t=   

  ( , ( ), ( ), ( ), ( )),y yH t H t x t y t u t t=   

( ), ',z x y =    

  ( , ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( )).u x xH t H t x t y t u t t H t x t y t u t t =  −   
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Выполним преобразование формулы приращения (7). 

Cначала рассмотрим выражение 

( )
1

0

1

'( ) ( 1) .
t

t t

t x t
−



=

   +  

Сделав в нем замену переменных st =+ )1(  и учитывая начальное условие (6), получим 

( ) ( )
1 1

0 0

1

1

'( ) ( 1) '( 1) ( )
t t

t t t t

t x t t x t
−

 

= = +

   + =  −   =   

( ) ( ) ( )
1

0

1

1 1 0 0'( 1) ( ) '( 1) ( ) '( 1) ( )
t

t t

t x t t x t t x t
−

  

=

=  −   −  −   +  −   =  

 ( ) ( )
1

0

1

1 1'( 1) ( ) '( 1) ( ) .
t

t t

t x t t x t
−

 

=

=  −   +  −     (8) 

Из свойства дробной суммы получаем, что 

 
0

( 1)1
( ) ( ( )) ( ( )) ( ( )),

( )

t

s t

x t x t t s x s−  − 

=

 =    = +  −   
 

  (9) 

1

0

( 1)

1 1 1

1
( ) ( ( )) ( ( )) ( ( ))

( )

t

s t

x t x t t s x s−  − 

=

 =    = +  −    =
 

  

 
1

0

1
( 1)

1 1

1
( ( )) ( ( )) ( ( )).

( )

t

s t

x t t s x s
−

 − 

=

=   + +  −   
 

  (10) 

Теперь, принимая во внимание тождества (8)–(10), из формулы приращения (7) получим 

1

0

1
( 1)

1 1 1

1
( ) '( ( )) ( ( )) ( ( )) ( ( ))

( )

t

x

s t

S u x t x t t s x t
−

 − 

=

 
 =    + +  −    +    

  

( ) ( ) ( )
1 1

0 1

1 1

1 1'( 1) ( ) '( 1) ( ) '( 1) ( )
t h t

t t t t h

t x t t x t t x t
− − −

  

= = −

+  −   +  −   +  −   −   

1 1

0

1 1
( 1)1 '( , ( ), ( ), ( ), ( ))

( ( )) ( ( ))
( ) ( )

t h t

t t s t

H s x s y s u s s
s t x t

x s

− − −
− 

= =

  
− +  −    − 

   
   

1 1

1

1 1
( 1)1 '( , ( ), ( ), ( ), ( ))

( ( )) ( ( ))
( ) ( )

t t

t t h s t

H s x s y s u s s
s t x t

x s

− −
− 

= − =

  
− +  −    − 

   
   

1 1

0

1 1
( 1)1 '( , ( ), ( ), ( ), ( ))

( ( )) ( ( ))
( ) ( )

t h t

t t s t

H s x s y s u s s
s t x t

y s

− − −
− 

= =

  
− +  −    − 

   
   

1 1

0 0

1 1'( , ( ), ( ), ( ), ( )) '( , ( ), ( ), ( ), ( ))
( ) ( )

( ) ( )

t t

u u

t t t t

H t x t y t u t t H t x t y t u t t
x t y t

x t y t

− −

= =

   
−  −  −

 
   

 
1 1

0 0

1 1

2 1 1( , ( ), ( ), ( ), ( )) ( ( ) ) ( ( ) ).
t t

u

t t t t

H t x t y t u t t o z t o x t
− −

= =

−   −  +    (11) 

Предположим, что ( )t  является решением следующей системы:  

1 1
( 1)

1 1

'( , ( ), ( ), ( ), ( ))
( 1) ( ( )) , ,..., 1,

( )

t

s t

H s x s y s u s s
t s t t t h t

x s

−
−

=

 
 − = − +  −  = − −


  

1

0

1
( 1)

1 1

1
( 1) '( ( )) ( ( ))

( )

t

x

s t

t x t t s
−

−

=

 − = − +  −  +
 

  

    
1 11 1

( 1) ( 1)

0 1( ( )) ( ( )) , ,..., 1,
t t

x y

s t s t

s t H s s h t H s t t t h
− −

− −

= =

+ +  −  + +  − −  = − −   (12) 

 
1 1( 1) ( ( )).xt x t − = −  (13) 
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Задачу (12)–(13) называем сопряженной системой для задачи управления (1)–(4). 

Учитывая задачу (12)–(13), из формулы приращения (11) получим 

  
1

0

1

( ) ( , ),
t

u

t t

S u H t u u
−

=

 = −  +    (14) 

где по определению  

    
1 1 1

0 0 0

1 1 1

1 1 2( , ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ).
t t t

u x u y

t t t t t t

u u o x t o z t H t x t H t x t h
− − −

= = =

 =  −  −   −   −    (15) 

Нам понадобится оценка для )(tx  .)()(
1














= 

=

n

i

i txtx   

Применяя −  обеим сторонам уравнения (1), имеем 
( 1) ( , ( ), ( ), ( )).x t f t x t y t u t−  −  + =   

Займемся преобразованием этой формулы. С этой целью рассмотрим выражение  

( 1).x t−   +  

Учитывая свойства операторов дробной суммы и дробной разности, проведем следующие 

преобразования: 
1( 1) ( ( 1)) ( ( ( 1))x t x t x t−  − − − −  + =   + =    + =  

0

1

0( ( 1)) ( ( 1) ( )) ( 1) ( ).
t

j t

x t x t x t x t x t−

=

=   + = + − = + −  

Правая сторона: 

0

( 1)1
( , ( ), ( ), ( )) ( ( )) ( , ( ), ( ), ( ))

( )

t

j t

f t x t y t u t t j f j x j y j u j− −

=

 = −  =
 

  

0 0

1
( , ( ), ( ), ( )) ( , ) ( , ( ), ( ), ( )).

t t

j t j t

t j
f j x j y j u j A t j f j x j y j u j

t j


= =

− +  − 
= = 

− 
   

Здесь 

1
( , ) .

t j
A t j

t j

− +  − 
=  −   

Таким образом, доказали, что 

0

0( 1) ( ) ( , ) ( , ( ), ( ), ( )).
t

j t

x t x t A t j f j x j y j u j

=

+ = +   

Отсюда, переходя к норме и используя условие Липшица, получаем, что 

0

1

( ) ( 1, ) ( , ( ) ( ), ( ) ( ), ( ) ( ))
t

j t

x t A t j f j x j x j y j y j u j u j
−



=

 = − +  +  +  −  

0

1

( , ( ), ( ), ( )) ( 1, ) ( , ( ) ( ), ( ) ( ), ( ) ( ))
t

j t

f j x j y j u j A t j f j x j x j y j y j u j u j
−



=

− = − +  +  +  −  

( , ( ), ( )), ( )) ( , ( ), ( )), ( ))uf j x j y j u j f j x j y j u j− +    

 
0 0

1

1 ( 1, ) ( ) ( ) ( 1, )
t t

u

j t j t

L A t j x j y j A t j f j
−

 

= =

 
 −  +  + −    

 
   

   
0

1

1 0 0 1( 1, ) , , 1,..., 1 .
t

u

j t

L A t j f j t t t t
−



=

 + −   + −  

Применяя к последнему неравенству лемму Гронуолла–Беллмана дробного порядка (см., напр.: [15]), 

получим справедливость оценки 

  
0

1

2 0 0 1( ) (1 ( , ) ), , 1,..., .
t

uj t
x t L A t j f j t t t t

−

=
  +  = +  (16) 
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3. Необходимые условия оптимальности 

 

Теперь предположим, что вдоль допустимого процесса ( )( ), ( )u t x t  множество допустимых ско-

ростей системы (1), т.е. множество 

 ( ) ( ) , ( ), ( ), : , ( ), ( ), ,f t x t y t U f t x t y t v v U=   =  , (17) 

выпукло. Тогда специальное приращение управления ( )u t  можно определить по формуле  

 ( ) ( , ) ( ), ,u t v t u t t T =  −   (18) 

здесь  0,1  – произвольное число, а ( , )v t U   – такой вектор, что  

 ( ) ( ) ( ), ( ), ( ), ( , ) , ( ), ( ), ( ) (1 ) , ( ), ( ), ( ) .f t x t y t v t f t x t y t v t f t x t y t u t =  + −   (19) 

Через ( )x t  обозначим специальное приращение траектории )(tx , отвечающее приращению 

( )u t  управления u(t). 

С учетом оценки (16) получаем, что 

 3 1 3( ) , , 0.x t L t T t L const     =   (20) 

В силу этой оценки получим 

( )( ) ( );u u t  =   . 

Тогда из формулы приращения (14) следует, что 

    
1 1

0 0

1 1

( , ) ( )( ) ( ) ( ) ( ) ( ).
t t

v t v t

t t t t

S u S u u S u H t o H t o
− −

  

= =

 = +  − = −  +  = −  +    (21) 

Если предположить, что в задаче (1)–(4) управление )(tu  оптимальное, то из разложения (21) 

получим следующее неравенство: 

  
1

0

1

( ) ( ) 0.
t

v t

t t

H t o
−

=

−  +    (22) 

Из этого неравенства в силу произвольности   следует неравенство 

   .0

1

)(

1

0


−

=

tH

t

tt

tv  (23) 

Таким образом, доказана следующая 

Теорема 1 (дискретный принцип максимума для системы с запаздыванием). Если в задаче  

(1)–(2) вдоль допустимого процесса ( ))(),( txtu  множество допустимых скоростей системы (19) вы-

пукло, то для оптимальности управления )(tu  в рассматриваемой задаче необходимо, чтобы неравен-

ство (23) выполнялось для любого .,)( TtUtv    

Непосредственным следствием этого утверждения является 

Теорема 2 (поточечный дискретный принцип максимума [19]). При выполнении условия тео-

ремы 1 для оптимальности допустимого управления )(tu  в рассматриваемой задаче необходимо, 

чтобы условие 

 max ( , ( ), ( ), , ( )) ( , ( ), ( ), ( ), ( ))
v U

H x y v H x y u


     =        (24)        

выполнялось для всех T . 

Условие (24) является поточечным дискретным условием максимума для рассматриваемой за-

дачи. Для доказательства условия (24) достаточно в неравенстве (23) )(tv  определить по формуле 

, , ,
( )

( ), .

v t T v U
v t

u t t T

=  
= 

 
 

Также легко доказывается, что если вдоль процесса ( ))(),( txtu  выполняется соотношение (24), 

то вдоль этого же процесса выполняется также неравенство (23). Все эти рассуждения показывают, что 

условия оптимальности (23) и (24) равносильны.  
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Теперь предположим, что вектор-функция ),,,( uyxtf  непрерывна по совокупности переменных 

вместе с частными производными по ),( ux , а множество U  выпукло. 

Далее, считая ( ))(),( txtu  оптимальным процессом, специальное приращение оптимального 

управления определим следующим образом: 

 ( )( ; ) ( ) ( ) .u t v t u t  =  −  (25) 

Здесь  0,1  – произвольное число, а ( ) ,v t U t T   – произвольный вектор. 

В силу выпуклости множества U  специальное приращение ( ; )u t   оптимального управления ( ),u t  

определяемое формулой (25), будет допустимым. В самом деле: 

 ( ) ( ) ( ; ) ( ) ( ) ( ) ( ) (1 ) ( ) .u t u t u t u t v t u t v t u t U = +   = +  − =  + −    

Через ( ; )x t   обозначим специальное приращение оптимальной траектории ( ),x t  отвечающей 

специальному приращению управления ( ),u t  определяемое формулой (25). 

Используя работу [20], по аналогии с ней доказывается оценка  

0

1

1( 1) (1 ( , ) ( ) ),
t

j t
x t L A t j u j

−

=
 +  +   

здесь .,0 11 tTtconstL =   

Из этого неравенства получаем, что 

( )
0

1

1 2( ; ) (1 ( , ) ( ; ) ) ( ) ( ) ,
t

j t
x t L A t j u j L v j u j

−

=
   +     −  

отсюда следует 

 ( ; ) ~ .x t    (26) 

Учитывая формулу (25) и оценку (26), из формулы приращения (14) получим справедливость 

следующей теоремы. 

Теорема 3. Пусть множество U  выпукло, а ),,,( uyxtf  непрерывно по совокупности переменных 

вместе с частными производными по ( )ux, . Тогда для оптимальности допустимого управления )(tu  

необходимо, чтобы соотношение 

   0))()(('

11

0

−
−

=

t

tt

u tvtutH  (27) 

выполнялось для любого .,)( TtUtu   

Соотношение (27) является аналогом линеаризованного принципа максимума.  

Теперь предположим, что U – заданное непустое, ограниченное и открытое множество, а вектор-

ная функция ),,,( uyxtf  непрерывна относительно множества переменных вместе с частными произ-

водными по ( )ux, . 

Поскольку, по предположению, множество U открыто, особое приращение допустимого управ-

ления )(tu  можно определить по формуле 

 ( ) ( ).u t u t =   (28) 

Здесь ε достаточно малое по абсолютной величине число, а ( )u t  – произвольная r-мерная векторная 

функция со значениями из .rR  

Через ( )x t  обозначим особое приращение допустимой траектории )(tx , соответствующее осо-

бому приращению управления )(tu , определяемому формулой (28). 

Учитывая оценку (16), получаем, что 

 2 1 2( ) , , 0.x t L t T t L const     =   (29) 

Кроме того, для ( )x t  справедливо следующее разложение: 

 ( ) ( ) ( ; ).x t x t o t =  +   (30) 
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Отметим, что ( )u t  называется вариацией управления ( )u t , а ( )x t  называется вариацией тра-

ектории )(tx .   

Используя формулы (28) и (30), а также оценку (29), из формулы приращения (25) получаем 

справедливость следующего утверждения.  

Теорема 4. Пусть множество U открыто, а ),,,( uyxtf  непрерывна по множеству переменных 

вместе с частными производными по ).,( ux  Тогда для оптимальности допустимого управления )(tu  

необходимо, чтобы соотношение   

   0uH t =  (31)  

выполнялось для любого .Tt     

Соотношение (31) называется аналогом уравнения Эйлера для рассматриваемой задачи. 

 

4. Пример проверки необходимого условия оптимальности 

 

Пусть требуется минимизировать функционал 

min)3()( →−= xuS  

при ограничениях 

 ( 1) 3 ( ) ( 1) ( ), 0,1,2 ,x t x t x t u t T + = + − =  

( 1) 0, (0) 1, ( ) 2, \ 2.x x u t t T− = =    

Используя определения 2, 3 можно доказать, что 

( )( ) (2 ) 1 (1) (2).
( )

S u u u


= − −  − −  + −
 

 

Отсюда получаем, что 
* * *( ) ( (1), (2)) (2,2)u t u u= =  может быть оптимальным управлением. 

Составим функцию Гамильтона–Понтрягина следующим образом: 

( )( , ( ), ( 1), ( ), ( )) ( ) 3 ( ) ( 1) ( ) .H t x t x t u t t t x t x t u t−  =  + −  

Сопряженная система имеет вид: 

( )
1 1

( 1)
( 1) 3 ( ) ( ) , 2,3,

t

s t

t s t s t
−

−

=

 
 − = − +  −   = 

 
  

1

0

1
( 1)

1 1

1
( 1) '( ( )) ( ( ))

( )

t

x

s t

t x t t s
−

−

=

 − = − +  −  +
 

  

1 11 1
( 1) ( 1)

0 13 ( ( )) ( ) ( ( )) ( ) ( ), ,..., 1, 0,1.
t t

s t s t

s t s s h t s u s t t t h t
− −

− −

= =

+ +  −   + +  − −   = − − =   

Отсюда получаем, что  

(2) 1, (1) 3 ( ). =  =    

По теореме 1 проверим, что управление u*(t) является оптимальным.  

Получаем, что условие 

( , ( ), ( 1), ( ), ( )) ( , ( ), ( 1), ( ), ( )) ( ) ( 1)( ( ) 2) 0H t x t x t v t t H t x t x t u t t t x t v t−  − −  =  − −   

выполняется для любого  ( ) 2, 2 , 0,1, 2.v t t − =   

 

Заключение 

 

В работе ставится и исследуется дискретная терминальная задача оптимального управления, 

описываемая нелинейным разностным уравнением дробного порядка. 

В рассмотрение введены функции типа Понтрягина, а также аналог сопряженной задачи, при 

сделанных предположениях построена общая формула приращения функционала качества.  
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В случае выпуклости множества допустимых скоростей рассматриваемой системы уравнений, 

используя построенную формулу приращения, доказан дискретный аналог принципа максимума 

Л.С. Понтрягина. В случае выпуклости области управления и непрерывной дифференцируемости пра-

вой части уравнения по управлению доказан аналог линеаризованного условия максимума, а в случае 

открытости области управления установлено необходимое условие оптимальности в форме аналога 

классического уравнения Эйлера. 
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Введение 

 

Рассмотрим линейную стационарную систему с многими входами и многими выходами (MIMO-

систему) 

 
( ) ( ) ( ),

( ) ( ),

x t Ax t Bu t

y t Cx t

= +

=
 (1) 

где ( ) nx t   – вектор состояния; ( ) ru t   – вектор управления; ( ) my t   – вектор выхода; rank ,B r=  

rank C m= . 
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Известными (модальными) критериями управляемости и наблюдаемости (1) являются тесты По-

пова–Белевича–Хотиса (PBH-tests) [1. С. 265]. Согласно этим тестам для управляемости и наблюдае-

мости MIMO-системы необходимо и достаточно, чтобы 

  : rank nA I B n −  = , (2) 

 : rank
nA I

n
C

−  
 = 

  

. (3) 

Заметим, что условие   может быть заменено на eig( )A , где множество собственных 

значений матрицы A 

 ( ) eig( ) det 0i i nA A I = − = . 

В практических задачах анализа управляемости и наблюдаемости больших линейных многомер-

ных систем (Large Scale Systems), которые характерны для электроэнергетики [2–4], зачастую встреча-

ются ситуации, когда размерность векторов управления и выхода сопоставима с размерностью про-

странства состояний, т.е. r n , m n . В этом случае стандартные тесты на управляемость системы (1) 

представляют собой высокоразмерные плохо обусловленные задачи. 

Сходные трудности возникают в MIMO-системах, где некоторые элементы представлены не-

определенными параметрами (так называемые параметризованные системы). 

Цель данной работы – распространение предложенного в работе [2] подхода для энергетических 

систем в общем случае на MIMO-системы, который основан на построении цепочки преобразований 

(редукций), что позволяло бы выносить суждение об управляемости и наблюдаемости системы (1) на 

основе изучения управляемости и наблюдаемости систем существенно меньшей размерности состояний. 

 

1. Редукция тестов при анализе управляемости 

 

Известно, что любую числовую матрицу 
n rB   ранга r можно привести к виду [5, 6] 

 
( )0

r

n r r

I

− 

 
 
  

 

путем невырожденного преобразования T вида 

 
0

B
T

L

+ 
=  

  

, (4) 

где B+
 – псевдообратная по Муру–Пенроузу матрица [7], 0L  –максимальное решение однородного 

уравнения [8, 9] 

 0 ( )0 n r rL B − = . 

Используя (4), осуществим преобразование матрицы  nA I B−   по типу 

    
0

n n

B
T A I B A I B

L

+ 
−  = −  

  

. (5) 

Раскрывая правую часть (5), получим 

  
( )

( )0 0 ( )0

n r

n

n n r r

B B A I I
A I B

L L A I

+ +

− 

   − 
−  =   

−       

, 

при этом в силу невырожденности матрицы (4) 

  
( )

( )0 ( )

rank rank
0

n r

n

n n r r

B A I I
A I B

L A I

+

− 

 − 
−  =  

−   

. (6) 

Как следует из структуры (6), подматрица 

 ( )n rB A I I+ −    
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при любых λ имеет ранг r. Поэтому для выполнения условия (2) необходимо и достаточно, чтобы ранг 

подматрицы ( )0 nL A I−   удовлетворял требованию 

 ( ): rank nL A I n r −  = − . 

Введем в рассмотрение невырожденную матрицу 

 1T L B+ =   , 

как видно, удовлетворяющую уравнению 

 0 1 0 ( )0n r n r rL T L L B I+

− − 
   = =    . 

Осуществим далее невырожденное преобразование подматрицы ( )0 nL A I−   по типу 

 ( ) ( )0 1 0 0n nL A I T L A I L B+ −  = −    . (7) 

Раскроем правую часть (7): 

 ( )n n rL A I L B LAL I LAB+ +

−
   −  = −     . (8) 

При этом, как и в предыдущем случае (6), 

 ( )0 0 0 0rank rankn n rL A I L AL I L AB+

−
 −  = −   . (9) 

Сравнивая правые части из (2) и (9), приходим к справедливости следующего утверждения. 

Лемма 1. MIMO-система (1) управляема, если и только если выполняются эквивалентные условия: 

А: управляема система 

 1 0 0 1 0 1( ) ( ) ( )x t L AL x t L ABu t+= + , (10) 

где 1( ) n rx t −  – вектор состояния; 1( ) ru t   – вектор управления; 

B: 

 ( ) 0 0 0eig : rank n rLAL L AL I L AB n r+ +

−
  −  = −  , (11) 

где ( )0 0eig L AL+  – множество собственных значений матрицы 0 0L AL+ . 

Как видно, в результате проведенных преобразований произошла редукция размерности про-

странства состояний с n до величины n – r. Более того, если 

 0rank L AB n r r= −  , 

то (10) является управляемой независимо от вида и свойств матрицы LAL+
. 

Отметим также, что в общем случае очевидным является соотношение ( )eig eig( ).LAL A+   

Введем новые обозначения: 

 1 0 0 1 0 1 0 1, , , rankA L AL B L AB n r n L AB r+= = − = = . (12) 

С учетом (12) условие управляемости системы (11) примет вид: 

 
11 1 1 1( ) : rank nA A I B n  −  =  . 

Далее нам понадобятся максимальные решения следующих матричных уравнений: 

 

( )

( )

1 1 1

1 1

1

1 1

1 1

1 1 1

0 ,

0 ,

,

n r r

n r r

L R

r

L B

B R

J B J I

− 

 −

=

=

=

 (13) 

относительно матриц 1 1 1 1, , ,L RL J R J . Отметим, что уравнения (13) разрешимы для любой ненулевой 

матрицы над , при этом существуют (неединственные) невырожденные блочные матрицы [5] 

 
1

1 1 1 1

1

,

L

L R R
J

T T J R
L

 
 = =   

  

. (14) 

Как следует из (13), преобразование вида 

 1 1 1

L RT B T  
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с учетом (14) приводит к тождеству 

 
1 1 1

1 1 1 1 1 1

( )1

1 1 1 1 1 1
( ) ( ) ( )1

0

0 0

L
r r r r

L R R

n r r n r r r

IJ
T B T B J R

L

 −

−  −  −

  
   = =   

     

. (15) 

Применяя данное преобразование к матрице 
11 1nA I B −  , с учетом (15) получим  

 
( ) ( )

( ) ( )
1 1 1 1 1

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 ( )
1

1 1 1 1

1 1 1 1 1 1 1 ( ) ( ) ( )

0
.

0 0

L R L
L

n n r r r r
R

n R

n n n r r n r r r

J A I J J A I R IJ
A I B J R

L L A I J L A I R

 −

−  −  −

 −  −  
    −  =      −  −      

 (16) 

Анализ (16) показывает, что в данном случае справедлива цепочка ранговых условий 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 ( )

1 1 1 1 1 1 ( ) ( ) ( )

1 1 1 1 1 1 ( )

1 1 1 1 1 1 ( ) ( ) (

0
rank

0 0

rank 0

rank 0 0

L R L

n n r r r r

R

n n n r r n r r r

L R L

n n r r r r

R

n n n r r n r r

J A I J J A I R I

L A I J L A I R

J A I J J A I R I

L A I J L A I R

 −

−  −  −

 −

−  − 

 −  − 
  =
 −  − 
  

 = −  −  +
 

+ −  − 

( ) ( )

( )

( )

1

1 1

1

1

)

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1

rank

rank

rank .

r

R

n n

R

n

n

r L A I J L A I R

r L A I J R

r L A I

−
  =
 

 = + −  −  =
 

 = + −  = 

= + − 

 (17) 

Как видно, структура матрицы ( )
11 1 nL A I−   из (17) в точности соответствует структуре матрицы 

( )nL A I−   из (8). 

Это позволяет нам сформулировать еще одну лемму. 

Лемма 2. MIMO-системы (1), (10) управляемы, если и только если выполняются эквивалентные 

условия: 

А: управляема система 

 
12 1 1 1 2 1 1 2( ) ( ) ( )Lx t L A L x t L A R u t+= + , 

где 1 1

2 ( )
n r

x t
−

  – вектор состояния; 1

2 ( )
r

u t   – вектор управления; 
1LR  – максимальное решение 

уравнения 

 ( )1 1 1 1
1 0L n r r

L R
− 

= ; 

B: 

 ( )
1 11 1 1 1 1 1 1 1 1 1eig : rank n r LL A L L A L I L A R n r+ +

−
  −  = −  , 

где ( )1 1 1eig L A L+  – множество собственных значений матрицы 1 1 1L A L+ . 

Продолжая рассуждения по индукции, приходим к следующей теореме, справедливость которой 

нами фактически доказана. 

Теорема 1. MIMO-система (1) управляема, если и только если управляемо множество MIMO-

систем 

 
11 1 1 1 1( ) ( ) ( ), 1, ,

ii i i i i i i L ix t L A L x t L A R u t i n r
−

+

− − − − −= + = −  

где ( ) i in r

ix t
−

  – вектор состояния i-й системы; ( ) ir

iu t   – вектор управления i-й системы; 

1 1 1 1 1, ranki i i i i i in n r r L A R− − − − −= − = ; 1iL − , 
1iLR

−
 – максимальные решения соответственно уравнений 

 
( )1 1 1

1 1 0
i i i

i i n r r
L R

− − −
− − − 

= , 

 
( )1 1 1 1

1 0
i i i i

i L n r r
L R

− − − −
− − 

= , 

0A A= , 0R B= , 0 0,n n r r= = . 
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Из теоремы вытекает легко доказываемое следствие. 

Следствие 1. MIMO-система (1), где 1n  , 1( )u t   – скаляр, управляема, если и только если 

управляема скалярная система 

 
21 2 2 2 1 2 2 1( ) ( ) ( )

nn n n n n n n L nx t L A L x t L A R u t
−

+

− − − − − − − −= + , (18) 

т.е. в (18) скаляр 
11 1 0

nn n LL A R
−− −  . 

В качестве методического числового примера рассмотрим две SIMO-системы, каждая из кото-

рых являются предельным вариантом MIMO-системы (1) с матрицами 

 

0 1 0 0

0 0 1 , 0

1 2 3 1

A B

   
   

= =   
   
   

, (19) 

 

0 0 1 0

0 1 0 , 0

1 2 3 1

A B

   
   

= =   
   
   

. (20) 

Первая из данных систем – управляема, а вторая – нет. 

В результате преобразований, выполненных по теореме 1, приходим к двум скалярным системам 

 2 2 ( )x u t= , (21) 

 2 2 ( )x x t= . (22) 

Система (21) соответствует редукции состояния (19), а система (22) – (20). Очевидно, что (21) – 

управляема, а (22) – неуправляема. Это и требовалось показать. 

 

2. Редукция тестов при анализе наблюдаемости 

 

Для решения задачи редукции размерности состояния при анализе наблюдаемости MIMO-си-

стемы (1) воспользуемся преобразованиями матрицы (3), дуализированными к выполненным  

в предыдущем разделе преобразованиям матрицы (2). В результате придем к теореме. 

Теорема 2. MIMO-система (1) наблюдаема, если и только если наблюдаемо множество MIMO-

систем 

 

1

1 1 1

1 1

( ) ( ),

( ) ( ), 1, ,
i

i i i i i

i R i i i

x t R A R x t

y t L A R x t i n m
−

+

− − −

− −

=

= = −
 

где ( ) i in r

ix t
−

  – вектор состояния i-й системы; ( ) im

iy t   – вектор выхода i-й системы; 

11 1 1 1, rank
ii i i i R i in n m m L A R
−− − − −= − = ; 1iR − , 

1iRL
−

 – максимальные решения соответственно уравнений 

 
( )1 1 1

1 1 0
i i i

i i m n m
L R

− − −
− −  −

= , (23) 

 
( )1 1 1 1

1 0
i i i i

R i m n m
L R

− − − −
−  −

= , (24) 

0A A= , 0L C= , 0 0,n n m m= = . 

Следствие 2. MIMO-система (1), где 1n  , 1( )y t   – скаляр, наблюдаема, если и только если 

наблюдаема скалярная система 

 

2

1 2 2 2 1

1 2 2 1

( ) ( ),

( ) ( ),
n

n n n n n

n R n n n

x t R A R x t

y t L A R x t
−

+

− − − − −

− − − −

=

=
 (25) 

т.е. в (25) скаляр 
2 2 2 0

nR n nL A R
− − −  . 

На основе данной теоремы осуществим анализ наблюдаемости следующей модели, описывающей 

поведение электроэнергетической системы [10]: 
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( )

1 2

2 2

1 1

2 2

2

1 1 1

1 1 1 1

1 1 1

2 2 1 2

12 12

1 1

1

1 1

2

1 1

1 1

1 1 1 1

2 2 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0 2 2

g g

g g

t t

t t

t

G M M M

G M M M

T T

E T T

A E T T

T T

T T

D D T D

− − −

− − −

− −

− −

− −

− −

− − − −

 − −
 

− 
 −
 

− − 
 = − − 
 −
 
 −
 
 − + −
 

, (26) 

  3 3 5

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

C I 

 
 

= = 
 
 

. (27) 

Определим решения однородных уравнений (23), (24) для 1i = . Сначала рассмотрим уравнение 

 0 3 50CR =  

с матрицей C (27). Получим 

 
3 5

0
5

0
R

I

 
=  

  
. (28) 

Подставим матрицу (28) в уравнение (24): 

 
0 0 3 50RL R = , 

и решим его относительно матрицы 
0RL . Будем иметь 

  
0 3 3 50RL I C= = . 

Из (28) также следует, что 

  T

0 0 5 3 50R R I+

= = . 

Теперь можно свести анализ наблюдаемости (26), (27) к анализу наблюдаемости системы 

 

0

1 0 0 1

1 0 1

( ) ( ),

( ) ( ),R

x t R AR x t

y t L AR x t

+=

=
 

где 

 

( )

2

2

1 1

2 2

2

1

1

1 1

0 0 1

1 1

1 1 1 1

2 2 2

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 2 0 2 2

g

g

t t

t t

t

T

T

T TR AR A

T T

D D T D

−

−

− −
+

− −

− − − −

 −
 

− 
 

−= =  
 −
 
 − + −
  

, 

 
0

1

1

1

0 1 2

0 0 0 0

0 0 0 0

0 0 0 0 0

R

M

L AR C M

−

−

 
 

= =  
 
 

. 

Осуществляя далее аналогичные преобразования для i = 2, придем к анализу наблюдаемости си-

стемы 

 

1

2 1 1 1 2

2 1 1 2

( ) ( ),

( ) ( ),R

x t R A R x t

y t L A R x t

+=

=
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где 

 
1

T

1 1 1

1 0 0

0 1 0
0 0 1 0 0

0 0 0 , ,
0 0 0 0 1

0 0 1

0 0 0

RR R R L+

 
 
   
 = = =  
    
 
 
 

 

и 

 

2

2

2 2

1

1

1 1 1 2

1 1

0 0

0 0

0

g

g

t t

T

R A R A T

T T

−

+ −

− −

 −
 
 = = −
 

− 
 

, (29) 

 
( )

1

1

2

1

1 1 2 1 1 1

2 2

0 0

0 2 2

t

R

t

T
L A R C

D D T

−

− − −

 
 = =
 − +
 

. (30) 

Итак, анализ наблюдаемости MIMO-системы с матрицами (26), (27) и 8( )x t  , 3( )y t   сведен 

к анализу наблюдаемости MIMO-системы с матрицами (29), (30) и 3

2 ( )x t  , 2

2 ( )y t  . 

Если осуществить еще одну редукцию, то получим MIMO-систему 

 

2

3 2 2 2 3

3 2 2 3

( ) ( ),

( ) ( ),R

x t R A R x t

y t L A R x t

+=

=
 (31) 

где 

 

( )

( )

( )

( )

2 2

2

22

1 1

2 2
2 2 21 1 1 1

12 2
2

1 1

2

1

2

1 1

2

0

2 21
, 0 1 ,

2 2
2

1
1 2

2
0 1

2 ,

1 0 0

t t

t

tR

D D
R R

D T D T
D

D T

D

D TL

− −
+

− − − −
−

− −

−

− −

 
 

  
 = = 

+ +     
   +
 +    

 
− 

+=  
 
 

 

и 

 
2

1 2

2 2 2 3 2 2 30, 0RR A R A L A R C+ =   =   . (32) 

Как видно, MIMO-система (31) с параметрами (32) всегда наблюдаема, поэтому в силу теоремы 2 

MIMO-система (1) с матрицами (26), (27) также является наблюдаемой. 

 

Заключение 

 

В работе доказаны утверждения, согласно которым анализ управляемости и наблюдаемости ис-

ходной MIMO-системы путем редукции может быть сведен к анализу управляемости и наблюдаемости 

MIMO-систем с существенно меньшей размерностью пространства состояний. В предельном случае 

анализ исходной MIMO-системы сводится к анализу скалярных систем. 
 

Список источников 

 

1. Поляк Б.Т., Щербаков П.С. Робастная устойчивость и управление. М. : Наука, 2002. 

2. Мисриханов М.Ш., Рябченко В.Н. Редукция размерности состояния при анализе управляемости и наблюдаемости линей-

ных моделей энергосистем // Известия ТРГУ. 2005. Т. 55, № 11. С. 45–54. 



Управление динамическими системами / Control of dynamical systems 

22 

3. Гуссейнов Ф.Г. Упрощение расчетных схем электрических систем. М. : Энергия. 1978. 

4. Kundur P. Power system stability and control. McGraw-Hill, Inc., 1994. 

5. Зубов Н.Е., Микрин Е.А., Рябченко В.Н. Матричные методы в теории и практике систем автоматического управления ле-

тательных аппаратов. М. : Изд-во МГТУ им. Н.Э. Баумана, 2016. 

6. Мисриханов М.Ш. Ленточные критерии управляемости и наблюдаемости линейных динамических систем // Вестник 

ИГЭУ. 2002. Вып. 3. С. 61–69. 

7. Гантмахер Ф.Р. Теория матриц. М. : Наука, 1987. 

8. Уонем М. Линейные многомерные системы управления: геометрический подход. М. : Наука, 1980. 

9. Тауфер И. Решение граничных задач для систем линейных дифференциальных уравнений. М. : Наука, 1981. 

10. Christensen G.S., El-Hawary M.E., Soliman S.A. Optimal Control Applications Electric Power Systems. New York ; London : 

Plenum Press, 1987. 

 

References 

 

1. Polyak, B.T. & Shcherbakov, P.S. (2002) Robastnaya ustoychivost' i upravlenie [Robust Stability and Control]. Moscow: Nauka. 

2. Misrikhanov, M.Sh. & Ryabchenko, V.N. (2005) Reduktsiya razmernosti sostoyaniya pri analize upravlyaemosti i nablyudaemosti 

lineynykh modeley energosistem [State Dimension Reduction in the Analysis of Controllability and Observability of Linear Power 

System Models]. Izvestiya TRGU. 55(11). pp. 45–54. 

3. Guseynov, F.G. (1978) Uproshchenie raschetnykh skhem elektricheskikh sistem [Simplification of calculation schemes of electrical 

systems]. Moscow: Energiya. 

4. Kundur, P. (1994) Power System Stability and Control. McGraw-Hill, Inc.  

5. Zubov, N.E., Mikrin, E.A. & Ryabchenko, V.N. (2016) Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya 

letatel'nykh apparatov [Matrix methods in the theory and practice of automatic control systems of aircraft]. Moscow: Bauman 

Moscow State Technical University. 

6. Misrikhanov, M.Sh. (2002) Lentochmye kriterii upravlyayemosti i nablyudayemosti lineynykh dinamicheskikh system [Tape 

criteria of controllability and observability of linear dynamic systems]. Vestnik IGEU. 3. pp. 61–69. 

7. Gantmacher, F.R. (1987) Teoriya matrits [The Theory of Matrices]. Moscow: Nauka. 

8. Wonham, W.M. (1980) Lineynye mnogomernye sistemy upravleniya: geometricheskiy podkhod [Linear Multivariable Control:  

A Geometric Approach]. Translated from English. Moscow: Nauka. 

9. Taufer, I. (1981) Reshenie granichnykh zadach dlya sistem lineynykh differentsial'nykh uravneniy [Solution of Boundary Problems 

for Systems of Linear Differential Equations]. Moscow: Nauka. 

10. Christensen, G.S., El-Hawary, M.E. & Soliman, S.A. (1987) Optimal Control Applications Electric Power Systems. New York  

& London: Plenum Press. 

 

Информация об авторах:  

Зубов Николай Евгеньевич – профессор, доктор технических наук, декан факультета «Ракетно-космическая техника», 

профессор кафедры «Системы автоматического управления» МГТУ им. Н.Э. Баумана (Москва, Россия). E-mail: 

nik.zubov@gmail.com 

Рябченко Владимир Николаевич – доцент, доктор технических наук, профессор кафедры «Системы автоматического 

управления» МГТУ им. Н.Э. Баумана (Москва, Россия). E-mail: ryabchenko.vn@mail.ru 

 

Вклад авторов: все авторы сделали эквивалентный вклад в подготовку публикации. Авторы заявляют об отсутствии 

конфликта интересов.  

 

Information about the authors:  

Zubov Nikolay E. (Professor, Doctor of Technical Sciences, Dean of Rocket and Space Techniques Faculty, Professor of Department 

of Automatic Control Systems at Bauman Moscow State Technical University, Moscow, Russian Federation). E-mail: 

nik.zubov@gmail.com 

Ryabchenko Vladimir N. (Associate Professor, Doctor of Technical Sciences, Professor of Department of the Automatic Control 

Systems at Bauman Moscow State Technical University, Moscow, Russian Federation). E-mail: ryabchenko.vn@mail.ru 

 

Contribution of the authors: the authors contributed equally to this article. The authors declare no conflicts of interests.  

 

Поступила в редакцию 21.04.2025; принята к публикации 02.12.2025 

 

Received 21.04.2025; accepted for publication 02.12.2025 

 

 



© Е.А. Перепелкин, 2025  

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2024               Управление, вычислительная техника и информатика               № 73 

 
Научная статья 

УДК 681.51 

doi: 10.17223/19988605/73/3 

 

О задаче управления качеством переходных процессов по выходу  

в матричной системе второго порядка с обратной связью по состоянию 

 

Евгений Александрович Перепелкин 

 

Санкт-Петербургский государственный университет аэрокосмического приборостроения,  

Санкт-Петербург, Россия, perepelkin@guap.ru 

 

Аннотация. Решается задача управления качеством переходных процессов по выходу в матричной системе 

второго порядка с обратной связью по состоянию. Качество переходных процессов задается эталонной моде-

лью выхода в виде системы дифференциальных уравнений второго порядка. Описывается алгоритм  

модального синтеза обратной связи, при которой выход системы точно соответствует динамике эталонной мо-

дели. При этом замкнутая обратной связью система является асимптотически устойчивой. Исследуются усло-

вия существования решения задачи. Указываются ограничения, накладываемые на размеры векторов входа и 

выхода системы и на свойства матриц системы. Приводятся численный пример и результаты моделирования. 

Ключевые слова: матричная система второго порядка; качество переходных процессов; эталонная модель. 

 

Для цитирования: Перепелкин Е.А. О задаче управления качеством переходных процессов по выходу в матрич-

ной системе второго порядка с обратной связью по состоянию // Вестник Томского государственного универ-

ситета. Управление, вычислительная техника и информатика. 2025. № 73. С. 23–29. doi: 10.17223/19988605/73/3 

 

 

Original article  

doi: 10.17223/19988605/73/3 

 

On the problem of transient process quality control of output  

in a matrix second-order system with state feedback 
 

Evgenii A. Perepelkin 

 

Saint-Petersburg State University of Aerospace Instrumentation,  

Saint-Petersburg, Russian Federation, perepelkin@guap.ru 

 

Abstract. The article solves the problem of transient process quality control of output in a matrix second-order 

system with state feedback. The transient process quality is specified by a reference output model in the form of second-

order differential equations system. The paper describes modal synthesis algorithm, in which the system output exactly 

matches to the dynamics of the reference model. At the same time, the closed loop system is asymptotically stable.  

The conditions for the existence of a solution to the problem are investigated. The restrictions imposed on the sizes  

of the system input and output vectors and on the properties of the system matrices are indicated. A numerical example 

and simulation results are given. 

Keywords: matrix second-order system; transient process quality; reference model. 

 

For citation: Perepelkin, E.A. (2025) On the problem of transient process quality control of output in a matrix second-

order system with state feedback. Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitelnaja 

tehnika i informatika – Tomsk State University Journal of Control and Computer Science. 73. pp. 23–29. doi: 

10.17223/19988605/73/3 

 

 

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2025               Управление, вычислительная техника и информатика               № 73 

Tomsk State University Journal of Control and Computer Science 



Управление динамическими системами / Control of dynamical systems 

24 

Введение 

 

Проблема качества переходных процессов в системах автоматического управления является од-

ной из основных в теории и практике управления сложными динамическими объектами. Известные 

методы синтеза регуляторов [1, 2] не всегда могут обеспечить желаемое качество переходных процес-

сов. Модальные, линейно-квадратичные, оптимальные и робастные по критериям 2 /H H  регуляторы 

частично решают эту проблему, поскольку сложно определить влияние полюсов замкнутой системы 

или весовых матриц в интегральных критериях качества на временные характеристики переходных 

процессов в многосвязных системах. 

В настоящей работе решается задача управления качеством переходных процессов по выходу для 

матричной системы второго порядка. Матричные системы дифференциальных уравнений второго по-

рядка применяются для описания объектов управления в механике, акустике, электротехнике, робото-

технике. Для решения задач управления такого рода системами применяют классические методы теории 

автоматического управления, в том числе методы модального и оптимального управления [3, 4]. 

В данной работе описывается метод синтеза обратной связи по состоянию в матричной системе 

второго порядка, при которой переходный процесс по выходу точно соответствует переходному про-

цессу эталонной модели. Такой подход позволяет решить задачу управления качеством переходных 

процессов по выходу при условии асимптотической устойчивости системы с обратной связью. 

Синтез на основе эталонной модели является классическим методом решения задач управления 

динамическими объектами. Данный метод применяется в теории автоматического управления для ре-

шения широкого круга задач, включая задачи адаптивного и робастного управления [5–10].   

Работа содержит постановку задачи, предварительные сведения о решении задачи модального 

управления матричной системой второго порядка, алгоритм синтеза обратной связи с применением 

эталонной модели выхода, численный пример и результаты моделирования. 

 

1. Постановка задачи 

 

Рассмотрим линейную матричную систему второго порядка, поведение которой описывается 

уравнениями 

 1 2 ,+ + =x A x A x Bu      ,=y Cx  (1) 

где nx  – вектор состояния, 
mu  – вектор управления, 

ly – вектор выхода, матрицы системы 

1 2, ,n nA A  ,n mB  ,l nC  .l m n   Будем считать, что матрицы B  и C  полного ранга, 

rank ,m=B  rank .l=C  Строки матрицы CB  линейно независимы, rank .l=CB  

В теории матричных систем второго порядка вектор x  принято называть перемещением си-

стемы, вектор x  – скоростью системы. 

Пусть задано желаемое значение выхода .y  Необходимо построить управление в виде обратной 

связи по скорости и перемещению 1 2 ,= − − +u F x F x u  где 1 2, m nF F  – матрицы обратной связи, 

mu  – некоторое постоянное значение управления такое, что 

lim ( )
t

t
→

=y y  

при любых начальных значениях перемещения и скорости (0),x  (0).x  При этом замкнутая обратной 

связью система  

 1 1 2 2( ) ( )+ + + + =x A BF x A BF x Bu  (2) 

должна быть асимптотически устойчивой, а переходный процесс по вектору выхода должен точно со-

ответствовать переходному процессу эталонной модели асимптотически устойчивой матричной си-

стемы второго порядка 

 1 2 ( ) 0,+ + − =y D y D y y  (3) 

где 1 2, ,l lD D  2det 0.D  
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2. Предварительные сведения 

 

Матрицу 
2

1 2( )s s s= + +A E A A  будем называть матрицей разомкнутой системы, матрицу 

2
1 1 2 2( ) ( )c s s s= + + + +A E A BF A BF  – матрицей замкнутой системы, матрицу 

2
1 2( )s s s= + +D E D D  – 

матрицей эталонной модели. Здесь E  – единичная матрица соответствующего порядка, .s  

Обозначим через ( ) det ( )a s s= A  характеристический полином разомкнутой системы, через 

( ) det ( )c ca s s= A  – характеристический полином замкнутой системы, через ( ) det ( )d s s= D  – характе-

ристический полином эталонной модели. Заметим, что deg ( ) deg ( ) 2 ,ca s a s n= =  deg ( ) 2 .d s l=  

Полюсы системы есть корни характеристического полинома. Для асимптотической устойчиво-

сти системы необходимо и достаточно, чтобы полюсы системы имели вещественные части меньше 

нуля. 

В работах [11, 12] приводятся необходимые и достаточные условия существования решения за-

дачи о назначении полюсов замкнутой системы и описываются алгоритмы нахождения матриц обрат-

ной связи. 

Утверждение 1. Все полюсы замкнутой системы можно произвольно задать, выбирая матрицы 

обратной связи 1F  и 2 ,F  тогда и только тогда, когда ( )rank ( ),s n=A B  для любого .s  

Решить задачу о назначении полюсов замкнутой системы можно, применяя известные методы 

модального управления. Заметим, что ( ) det( ),ca s s= − +E A BF  где 

2 1

0
,

 
=  

− − 

E
A

A A
     

0
,

 
=  

 
B

B
     ( )2 1 .=F F F  

Следовательно, полюсы замкнутой системы есть собственные числа матрицы .−A BF  Задача о назна-

чении собственных чисел этой матрицы является задачей модального управления для системы с обрат-

ной связью по состоянию. Для решения этой задачи разработаны численный методы, реализованные  

в системах компьютерной математики [13. Р. 343]. 

Далее будут применяться следующие обозначения для матриц: +
M  – псевдообратная матрица; 

0M  – матрица, столбцы которой составляют ортонормированный базис  ker | 0 .= =M x Mx   

Справедливы равенства [14. С. 31]: ,+ =MM M M  ,+ + +=M MM M  0 0.=MM  Если строки мат-

рицы M  линейно независимы, то ( )
1

T T
−

+ =M M MM  и ,+ =MM E  где E  – единичная матрица. Если 

столбцы матрицы M  линейно зависимы, то 0 0M  и T
0 0 .=M M E   

 

3. Алгоритм синтеза обратной связи 

 

Пусть матрицы обратной связи 1,F  2F  и вектор u  удовлетворяют соотношениям 

 1 1 1( ) ,+ =C A BF D C      2 2 2( ) ,+ =C A BF D C  (4) 

 2 .=CBu D y  (5) 

Тогда выход системы подчиняется уравнению эталонной модели (3). Действительно, из уравнений (1), 

(4), (5) следует 

1 2

1 2 1 2

1 2

,

,

( ) 0.

+ + =

+ + = − − +

+ + − =

Cx CA x CA x CBu

Cx CA x CA x CBF x CBF x CBu

y D y D y y

 

Уравнение (5) имеет бесконечно много решений, поскольку rank .l m= CB  Решение, обладаю-

щее минимальной евклидовой нормой [14. С. 34], может быть записано в виде: 2( ) .+=u CB D y  
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Уравнения (4) также имеют бесконечно много решений относительно матриц 1F  и 2.F  Все мно-

жество решений этих уравнений можно записать в виде: 

 1 1 0 1,= +F G G H      2 2 0 2 ,= +F G G H  (6) 

где 
( )

1 2, m l n− H H  – произвольные матрицы, 
( )

0 0( ) ,m m l −= G CB  

1 1 1( ) ( ) ,m n+ = − G CB D C CA      2 2 2( ) ( ) .m n+ = − G CB D C CA  

Матрицы 1H  и 2H  будем искать из условия асимптотической устойчивости замкнутой системы (2), 

уравнение которой с учетом формул (6) принимает вид: 

 1 1 0 2 2 0 2( ) ( ) ,+ + + + + + =1x A BG BG H x A BG BG H x Bu  (7) 

Полюсы системы (7) есть корни характеристического полинома ( ) det( ( )),c ca s s= A  где

2
1 1 0 1 2 2 0 2( ) ( )c s s s= + + + + + +A E A BG BG H A BG BG H  – матрица замкнутой системы. 

Составим невырожденную матрицу 

T
0

.
 

=   
 

C
P

C
 

Обратная матрица ( )1
0 .− +=P C C  Здесь ( )

1
T T .

−
+ =C C CC  Выполним невырожденное преобразова-

ние матрицы замкнутой системы 

1

T T
0 0 0

( ) 0
( ) .

( ) ( )
c

c c

s
s

s s

−

+

 
=   

 

D
PA P

C A C C A C
 

Следовательно, характеристический полином замкнутой системы ( ) ( ) ( ),ca s d s h s=  где 

( )T
0 0( ) det ( ) .ch s s= C A C   

Замкнутая система асимптотически устойчива тогда и только тогда, когда корни полиномов ( )d s  

и ( )h s  имеют отрицательные вещественные части. Полином ( )d s  является характеристическим поли-

номом асимптотически устойчивой эталонной модели. Следовательно, для асимптотической устойчи-

вости замкнутой системы необходимо и достаточно, чтобы корни полинома ( )h s  имели отрицательные 

вещественные части. 

Обозначим  
2

1 2( ) ,s s s= + +V E V V      1 1 2( ) ,s s= +W W W  

T
1 0 1 1 0( ) ,= +V C A BG C      

T
2 0 2 2 0( ) ,= +V C A BG C  

 1 1 0 ,=W H C      2 2 0.=W H C  (8) 

Тогда 
T T

0 0 0 0( ) ( ) ( ),c s s s= +C A C V C BG W  ( )T
0 0( ) det ( ) ( ) .h s s s= +V C BG W  

Согласно утверждению 1 все корни полинома ( )h s  можно произвольно задать, выбирая матрицы 

1W  и 2 ,W  тогда и только тогда, когда ( )T
0 0rank ( )s n l= −V C BG  для всех .s  

Предположим, что матрицы 1W  и 2W  найдены из условия заданных корней полинома ( ).h s  То-

гда из соотношений (8) получим искомые значения матриц обратной связи 
T

1 1 0 ,=H W C  
T

2 2 0 .=H W C  

В целом можно сформулировать следующее 

Утверждение 2. Пусть ( )T
0 0rank ( ),s n l= −V C BG  для всех .s  Тогда существует управле-

ние в виде обратной связи 1 2 ,= − − +u F x F x u  при котором выход системы (1) подчиняется уравнению 

эталонной модели (3), и при этом замкнутая обратной связью система является асимптотически устой-

чивой. 
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Алгоритм синтеза обратной связи заключается в следующем:  

1. Вычисляем матрицы 0 0( ) ,=G CB  1 1 1( ) ( ),+= −G CB D C CA  2 2 2( ) ( ).+= −G CB D C CA  

2. Вычисляем матрицы 
T

1 0 1 1 0( ) ,= +V C A BG C  
T

2 0 2 2 0( )= +V C A BG C  и находим матрицы 1W  

и 2W  из условия заданных корней полинома ( )T
0 0( ) det ( ) ( ) .h s s s= +V C BG W   

3. Вычисляем матрицы обратной связи 
T

1 1 0 1 0 ,= +F G G W C  
T

2 2 0 2 0 .= +F G G W C     

4. Находим 2( ) .+=u CB D y  

 

4. Численный пример 
 

Рассмотрим систему (1) с матрицами 

1

1,2801 8,9546 3,3933 7,601 2,4227

6,2984 1,2936 6,9115 4,0069 6,3645

,9,4815 0,305 5,907 0,2965 0,5828

9,6308 1,5926 3,9773 4,6635 3,6605

0,9932 3,5893 2,3854 2,6548 7,3084

− − − 
 

− − − − 
 = − − − −
 

− − 
 − − 

A  

2

0,0288 5,7067 1,8538 0,1049 7,6761

0,2716 4,83 6,9312 4,0596 8,0694

,1,7359 7,0795 6,4603 8,6943 6,3655

6,3112 0,9241 8,4071 4,2426 7,4568

4,3951 0,1153 9,3926 1,4376 0,1142

− − − 
 

− − − 
 = − − −
 

− − − − 
 − − − 

A

1,9349 5,3498 0,6443

1,3153 5,5939 2,6506

,5,4798 1,5462 5,9651

5,5633 3,0035 0,6265

7,8611 6,6435 2,8081

− 
 

− − 
 = − −
 

− − − 
 − − 

B  

7,6103 7,0287 7,0456 0,1905 5,6546
.

6,754 4,015 9,291 0,0002 7,7904

− − − 
=  

− 
C  

Матрицы эталонной модели зададим в виде  

1

2 0
,

0 2

r

r

 
=  

 
D      

2

2 2

0
,

0

r

r

 
=  

 
 

D      0.r   

Характеристический полином эталонной модели 
4( ) ( ) .d s s r= +  Эталонная модель обладает монотон-

ным переходным процессом по переменным выхода. Время переходного процесса определяется пара-

метром .r  Пусть 3.r =  

Вычисляем матрицы 

( )
T

0 0,5352 0,3496 0,769 ,= −G  

1

0,1005 0,5916 0,6181 0,6787 0,3366

0,5346 0,4264 0,072 0,6041 0,5055 ,

0,1731 0,2178 0,3974 0,747 0,0045

− − − − 
 

= − − − − 
 − − − 

G  

2

0,8861 0,5039 1,3799 0,7135 0,1987

0,2365 1,3304 2,2299 0,0467 1,7984 ,

0,7243 0,9556 1,9743 0,4753 0,956

− − 
 

= − − − − 
 − − 

G  

1

7,233 5,3665 12,212

0,6414 7,0061 12,385 ,

5,026 13,215 9,9859

− 
 

= − 
 − − − 

V      2

4,2705 5,1324 0,9356

2,4274 0,0301 12,399 .

16,317 1,852 7,8424

− 
 

= − − 
 − − 

V  

Находим матрицы 

( )1 9,6517 8,9177 17,748 ,= −W   ( )2 1,167 6,8491 68,704 ,= −W  
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при которых полином 
6( ) ( 5) .h s s= +  Вычисляем матрицы обратной связи 

1

7,2706 4,9514 5,5369 5,4825 3,5435

4,1496 4,0476 3,1414 3,7424 1,5896 ,

10,475 8,1819 6,6698 6,155 4,6031

− − − 
 

= − − 
 − − 

F  

2

28,586 5,5912 21,99 4,5629 0,5162

18,332 2,6514 13,037 2,4681 1,3314 .

39,074 9,713 35,551 5,0555 1,9833

− − − 
 

= − − − 
 − − 

F  

При этих значениях матриц обратной связи характеристический полином замкнутой системы 
4 6( ) ( 3) ( 5) .ca s s s= + +  Замкнутая система асимптотически устойчива. Заметим, что разомкнутая си-

стема не является асимптотически устойчивой. 

Пусть заданное значение выхода системы ( )
T

1 2 .=y  Тогда ( )
T

0,1451 0,044 0,121 .= − −u  

Выход системы удовлетворяет уравнению эталонной модели. 
 

  

Рис. 1. Переходный процесс по переменным выхода 

Fig. 1. Transient process of output variables 

Рис. 2. Переходный процесс по переменным  

перемещения и скорости 

Fig. 2. Transient process of displacement and velocity variables 
 

На рис. 1, 2 показаны результаты моделирования замкнутой системы при нулевых начальных 

условиях. На рис. 1 показан переходный процесс по переменным выхода, на рис. 2 – переходный про-

цесс по переменным перемещения и скорости. 

Все вычисления и моделирование выполнялись в системе компьютерной математики Scilab.  

 

Заключение 
 

В работе решена задача управления качеством переходных процессов по выходу для матричной 

системы второго порядка. Предложен алгоритм синтеза управления в виде обратной связи по состоя-

нию, при которой выход системы точно соответствует эталонной модели с заданным качеством пере-

ходных процессов. При этом замкнутая система асимптотически устойчива. Исследованы условия су-

ществования решения задачи. Указаны ограничения, накладываемые на размеры векторов управления 

и выхода и на матрицы системы. Численный пример и результаты моделирования подтверждают тео-

ретические результаты работы. 
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Аннотация. Исследуется устойчивость моделей полносверточных нейронных сетей mo-u-net, полученных 

путем использования известных робастных функций потерь (РФП), к импульсным помехам на изображениях 

деревьев пихты, пораженных уссурийским полиграфом. Для исследования устойчивости применяются мет-

рики точности классификации деревьев IoUc и mIoU. Для исследования моделей создан датасет, фрагменты 

обучающей выборки которого имеют искусственным образом внесенные импульсные помехи. Анализ резуль-

татов исследования каждой из семи моделей показал, что модель с РФП Уэлша является наиболее предпочти-

тельной при работе с зашумленными изображениями. 

Ключевые слова: семантическая сегментация (попиксельная классификация) изображения; импульсная 

помеха; робастная функция потерь; помехоустойчивость сверточной нейронной сети. 
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Abstract. The resistance of Mo-U-Net full-field neural network models, obtained by using known robust loss func-

tions (RLFs), to impulse noise on images of fir trees affected by the Ussuri polygraph is investigated using the tree 

classification accuracy metrics IoUc and mIoU. To investigate the models, a dataset was created with fragments of the 

training sample having artificially introduced impulse noise. The analysis of the results of each of the seven models 

showed that the model with Welch’s RLF is the most preferable when working with noisy images. 
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Введение 

 

Управление лесами, концепция которого соотносит экологическую целостность лесов с потребно-

стями человека, во многом зависит от точной и актуальной информации о состоянии лесов, получаемой 

при их мониторинге [1, 2]. Технологии мониторинга лесов значительно эволюционировали с годами 

на пути от трудоемких наземных обследований к более сложным методам дистанционного зондирова-

ния Земли (ДЗЗ). Это обусловлено необходимостью использования более оперативных и экономически 

эффективных методов оценки состояния и управления лесными ресурсами, занимающими большие 

площади. Сегодня все чаще выполняют оперативный мониторинг лесов с помощью современных си-

стем ДЗЗ. При этом используют высокоточную съемку деревьев с помощью фото- и (или) видеокамер, 

установленных на космических аппаратах, самолетах (вертолетах) или беспилотных летательных ап-

паратах (БПЛА), а затем проводят дешифрирование полученных изображений [2–5]. Однако специа-

листы лесной отрасли постоянно сталкиваются с отсутствием современного инструментария – моделей, 

методов и информационных систем для автоматического дешифрирования таких изображений. Одним 

из актуальных направлений, позволяющих решать проблему отсутствия такого инструментария, явля-

ется создание и использование современных моделей сверточных нейронных сетей (СНС) [5, 6]. Эти 

модели должны оперативно и с приемлемой точностью решать задачи семантической сегментации (по-

пиксельной классификации) изображений, полученных при дистанционном мониторинге лесов.  

Особые требования по точности классификации предъявляются к моделям СНС, используемым 

для дешифрирования изображений, получаемых при оперативном лесопатологическом мониторинге 

хвойных лесов. В этих случаях на изображениях необходимо оценить степень поражения (состояние 

здоровья) каждого дерева хвойной породы, заселенного тем или иным насекомым-вредителем. Для 

этого, учитывая значительное число состояний здоровья пораженных деревьев, необходимы модели 

СНС, позволяющие решать с высокой точностью задачу мультиклассификации деревьев на таких изоб-

ражениях [6, 7]. При этом практически важным для сохранения хвойных лесов является обнаружение 

деревьев, находящихся на ранней стадии поражения вредителями, поскольку для них своевременно 

могут быть проведены эффективные фитосанитарные мероприятия. 

В последние годы лесопатологический мониторинг лесов ведется с использованием самых раз-

ных методов ДЗЗ, но предпочтение чаще всего отдается фотосъемке с использованием БПЛА самолет-

ного или вертолетного типа. При проведении такой съемки в результате сбоев аппаратуры получаемые 

изображения крон деревьев могут иметь помехи в виде случайных аддитивных шумов и (или) импуль-

сных помех. Более того, если используется передача изображений по радиоканалу с БПЛА в наземный 

пункт сбора данных, то на изображениях могут появиться дополнительные помехи. В любом случае 

возникает задача оценки влияния таких помех на точность мультиклассификации пораженных деревьев 

на изображениях. Иными словами, необходимо выявить устойчивость используемых для мультиклас-

сификации моделей СНС к тем или иным помехам на изображениях.  

Анализ результатов ряда исследований [8, 9] показал, что для повышения устойчивости моделей 

СНС при работе с зашумленными изображениями применяется два основных подхода. В рамках пер-

вого из них на основе известных моделей СНС создаются модели со специальными архитектурами, 

устойчивыми к различным помехам. Так, в работе [8] в архитектуры базовых моделей ResNet-50 и 

ImageNet встраивается модуль релевантной фокусировки признаков (Relevant Feature Focusing; ReFF), 

который генерирует аннотации релевантных признаков. Это позволяет новым моделям СНС повысить 

устойчивость к изменению распределения объектов на изображениях, вызванному помехами. В резуль-

тате исследований авторами установлено, что включение модуля ReFF в изучаемые модели СНС дает 

положительный результат даже при наличии существенного объема нерелевантных данных и малом 
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количестве аннотаций для классов объектов: прирост точности классификации по метрике Аccuracy  

в условиях помех составляет до 15% относительно случаев, когда модуль ReFF не включается в мо-

дели. К сожалению, авторы не дают конкретных рекомендаций по проектированию модулей, подобных 

модулю ReFF, для случаев современных моделей СНС с более сложными архитектурами.  

Другим основным подходом к повышению устойчивости моделей СНС к помехам на входных 

изображениях является применение робастных (устойчивых к шумам) функций потерь при обучении 

этих моделей. Использование робастных функций потерь (РФП) дает возможность при правильно по-

добранном коэффициенте потерь этих функций уменьшить значение ошибки в методе ее обратного 

распространения и, соответственно, повысить точность классификации объектов, в том числе в усло-

виях помех. Автор [9] использовал довольно широкий набор РФП при решении задачи классификации 

ирисов Фишера на изображениях с помощью нейронных сетей прямого распространения: функции по-

терь Хьюбера, Тьюки, Рамсея, Коши и др. При этом проводился поиск интервалов значений коэффи-

циента потерь β исследуемых РФП, которые затем можно было рекомендовать для обучения нейрон-

ных сетей при решении задачи классификации ирисов Фишера. Отметим, что некоторые РФП помимо 

обучения нейронных сетей прямого распространения применялись также для обучения рекуррентных 

сетей [10] и СНС [11–13] при решении задач семантической сегментации и классификации объектов 

на изображениях. Результаты исследований моделей нейронных сетей с различными РФП, изложенные 

в работах [9–13], указывают на перспективность робастного подхода к повышению устойчивости мо-

делей глубокого обучения в условиях помех. На него и будем опираться в наших исследованиях.  

Цель данной работы – проведение исследований устойчивости моделей полносверточных нейрон-

ных сетей класса U-Net [14] с различными РФП при решении задач мультиклассификации в условиях 

импульсных помех на изображениях. В качестве примера таких изображений используются реальные 

снимки высокого разрешения с фотокамеры на БПЛА деревьев пихты сибирской Abies sibirica (далее – 

A. sibirica), пораженных стволовым вредителем – уссурийским полиграфом Polygraphus proximus (да-

лее – P. Proximus). Перед обучением указанных моделей СНС в эти изображения искусственным обра-

зом вводятся импульсные помехи. Исследования устойчивости обученных моделей выполняются при 

различных амплитудах импульсных помех и площади зашумления изображений. 

 

1. Задача исследования устойчивости моделей полносверточных нейронных сетей 

 

В работе [5] показано, что среди моделей СНС для решения задач мультиклассификации пора-

женных хвойных деревьев на изображениях по критериям ‘точность классификации – скорость выпол-

нения модели’ предпочтение следует отдать полносверточным нейронным сетям. В последние годы все 

чаще применяют классическую модель полносверточной нейронной сети U-Net [14] и модели на ее основе, 

позволяющие решать задачи попиксельной классификации изображений. Так, в [5, 7, 15] приведены об-

надеживающие результаты мультиклассификации изображений пораженных уссурийским полиграфом 

P. proximus деревьев пихты A. sibirica (пять классов) и пораженных союзным короедом Ips amitinus 

деревьев кедра Pinus sibirica (шесть классов), полученные с помощью моделей на основе классической 

модели U-Net. Однако в случае использования классической модели U-Net наблюдается низкая точность 

классификации одного (случай деревьев A. sibirica) или двух (случай деревьев Pinus sibirica) промежу-

точных классов (состояний здоровья) деревьев [7, 15], что не устраивает специалистов лесной отрасли. 

Распознавание деревьев в промежуточных состояниях (состояния между здоровым деревом и старым 

сухостоем) имеет большое практическое значение для их сохранения, поскольку выявленные деревья 

могут быть своевременно подвергнуты эффективным санитарно-оздоровительным мероприятиям. Поэто-

му в данной работе предлагается исследовать на устойчивость к импульсным помехам модель Mo-U-Net, 

детально описанную в [5]. Она является модификацией модели U-Net и показывает, как это следует из [5, 

16], практически приемлемую точность классификации хвойных деревьев, находящихся в промежу-

точных состояниях здоровья. В качестве функции потерь в ней использовалась функция Focal Loss [5]. 

При обучении модели Mo-U-Net на зашумленных импульсными помехами изображениях будут 

использоваться следующие семь РФП [9]: Коши, Рамсея, Хьюбера, Эндрюса, Geman-McCluer, Уэлша и 
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Мешалкина (табл. 1). Из работы [9] следует, что производные от этих робастных функций являются 

непрерывными на множестве вещественных чисел, и это позволяет использовать такие функции в ка-

честве функций потерь в алгоритме обратного распространения ошибки при обучении модели Mo-U-Net. 

Заметим, по сути, обучению и исследованию подлежит семь полносверточных моделей нейронных се-

тей, полученных путем замены у модели Mo-U-Net функции потерь Focal Loss на ту или иную РФП из 

указанных в табл. 1. Для этого разрабатывается и программно реализуется модификация алгоритма 

обратного распространения ошибки, учитывающая особенности используемых РФП. 

Т а б л и ц а  1  
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Для обучения, валидации и исследования устойчивости каждой из семи полносверточных моде-

лей будет использоваться датасет, созданный сотрудниками Института мониторинга климатических и 

экологических систем СО РАН и Томского политехнического университета [7]. При его формировании 

использовались RGB-изображения пораженных деревьев A. sibirica высокого разрешения (0,1 м), по-

лученные летом 2017 г. в Томской области с использованием фотокамеры, установленной на БПЛА 

DJI Phantom 3 Standart. При дешифрировании этих изображений экспертами выделялось четыре 

класса состояния здоровья деревьев: «Живое», «Отмирающее», «Свежий сухостой» и «Старый сухо-

стой», а также пятый класс – «Фон» (деревья других пород и иные объекты земной поверхности), что 

позволило получить эталонные карты сегментации. Датасет представляет собой совокупность фраг-

ментов исходных изображений размером 256 × 256 ×  3 пикселей и соответствующих им фрагментов 

эталонных карт. Он поделен на три выборки: обучающая – 2 004 фрагмента, валидационная – 672 фраг-
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мента, и тестовая – 91 фрагмент. На основе этого датасета должен создаваться новый датасет, фраг-

менты которого имеют импульсные помехи, вносимые по описанной ниже методике.  

Для оценки точности классификации деревьев пихты A. sibirica на изображениях с помощью ис-

следуемых моделей Mo-U-Net будет использоваться метрика Intersection over Union (IoU) [14]. Для каж-

дого класса с деревьев она может быть вычислена по формуле: 

 IoU   c

c c c

TP
c

TP FP FN
=

+ +
, (1) 

где TPc, FPc и FNc – количество, соответственно, истинно положительных, ложно положительных и 

ложно отрицательных решений для деревьев класса c. В наших исследованиях наряду с выражением (1) 

удобно использовать интегрированную метрику mean Intersection over Union (mIoU), рассчитываемую 

как среднее значение IoUс по всем C классам. Отметим, что значения этих метрик, превышающие 0,5, 

соответствуют высокой точности классификации деревьев. Будем считать метрики IoUс и mIoU мерой 

устойчивости каждой исследуемой модели к импульсным помехам: чем больше значения этих метрик, 

тем выше устойчивость модели. 

 

2. Методика подготовки и проведения экспериментов 

 

Рассмотрим методику подготовки и проведения экспериментов по исследованию устойчивости 

полносверточных моделей с различными РФП к импульсным помехам на изображениях. На этапе под-

готовки к тому или иному запланированному эксперименту на основе описанного выше датасета со-

здается новый датасет. Все фрагменты его обучающей выборки будут иметь искусственным образом 

внесенные импульсные помехи, фрагменты валидационной и тестовой выборок не зашумляются. При 

зашумлении фрагментов этой выборки учитывается, какой эксперимент с моделями СНС запланиро-

ван, и в зависимости от этого задаются значения параметров зашумления каждого из фрагментов. Пер-

вым таким параметром является доля площади зашумления: отношение количества пикселей, значения 

которых будут изменены помехами, к общему количеству пикселей фрагмента изображения. Вторым 

задаваемым параметром служит амплитуда А помехи – число, указывающее, во сколько раз будет уве-

личено значение яркости зашумляемого пикселя для каждого из трех каналов RGB. Выбор координаты 

очередного пикселя фрагмента для зашумления производится по равномерному случайному закону 

распределения. Все сказанное позволяет считать, что новый датасет будет включать динамически фор-

мируемую в зависимости от предстоящего эксперимента обучающую выборку. При подготовке к экс-

периментам один параметр фиксируется, а второй изменяется в заданных пределах. Так будет сформи-

ровано четыре варианта нового датасета для проведения первой серии экспериментов, когда при фик-

сированной амплитуде А = 1,5 изменяется доля площади зашумления каждого фрагмента выборки: 

0,15; 0,25; 0,35; 0,50. Для сравнения результатов по точности классификации деревьев с помощью мо-

делей в условиях импульсных помех с результатами классификации изображений без таких помех 

должны быть проведены обучение, валидация и исследования моделей в случае фрагментов без помех, 

т.е. с использованием исходного датасета. Для второй серии экспериментов создается три варианта 

нового датасета, когда при постоянной доле площади зашумления фрагментов, равной 0,25, изменяется 

амплитуда помех: 1,5; 2,0; 3,0. 

После этапа подготовки варианта нового датасета проводится собственно эксперимент. Он вы-

полняется в два этапа. На первом происходят обучение и валидация модели с выбранной РФП, а на 

втором этапе – собственно исследование устойчивости обученной модели с использованием тестовой 

выборки датасета. 

При обучении и валидации модели с заданной РФП изменяемым является гиперпараметр – коэф-

фициент β для этой функции потерь, принимающий значения в диапазоне [0,001; 9,000]. Поиск квази-

оптимального значения данного гиперпараметра осуществляется при обучении и валидации модели  

с помощью байесовского алгоритма оптимизации [16], при этом число используемых наборов гипер-

параметров равно 100. В соответствии с процедурой из [13] квазиоптимальными являются те значения 

гиперпараметров, при которых модель показывает максимальное значение точности классификации  
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по метрике mIoU на валидационной выборке. Полученное таким образом квазиоптимальное значение 

коэффициента β затем используется в заданной РФП при проведении второго этапа эксперимента по 

исследованию устойчивости модели. Отметим, что такая процедура определения квазиоптимального 

значения коэффициента β должна проводиться для каждой РФП и в каждом из запланированных экс-

периментов.  

 

3. Результаты исследований и их обсуждение 

 

Нетрудно видеть, что проведение всех вышеперечисленных экспериментов с каждой из семи мо-

делей СНС потребует значительных вычислительных ресурсов. Поэтому предлагается сначала прове-

сти эксперимент со всеми моделями с использованием нового датасета с наиболее часто встречающи-

мися параметрами зашумления. Полученные результаты исследований на тестовой выборке позволят 

выбрать модель, наиболее устойчивую к импульсным помехам. Затем с этой моделью проводить все 

эксперименты при описанных выше в методике вариантах изменения параметров зашумления. Прове-

денный нами анализ имеющихся изображений хвойных лесов, полученных с помощью фотокамеры, 

установленной на БПЛА, показал, что весьма вероятным сценарием зашумления изображений при 

съемке является следующий: площадь каждого фрагмента обучающей выборки зашумлена на 25% 

(доля импульсных помех от общего числа пикселей фрагмента равна 0,25), а амплитуда А импульсных 

помех имеет значение 1,5. 

Именно с этими значениями параметров были зашумлены фрагменты обучающей выборки но-

вого датасета и были обучены и валидированы все семь моделей СНС. Затем для каждой из РФП путем 

выявления максимального значения метрики mIoU на валидационной выборке получено квазиопти-

мальное значение коэффициента β. Полученные значения коэффициента β для всех функций потерь 

приведены в табл. 2. Здесь же представлены результаты эксперимента в виде значений метрики mIoU 

на валидационной и тестовой выборках.  

Т а б л и ц а  2  

Результаты валидации и тестирования моделей СНС с различными РФП,  

обученных на фрагментах с долей площади зашумления 0,25 и А = 1,5 

Функция потерь  Коэффициент β Выборка mIoU 

Коши 5,6900 
Валидационная  0,6705 

Тестовая  0,5651 

Рамсея 0,0010 
Валидационная  0,7212 

Тестовая  0,6089 

Хьюбера 1,7109 
Валидационная  0,6980 

Тестовая  0,6023 

Эндрюса 3,5703 
Валидационная  0,6737 

Тестовая  0,5768 

Geman-McCluer 3,9004 
Валидационная  0,6938 

Тестовая  0,6149 

Уэлша 4,2786 
Валидационная  0,7011 

Тестовая  0,6194 

Мешалкина 6,6236 
Валидационная  0,6869 

Тестовая  0,5884 
 

Из табл. 2 следует, что модель СНС с функцией Уэлша демонстрирует лучшее значение метрики 

mIoU на тестовой выборке относительно результатов для исследуемых моделей с другими функциями 

потерь. Поэтому далее эксперименты проводились в соответствии с изложенной методикой только  

с этой моделью. Для пояснения, как происходит поиск квазиоптимального значения коэффициента β, 

на рис. 1 показаны результаты поиска такого значения коэффициента β, при котором модель СНС  

с РФП Уэлша демонстрирует максимальное значение метрики mIoU на валидационной выборке. Для 

удобства представления и анализа этих кривых значения коэффициента β были нормализованы. Ви-

дим, что квазиоптимальное значение коэффициента β, равное 4,2786, было получено на 83-м наборе 
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гиперпараметров из 100 используемых наборов, когда метрика mIoU на валидационной выборке при-

няла максимальное значение, равное 0,7011. 
 

 

Рис. 1. Результаты поиска значений коэффициента β в случае функции Уэлша  
 

Для исследования влияния площади зашумления импульсными помехами фрагментов обучаю-

щей выборки на точность классификации деревьев пихты с помощью модели с РФП Уэлша при посто-

янной амплитуде помех А = 1,5 была проведена первая серия экспериментов. В табл. 3 представлены 

результаты таких экспериментов. В ней показаны полученные квазиоптимальные значения коэффици-

ента β функции Уэлша и значения метрики IoUc для каждого класса деревьев и метрики mIoU на ва-

лидационной и тестовой выборках.  

Т а б л и ц а  3  

Точность классификации деревьев по метрикам IoUc и mIoU с помощью модели Mo-U-Net с РФП Уэлша  

в зависимости от площади зашумления обучающих фрагментов при постоянной амплитуде помех А = 1,5 

Доля площади зашумления 

обучающих фрагментов 

Коэффи-

циент  
Выборка 

IoUc 
mIoU 

Живое Отмирающее Свеж. сухост. Стар. сухост. Фон 

0 

(нет помех) 
5,4457 

Валидация 0,7651 0,6677 0,7914 0,7277 0,9113 0,7726 

Тестовая 0,6538 0,3267 0,7423 0,6202 0,8211 0,6328 

0,15 7,9897 
Валидация 0,7903 0,6698 0,7669 0,6974 0,9134 0,7676 

Тестовая 0,7023 0,2585 0,7244 0,5882 0,8272 0,6201 

0,25 4,2786 
Валидация 0,7283 0,5803 0,7031 0,6037 0,8903 0,7011 

Тестовая 0,6723 0,2980 0,7425 0,5694 0,8146 0,6194 

0,35 8,2191 
Валидация 0,5982 0,2978 0,6593 0,5942 0,8474 0,5994 

Тестовая 0,6183 0,2768 0,6469 0,5369 0,7939 0,5746 

0,50 7,3545 
Валидация 0,5132 0,2445 0,5978 0,5279 0,8036 0,5374 

Тестовая 0,5425 0,2827 0,7056 0,5235 0,7381 0,5585 
 

Из полученных результатов следует вывод о том, что исследуемая модель по метрике mIoU на 

тестовой выборке демонстрирует плавное снижение устойчивости к импульсным помехам с ростом 

доли площади зашумления фрагментов обучающей выборки: устойчивость понижается на 2,0% при 

доле площади зашумления 0,15 и на 11,7% при максимальной доле площади зашумления, равной 0,50. 

При этом значение метрики mIoU равно 0,5585 даже при наличии помех на половине площади каждого 

фрагмента, что превышает порог 0,5 и указывает на довольно высокую точность классификации дере-

вьев пихты. Отсюда следует вывод о возможности практического применения модели в лесной отрасли 

даже при наличии импульсных помех на половине площади анализируемого изображения. Аналогич-

ные выводы можно сделать из анализа значений метрики IoUc на тестовой выборке для классов дере-

вьев «Живое», «Свежий сухостой» и «Старый сухостой», а также для класса «Фон». Однако для про-

межуточного класса деревьев «Отмирающее» значения метрики IoUc на тестовой выборке значительно 

меньше порога 0,5 даже для фрагментов без помех и уменьшаются с ростом доли площади зашумления 

фрагментов. Такие результаты объясняются малым числом деревьев пихты на изображениях, исполь-
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зуемых при формировании обучающей выборки (дисбаланс классов), а функция потерь Уэлша в отли-

чие от известной двухпараметрической функции потерь Focal Loss, используемой при решении подоб-

ной задачи в [5], когда значение метрики IoUc в случае деревьев этого класса превышает порог 0,5, не 

позволяет снизить влияние такого дисбаланса. Это указывает на невозможность практического исполь-

зования исследуемой модели в случае классификации деревьев данного класса. 

Вторая серия экспериментов проводилась для исследования влияния амплитуды импульсных по-

мех на точность классификации деревьев пихты с помощью модели с РФП Уэлша. При этом доля пло-

щади зашумления фрагментов не изменялась и была равна 0,25. Полученные результаты валидации и 

тестирования обученной модели по метрикам IoUc и mIoU представлены в табл. 4. Во втором столбце 

показаны также вычисленные и используемые в экспериментах квазиоптимальные значения коэффи-

циента .  
Т а б л и ц а  4  

Значения метрик IoUc и mIoU в случаях разных амплитуд импульсных помех  

при постоянной доле площади зашумления фрагментов, равной 0,25 

Амплитуда помех на 

обучающих фрагментах 

Коэффи-

циент  
Выборка 

IoUc 
mIoU 

Живое Отмирающее Свеж. сухост. Стар. сухост. Фон 

Без помех 5,4457 
Валидационная 0,7651 0,6677 0,7914 0,7277 0,9113 0,7726 

Тестовая 0,6538 0,3267 0,7423 0,6202 0,8211 0,6328 

1,5 4,2786 
Валидационная 0,7283 0,5803 0,7031 0,6037 0,8903 0,7011 

Тестовая 0,6723 0,2980 0,7425 0,5694 0,8146 0,6194 

2,0 2,2407 
Валидационная 0,6635 0,4245 0,6698 0,5771 0,8683 0,6406 

Тестовая 0,6347 0,2758 0,7036 0,5129 0,7890 0,5832 

3,0 4,0045 
Валидационная 0,6574 0,4167 0,6690 0,6089 0,8686 0,6441 

Тестовая 0,6162 0,3744 0,7439 0,5874 0,7990 0,6242 
 

Видим, что при наличии помех имеют место уменьшение значений метрик IoUc и mIoU и, соот-

ветственно, снижение устойчивости модели. Например, по метрике mIoU на тестовой выборке сниже-

ние на 2,1% для случая А = 1,5, на 7,8% для А = 2,0 и на 1,4% для А = 3. Незначительное снижение 

устойчивости модели в случае А = 3 по сравнению со случаями помех с амплитудами А = 1,5 и А = 2,0 

происходит из-за того, что такой значительный рост яркости зашумленных пикселей позволяет модели 

лучше выделить детали крон деревьев пихты. По значениям метрики IoUc, превышающим порог 0,5, 

можно сделать вывод о ее довольно высокой устойчивости и практической применимости в условиях 

помех со значительными амплитудами в случае деревьев классов «Живое», «Свежий сухостой» и «Ста-

рый сухостой» и класса «Фон». К сожалению, для деревьев класса «Отмирающее» значения метрики 

IoUc на тестовой выборке для всех вариантов задания значений амплитуд помех значительно меньше 

порога 0,5, что указывает на низкую устойчивость модели к помехам и поэтому не позволит использо-

вать ее на практике в случае классификации деревьев данного класса.  

 

Заключение 

 

Проведены исследования устойчивости семи полносверточных моделей, полученных на основе 

модели Mo-U-Net с использованием ряда известных РФП, при решении задачи классификации зашум-

ленных импульсными помехами изображений деревьев пихты. Для этого создан датасет, фрагменты 

обучающей выборки которого имеют искусственным образом внесенные импульсные помехи. В соот-

ветствии с разработанной методикой подготовки и проведения исследований при зашумлении фраг-

ментов учитывается, какой эксперимент с моделями запланирован, и в зависимости от этого задаются 

значения параметров импульсных помех. При обучении и валидации каждой из моделей при различ-

ных значениях амплитуды помех и доли площади зашумления фрагментов обучающей выборки осу-

ществлен поиск квазиоптимальных значений коэффициентов β каждой функции потерь. Полученные 

квазиоптимальные значения коэффициентов β далее использованы при проведении исследований 

устойчивости моделей.  
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В результате исследований показано, что модель с функцией Уэлша демонстрирует лучшее зна-

чение метрики mIoU на тестовой выборке среди результатов для моделей с другими функциями потерь. 

Это позволило провести дальнейшие эксперименты в соответствии с предложенной методикой только 

с этой моделью. В первую очередь было исследовано влияние площади зашумления импульсными по-

мехами фрагментов обучающей выборки на устойчивость модели с функцией Уэлша при постоянной 

амплитуде помех А = 1,5. При этом выявлено, что по метрике mIoU на тестовой выборке модель де-

монстрирует плавное снижение устойчивости к помехам с ростом доли площади зашумления фрагмен-

тов от 0,15 до 0,5 соответственно на 2,0–11,7%. Значение метрики mIoU равно 0,5585 даже при наличии 

помех на половине площади каждого фрагмента, что превышает порог 0,5 и указывает на высокую 

точность классификации деревьев пихты. Для исследования влияния амплитуды импульсных помех на 

устойчивость модели с функцией Уэлша проведена вторая серия экспериментов при постоянной доле 

площади зашумления фрагментов, равной 0,25. Из анализа значений метрики mIoU на тестовой вы-

борке следует, что устойчивость модели снижается на 1,4–7,8% в зависимости от амплитуды помех, 

однако все значения метрики mIoU превышают порог 0,5.  

Анализ полученных значений метрики IoUc на тестовой выборке для деревьев классов «Живое», 

«Свежий сухостой» и «Старый сухостой», а также для класса «Фон» показал, что наблюдается плавное 

снижение устойчивости модели при увеличении доли площади зашумления фрагментов или ампли-

туды помех, но все значения этой метрики превышают пороговое значение 0,5, и поэтому для этих 

классов модель может быть рекомендована для практического применения. Для деревьев класса «От-

мирающее» значения этой метрики на тестовой выборке для всех вариантов задания в экспериментах 

значений амплитуд помех и долей зашумления фрагментов значительно меньше порога 0,5, что гово-

рит о низкой устойчивости модели к помехам и, соответственно, не позволяет использовать ее на прак-

тике в случае классификации деревьев данного класса.  

Полученные результаты исследования устойчивости семи полносверточных моделей позволили 

сформировать практически важные рекомендации специалистам лесной отрасли при нейросетевом 

анализе изображений, полученных при мониторинге хвойных лесов с помощью БПЛА.  
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Аннотация. Строится математическая модель ациклической сети массового обслуживания с нестационар-

ным пуассоновским входным потоком, без очереди и с детерминированным временем обслуживания. Вычис-

ляются нестационарные интенсивности потоков, проходящих по сети. Доказывается, что если входной поток 

является пуассоновским, то все остальные потоки, проходящие по сети, также являются пуассоновскими. При-

чем количество заявок, находящихся в каждом узле сети, также имеет пуассоновское распределение. С помо-

щью специальных интегральных соотношений вычисляются параметры этих пуассоновских распределений. 
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Введение 

 

Наряду с классическими мультипликативными теоремами для открытых [1] и замкнутых [2] се-

тей массового обслуживания (СеМО) в последнее время проведено много их обобщений (см., напр.: [3]). 

Эти обобщения представляют интерес, если они связаны с новыми практическими приложениями, 

например при введении в модели СеМО блокирующих вероятностей [4, 5]. Настоящая работа вызвана 

появлением новых интересных имитационных моделей СеМО в морском транспорте (см., напр.: [6]). 

Такие модели приводят к новым задачам, требующим для своего решения новых математических  

приемов. 

Однако наряду с определением стационарных характеристик в СеМО требуется рассматривать 

обслуживание нестационарных входных потоков. Обслуживание нестационарных потоков связано  

с так называемыми трамповыми перевозками (tramp shipping), т.е. с нерегулярной морской перевозкой 

грузов. Причем нестационарность входных потоков интересна в том смысле, что позволяется описывать 

возникновение пробок в СеМО. Поэтому исследование СеМО с нестационарными входными потоками 

(см., напр.: [7]) является важной и достаточно сложной аналитической и вычислительной задачей. Для 

получения содержательных решений здесь в первую очередь требуется включение ограничений и до-

полнительных условий, наиболее часто встречающихся в приложениях и допускающих сравнительно 

простые решения. 

К таким условиям можно отнести отсутствие очереди (при наличии крупных обрабатывающих 

узлов сети), детерминированное распределение времени обслуживания и ацикличность сети перевозки 

грузов. С одной стороны, эти условия понятны для эксплуатационников и логистиков. С другой сто-

роны, они достаточно удобны при рассмотрении пуассоновских нестационарных потоков, проходящих 

через узлы ациклической сети.  

Для ациклических сетей с нестационарным входным пуассоновским потоком, детерминирован-

ным временем обслуживания и отсутствием очереди строится рекуррентная процедура вычисления 

интенсивностей пуассоновских потоков, выходящих из узлов сети, и параметров пуассоновских рас-

пределений числа заявок в различные моменты времени. 

Она основана на выделении наборов узлов Uk сети с заданной максимальной длиной пути k (чис-

лом ребер в пути из начальной вершины в другую вершину сети) на каждом шаге. Такая классификация 

узлов сети приводит к тому, что в каждый узел сети из набора Uk входят ребра только из узлов, содер-

жащихся в наборах Uk', k' < k. Это позволяет последовательно по k ≥ 1 устанавливать пуассоновость и 

независимость нестационарных потоков, выходящих из узлов набора Ul, и вычислять нестационарную 

интенсивность этих потоков. Детерминированность времени обслуживания заявок из узлов сети также 

является источником достаточно простых интегральных формул для определения нестационарных па-

раметров пуассоновских распределений числа заявок в узлах сети. 

 

1. Вычисление максимальных длин путей в ациклических ориентированных графах 

 

Рассмотрим ациклический ориентированный граф (орграф) G с множеством вершин = {1, , }U n  

и множеством ребер V. Полагаем, что в графе G для любой вершины i U  существует путь из вершины 

1 в вершину i. Для каждой вершины i графа G определим максимальную длину пути l(i) из вершины 1 

в вершину i, l(1) = 0, и положим = max ( ).
i U

S l i


 

Для конструктивного вычисления ( ), ,l i i U  введем матрицу 1 1
, =1=|| || ,n

ij i jD d  где 1 = 0, =1, , ,iid i n  

1 = ,ijd   если ( , ) ,i j V  1 = 1,ijd  если ( , ) .i j V  Тем самым для любой пары вершин, которые не соеди-

няются ребром (путем длины единица), величина 1 = .ijd   

Построим аналог алгоритма Флойда–Уоршелла [8] для нахождения матрицы максимальных 

длин всех путей между вершинами ациклического орграфа. Обозначим , =1=|| || , = 1, , ,k k n
ij i jD d k K  где 
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величина =k
ijd  , если в графе G нет пути, проходящего только через вершины 1, …, k и соединяющего 

вершины i, j. Если такие пути существуют, то величина k
ijd  равна максимальной длине таких путей. 

Тогда справедлива следующая теорема [9].  

Теорема 1. Матрицы , =1=|| || , = 2, , ,k k n
ij i jD d k K  удовлетворяют соотношениям  

 1 1 1= max( , ),k k k k
ij ij ik kjd d d d− − −+  если 1 1 1max( , ) < ,k k k

ij ik kjd d d− − −+   (1) 

иначе  1 1 1= min( , ).k k k k
ij ij ik kjd d d d− − −+  (2) 

С помощью теоремы 1 можно вычислить максимальные длины путей из вершины 1 в вершины 

,i U  полагая 1( ) = .n
il i d  

 

2. Построение нестационарной модели прохождения пуассоновского потока через СеМО 

 

Вычисление переходных интенсивностей. Определим подмножества = { : ( ) = }, = 0,1, , .sL i l i s s S  

Тогда при > , ,k rr k i L j L   граф G не содержит ребра ( , )i j  и, значит, в ациклическом орграфе любое 

ребро ( , ) , ,k rj i V i L j L    может принадлежать графу G только при > .k r  Обозначим 
0

=
k

k s
s

U L
=

  

и положим kV  совокупность ребер ( , )i j  графа G таких, что , .k ki U j U   Очевидно, что 
1

0

.
K

k
k

V V
−

=

=   

В качестве примера приведем орграф с U = {1, 2, 3, 4, 5} (рис 1).  
 

 

Рис. 1. Пример орграфа G 

Fig. 1. Example of digraph G 
 

В этом случае (1) 0, (2) 1, (3) 2, (4) (5) 3;l l l l l= = = = =  0 1 2 3{1}, {2}, {3}, {4,5};L L L L= = = =  0 {1},U =  

1 {1,2},U =  2 {1,2,3};U =  0 1 2{(1,2), (1,3)}, {(1,3), (2,3)}, {(3,4), (3,5}.V V V= = =  

Пусть каждому ребру ( ),j i V  сопоставляется неотрицательная кусочно непрерывная функция 

( )ji t  от времени t. Эта функция определяет нестационарную интенсивность пуассоновского потока, 

проходящего по ребру ( ),j i V . Обозначим 1( )t  неотрицательную кусочно непрерывную функцию, 

являющуюся интенсивностью входного пуассоновского потока в ациклическую сеть. Потребуем, 

чтобы при некотором > 0ia  выполнялись равенства  

 
( . )

( ) ( ), , 1,jii
j i V

t t i U i


 =    ( ) = ( ), .i iit t a i U  −   (3) 

Величина > 0ia  определяет сдвиг вправо каждой точки входного потока, т.е. время задержки (обслу-

живания каждого требования) в вершине i сети. Предположим, что для каждой вершины i U  задан 

набор положительных чисел 
( , )

{ : ( , ) }: =1,ij ij
i j V

i j V


    и выполняются равенства  

 ( ) = ( ), ( , ) .iij ijt t i j V     (4) 

Здесь ij  определяют вероятности, с которыми каждая заявка, выходящая из вершины ,i U  поступает 

в вершину .j U  



Математическое моделирование / Mathematical modeling 

44 

Теорема 2. По изначально заданным функции ),(1 t  наборам { : ( , ) }ij i j V   и числам , ,ia i U  

можно с помощью равенств (3), (4) однозначно вычислить функции ( ), ( , ) .ij t i j V   

Доказательство. Доказательство проведем индукцией по ребрам , =1, , 1.kV k S −  При k = 1 

это утверждение вытекает из равенств (3), (4). Предположим, что утверждение теоремы 2 выполняется 

при некотором k ≥ 1 и, следовательно, заданы ( ), ( , ) .ij kt i j V   Тогда, используя равенства (3), (4), 

можно вычислить сначала ( )i t , а затем 1( ), ( , ) .ij kt i j V +   Корректность такого определения связана  

с тем, что ребра сети направлены из вершин множества kU  в вершины множества , ,rU k r  с большим 

нижним индексом. Это утверждение иллюстрируется рис. 1.  

Определение пуассоновских потоков в сети. Пусть задан пуассоновский поток точек 1T  с ин-

тенсивностью 1( ),t  тогда сдвигом всех точек этого потока вправо на величину 1a  можно получить 

пуассоновский поток интенсивности 1.T  Если считать, что точки пуассоновского потока 1T  соответ-

ствуют моментам прихода заявок в узел 1 сети, то тогда соответствующие им (с тем же номером) точки 

потока 1T  соответствуют моментам ухода заявок входного потока из узла 1. Далее предположим, что 

каждая точка выходного потока 1T  с вероятностью 1 j  поступает в поток 1 ,jT  следующий по ребру 

1(1, ) .j V  Тогда вследствие теоремы о раскрашивании [10] потоки 1 1, (1, ) ,jT j V  являются независи-

мыми и имеют интенсивности 1 ( ).j t  Те из потоков 1 1, (1, ) ,jT j V  которые соединяются в узлах 

2 ,i U  образуют пуассоновские потоки 2, ,iT i V  и имеют интенсивности 2( ), .i t i U   Причем пуас-

соновские потоки 1 1 2, (1, ) , ,jT j V j U   и пуассоновские потоки 2, ,iT i V  независимы. Продолжая 

индукцией по k доказывать пуассоновость и независимость потоков , ,kiT i V  и пуассоновских потоков 

, ( , ) , ,ij k kT i j V j U   можно определить пуассоновские потоки, проходящие по всем ребрам сети G. 

Интенсивности всех этих потоков совпадают с ( ), , ( ), (1, ) , .k ij k ki t i V t j V j U      

Определение случайного числа точек в узлах сети. Известно, что точки пуассоновского по-

тока ,iT  входящего в узел ,kVi   образуют моменты прихода заявок в этот узел. Поскольку время 

пребывания каждой заявки равно ,ia  то можно утверждать, что случайное число этих заявок в момент t 

имеет пуассоновское распределение с параметром ( ) = ( ).
t

iit a
i

d F t
−

    Таким образом, появляется воз-

можность определить не только интенсивности нестационарных пуассоновских потоков, проходящих 

по ребрам орграфа G, но и зависимость от времени t параметров пуассоновсикх распределений числа 

заявок в узлах сети. 
 

Заключение 

 

Таким способом для ациклического орграфа G построена вероятностная модель прохождения 

входного пуассоновского потока заявок 1T  через СеМО. Определены интенсивности нестационарных 

пуассоновских потоков, входящих в узлы и выходящих из узлов сети. Вычислены параметры пуассо-

новских распределений числа заявок в узлах сети в нестационарном режиме. Все математические по-

строения основаны на алгоритме вычисления длины максимального пути из начальной вершины ацик-

лического орграфа в остальные вершины и на выделении в орграфе наборов вершин с фиксированной 

длиной максимального пути. Далее строится методом математической индукции алгоритм вычисления 

интенсивностей потоков, входящих в узлы и выходящих из узлов сети. Корректность этих вычислений 

определяется независимостью пуассоновских потоков с вычисленными интенсивностями. Наконец, по 

интенсивностям входных пуассоновских потоков в узлы сети и по времени пребывания заявок в этих 

узлах находятся формулы для вычисления параметров пуассоновских распределений числа заявок  

в узлах сети. 
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Введение 

 

Решение многих научных проблем в настоящее время сопряжено с установлением математиче-

ской формы связи между выходной переменной и одной или несколькими входными переменными по 

имеющимся в наличии статистическим данным. Для построения таких зависимостей исследователи 

часто применяют инструменты регрессионного анализа [1, 2]. Так, например, в [3] с помощью регрес-

сионного анализа установлено влияние на среднемесячный уровень воды озера Ловозеро трех предик-

торов – среднемесячных расходов воды притока, общей облачности и облачности нижнего яруса.  

В [4] построена зависимость валовой продукции сельского хозяйства Якутии от поголовья крупного 

рогатого скота и лошадей, площади пастбищ и сенокосов, количества сельскохозяйственных органи-

заций и численности сельского населения. В [5] получена регрессионная модель удельных энергоза-

трат на тягу поездов от шести факторов – объемов перевозочной работы, эксплуатационной длины 

электрифицированных линий, средней массы поезда, среднесуточной производительности локомо-

тива, средней участковой скорости, доли грузовой работы. 

Объединяет работы [3–5] то, что в них для проведения регрессионного анализа выбрана модель 

множественной линейной регрессии, параметры которой довольно просто оценить с помощью метода 

наименьших квадратов (МНК). Известно, что МНК можно применять и при нелинейных преобразова-

ниях входящих в регрессию переменных, например с помощью элементарных функций. Так, в [6, 7]  

с помощью МНК оцениваются параметры полиномиальной регрессии, а в [8, 9] – параметры степенной 

регрессии, также известной как производственная функция (ПФ) Кобба–Дугласа. 

Представленные в работах [6–9] нелинейные регрессионные зависимости хорошо изучены и при-

меняются в исследованиях не один десяток лет. Помимо МНК оценка неизвестных параметров регрес-

сионных моделей может осуществляться методом наименьших модулей (МНМ), реализация которого 

возможна с помощью описанного в [10] алгоритма «итеративного МНК» (метод вариационно-взвешен-

ных квадратичных приближений). В большинстве же исследований МНМ реализуется с использова-

нием аппарата линейного программирования, что стало возможным благодаря работе [11]. А в резуль-

тате развития аппаратных и программных средств решения задач частично целочисленного линейного 

программирования [12] на сегодняшний день разработаны и другие нелинейные спецификации регрес-

сионных моделей, с помощью которых можно строить довольно точные математические зависимости 

с интересными свойствами. 

К первому классу таких нелинейных спецификаций относятся модели, фундаментом для кото-

рых послужила ПФ Леонтьева [13], содержащая мультиарную операцию min. В монографии [14] задача 

МНМ-оценки таких регрессий сведена к задаче частично булевого линейного программирования 

(ЧБЛП). Позднее эти модели за счет использования мультиарных операций max и вложенности функ-

ций были обобщены и получили название «вложенные кусочно-линейные регрессии» (см., напр.: [15]). 

Ко второму классу нелинейных спецификаций относятся модели, содержащие операцию «модуль». 

Впервые задача их МНМ-оценки была сведена к задаче ЧБЛП в работе [16]. Позднее появились мно-

гослойные модульные регрессии [17], которые также называют «глубокие модульные регрессии»,  

и «широкие модульные регрессии», представленные в статье [18]. Связь между вложенными кусочно-

линейными и многослойными модульными регрессиями до сих пор не исследовалась. 

Известно, что для любых чисел a и b бинарные операции min и max связаны с операцией модуль 

следующими соотношениями: 

 
 min ,

2

a b a b
a b

+ − −
= , (1) 

 
 max ,

2

a b a b
a b

+ + −
= . (2) 

Выражения (1) и (2) позволяют предположить, что класс многослойных модульных регрессий 

включает в себя класс вложенных кусочно-линейных регрессий. Цель данной статьи состоит в том, 

чтобы доказать выдвинутое предположение на примере ПФ Леонтьева. 
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1. Исследование связи между ПФ Леонтьева и многослойной модульной регрессией 
 

Пусть имеется выборка объема n, содержащая значения iy , 1,i n= , выходной (объясняемой) пе-

ременной y и значения ijx , 1,i n= , 1,j l= , l входных (объясняющих) переменных x1, x2, …, xl. Рассмот-

рим модель множественной линейной регрессии с неизвестными параметрами α0, α1, …, αl: 

 0

1

l

i j ij i

j

y x
=

=  +  +  ,     1,i n= , (3) 

где i , 1, ,i n=  – ошибки регрессии. 

Будем считать, что неизвестные параметры линейной регрессии (3) оцениваются с помощью 

МНМ, который состоит в минимизации суммы модулей ошибок, что означает решение задачи 

1

min
n

i

i=

 → . Решение этой задачи сводится к решению задачи линейного программирования [11]. 

Предположим, что с помощью МНМ найдены оценки неизвестных параметров модели (3). Обозначим 

сумму остатков этой модели как лин

1

SAE
n

i

i

e
=

=  , где 
ie  – i-й остаток, равный разнице между фактиче-

ским и расчетным значением отклика y в i-м наблюдении. 

Рассмотрим ПФ Леонтьева со свободным членом: 

 
 0 1 1 2 2min , ,...,i i i l il iy x x x=  +    +  ,     1,i n= , (4) 

где min – l-арная операция, возвращающая минимум из перечисленных в фигурных скобках {} l значе-

ний. Пусть модель (4) оценена с помощью МНМ в результате решения задачи ЧБЛП [14]. Обозначим 

сумму остатков этой модели как 
ЛеонSAE . 

Теорема. Пусть 3l  , а все индексы входных переменных произвольно распределены по l эле-

ментам s1, s2, …, sl вектора S. Предположим, что с помощью МНМ оценены неизвестные параметры  

α0, α1, …, αn, β1, …, βn многослойной модульной регрессии 

 
0 , 2 , , 2 ,l li i l l i s i l l i s iy z x z x− −=  + +  − +  +  ,   1,i n= , (5) 

 1 1, , 1 1 , , 1 1 ,k ki k i k k i s i k k i sz z x z x
+ +− + − += +  − +  ,   1,i n= , 2, 2k l= − , (6) 

 1 2 1 21 1 , 2 , 1 , 2 ,i i s i s i s i sz x x x x=  +  −  +  ,   1,i n= , (7) 

где ,i kz  – выходное значение на k-м слое в i-м наблюдении. Обозначим сумму остатков этой регрессии 

как модSAE . Тогда будут справедливы неравенства  

 мод линSAE SAE , (8) 

 мод ЛеонSAE SAE . (9) 

Доказательство. Многослойная модульная регрессия (5)–(7) содержит l – 1 слоев: 1-й слой от-

ражает равенство (7), промежуточные слои со 2-го до (l – 2)-го – равенства (6), выходной (l – 1)-й слой – 

равенство (5). Последовательно подставляя выходные значения z с нижних слоев в выражения для 

верхних слоёв, получим структурную спецификацию 

 

( )0 ,

1

, ,
j

l

i j i s i

j

y x F x
=

=  +  −   +  ,     1,i n= , (10) 

где ( ), ,F x   – функция нескольких переменных с неизвестными параметрами, содержащая модульные 

преобразования. Очевидно, что модель (10) есть расширенная версия линейной регрессии (3), откуда 

следует справедливость неравенства (8) для любого распределения индексов входных переменных по 

элементам вектора S. 

Пусть 
1 1 =  , j j = − , 2,j l= . Многослойная модульная регрессия (5)–(7) будет иметь вид: 

 
0 , 2 , , 2 ,l li i l l i s i l l i s iy z x z x− −=  + +  − −  +  ,   1,i n= , (11) 
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 1 1, , 1 1 , , 1 1 ,k ki k i k k i s i k k i sz z x z x
+ +− + − += +  − −  ,   1,i n= , 2, 2k l= − , (12) 

 1 2 1 21 1 , 2 , 1 , 2 ,i i s i s i s i sz x x x x=  +  −  −  ,   1,i n= . (13) 

Модель (11)–(13) есть ограниченная версия модели (5)–(7), поэтому сумма ее остатков не меньше 

величины модSAE . Из (1) следует, что  min 2 ,2a b a b a b+ − − = . Учитывая это равенство, перепишем 

регрессию (11)–(13) в виде: 

 
 0 , 2 ,min 2 ,2

li i l l i s iy z x−=  +  +  ,   1,i n= , (14) 

 
 

1, , 1 1 ,min 2 ,2
ki k i k k i sz z x

+− +=  ,   1,i n= ,   2, 2k l= − , (15) 

 
 

1 21 1 , 2 ,min 2 ,2i i s i sz x x=   ,   1,i n= . (16) 

Последовательно подставляя для модели (14)–(16) выходные значения z с нижних слоев в выра-

жения для верхних слоев, получим структурную спецификацию 

 
   1 2 30 1 , 2 , 3 ,min 2min 2min 2 ,2 ,2 ,...i i s i s i s iy x x x=  +    +  ,     1,i n= . (17) 

Многослойная конструкция (17), как показано в [19], может быть записана в виде: 

 
 

1 2 3 1

1 1 2 2

0 1 , 2 , 3 , 1 , ,min 2 ,2 ,2 ,...,2 ,2
l l

l l l

i i s i s i s l i s l i s iy x x x x x
−

− − −

−=  +      +  ,     1,i n= .  (18) 

Сделав замены 1

1 12l− =  , 12l j

j j

+ − =  , 2,j l= , нетрудно видеть, что регрессия (18) есть ПФ 

Леонтьева (4). 

Модель (18) эквивалентна многослойной модульной регрессии (11)–(13), сумма остатков кото-

рой не меньше величины 
модSAE . Тогда для модели (5)–(7) справедливо неравенство (9) для любого 

распределения индексов входных переменных по элементам вектора S. Теорема доказана. 

Сделаем некоторые замечания касаемо доказанной теоремы. 

Во-первых, доказанная теорема справедлива и при l = 2. Действительно, при l = 2 имеем одно-

слойную конструкцию 

1 2 1 20 1 , 2 , 1 , 2 ,i i s i s i s i s iy x x x x=  +  +  −  +  +  ,     1,i n= , 

для которой по тем же причинам, что и при 3l  , справедливы неравенства (8) и (9). 

Во-вторых, смысл доказанной теоремы состоит в том, что для любых статистических данных  

и для любого распределения индексов входных переменных по элементам вектора S качество аппрок-

симации оцененной с помощью МНМ многослойной модульной регрессии (5)–(7) всегда не хуже  

(на практике чаще лучше), чем качество линейной регрессии (3) либо ПФ Леонтьева (4). 

В-третьих, если в многослойной модульной регрессии (5)–(7) заменить знаки «–», стоящие перед 

операциями модуль, на знаки «+», то аналогичным образом с использованием (2) можно доказать, что 

качество образованной модели всегда будет не хуже, чем качество линейной регрессии (3) либо ре-

грессии [20] с l-арной операцией max вида: 

 0 1 1 2 2max , ,...,i i i l il iy x x x=  +    +  ,     1,i n= . 

В-четвертых, при l = 2 величина модSAE  многослойной модульной регрессии (5)–(7) не зависит 

от распределения индексов входных переменных по элементам вектора S, а при 3l   – зависит. В лю-

бом случае справедливы неравенства (8) и (9). 

Таким образом, из теоремы следует, что класс многослойных модульных регрессий включает  

в себя производственные функции Леонтьева. 

Из доказательства теоремы также следует, что любую вложенную кусочно-линейную регрессию 

с помощью соотношений (1) и (2) всегда можно представить в виде многослойной модульной регрес-

сии. Это можно сделать по следующему алгоритму. 

1. Записать вложенную кусочно-линейную регрессию в виде многослойной конструкции только 

с бинарными операциями min и max так, как это показано в [19]. 
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2. С использованием соотношений (1) и (2) перейти от бинарных операций min и max к специ-

фикации с модулями. 

3. В полученной конструкции обозначить все неизвестные параметры по-разному. 

Например, пусть имеется вложенная кусочно-линейная регрессия вида: 

 
  0 1 1 2 2 3 3 4 4min max , , ,i i i i i iy x x x x=  +     +  ,     1,i n= . (19) 

В (19) операция max – бинарная, min – тернарная. Запишем модель (19) в виде многослойной 

конструкции только с бинарными операциями: 

   0 1 1 2 2 3 3 4 4min min max , , ,i i i i i iy x x x x=  +     +  ,     1,i n= . 

С помощью (1) и (2) перейдем от полученной конструкции к многослойной спецификации с мо-

дулями: 

 
( )0 2 4 4 2 4 4

1

2
i i i i i iy z x z x=  + +  − −  +  ,     1,i n= , (20) 

 
( )2 1 3 3 1 3 3

1

2
i i i i iz z x z x= +  − −  ,     1,i n= , (21) 

 
( )1 1 1 2 2 1 1 2 2

1

2
i i i i iz x x x x=  +  +  −  ,     1,i n= . (22) 

Оцененная с помощью МНМ вложенная кусочно-линейная регрессия (19) и многослойная мо-

дульная регрессия (20)–(22) будут иметь одинаковые значения критерия SAE. В (20)–(22) всего 4 неиз-

вестных параметра, которые дублируются. Обозначив же их по-разному, получим в общей сложности 

8 неизвестных параметров. Тогда полученная многослойная модульная регрессия при оценивании с по-

мощью МНМ в любом случае будет не хуже по критерию SAE, чем (20)–(22), а, следовательно, и (19). 

Таким образом, любой вложенной кусочно-линейной регрессии по указанному алгоритму всегда 

можно поставить в соответствие многослойную модульную регрессию, которая будет не хуже, а за 

счет большего числа неизвестных параметров лучше первой. Тем самым многослойная модульная ре-

грессия – гораздо более гибкий инструмент математического моделирования, чем вложенная кусочно-

линейная регрессия. 

 

2. Оценивание с помощью МНМ параметров многослойной модульной регрессии (5)–(7) 

 

Многослойная модульная регрессия впервые была предложена в [17], и там же задача нахожде-

ния оценок ее параметров с помощью МНМ сведена к задаче ЧБЛП. Предлагаемая в данной статье 

модель (5)–(7) отличается от описанной ранее в работе [17] регрессии тем, что во второй на текущем 

слое выходные переменные z с предыдущего слоя используются только под знаком модуля. В много-

слойной модульной регрессии (5)–(7) выходные переменные с предыдущего слоя используются как 

под знаком модуля, так и в линейной части текущего слоя. 

Используя некоторые математические приемы из [17], получим следующую задачу ЧБЛП для 

нахождения неизвестных параметров модели (5)–(7): 

 

( )
1

min
n

i i

i

g h
=

+ → , (23) 

 
( )0 , 2 , , 1 , 1li i l l i s i l i l i iy z x u v g h− − −=  + +  − + + − ,     1,i n= , (24) 

 
, 1 , 1 , 2 , li l i l i l l i su v z x− − −− = +  ,     1,i n= , (25) 

 
( )

1, , 1 1 , , ,ki k i k k i s i k i kz z x u v
+− += +  − + ,     1,i n= ,     2, 2k l= − , (26) 

 1, , , 1 1 , ki k i k i k k i su v z x
+− +− = +  ,     1,i n= ,     2, 2k l= − , (27) 

 
( )

1 21 1 , 2 , 1 1i i s i s i iz x x u v=  +  − + ,     1,i n= , (28) 

 1 21 1 1 , 2 ,i i i s i su v x x− =  +  ,     1,i n= , (29) 
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, ,i j i ju M  ,     1,i n= ,     1, 1j l= − , (30) 

 
( ), ,1i j i jv M  −  ,     1,i n= ,     1, 1j l= − , (31) 

 
, {0,1}i j  ,     1,i n= ,     1, 1j l= − , (32) 

 
, 0i ju  , , 0i jv  ,     1,i n= ,     1, 1j l= − , (33) 

 
0ig  ,     0ih  ,     1,i n= , (34) 

где M – заданное достаточно большое положительное число; если в i-м наблюдении на j-м слое под 

знаком модуля содержится положительное число, то оно присваивается переменной ,i ju , а , 0i jv = ; если 

в i-м наблюдении на j-м слое под знаком модуля содержится отрицательное число, то оно присваива-

ется переменной ,i jv− , а , 0i ju = ; если в i-м наблюдении на верхнем слое ошибка регрессии 
i  есть 

положительное число, то оно присваивается переменной 
ig , а 0ih = ; если в i-м наблюдении на верхнем 

слое ошибка регрессии i  есть отрицательное число, то оно присваивается переменной 
ih− , а 0ig = ; 

булевы переменные ,i j , 1,i n= , 1, 1j l= − , удовлетворяют правилу 

,

1,  если в -м наблюдении на -м слое под знаком модуля положительное число,

0, в противном случае.
i j

i j
 = 


 

Ограничения (24), (25) в сформулированной задаче соответствуют верхнему слою многослойной 

модульной регрессии, (26), (27) – внутренним слоям, (28), (29) – нижнему слою. Решение задачи ЧБЛП 

(23)–(34) дает оптимальные МНМ-оценки параметров многослойной модульной регрессии (5)–(7) при 

3l  . При 2l =  модель будет состоять только из одного слоя, поэтому ее оценивание будет сводиться 

к решению более простой задачи ЧБЛП с целевой функцией (23), линейными ограничениями (29)–(34) и 

 
( )

1 20 1 , 2 , 1 1i i s i s i i i iy x x u v g h=  +  +  − + + − ,     1,i n= . (35) 

 

3. Вычислительные эксперименты 

 

Для подтверждения корректности полученных в предыдущих разделах математических выводов 

на персональном компьютере с процессором AMD Ryzen 3 4300U и 16 Гб оперативной памяти прово-

дились вычислительные эксперименты. Чем больше слоев в многослойной модульной регрессии, тем 

выше вычислительная сложность задачи ЧБЛП, поскольку в ней возрастает число булевых перемен-

ных. Поэтому для решения таких задач нужен эффективный решатель (солвер). В этой связи было ре-

шено использовать хорошо зарекомендовавший себя и представленный в открытом доступе решатель 

оптимизационных задач LPSolve [21]. Вместе с тем было решено использовать разработанный в Китае 

коммерческий продукт Cardinal Optimizer (COPT) [22]. Как заявляют разработчики, этот продукт в не-

которых тестах превосходит другие коммерческие аналоги (CPLEX, Gurobi), которые сейчас недо-

ступны в России, а также open-source солверы. Было интересно сравнить скорость работы LPSolve и 

COPT на примере построения многослойных модульных регрессий. Для управления солвером COPT 

был использован интерфейс Python. 

Для проведения экспериментов использовались две выборки данных. 

Первая выборка [23. С. 284] объема n = 13 содержит данные о результатах химических эксперимен-

тов (данные Хальда). Она включает в себя информацию по следующим переменным: y1 – выделивше-

еся тепло в калориях на грамм цемента; x1 – количество трикальций-алюмината (% от веса клинкера); 

x2 – количество трикальций-силиката (%); x3 – количество тетракальций-алюминиум-феррита (%); x4 – 

количество дикальций-силиката (%). 

Вторая выборка объема n = 23 включает данные о новых единицах жилья в США и влияющих  

на них факторах. Эти данные встроены в эконометрический пакет Gretl (файл data4-3.gdt). В них со-

держится информация по следующим переменным: y2 – общее количество новых единиц жилья, 
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введенных в эксплуатацию (тыс.); x1
* – население США (млн чел); x2

* – валовой национальный продукт 

(млрд долл.); x3
* – уровень безработицы (%); x4

* – доходность ипотечных кредитов на новое жилье (%). 

При проведении экспериментов менялся состав входящих в модель объясняющих переменных. 

Для этого были назначены следующие подмножества: {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, 

{1, 2, 4}, {1, 3, 4}, {2, 3, 4} и {1, 2, 3, 4}. Например, подмножество {2, 3} для первой выборки означает, 

что объясняющими переменными выступают x2 и x3. Для каждой выборки и каждого состава перемен-

ных решались следующие задачи: 

1) в пакете Gretl оценивались параметры линейной регрессии (3) и фиксировалось значение SAEлин; 

2) с помощью LPSolve оценивались параметры ПФ Леонтьева (4) и фиксировалось значение SAEЛеон; 

3) с помощью LPSolve и COPT оценивались параметры многослойной модульной регрессии (5)–(7) 

с прямым порядком следования объясняющих переменных, фиксировались значение SAEмод и время 

решения задачи ЧБЛП (23)–(34) при 3l   либо (23), (29)–(35) при 2l = ; 

4) с помощью LPSolve и COPT оценивались параметры многослойной модульной регрессии (5)–(7) 

с обратным порядком следования объясняющих переменных, фиксировались значение SAEмод и время 

решения задачи ЧБЛП (23)–(34) при 3l   либо (23), (29)–(35) при 2l = . 

Прямой порядок следования переменных означает, что если, например, выбран состав {1, 2, 3}, 

то первый элемент вектора S равен 1, второй – 2, третий – 3. При обратном порядке первый элемент 

вектора S равен 3, второй – 2, третий – 1. 

Используемые солверы LPSolve и COPT содержат большое количество различных настраивае-

мых параметров. При решении задач ЧБЛП важно правильно установить такой параметр, как точность 

целого числа, которую обозначим IntTol. Если установить значение IntTol слишком большим, напри-

мер 0,1, то значение 0,91 солвер будет идентифицировать как число «1», а значение 0,07 – как число 

«0». Такая настройка, возможно, увеличит скорость решения задачи, но результат может быть ошибоч-

ным. В LpSolve параметр IntTol по умолчанию равен 1e–7, а в COPT – 1 e–6. Для организации равных 

условий работы пакетов параметру IntTol в COPT было присвоено значение 1e–7. 

Хотелось бы обратить внимание на ограничения (30) и (31). Если точность целого числа IntTol  

в солверах выбрана 1e–7, то при очень большом числе M эти ограничения не будут гарантировать вы-

полнение условий 

 
, , 0i j i ju v = ,    1,i n= ,    1, 1j l= − , (36) 

что может привести к ошибочным результатам. Поэтому условия (36) необходимо проверять после 

решения каждой задачи ЧБЛП. Если они не выполняются, то требуется перерешать задачу, уменьшив 

параметр IntTol. 

Для данных Хальда параметр M был выбран 1 000, а для данных о жилье в США M = 10 000. 

Вместо переменной y2 была использована переменная y2
* = y2/M. Ограничение по времени в солверах 

на решение одной задачи ЧБЛП составило 1 800 с (30 мин). 

Результаты проведенных экспериментов представлены в таблице. 

Условия (36) при IntTol = 1e–7 не выполнились только при обработке данных о жилье для соста-

вов {1, 2, 4} и {2, 3, 4}, поэтому в строках № 19 и 21 таблицы приведены результаты, полученные  

в LPSolve и COPT при IntTol = 1e–8. 

В таблице символ «*» указывает на субоптимальные решения, найденные в установленный ли-

мит времени 30 мин. 

По таблице в результате обработки данных Хальда можно сделать следующие выводы. 

1. Как линейная регрессия может превосходить по критерию SAE ПФ Леонтьева (например, 

строка № 1), так и ПФ может превосходить линейную регрессию (например, строка № 2). 

2. При построении многослойной модульной регрессии абсолютно во всех экспериментах для 

любого порядка переменных оказались справедливы неравенства (8) и (9), что подтверждает коррект-

ность доказанной теоремы. Причем, только в 3 случаях из 22 значение SAEмод оказалось равно SAEлин 

или SAEЛеон, т.е. в большинстве случаев многослойная модульная регрессия оказалась лучше и линей-

ной регрессии, и ПФ Леонтьева. 
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3. При изменении порядка следования переменных качество однослойных модульных регрессий 

по критерию SAE сохранилось, а качество двухслойных и трехслойных модульных регрессий изменилось. 

4. В LPSolve для прямого и обратного порядков переменных среднее время построения одно-

слойной модульной регрессии составило 0,06 с, двухслойной – 2,26 с, трехслойной – 25,51 с. Рост вре-

мени обусловлен увеличением в задаче ЧБЛП количества булевых переменных при увеличении числа 

слоев. 

5. В COPT были получены точно такие же модели, что и в LPSolve. В COPT для прямого и об-

ратного порядков переменных среднее время построения однослойной модульной регрессии составило 

0,33 с, двухслойной – 0,59 с, трехслойной – 1,16 с. Получилось, что однослойные модульные регрессии 

в LPSolve и COPT оцениваются практически мгновенно, но COPT проигрывает по времени пакету 

LPSolve. Однако такой результат, вероятнее всего, можно объяснить тем, что при управлении COPT  

в Python на чтение оптимизационной задачи из программы уходит чуть больше времени, чем в LpSolve. 

Для двухслойных модульных регрессий время решения задач ЧБЛП в COPT оказалось в 3,84 раза,  

а для трехслойных – в 22,08 раза меньше, чем в LPSolve. 

Результаты экспериментов 

№ Состав SAEлин SAEЛеон 

Прямой порядок переменных Обратный порядок переменных 

LPSolve COPT LPSolve COPT 

SAEмод t, с SAEмод t, с SAEмод t, с SAEмод t, с 

Данные Хальда 

1 1, 2 23,126 56,167 23,126 0,048 23,126 0,33 23,126 0,047 23,126 0,36 

2 1, 3 107,1 91,6 59,195 0,055 59,195 0,28 59,195 0,036 59,195 0,27 

3 1, 4 23,339 107,3 21,972 0,064 21,972 0,33 21,972 0,063 21,972 0,35 

4 2, 3 55,057 83,125 54,662 0,084 54,662 0,34 54,662 0,073 54,662 0,41 

5 2, 4 82,957 72,421 70,347 0,070 70,347 0,35 70,347 0,085 70,347 0,35 

6 3, 4 35,313 165 30,940 0,053 30,940 0,28 30,940 0,043 30,940 0,29 

7 1, 2, 3 19,056 56,167 19,049 1,087 19,049 0,50 13,66 0,268 13,66 0,45 

8 1, 2, 4 19,663 52 17,017 3,878 17,017 0,59 16,389 1,969 16,389 0,93 

9 1, 3, 4 20,203 90,6 20,203 7,424 20,203 0,62 17,882 0,858 17,882 0,58 

10 2, 3, 4 22,536 72,421 20,609 1,431 20,609 0,45 20,068 1,130 20,068 0,58 

11 1, 2, 3, 4 18,834 52 12,459 40,144 12,459 1,01 13,809 10,876 13,809 1,30 

Встроенные в Gretl данные data4-3 

12 1, 2 5,655 5,858 5,655 17,049 5,655 3,01 5,655 16,716 5,655 3,57 

13 1, 3 5,896 5,773 5,000 4,503 5,000 0,54 5,000 4,716 5,000 0,49 

14 1, 4 4,356 5,902 4,241 38,665 4,241 0,95 4,241 38,982 4,241 0,91 

15 2, 3 5,853 5,797 5,164 4,672 5,164 0,60 5,164 4,922 5,164 0,75 

16 2, 4 4,514 5,858 4,172 5,480 4,172 0,66 4,172 5,540 4,172 0,52 

17 3, 4 6,055 6,053 5,004 5,077 5,004 0,67 5,004 4,921 5,004 0,69 

18 1, 2, 3 5,199 5,773 4,764* 1800 4,145 4,77 4,758* 1800 4,308 40,22 

19 1, 2, 4 4,346 5,855 3,818 1431,4 3,818 9,69 4,204* 1800 4,013 934,41 

20 1, 3, 4 4,323 5,767 3,925* 1800 3,177 5,98 3,540 1785 3,540 5,92 

21 2, 3, 4 4,176 5,784 3,343 813,87 3,343 32,03 4,056* 1800 3,713 3,75 

22 1, 2, 3, 4 4,074 5,767 4,813* 1800 2,840 261,6 4,139* 1800 3,268 32,23 

 

По таблице в результате обработки данных о жилье можно сделать следующие выводы. 

1. Линейная регрессия и ПФ Леонтьева в зависимости от выбранных переменных могут превос-

ходить друг друга по критерию SAE. 

2. Не принимая во внимание субоптимальные решения, при построении многослойной модуль-

ной регрессии во всех экспериментах для любого порядка переменных определено, что оказались спра-

ведливы неравенства (8) и (9), и это вновь подтверждает корректность доказанной теоремы. И снова  

в большинстве случаев (в 20 из 22) многослойная модульная регрессия оказалась лучше как линейной 

регрессии, так и ПФ Леонтьева. 

3. Изменение порядка следования переменных меняет значение критерия SAE для двухслойных 

и трехслойных модульных регрессий, но не меняет для однослойных. 
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4. Вторая выборка данных содержит больше наблюдений, чем первая, поэтому время решения 

задач ЧБЛП увеличилось. Причем LPSolve в установленный лимит времени 30 мин не справился  

с 7 задачами из 22. Так, в LPSolve для прямого и обратного порядков переменных среднее время по-

строения однослойной модульной регрессии составило 12,6 с. Для двухслойной и трехслойной модуль-

ной регрессии – 1 628,78 и 1 800 с соответственно. Причем при снятии установленного лимита для 

последних двух спецификаций время будет еще больше. 

5. Солвер COPT, в отличие от LPSolve, справился абсолютно со всеми задачами. Для прямого  

и обратного порядков переменных среднее время построения однослойной модульной регрессии со-

ставило 1,11 с, двухслойной – 129,59 с, трехслойной – 146,91 с. Среднее время оценки двухслойных 

регрессий оказалось высоким из-за эксперимента для обратного порядка переменных из множества  

{1, 2, 4}. Без учета этого эксперимента среднее время составит всего 14,62 с. Таким образом, для одно-

слойных модульных регрессий время решения задач ЧБЛП в COPT оказалось в 11,32 раза, для двух-

слойных – как минимум в 12,57 раза, а для трехслойных – как минимум в 12,25 раза меньше, чем  

в LPSolve. 

Рассмотрим внешний вид моделей с полным составом переменных, построенных по данным  

о рынке жилья. ПФ имеет вид: 

 
 * * * * *

2 1 2 3 41,00054 min 0,003032 ,0,000306 ,0,115717 ,0,097422y x x x x= + . (37) 

Как отмечено в строке № 22 таблицы, для регрессии (37) SAEЛеон = 5,767. При этом нулевыми 

оказались остатки в наблюдениях под номерами 3 и 21. 

Трехслойная модульная регрессия для прямого порядка переменных имеет вид: 

 

* * *

2 4 2 2 43,46081 0,065492 0,22326y x z z x= + + − + , (38) 

 

* *

2 1 3 1 30,029006 0,26546z z x z x= − − + , (39) 

 

* * * *

1 1 2 1 20,012955 0,000523 0,0041428 0,00038652z x x x x= − + − − . (40) 

Для регрессии (38)–(40) SAEмод = 2,840. При этом нулевые остатки зафиксированы сразу в девяти 

наблюдениях – под номерами 1, 2, 3, 7, 11, 13, 15, 17 и 20. 

Для наглядности на рис. 1, а изображены графики фактических и расчетных значений зависимой 

переменной y2 для модели (37), а на рис. 1, b – для модели (38)–(40). 
 

  
а b 

Рис. 1. Фактические и рассчитанные по моделям значения переменной y2 

Fig. 1. Actual and calculated values of the variable y2 according to the models 
 

По графикам на рис. 1 видно, что точность трехслойной модульной регрессии (38)–(40) суще-

ственно выше, чем точность ПФ Леонтьева (37). 

 

Заключение 

 

В статье предложена модель многослойной модульной регрессии (5)–(7), отличающаяся от раз-

работанной в [17] модели тем, что выходное значение с каждого предыдущего слоя входит не только 

в модульную часть, но и в линейную часть последующего слоя. Доказано, что для любых статистических 
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данных и для любого распределения индексов входных переменных по элементам вектора S качество 

аппроксимации оцененной с помощью МНМ многослойной модульной регрессии (5)–(7) всегда не хуже 

(на практике зачастую лучше), чем качество линейной регрессии (3) и ПФ Леонтьева (4). Показано, что 

класс многослойных модульных регрессий включает в себя класс вложенных кусочно-линейных ре-

грессий. Разработан алгоритм трансформации любой вложенной кусочно-линейной регрессии в мо-

дель многослойной модульной регрессии, оценка которой с помощью МНМ гарантирует не ухудшение 

качества аппроксимации по критерию SAE. Задача нахождения точных МНМ-оценок неизвестных па-

раметров предложенной многослойной модульной регрессии (5)–(7) сведена к задаче ЧБЛП. На двух 

разных выборках данных проведены вычислительные эксперименты, доказывающие корректность до-

казанной теоремы. В ходе экспериментов впервые проведен сравнительный анализ скорости солверов 

LPSolve и Cardinal Optimizer. Для первой выборки при оценке параметров однослойных модульных 

регрессий солверы решили задачи ЧБЛП практически мгновенно. При оценке двухслойных и трех-

слойных модульных регрессий Cardinal Optimizer оказался быстрее в 3,84 и 22,08 раза соответственно, 

чем LPSolve. Для второй выборки большего объема при оценке однослойных модульных регрессий 

Cardinal Optimizer оказался в 11,32 раза быстрее, чем LPSolve. При оценке двухслойных и трехслойных 

модульных регрессий в LPSolve оптимальное решение большинства задач ЧБЛП не было получено  

в установленный лимит времени 30 мин. При этом Cardinal Optimizer справился абсолютно со всеми 

задачами, оказавшись быстрее, чем LPSolve, как минимум в 12,57 и 12,25 раза для двухслойных и трех-

слойных модульных регрессий. Таким образом, выявлено существенное превосходство по скорости 

солвера Cardinal Optimizer перед LPSolve. 
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Аннотация. Рассматривается решение обратной кинематической задачи одной из основных задач теории 

распространения волн, постановки, сводящейся к классической компьютерной (вычислительной) томографии. 

Полнота томографических измерительных (проекционных) данных обеспечивается расположением источников 

и приемников зондирующего сигнала на окружности, лежащих в плоскости Z = 0 евклидова пространства XYZ. 

Математически такая постановка является «слабо-некорректной» (по отечественной классификации для задач 

математической физики), что делает решение однозначным и повышает достоверность интерпретации. Изла-

гаются постановка задачи, построение решения и вычислительный алгоритм, а также результаты численного 

компьютерного моделирования. Применительно к сейсмоакустическим исследованиям определяются возмож-

ности и перспективы использования полученных результатов. 

Ключевые слова: вычислительный алгоритм; обратная задача; рефрагированные волны; кинематическая 

диагностика; компьютерная томография. 

 

Для цитирования: Гервас Н.В., Зеркаль С.М. Вычислительная кинематическая диагностика сред с возможно-

стью линеаризации скорости зондирующего сигнала в условиях томографического эксперимента // Вестник 

Томского государственного университета. Управление, вычислительная техника и информатика. 2025. № 73.  

С. 58–64. doi: 10.17223/19988605/73/7 
 

 

Original article 

doi: 10.17223/19988605/73/7 

 

Computational kinematic diagnostics of media with the possibility of linearizing  

the probing signal velocity in the context of a tomographic experiment 
 

Nikolai V. Gervas1, Sergey M. Zerkal2 
 

1, 2 Novosibirsk State Technical University, Novosibirsk, Russian Federation 
1 nik.gervas@mail.ru 

2 zerkal@ngs.ru 

 

Abstract. The paper addresses the inverse kinematic problem, which is one of the primary problems of the "Theory 

of Wave Propagation", formulated in a manner that reduces it to classical computational tomography. The completeness 

of tomographic (projection) data is ensured by positioning the sources and receivers of the probing signal on a circle 

lying in the plane Z = 0 of the Euclidean space (X Y Z). Mathematically, this formulation is classified as "weakly  

ill-posed" (according to the domestic classification of mathematical physics problems), which makes the solution unique 

and enhances the reliability of the interpretation. The paper presents the problem statement, the construction of the 

solution, the computational algorithm, and the results of numerical simulations. In the context of seismic-acoustic studies, 

the possibilities and prospects of applying the obtained results are discussed. 
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Введение 

 

Обратная кинематическая задача (ОКЗ) представляет собой достаточно крупную научную про-

блему, имеющую математическую основу как задача математической физики, теории распространения 

волн. В своей численной реализации она относится к вычислительной диагностике. ОКЗ имеет высокое 

прикладное значение, возникает в основном в условиях оптики, акустики, сейсмики как задача кине-

матической диагностики среды распространения соответствующих рефрагированных волн [1–4]. 

Впервые эта задача была рассмотрена в 1906–1907 гг. Г. Герглотцем и Э. Вихертом, и в последующее 

время интерес научной общественности к ней только возрастал [5]. К настоящему времени достижения 

информатики и искусственного интеллекта (ИИ) открывают обширную перспективу для преодоления 

трудностей, присущих решению ОКЗ. 

Геофизические методы, направленные на исследование структуры земных недр, обычно предпо-

лагают создание «изображения» изучаемой среды на основе интерпретации полученных данных. Дости-

жение высокой точности в этом процессе невозможно без применения специализированных компью-

терных систем, спроектированных с использованием математического моделирования их ключевых 

элементов и поддерживаемых математическим обеспечением, основанным на разработке соответству-

ющих алгоритмов для решения поставленных задач. Таким образом, геофизика тесно связана с отно-

сительно новой областью знаний – вычислительной диагностикой [6], где ключевые понятия включают 

«вычислительные технологии» и «информационно-вычислительные технологии». Под вычислитель-

ной диагностикой понимается совокупность методов и инструментов, направленных на изучение ха-

рактеристик объектов исследования на основе обработки косвенной информации с использованием 

вычислительных средств. В отличие от традиционных методов, вычислительная диагностика опери-

рует огромными объемами информации об исследуемом объекте, которые обрабатываются с примене-

нием эффективных алгоритмов на высокопроизводительных вычислительных системах. 

Примером применения вычислительной диагностики являются вычислительная томография и ее 

специализированный вариант – сейсмическая томография, где ключевую роль в исследованиях играет 

решение обратной кинематической задачи [7, 8]. 

Технология кинематической диагностики земных недр, связанная с определением скоростного 

распределения сейсмической волны по годографу, начала развиваться с работ немецкого физика  

Э. Вихерта. Важно отметить, что на практике при выполнении измерений кинематическая информация 

является наиболее точной в сравнении, например, с динамической [9]. Данное исследование сосредо-

точено на совершенствовании теоретических основ, позволяющих предложить новые модификации 

методов диагностических исследований, основанных на теории распространения волн. При этом учи-

тывается необходимость сочетания теоретических разработок с экспериментальной верификацией  

физических моделей, применимых к задачам сейсмологии [6–9]. 

 

1. Постановка задачи и построение решения 
 

Рассмотрим полупространство Z ≥ 0 в трехмерном пространстве R3, заполненное средой с пока-

зателем преломления n(х, у, z) = V–1(х, у, z), где V(x, y, z) представляет собой скорость распространения 

колебаний в среде. Пусть в точке S0 = (x0, y0, 0) генерируется сигнал, а в точке S1 = (x1, y1, 0) фиксируется 

время прихода рефрагированной волны – T(S0, S1). Обратная кинематическая задача состоит в восста-

новлении функции V(x, y, z) по известной функции T(S0, S1). В общем случае эта задача является пере-

определенной: по функции четырех переменных Т(x0, y0, x1, y1) требуется определить функцию трех 

переменных V(x, y, z). Исследования по переопределенной постановке обратной кинематической задачи 

были проведены В.Г. Романовым и Р.Г. Мухометовым [5]. 
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Организация системы наблюдений в форме окружности радиуса r позволяет устранить переопре-

деленность задачи, поскольку функция Т теперь зависит от радиуса r и двух углов φ1, φ2 (в полярных 

координатах), указывающих на источник и приемник соответственно. Предполагается, что исследуемая 

среда является регулярной, т.е. изменения скорости в ней таковы, что каждой паре точек источник–

приемник (S0 и S1) соответствует одна геодезическая линия (луч) Γ(S0, S1). Важным условием также 

является то, что скорость V(x, y, z) представима в виде V(x, y, z) = V0(z) + V1(x, y, z), V0 = A + Bz, V0 >> |V1|. 

Соотношение коэффициентов A и B выбрано так, чтобы обеспечивать достаточную глубину проникнове-

ния луча для заданной базы наблюдения (расстояние между источником и приемником). Функция V0(z) 

считается известной, а коэффициенты A и B заданы; подлежит определению функция V1(x, y, z). 

В дальнейших рассуждениях используется метод линеаризации обратной кинематической задачи 

для многомерных сред, который последовательно применяется начиная с работ В.Г. Романова [5]. Это 

позволяет прийти к формуле, являющейся следствием применения линеаризации к функционалу Фер-

ма [10], который связывает кинематические характеристики распространения сигнала: 

 
0 0 1

1 0 1 1
( , )

( , )
S S

T S S n dS


=  , (1) 

где T1 = T – T0; n1 = V–1 – V1
–1; Γ0(S0, S1) – геодезическая линия для среды со скоростным распределением V0. 

Поскольку значения T считаются известными (как результат решения прямой задачи, а в практическом 

применении это вектор измерений), значения T0 для V0 = A + Bz можно вычислить явно, что упрощает 

вычисление требуемых значений T1. На этом этапе задача сводится к определению функции n1 по функ-

ции T1 с использованием интегрального уравнения (1). 

Применение системы наблюдений в форме окружности не только устраняет переопределенность 

задачи, но и задает томографическую постановку для исследуемой задачи. Лучи Γ0, «натянутые» на 

окружность системы наблюдений, формируют поверхность шарового сегмента. Изменяя радиус r, 

можно получить систему вложенных шаровых сегментов, которые заполняют объем исследуемой об-

ласти в пространстве R3. Определяя n1 на поверхности таких сегментов, получаем решение трехмерной 

задачи. Следует отметить, что послойный подход к изучению объекта и методика сбора проекционных 

данных делают эту задачу сопоставимой с классическими задачами томографии [1]. 

Пусть функция T1(S0, S1) известна и выполняется равенство (1), где n1(x, z) = 1/V(x, z) – 1/V0(z),  

x ∈ R2. Точки S0 и S1 располагаются на окружности x1
2 + x2

2 = r2(x1 ≡ x, x2 ≡ y). Лучевая траектория  

Γ0(S0, S1) определяется из системы уравнений 

 

2
2 2 ,
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A
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B
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
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 (2) 

Последние два уравнения описывают плоскость Q, перпендикулярную к плоскости Z = 0 (коор-

динатная плоскость x1, x2) и пересекающую плоскость по прямой l(S0, S1). Геометрический смысл вели-

чин p, ρ и θ показан на рис. 1. 

Перейдем в выражении (1) от интегрирования по Γ0(S0, S1) к интегрированию вдоль l(S0, S1). Обо-

значим 

 
22 *( )

A
z x z x

B
= −   − = . (3) 

Будем рассматривать случай z ≥ 0, тогда перед корнем следует выбрать знак «+». В операторном 

виде решение задачи дается следующей формулой обращения: 

 ( ) ( )* * 1
1 1 2, , ,

A
n x x z z R f p

B

− 
= +  

 
, (4) 

где R–1 – оператор обратного преобразования Радона. Определяя искомую функцию n1 по формуле об-

ращения (4) в круге x1
2 + x2

2 ≤ r2, тем самым определяем n1 на поверхности шарового сегмента, образо-

ванного лучами Γ0, опирающимися на окружность системы наблюдений [7]. 
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Вывод формулы (4) делает возможным использование численных методов обращения преобра-

зования Радона для решения обратной кинематической задачи. Данная техника, хорошо разработанная 

для решения других научных задач [6], значительно упрощает работу с данной формулой. 
 

 

Рис. 1. Иллюстрация геометрических условий линеаризованной постановки обратной задачи 

Fig. 1. Illustration of geometric conditions of the linearized formulation of the inverse problem 

 

В результате полного сбора данных формируется проекционная матрица, столбцы которой пред-

ставляют различные проекции. Таким образом, проекционная матрица имеет размерность (N × M), где 

N – количество строк, а M – количество столбцов (элементов в каждой строке). Особенностью данного 

подхода является то, что первый и последний элементы каждой проекции равны нулю, поскольку в этих 

случаях источник и приемник совпадают (см. рис. 1). Следовательно, фактически требуется на две пары 

источник–приемник меньше. В проекционной матрице нулевыми будут первая и последняя строки. Та-

ким образом, формируются проекционные данные fij = (pi, θj), i = 1, N, j = 1, M, подаваемые на вход 

программного модуля для решения обратной задачи. 

Для решения обратной задачи был применен алгебраический подход, известный в томографии 

как алгебраическая реконструкция, который реализуется после предварительной алгебраизации преоб-

разования Радона, как указано в формуле (4) [3]. В соответствии с этим подходом были проведены чис-

ленные эксперименты для восстановления локальной неоднородности скорости в трехмерном про-

странстве. 

Моделировалась локальная неоднородность скорости Va(x, y, z) = Wexp(–wx(x – Xa)
2 – wy(y – Ya)

2 –  

– wz(z – Za)
2), включенная в среду с линейным законом изменения скорости с глубиной V = A(1 + αz). 

Здесь wx = 3, wy = 3, wz = 20, Xa = 0, Ya = 0, Za = 0,1, α = 0,5 км–1, A = 1 км/с. Система наблюдения 

представляет собой набор концентрических окружностей с радиусами от 250 до 1 250 м с шагом 250 м. 

В системе используется 20 источников и приемников, а также 8 проекций. Сетка восстановления имеет 

размер 20 × 20 для всех радиусов исследования. Значения восстанавливаемой скорости привязываются 

к координате погружения луча по глубине в условиях отсутствия неоднородности. 

Восстановленная функция локальной неоднородности в проекции на плоскость XY представлена 

на рис. 2, а, в то время как точные значения скорости на поверхности, составленной лучами при отсут-

ствии неоднородности, показаны на рис. 2, b. Оси координат x и y выполнены в одном масштабе. При-

мер иллюстрирует случай для радиуса r = 750 м. 

На рис. 3 представлен разрез восстановленной трехмерной аномалии скорости по линии y = 0. 

Глубина z отображается по вертикальной оси, а координата x – по горизонтальной оси. В табл. 1 пред-

ставлена зависимость скорости зондирующего сигнала от номера изолинии. Точность восстановления 

можно оценить с помощью среднеквадратичной нормы отклонения Q, которая измеряет различие 

между найденным решением и известным точным значением (5): 
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где z* = z*(x1i, x2j), (i и j – текущие параметры сетки, в узлах которой вычисляются значения n1r). 
 

 
a                                                                  b 

Рис. 2. Восстановленная функция локальной неоднородности в проекции на плоскость XY (а);  

точные значения скорости на поверхности, составленной лучами при отсутствии неоднородности (b) 

Fig. 2. The reconstructed function of local inhomogeneity in projection onto the XY plane – a;  

the exact values of velocity on the surface composed of rays in the absence of inhomogeneity – b 
 

 

Рис. 3. Разрез восстановленной трехмерной аномалии скорости по линии y = 0 

Fig. 3. Cross-section of restored three-dimensional speed anomaly along the line y = 0 
 

Т а б л и ц а  1  

Зависимость скорости зондирующего сигнала от номера изолинии 

Изолинии 0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–16 16–18 18–20 

Скорость, м/с 90–100 80–90 70–80 60–70 50–60 40–50 30–40 20–30 10–20 0–10 
 

График зависимости Q от радиуса окружности представлен на рис. 4. 
 

 

Рис. 4. Зависимость среднеквадратичной нормы отклонения Q от радиуса окружности 

Fig. 4. Dependence of the root mean square deviation Q on the radius of the circle 
 

Резкие отклонения при малых и больших радиусах объясняются изменением траектории луча. 

Моделируемая приповерхностная неоднородность с повышенной скоростью приводит к концентрации 

лучей в области экстремума, в то время как точное решение вычисляется в точках пространства, сво-

бодных от неоднородностей.  
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a                                                                                    b 

Рис. 5. Относительная насыщенность лучами сетки восстановления, рассчитанная для случая профильных наблюдений  

при отсутствии неоднородности (а) и при наличии неоднородности (b) 

Fig. 5. Relative saturation of the recovery grid rays, calculated for the case of profile observations  

in the absence of inhomogeneity a) and in the presence of inhomogeneity b) 
 

На рис. 5, а представлена картина относительной насыщенности лучами сетки восстановления, 

рассчитанная для случая профильных наблюдений при отсутствии неоднородности, а на рис. 5, b – при 

наличии неоднородности. По горизонтальной оси отображаются координаты профиля, а по вертикаль-

ной – координаты глубины сетки разбиения. 
 

Заключение 
 

Излагаемое решение ОКЗ обеспечивается наличием априорной информации об исследуемом объ-

екте, т.е. о скоростном распределении акустического или сейсмического сигнала. Вывод формулы об-

ращения для функционала Ферма требует знания «пути» выполнения интегрирования, эта информация 

объективно отсутствует в результате измерения времен прихода рефрагированных волн. Очевидно, что 

отмеченная информация служит основой для алгебраизации функционала Ферма и сведения решения ОКЗ 

к решению СЛАУ той или иной степени сложности. Таким образом, следует сделать вывод о домини-

рующем характере используемой априорной информации, что в терминах ИИ определяет разработан-

ный метод решения ОКЗ как «сильный» метод. Естественно, что алгоритмическое обеспечение открыто 

для потребления дополнительной информации, в том числе возникающей при реализации итерацион-

ного подхода, а именно когда выполняется уточнение, «улучшение» выбора V0. То есть происходит ор-

ганизация последовательности V1
i, где i – номер итерации, выполняющей полный цикл решения ОКЗ, 

построение V0
i+1 = V0

i + V1
i, численное решение прямой кинематической задачи, т.е. вычисление значений 

T0
i+1 и численное построение лучей Γ0

i+1. Алгоритмическое обеспечение этой методики и его программ-

ная реализация составляют перспективу дальнейшей разработки данного подхода к решению ОКЗ. 

Следует сказать, что в целом алгебраическая реконструкция [11] позволяет решать задачи с нару-

шением полноты проекционных данных, делающим невозможным использование формул обращения. 

Сказанное является актуальным для задач сейсмической диагностики сред, содержащих непрозрачные 

включения для зондирующего сигнала, в том числе имеющие геометрически избирательную чувстви-

тельность к этому излучению [12]. 
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Abstract. The theory of pension annuities is closely related to the ideology of net premiums of the life insurance 

theory. The mathematical theory of insurance is widely used to solve many problems that are determined by the re-

quirements of the market economy. The requirements of practice stimulate the development of insurance theory and 

the closely related theory of annuities and force researchers to turn to more complex mathematical models in this area. 

New methods of calculating annuities appear that reduce the time for making optimal decisions in the absence of suf-

ficient information about the markets of new types of pension services. The article considers the problem of estimating 

continuous r-year deferred m-year term life annuity with making use of information on probabilistic characteristics of 

lifetime. Insurance companies often offer their clients to conclude contracts of r-year deferred m-year annuities. Non-

parametric estimators of life annuities are constructed from data on the lifetimes of individuals. Found the principal 

terms of the asymptotic mean squared errors (MSEs) of the proposed estimators; their asymptotic normality is proved. 

It is shown that the use of auxiliary information often leads to a lower MSE of the modified estimator compared to the 

MSE of the traditional estimator. An adaptive estimator is proposed that can be applied in practice. 

Keywords: r-year deferred m-year term life annuity; nonparametric evaluation; auxiliary information; mean 

squared error; asymptotic normality; adaptive estimator. 
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Аннотация. Теория пенсионных рент тесно связана с идеологией нетто-премий теории страхования жизни. 

Математическая теория страхования широко используется при решении многих задач, которые определяются 

требованиями рыночной экономики. Требования практики стимулируют развитие теории страхования и тесно 

связанную с ней теорию рент и вынуждают исследователей обращаться к более сложным математическим мо-

делям в указанной области. Появляются новые методы расчета рент, которые сокращают время принятия оп-

тимальных решений в условиях отсутствия достаточной информации о рынках новых видов пенсионных услуг. 

В статье рассматривается проблема оценивания непрерывной m-летней временной ренты, отсроченной на r лет,  

с учетом информации о вероятностных характеристиках продолжительности жизни. Страховые компании часто 

предлагают клиентам заключать договоры именно m-летних рент, отсроченных на r лет. Непараметрические 
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оценки рент строятся по данным продолжительностей жизни индивидуумов. Найдены главные части асимпто-

тических среднеквадратичных ошибок (СКО) предложенных оценок, доказана их асимптотическая нормаль-

ность. Показано, что использование дополнительной информации часто приводит к меньшей СКО модифици-

рованной оценки по сравнению с СКО традиционной оценки. Предлагается адаптивная оценка, которая может 

применяться на практике. 

Ключевые слова: m-летняя рента, отсроченная на r лет; непараметрическое оценивание; дополнительная 

информация; среднеквадратическая ошибка; асимптотическая нормальность; адаптивная оценка. 
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Introduction 

 

The current stage of development of public socio-economic relations requires non-trivial approaches to 

the ideology of calculating pension annuities [1. P. 13–46, 170–194], which is associated with: 

– the impact on the insurance market of such unpredictable phenomena as epidemics, natural disasters, 

social cataclysms, etc. [2–4], 

– the emergence of new types of insurance and pension services [5, 6]. 

Let x  be the age of an individual and at the moment t = 0 payments start. The idea of the r-year deferred 

m-year term life annuity in accordance with [1. P. 150] is this: from the moment t+r = r, an individual starts 

receiving a monetary amount once a year, but payments are made not more than m years. For ease of calcula-

tion, such a monetary amount is taken as equal to a conventional unit.  So, payments are making in the time 

interval (r, r+m]. It is known that the life annuity is associated with the appropriate type of insurance. Thus, 

the average total cost of the present continuous r-year deferred m-year term life annuity gives the following 

formula (see [1. P. 184]):  

: |

: |

1
(δ) ,

δ

x mr

x mr

A
a

−
=

 

where δ

: | ( )

x r m

t

x m xr

x r

A e f t dt

+ +

−

+

=   is a net premium (the expectation of the present value of an insured unit sum 

for an r-year deferred m-year term life insurance at age x), δ  is a force of interest, 
( )

( )
( )

x

f x t
f t

S x

+
=  is a prob-

ability density of the future lifetime xT X x= −  of an individual (x) [1. P. 62], ( )f x  is a probability density 

of lifetime X of an individual (x), ( ) ( )S x P X x=   is a survival function. The essence of the present continu-

ous r-year deferred m-year term life annuity is as follows: a client of age x who has entered into an agreement 

transfers to the company the sum of : |(δ)x mr a  conventional monetary units; then the company will pay one 

conventional monetary unit every year throughout the time interval (r, r + m]. It is clear that : |(δ) 1,x mr a   and 

the value of the rent : |(δ)
N
x mr a  increases with the growth of m. 

Introduce the random variable 

 

δ
1

( ) , .
δ

x
T

x

e
z x r m T r

−
−

= +    () 

Then, averaging the random variable z(x) (1) (see [7–9]), we get the formula of the r-year deferred  

m-year term life annuity: 

 : |

1 ( , , , )
(δ) ( ) 1

( )
x mr

x r m
a E z

S x

  
= = − 

  
. (2) 
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Here E is the symbol of the mathematical expectation, 

 
( , , , ) ( )

x r m
x t

x r

x r m e e dF t

+ +
 −

+

  =  , 

( )( ) 1 ( )F x P X x S x=  = −

 

 is a distribution function.

 Note that the whole life annuity ( )xa   [7] is the special case of the annuity (2) at r = 0 and .m =   

Let us consider the problem of estimating continuous life annuities based on a sample of individuals' 

life expectancies [10–12]. The use of classical methods of statistical data processing often does not allow 

obtaining adequate models on the basis of which the insurance company's development strategy is built. When 

using classical parametric estimates and models, information about the phenomenon being studied is required 

with an accuracy of up to unknown parameters. In practice, problems often arise with the selection of suitable 

parametric estimates and models. Data processing using nonparametric statistical methods allows synthesizing 

simple and adequate (with known statistical properties) estimates and models in conditions where information 

about the phenomenon being studied is of a general nature [13]. 

 

1. Construction of the r-year deferred m-year term annuity estimator 
 

Assume we have a random sample ,1 ..., NX X  of N individuals’ lifetimes. Using the empirical survival 

function 

1

1
( ) ( ),

N

N i
i

S x X x
N =

=    

where I(A) is the indicator of an event A, we obtain the following estimator of (2): 

 
δ

: |
1

( , , ,δ)1 1
(δ) 1 exp( δ ) ( ) 1 ,

δ ( ) δ ( )

x N
N N
x m i ir

iN N

x r me
a X x r m X x r

S x N S x=

   
= − −  + +   + = −       

 (3) 

δ

1

( , , ,δ) exp( δ ) ( ).
x N

N i i

i

e
x r m X x r m X x r

N =

 = −  + +   +
 

 

2. Bias and mean squared error of estimator (3)  

 

In this section, we will obtain the principal term of the asymptotic MSE and the bias convergence rate 

of the estimator : |(δ)
N
x mr a .  

Introduce the notation (see [14]): the function 1( ) : sH t R R→ , ( )1( ) ( ),..., ( )st t x t x t x= = , is an s-dimen-

sional bounded function; 
( )

( ) ,j

j

H t
H t

t


=


 1, ,j s=  ( )1( ) ( ),..., ( ) ;sH t H t H t =  the symbol T denotes the trans-

pose; ( ),1 ...,N N sNt t t=  is an s-dimensional statistic, ( )1( ) ; ,..., , 1, ;jN jN jN Nt t x t x X X j s= = =  

2 2

1|| || ...N N sNt t t= + +  is the Euclidean norm of Nt ; {μ, }sN   is the symbol of weak convergence of sequence 

of random variables to the s-dimensional normal random variable with a mean 1( ,..., )s =    and symmetric 

covariance matrix || ||ij =  , 0 ( ) ,jj jj x  =     1, ;j s=    is the set of the integers.   

Definition 1. The function 1( ) : sH t R R→  and the sequence  ( )NH t  are said to belong to the class 

ν,N ( ;γ)s t , provided that 

1) there exists an ε-neighborhood  :| | ε, 1, ,i iz z t i s−  =  in which the function ( )H z  and all its partial 

derivatives 
( )

j

H z

z




 up to the order ν are continuous and bounded; 
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2) for any values of variables ,1 ..., NX X  the sequence  ( )NH t  is dominated by a numerical sequence 

γ

0 ,NC d  such that ,Nd    as ,N →   and 0 γ .    

We present Theorem 1 from [14]. 

Theorem 1. Let the conditions 1) ( )H z ,   2,( ) N ( ;γ)N sH t t  and 2) ( )/2i i
N NE t t O d −− =  hold for 

all .i  Then, for every k  ,  

   ( )T ( 1)/2( ) ( ) ( ) (  ) .
kk k

N N NE H t H t E H t t t O d − + − −   − =    (4) 

If in formula (4) k = 1, we obtain the principal term T( ) ( )NE H t t t   −   of the bias  ( ) ( )NE H t H t−   

for ( )nH t , and at k = 2, we have the principal term 
2

T( ) ( )NE H t t t   −   of the MSE  
2

( ) ( )NE H t H t− . 

Theorem 2. If the survival function ( ) 0S x   and ( )S t  is continuous at a point x, then 

1) for the bias ( ): |(δ)
N
x mrb a  of estimator (3) we have  

( ) ( ) ( )1
: | : | : |(δ) (δ) (δ) ;N N

x m x m x mr r rb a E a a O N −= − =  

2) the MSE ( )2
: |(δ)
N
x mru a  is given by the formula 

( ) ( )
22

2
: | : | : | 2 2 3/2

( , , ,2 ) ( , , , ) / ( ) 1
(δ) (δ) (δ) .

( )

N N
x m x m x mr r r

x r m x r m S x
u a E a a O

N S x N

  −    
= − = +  

    

Proof. For the estimator : |(δ)
N
x mr a  (3) in the notation of Theorem 1, we have: 2;s =  ;Nd N=  

( ) ( )1 2, ( , , ,δ), ( ) ;N N N N Nt t t x r m S x= = 
    

( ) ( )1 2, ( , , ,δ), ( ) ;t t t x r m S x= = 
 

1
: |

2

( , , ,δ)1 1
( ) 1 1 (δ);

δ δ ( )

NN N
N x mr

N N

t x r m
H t a

t S x

   
= − = − =   

       

1
: |

2

1 1 ( , , ,δ)
( ) 1 1 (δ);

δ δ ( )
x mr

t x r m
H t a

t S x

   
= − = − =   

  
  1

1
( ) ,

δ ( )
H t

S x
= −

  
2 2

( , , , δ)
( )

δ ( )
,

x r m
H t

S x


=      

( )1 2 2

1 ( , , ,δ)
( ) ( ), ( ) , 0.

δ ( ) δ ( )

x r m
H t H t H t

S x S x

 
 = = −  

   

The sequence  ( )NH t  satisfies the condition 1) of Theorem 1 with ( )δ
0

1
1

δ

rC e−= +  and γ 0 :=   

δ

1

1

exp( δ ) ( )
( , , ,δ) ( , , ,δ)1 1 1

( ) 1 1 1
δ ( ) δ ( ) δ

( )

N
x

i i
N N i

N N
N N

i
i

e X x r m X x r
x r m x r m

H t
S x S x

X x

=

=

 
−  + +   +   

= −  +  +   
     
   

( )
δ δ( )

δ1

1

( )
1 1

1 1 .
δ δ

( )

N
x x r

i
ri

N

i
i

e e x r m X x r

e

X x

− +

−=

=

 
 + +   + 

 +  + 
   
   

Further, in view of 2 ( ) 0,t S x=   the function ( )H t  satisfies the condition 1) of Theorem 1. Also, this func-

tion satisfies the condition 2) of Theorem 1 due to Lemma 3.1 [15], as for all i  such inequalities hold: 

 δ δ δ δ( )( ) ( ) ( )i x i X i i x i x rE e e x r m X x r e e S x r S x r m− − +  + +   +  + − + + =
 

 δ ( ) ( ) 1,i re S x r S x r m−= + − + +        ( ) ( ) 1.iE X x S x   = 
 
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It is well known that ( )NS x
 
is an unbiased and consistent estimator of ( )S x  Show that ( , , ,δ)N x r m

 is an unbiased estimator of ( , , ,δ)x r m : 

δ

1

( , , ,δ) exp( δ ) ( ) ( , , ,δ).
x N

N i i
i

e
E x r m E X x r m X x r x r m

N =

 
 = −  + +   + =   

 
The ratio of two unbiased estimators can have a bias. All conditions of Theorem 1 are satisfied and 

T( )( ) 0,NE H t t t  − =   therefore, in accordance with (4), we obtain the order of the bias ( ): |(δ)
N
x mrb a :  

( )   ( )1
: | : | : | : |(δ) (δ) ( )( ) (δ) (δ) .N N

x m x m N x m x mr r r rE a a E H t t t E a a O N −− −  − = − =
 

Now, calculate the variance of estimator ( , , ,δ)N x r m : 

δ

1

( , , ,δ) exp( δ ) ( )
x N

N i i
i

e
D x r m D X x r m X x r

N =

 
 = −  + +   + = 

 
 

  ( )
2δ

2

2
1

1
exp( δ ) ( ) ( , , ,2δ) ( , , ,δ) .

x N

i i
i

e
D X x r m X x x r m x r m

NN =

= −  + +   =  − 

 Similarly, we find the covariance matrix ( ) 11 12

2 2

21 22

σ σ
, , ,δ

σ σ
x r m

 
 =  

 
 for statistics ( )NS x  and 

( , , ,δ)N x r m  
  

  2
11σ ( , , ,δ) ( , , ,2δ) ( , , ,δ);NND x r m x r m x r m=  =  −      ( )22σ ( ) ( ) 1 ( ) ;NND S x S x S x= = −  

( )

      ( )

12 21σ σ cov ( ), ( ,δ)

( ) ( , , ,δ) ( ) ( , , ,δ) 1 ( ) ( , , ,δ).

N N

N N N N

N S x x

N E S x x r m E S x E x r m S x x r m

= =  =

 =  −  = −  

    

Using the previous results on the bias and the covariance matrix, we obtain 

( )
2

2 T
: | 3/2

1
(δ) ( )( )N

x m Nru a E H t t t O
N

  =  − + =      

 
( )2 2

1 11 2 22 1 2 12 3/2 3/2

, , ,δ1 1
( )σ ( )σ 2 ( ) ( )σ ,

W x r m
H t H t H t H t O O

N N N

   
= + + + = +   

   
 () 

 ( )
2

2 2

( , , ,2δ) ( , , ,δ) / ( )
, , ,δ .

δ ( )

x r m x r m S x
W x r m

S x

 − 
=  () 

The proof of Theorem 2 is completed. 

 

3. Asymptotic normality of estimator (3)  
 

We need Theorem 3 (the central limit theorem from [16]) and Theorem 4 from [14]. 

Theorem 3. If 1 2ξ ,ξ ,...,ξ ,...N  is a sequence of independent and identically distributed s-dimensional 

vectors, { } 0, { },k k kE E  =  =    and 
1

1
,

N

N k
k

t
N =

=   then, as N →  ,  

 0,σ .N sNt N  

Theorem 4. If ( )  μ,σN Nq t t Ns−   for some number sequence ,Nq    the function H(z) is differen-

tiable at a point μ , (μ) 0,H  then   

( )  T T
1( ) (μ) μ (μ)μ , (μ)σ (μ) .N Nq H t H N H H H−      

Theorem 5. Under the conditions of Theorem 2 

( ) ( ) 
2

: | : | 1 12 2

( , , ,2 ) ( , , , )/ ( )
(δ) (δ) 0, 0, , , ,δ .

( )

N
x m x mr r

x r m x r m S x
N a a N N W x r m

S x

 
 

= 
  

  − 
− 


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Proof. In the notation of Theorem 4, we have 2,s =  ( )2 2 , , ,δx r m =   in accordance with Section 2, 

and .Nq N=  Now, applying Theorem 3, we get 

    ( ) 2 2 2( , , , ), ( ) ( , , , ), ( ) (0,0), , , ,δ .N NN x r m S x x r m S x N x r m   −       

The function H(z) is differentiable at the point ( )( , , ,δ), ( ) ,t x r m S x=   ( ) 0,H t   Consequently, all 

conditions of Theorem 4 hold, and using (5) and (6), we obtain the desired result.  

The proof of Theorem 5 is completed. 

 

4. Construction of estimators using information on probabilistic characteristics of lifetime 

 

Let ω be the limiting age, i.e. ( ) 0S x   for ,x    and ( ) 0S x =  for .x    Suppose we know the aver-

age of the lifetime functional     

 

0

( ) ( ) ( ) ,Eg X g x dF x J



= =  (7) 

where ( )g x , [0, ],x   is a known function. If ( )g x  is the indicator of the set  1 2: ( ) ,C g x C    then one 

gets the probability ( )1 2 ;P C X C   for ( ) rg x x=  one comes to the initial moment of order r, and for 

( )( )
r

g x x EX= −  – to the central moment of order r, and so on. The estimator using such information can be 

taken in the following from [17, 18]:  

 

( ): |

( , , ,δ)1
(δ,λ) 1 λ ,

δ ( )

N N
x m Nr

N

x r m
a J J

S x

 
= − − − 

 
 (8) 

where ( )
1

1 N

N i
i

J g X
N =

=   is an estimator of J, the parameter λ we will find minimizing the principal term of 

the asymptotic MSE of : |(δ,λ)
N
x mr a  (8). Estimator (8) combines the available empirical information containing 

in (3) and prior information (7). 

For estimator : |(δ,λ)
N
x mr a  in the notation of Theorem 1, we have: 3,s =  ;Nd N=  

( ) ( )1 2 3, , ( , , ,δ), ( ), ;N N N N N N Nt t t t x r m S x J= = 
  

( ) ( )1 2 3, , ( , , ,δ), ( ), ;t t t t x r m S x J= = 
 

( ) ( )1
1 2 3 3 : |

2

1 1 ( , , ,δ)
( ) ( , , ) 1 λ 1 λ (δ, );

δ δ ( )
x mr

t x r m
H t H t t t t J J J a

t S x

   
= = − − − = − − − =    

    

 

( ) : |

( , , ,δ)1
( ) 1 λ (δ,λ);

δ ( )

NN
N N x mr

N

x r m
H t J J a

S x

 
= − − − = 

   (9) 

( )1 2 3 2

1 ( , , ,δ) λ
( ) ( ), ( ), ( ) , , 0.

δ ( ) δδ ( )

x r m
H t H t H t H t

S x S x

 
 = = − −  

   

 

5. Bias and MSE of estimators using auxiliary information  

 

Arguing as in the proof of Theorem 2, it is easy to show that the sequence  ( )NH t  in (9) satisfies the 

condition 1) of Theorem 1 with ( )( )δ
0

1
1 λ ,

δ

rC e K J−= + + +  where 
[0,ω]

sup ( ) ,
x

g x K


=    and γ 0.=  Also, 

the statistic 
Nt  satisfies the  condition 2) due to Lemma 3.1 [15], provided that ( )i iEg X K    for all .i  

Hence, given that ( ) 0,NE t t− =  for the bias of (7) we obtain  
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( )  

( ) ( ) ( )

: | : |

1
: | : | : |

(δ,λ) (δ,λ) ( )( )

(δ,λ) (δ,λ) (δ,λ) .

N
x m x m Nr r

N N
x m x m x mr r r

E a a E H t t t

E a a b a O N −

− −  − =

= − = =
 (10)

 

Now, find the covariance matrix ( )
11 12 13

3 3 21 22 23

31 32 33

σ σ σ

, , ,δ σ σ σ

σ σ σ

x r m

 
 

 =  
  

 for statistics ( , , ,δ),N x r m  ( ),NS x   

and :NJ  33 ( );NNDJ Dg X = =  ( )13 31 1cov , ( , , , ) ( , , , ) ( , , , );N NN J x r m C x r m J x r m =  =   =  −    

( )23 32 2cov ( ), ( , , ,) ( ),N NN S x J C x r m JS x =  = = −  where 1( , , , ) ( ) ( ),

x r m
x u

x r

C x r m e e g u dF u

+ +
 −

+

 =   

2 ( , , ) ( ) ( ),

x r m

x r

C x r m g u dF u

+ +

+

=   and 
11σ ,  12σ ,  

21σ ,  
22σ  are defined in Section 2. Using (4) at k = 2, (5), (6), 

(9), (10), and covariance matrix ( )3 3 , , ,δx r m , we obtain:     

 

( ) ( ) ( )( )

 
( )

2
2

: | : | : |

2

3/2 3/2

(δ,λ) δ,λ δ

, , ,δ,λ1 1
( )( ) ,

N N
x m x m x mr r r

N

u a E a a

W x r m
E H t t t O O

NN N

= − =

   
=  − + = +   

   

 (11) 

( )
3 3

2 2 2
1 11 2 22 3 33 1 2 12

1 1

, , ,δ,λ ( ) ( ) ( ) ( ) ( ) 2 ( ) ( )j jp p
p j

W x r m H t H t H t H t H t H t H t
= =

=  =  +  +  +  +   

 
( )

( )

2
33 1 13 2 23

1 3 13 2 3 23 2

2
1 2  

2 2
2 ( ) ( ) 2 ( ) ( ) , , ,δ

, , ,δ 2 ,

H H
H t H t H t H t W x r m

W x r m Q Q

     
+  +  = + − − =

 

= +  − 

 (12) 

where 33
1 2

σ
0,

δ
Q =   1 13 2 23

2

σ σ
.

δ

H H
Q

+
=  

Thus, the derived formulas (10)–(12) determine the bias and MSE of the estimate (8) and allow us to 

formulate the following theorem. 

Theorem 6. If the survival function S(x) > 0, S(t) is continuous at a point x, 
[0,ω]

sup ( ) ,
x

g x K


=    then 

1) for the bias of estimator (8) the following relation holds: ( ) ( )1
: |(δ,λ) ;N

x mrb a O N −=  

2) the MSE of estimator (8) is given by the formula (11). 

The minimum of ( ), , ,δ,λW x r m  (12) with respect to λ is achived at 2
0

1
λ .

Q
Q

=  Such 0λ  minimizes 

the principal term of MSE ( )2
: |(δ,λ)
N
x mru a , and this minimum is as follows:   

 

( )
( )

( )2
0 2

1

, , ,δ, , , ,δ1
, , ,δ .

W x r m W x r mQ
W x r m

N N Q N

 
= −   

   (13) 

So, the principal term of MSE (11) at 0λ  is not more than the principal term of MSE (5), and, in ac-

cordance with (13), the estimator  

 ( ): | 0 0

( , , ,δ)1
(δ,λ ) 1 λ

δ ( )

N N
x m Nr

N

x r m
a J J

S x

 
= − − − 

 
 (14) 

will be called the optimal estimator in the mean square sense. The non-negative quantity 
2
2 1Q Q  in (13) deter-

mines the decrease of the principal term of MSE for the optimal estimator : | 0(δ,λ )N
x mr a  by making use of 

auxiliary information (7). 
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Theorem 7. If the conditions of Theorem 6 hold, then 

1) ( ) ( )1
: | 0(δ,λ ) ;N

x mrb a O N −=  

2) ( )( ) ( )02
: | 0 3/2

, , ,δ, 1
δ,λ ,N

x mr

W x r m
u a O

N N

  
= +  

 
 

where ( )0, , ,δ,W x r m   is defined by the formula (13). 

Note that Theorem 7 is a simple consequence of Theorem 6. 

 

6. Asymptotic normality of estimators using auxiliary information   

 

Theorem 8. Under the conditions of Theorem 6 

( ) ( ) : | : | 1(δ,λ) (δ) 0, , , ,δ, .N
x m x mr rN a a N W x r m−    

Proof. In the notation of Theorem 4, we have 3,s =  ( )3 3 , , ,δx r m =   in accordance with Section 5, 

and .Nq N=  Now, applying Theorem 3, we get  

    ( ) 3 3 3( , , , ), ( ), ( , , , ), ( ), (0,0,0), , , , δ .N N NN x r m S x J x r m S x J N x r m   −       

The function H(z) is differentiable at the point ( )( , , ,δ), ( ), ,t x r m S x J=   ( ) 0.H t   Consequently, all 

conditions of Theorem 4 hold, and using (15) and (16), we obtain the desired result.  

The proof of Theorem 8 is completed. 

The asymptotic normality of the optimal estimator ( ): | 0δ,λN
x mr a  is determined by Theorem 9.  

Theorem 9. Under the conditions of Theorem 6 

( ) ( ) : | 0 : | 1 0(δ,λ ) (δ) 0, , , ,δ, .N
x m x mr rN a a N W x r m−    

Theorem 9 is a simple consequence of Theorem 8.  

 

7. Adaptive Estimator  

         

The statistic ( ): | 0δ,λN
x mr a  can be used as an estimator for : |(δ)x mr a  if we know 0λ ;  otherwise, it is 

required to construct an adaptive estimator. We need a more detailed formula for 0λ :  

 ( )0 2 1

1 ( , , ,δ)
λ ( , , ) ( ) ( , , ,δ) ( , , ,δ) .

( ) ( ) ( )

x r m
C x r m JS x C x r m J x r m

S x Dg X S x

 
= − − +  

 
 (15) 

Using (15), we consider the following adaptive estimator: 

 ( ): | 0 0

( , , ,δ)1ˆ ˆ(δ,λ ) 1 λ
δ ( )

N N
x m Nr

N

x r m
a J J

S x

 
= − − − 

 
 (16) 

with  

 ( )0 2 12

( , , ,δ)1ˆ ˆ ˆλ ( , , ) ( ) ( , , ,δ) ( , , ,δ) ,
( )( )

N
N N

NN

x r m
C x r m JS x C x r m J x r m

S xs S x

 
= − − +  

 
 (17) 

where ( )
22

1

1
( )

1

N

i N
i

s g X J
N =

= −
−

 is an unbiased estimator of the variance ( ),Dg X   

( ) ( ) ( )1 1
2 1

1 1

ˆ ˆ( , , ) I , ( , , , ) ( )I .i

N N
X

i i i i
i i

C x r m N g X x r m X x r C x r m N e g X x r m X x r
−− −

= =

= + +   +  = + +   +   

Theorem 10. Under the conditions of Theorem 6  

( ) ( ) : | 0 : | 1 0
ˆ(δ,λ ) ( ) 0, , , ,δ, .N

x m x mr rN a a N W x r m−     



Dmitriev Yu.G., Koshkin G.M. Nonparametric evaluation of continuous r-year deferred m-year term life annuity  

73 

Proof. The following equality holds:  

( ): | 0 : |
ˆ(δ,λ ) ( )N

x m x mr rN a a−   = ( ): | 0 : |(δ, ) ( )N
x m x m Nr rN a a R −  + , 

where  ( ) ( )1
0 0

ˆ .N NR N J J−=   −  −  All the estimators, used in (17), converge almost surely to their true 

values according to the strong law of large numbers (the Second Theorem of Kolmogorov [19]). Thus, from 

the First Continuity Theorem of Borovkov [16], estimator 0̂  converges almost surely to 0.  Based on the 

central limit theorem  1( ) 0, ( ) ,NN J J N Dg X−   we retrieve 0.NR   Now, the statement of Theorem 10 

is proved by using Theorem 9. 

 

Conclusion 

 

The paper deals with the problem of estimating the present values of the continuous whole life annuity 

using auxiliary information about the expectation of life. It is shown that the usage of such auxiliary infor-

mation can often provide the MSE not more then that of standard estimators. We proved the results on asymp-

totic properties of the proposed estimators: unbiasedness, consistency and normality. Also, the main parts  

of the asymptotic MSEs of the estimators were found. An adaptive estimator is constructed; such estimator is 

equivalent (in the sense of asymptotic distribution) to the estimator with the optimal weight coefficient 0.  

Note that the improved estimators of life annuities (8) and (12) can be obtained by substituting of empirical 

survival functions by the smooth empirical survival functions [20]. 
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ется, что предложенная техника вычислений позволяет учитывать особенности функций плотности вероятно-

сти и рассматривать распределения с «тяжелыми хвостами». 
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Введение 

 

При численном моделировании часто возникают задачи вычисления функциональных зависимо-

стей от случайных аргументов. Важный случай представляют арифметические операции над случай-

ными переменными, заданные своими функциями плотности вероятности. Практическая значимость 

решения подобных задач определила необходимость создания численных вероятностных арифметик, 

которые возникли в начале 1980-х гг. как операции над гистограммами.  

В 1980 г. была опубликована одна из первых работ по вероятностной арифметике [1], где для 

реализации операций напрямую использовались свойства гистограмм как кусочно-постоянных функ-

ций и тот факт, что вероятность попадания случайной величины в интервал основания столбца гисто-

граммы определяется его высотой. В работе [2] основатель интервального анализа R.E. Moore исполь-

зовал гистограммную арифметику для оценки рисков. В [3] обсуждается использование гистограммной 

арифметики для решения практических задач.  

Дальнейшее развитие численных вероятностных арифметик шло по различным направлениям  

и требовало от численных операций определенных свойств: точности, возможности реализации длин-

ных цепочек вычислений, использования бесконечных носителей и учет особенностей, включая «тя-

желые хвосты».  

Существующие численные арифметики над случайными переменными по способу вычислений 

и организации вычислительного процесса можно условно разделить на следующие основные 

группы:  

– использующие символьные вычисления;  

– на основе замкнутых семейств распределений;  

– основанные на методе Монте-Карло;  

– операции над функциями плотности вероятности, представленными кусочно-полиномиаль-

ными функциями.  

Каждый из подходов имеет свои теоретическое обоснование и программную реализацию. Сим-

вольный подход опирается на возможности систем компьютерной алгебры и позволяет в явном виде 

вычислять интегралы, участвующие в выполнении операций на случайных величинах. Однако на прак-

тике интегралы часто не имеют представлений в замкнутой форме и (или) не берутся аналитически. 

Такие случаи, как правило, не подходят для практического использования [4]. Другой класс подходов 

основан на замкнутых семействах распределений. Самый важный из таких подходов описан в [5] и 

основан на так называемых H-функциях, которые являются обобщением гипергеометрических функ-

ций. Подход, представленный в [5], является в первую очередь аналитическим. В работе [6] представ-

лен пакет PaCAL который можно рассматривать как систему, основанную на работе [5]. Подход, более 

близкий по духу к символьным вычислениям, представлен в работе [7]. В этом подходе не реализованы 

операции деления случайных величин, и он не допускает плотностей с разрывами или сингулярности. 

Группа методов Монте-Карло (МК) – это чисто статистические подходы [8]. Основная слабость под-

хода Монте-Карло – медленная сходимость. В вычислительном вероятностном анализе (ВВА) [9] 

функции плотности вероятности представляются в виде кусочно-полиномиальных функций, которые 

определяются сеткой ω = {x0 < x1 < ··· < xn}, на каждом интервале (xi, xi+1) которой функция задается 

полиномом. 

Одна из существующих проблем вероятностных арифметик связана c особенностями функций 

плотности вероятности и необходимостью учитывать распределения с «тяжелыми хвостами» [10].  

В настоящей работе, в отличие от [9], предлагается расширить представления функций плотно-

сти вероятности до обобщенных кусочно-полиномиальных функций. Исследование численных веро-

ятностных арифметик начнем с рассмотрения свойств случайных переменных, включая арифметиче-

ские операции. Далее рассмотрим применение обобщенных кусочно-полиномиальных функций для 

реализации численных вероятностных арифметик.  
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1. Операции над случайными переменными 

 

Пусть x – случайная величина, тогда ее плотность вероятности будем обозначать x. Обозначим 

через R – множество плотностей вероятности {x} случайных величин x; соответственно, Rn – простран-

ство плотностей вероятности случайных векторов из Rn.  

Носителем функции плотности вероятности f будем называть множество  

supp( ) { ( ) 0}f x f x=     

Известны аналитические формулы для определения плотности вероятности результатов арифме-

тических действий над случайными величинами. Например, для нахождения плотности вероятности 

1 2x xp +  суммы двух случайных величин 
1 2x x+  используется соотношение [5]  

 
1 2

( ) ( ) ( )x xp x p x v v dv p v x v dv
 

+
− −

= −  =  −    (1) 

где 
1 2( )p x x  – совместная функция плотности вероятности случайного вектора 

1 2( )x x . Для нахожде-

ния плотности вероятности 
1 2x xp   частного двух случайных величин 

1 2x x  имеет место формула  

 
1 2

( ) ( )x xp x v p xv v dv



−

=       (2) 

Плотность вероятности 
1 2x xp  произведения двух случайных величин 

1 2x x  определяется соотношением  

 
1 2

1
( ) ( )x xp x p v x v dv

v



−
=   

   (3) 

Далее рассмотрим использование аналитических формул для численной реализации вероятност-

ной арифметики. 

 

2. Численная реализация арифметических операций 

 

В этом разделе мы будем рассматривать численные реализации арифметических операций в ко-

нечномерных подпространствах пространства распределений. 

Пространством распределений будем называть множество неотрицательных интегрируемых 

функций ( ),f x x R , интеграл от которых равен единице:  

( ) 1f x dx


−
=   

Отметим, что важным подпространством пространства распределений является конечномерное про-

странство кусочно-полиномиальных функций, где кусочно-полиномиальная функция f характеризу-

ется сеткой 
0 1{ }nx x x =    и набором полиномов 1( ) [ ]i m i ip x P x x x−    . В специальных случаях будем 

допускать возможность использования вместо полиномов аналитических функций ln, exp и др.  

В данной работе, в отличие от [9], предлагается расширить представления функций плотности 

вероятности до обобщенных кусочно-полиномиальных функций.  

Обобщенные кусочно-полиномиальные функции задаются сетками  

ω = {–∞ ≤ x0 < x1 < ··· < xn ≤ ∞}. 

Таким образом, функции плотности вероятности могут иметь бесконечные носители, и на каж-

дом интервале 
1( )i ix x +  это либо полином, либо аналитическая функция.  

Рассмотрим численную реализацию арифметических операций на примере кусочно-полиноми-

альных функций. В случае, когда случайные величины x, y являются независимыми, совместную функ-

цию плотности вероятности p(x, y) можно представить в виде произведения ( ) ( ) ( )x yp x y s x s y = . В этом 

случае на каждом прямоугольнике 1 1( ) ( )i i j jx x y y+ +    для вычисления интегралов (1)–(3) можно поль-

зоваться как численными квадратурами, например Гаусса, которые точны на соответствующих поли-

номах, так и аналитическими вычислениями. В случае когда случайные величины x, y являются 
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зависимыми, совместную функцию плотности вероятности p(x, y) необходимо вычислять отдельной 

процедурой.  

Однако в случае, когда совместная функция плотности вероятности содержит точку (0, 0), при 

произведении случайных величин возможны особенности в результирующей функции плотности.  

В качестве примера рассмотрим вычисление функции плотности вероятности произведения двух неза-

висимых случайных величин x1 и x2. Предположим, что x1 и x2 распределены по треугольному закону 

с носителем на отрезке [–1, 1] и вершиной в точке (0, 1). В этом случае 𝒙1𝒙2 имеет вид  

 (𝒙1𝒙2)(𝑧) = ∫ (1 − 𝑥)(1 − 𝑧/𝑥)
1

|𝑥|
𝑑𝑥

1

𝑧
+ ∫ (1 + 𝑥)(1 + 𝑧/𝑥)

1

|𝑥|
𝑑𝑥

−𝑧

−1
. (4) 

В силу того, что исходные функции плотности вероятности представлены кусочно-полиномиальными 

функциями, интеграл (4) может быть вычислен в явном виде:  

𝒙3(𝑧) = (𝒙𝟏𝒙𝟐)(𝑧) = −4 − 4|𝑧| − 2 ln(|𝑧|) (|𝑧| + 1). 

В результате получаем 𝒙3 в виде обобщенной кусочно-полиномиальной функции с носителем (–1, 1). 

Этот подход можно распространить на общий случай вычисления функции плотности вероятно-

сти произведения двух случайных величин, когда носитель совместной функции плотности вероятно-

сти содержит точку (0, 0). В этом случае кусочно-полиномиальное представление функции плотности 

вероятности случайной величины x3 = x1x2 будет содержать отрезки, где к полиномам добавлены ана-

литические функции. При дальнейших операциях с подобными кусочно-полиномиальными функци-

ями необходимо учитывать эти особенности. Заметим, что особенности при вычислении произведений 

случайных величин возникают только в случае, когда носитель совместной функции плотности веро-

ятности содержит точку (0, 0).  

Важное значение при реализации вероятностных арифметик имеет учет особенностей, представ-

ленных «тяжелыми хвостами» (the Fat Tail) [10].  

Будем говорить, что функция плотности вероятности имеет «тяжелый хвост», если выполнено 

условие  

𝑓(𝑥) ∼ 𝑥1+α, 𝑥 → ∞, α > 0. 

Важный представитель подобных распределений – распределение Коши  

𝑓(𝑥) =
1

π
[

𝑎

𝑎2 + 𝑥2
], 

где a > 0 – параметр масштаба. Известно, что сумма двух распределений Коши – распределение Коши.  

Для проверки работы численных вероятностных арифметик была вычислена сумма двух случай-

ных величин с распределениями Коши. Было сделано предположение, что результирующее распреде-

ление имеет «тяжелый хвост» 𝑠(𝑡) = 𝑐𝑡−(1+α(𝑡)), где α(𝑡) – парабола. Было сделано преобразование: 

tan(π𝑥/2) ↔ 𝑡. Учитывалось, что 𝑠(𝑡) = 0, 𝑠′(𝑡) = 0, при 𝑡 → ∞. Аппроксимация искалась в виде 

𝑠(𝑡)  =   exp ((𝑎 arctan (𝑡) − 1)^2 − 1)  − 2) ln (𝑡)  +  𝑐). 
 

  

Рис. 1. Ошибки приближения распределения Коши 

Fig. 1. Errors in the approximation of the Cauchy distribution 
 

Интегралы (1) брались аналитически, плотность вероятности суммы была вычислена в точках  

ξ1 = 10, ξ2 = 20 и были найдены константы a, c. В результате построенного приближения погрешность 
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на интервале [10, ∞) не превысила величины 3·10–6. На рис. 1 представлена ошибка аппроксимации, 

горизонтальная шкала x представляет tan( 2)t x=   . Таким образом, точка x = 1 соответствует t = ∞. 

 

Заключение 

 

Представление функций плотности вероятности в виде обобщенных кусочно-полиномиальных 

функций позволило при численной реализации вероятностных арифметик учитывать особенности 

функций плотности вероятности и использовать распределения с «тяжелыми хвостами». Данный под-

ход позволяет повысить качество численного моделирования и дает возможность получать надежные 

оценки при решении ряда практических задач, например в задачах прогнозной аналитики, а также для 

оценки и управления финансовыми, инвестиционными и другими видами рисков. 
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Аннотация. Рассматривается задача идентификации (определения величины) дефектов в датчиках техни-

ческих систем, описываемых линейными уравнениями, в присутствии внешних возмущений. Для решения за-

дачи используются наблюдатели, работающие в скользящем режиме, построенные на основе редуцированной 

(имеющей меньшую размерность) модели исходной системы, обладающей избирательной чувствительностью 

по отношению к дефектам и возмущению. Показано, что при выполнении определенных условий существует 

скользящий режим, который позволяет получить точную оценку величины дефекта.  

Ключевые слова: системы; датчики, дефекты; идентификация; скользящие наблюдатели. 
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Введение 

 

Разнообразные датчики составляют неотъемлемую часть практически любой технической си-

стемы. Нередко они являются наименее надежными ее элементами, вследствие чего при появлении  

в них дефектов датчики могут поставлять искаженную информацию о состоянии системы, что в ре-

зультате будет приводить к ошибочным реакциям системы управления. Если величину возникших де-

фектов удается оценить, эту информацию можно использовать для коррекции искажений и восстанов-

ления нормальной работы системы управления.  

В настоящее время для оценки (идентификации) величин возникших дефектов активно исполь-

зуются наблюдатели, работающие в скользящем режиме (скользящие наблюдатели) [1–8]. В указанных 

работах решается задача идентификации для различных классов систем и дефектов, возникающих как 

в динамике и приводах системы, так и в ее датчиках. Предполагается, что до проведения идентифика-

ции решается задача локализации, определяющая, какой датчик неисправен. Для конкретности ниже 

будем полагать, что искажение показаний датчика описывается неизвестной функцией d(t), которую 

требуется идентифицировать.  

Отметим, что задачи идентификации дефектов в датчиках рассматривались в [2, 7], где было полу-

чено только приближенное решение, поскольку итоговое выражение содержало производную d(t). Ме-

тод, предложенный в [8], давал точное решение за счет использования специальной системы повышенной 

размерности, на основе которой строился скользящий наблюдатель. В отличие от этих методов в насто-

ящей работе скользящий наблюдатель строится на основе редуцированной модели исходной системы 

пониженной размерности, нечувствительной к возмущениям, которая не содержит производной d(t).  

Настоящая работа является логическим продолжением статьи [6], где рассматривалась задача 

идентификации дефектов в датчиках технических систем на основе скользящих наблюдателей. Из [1–6] 

и аналогичных работ следует, что задача может быть решена при наложении на исходную систему ряда 

условий, которые далеко не всегда выполняются, что делает невозможным решение задачи идентифи-

кации.  

Эти условия могут быть в значительной мере ослаблены при использовании так называемых 

скользящих наблюдателей высокого порядка, рассмотренных в ряде статей [9–12], которые опираются 

на дифференциатор Леванта [13]. Для реализации этой идеи в статье ставится и решается задача иден-

тификации дефектов в датчиках на основе скользящих наблюдателей высокого порядка. Новизна  

работы состоит в том, что в отличие от известных работ процедура идентификации нечувствительна  

к внешним возмущениям и реализуется без наложения условия согласования, что позволяет решить 

задачу идентификации для более широкого класса систем. 

Для этого вначале изложим основные сведения о скользящих наблюдателях высокого порядка 

на основе работ [9, 10], поскольку подход работ [11, 12] накладывает больше ограничений на исходную 

систему.  
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1. Предварительные сведения 

 

Рассмотрим класс систем, описываемых уравнениями 

 
( ) ( ) ( ) ( ),

( ) ( ),

x t Ax t Bu t L t

y t Cx t

= + + 

=
 (1) 

где ( ) nx t R  и ( ) mu t R  – векторы состояния и управления; ( )y t R  – скалярное измерение; ,n nA R   

n mB R  , 
1nL R   и 1 nC R   – известные постоянные матрицы; ( )t R   – неизвестная скалярная функ-

ция времени, описывающая действующие на систему возмущения.  

Отметим, что для решения рассматриваемой задачи в работах [1–5] на систему (1) накладывалось 

условие согласования rank( ) rank( )CL L= , которое снимается в статьях [9–12]. Введем несколько не-

обходимых для дальнейшего изложения понятий [9, 10].  

Напомним, что матрицей наблюдаемости системы (1) называется матрица  

1n

C

CA
P

CA −

 
 

=  
  
 

. 

Предполагается, что пара ( ,  )C A  наблюдаема, т.е. rank( )P n= . Известно, что в этом случае существует 

такая матрица K, что A A KC= −  будет устойчивой. Предполагается также, что система (1) является 

минимально-фазовой, т.е. инвариантные нули тройки ( , , )A C L  имеют отрицательные вещественные 

части. Последнее означает, что нули передаточной функции системы (1) являются устойчивыми.  

Относительной степенью системы (1) для функции ( )t  называется число 
1n  такое, что  

10,       1,2,..., 2,jCA L j n= = −      1 1
0.

n
CA L

−
  

Известно, что 
1n n , и соответствующим преобразованием координат систему можно привести к виду:  

 
1 11 1 12 2 1 1

2 21 1 22 2 2

1 1

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ),

x t A x t A x t B u t L t

x t A x t A x t B u t

y t C x t

= + + + 

= + +

=

 (2) 

где 1 1

11

n n
A R


 , 1 1( )

12

n n n
A R

 −
 , 1 1

1

n
L R


 , 11

1

n
C R


 , при этом 

1

11

1 2

0 1 0

0 0 1

n

A

 
 

=  
 
    

,    

1 1

12

1 2

0 0 0

0 0 0

n n n

A

+ +

 
 

=  
 
    

,    1 (0 0 )TL q= ,    0q  ,    

где 1,  ...,  n   – некоторые константы; при 1n n=  подсистема с вектором 
2x  отсутствует.  

Рассмотрим вначале случай 1n n= , полагая, что неизвестная функция ρ( )t  ограничена вместе со 

своими p производными: 0( )t   , ( )

0( )i t   , 1,2,...,i p= . Кроме того, предполагается, что p-я произ-

водная удовлетворяет условию Липшица с константой 
1 , т.е. ( ) ( )

1| ( ) ( ) | | |p pt t t t  −    − .  

Для оценки величины функции ( )t  строятся два наблюдателя, первый из которых представляет 

собой стандартный наблюдатель Люенбергера полного порядка: 

 ( ) ( ) ( ) ( ( ) ( )),z t Az t Bu t S y t Cz t= + + −    
nz R . (3) 

Второй – это скользящий наблюдатель высокого порядка [13], имеющий следующий вид: 

 

1/( 1) ( )/( 1)

1 1 1 1 1 2

1/( ) ( 1)/( )

2 2 2 1 2 1 3

1/( 2) ( 1)/( 2)

2 1 1 1

| | sign( ) ,

| | sign( ) ,

| | sign( ) ,        

n p n p n p

n p

n p n p n p

n p

p p p

n n p n n n n n

v w M v y Cz v y Cz v

v w M v w v w v

v w M v w v w v

+ + + + +

+ +

+ + − +

+

+ + +

+ − − −

= = − − + − + +

= = − − − +

= = − − − +

 (4) 
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1/2 1/2

2 1 2 1 2

1 1 1

| | sign( ) ,

sign( ),

n p n p n p n p n p n p n p

n p n p n p

v w M v w v w v

v M v w

+ + + − + − + − + − +

+ + + + +

= = − − − +

= − −
 

где M – достаточно большая константа, константы 
i  выбираются достаточно большими согласно ре-

комендациям [11]; в частности, там предложено 
1 1,1 = , 

2 1,5 = , 3 2 = , 4 3 = , 5 5 = , 
6 8 = .  

Теорема [10]. Функция ( )t  может быть оценена в виде: 

 1 1 1 2 2

1
ˆ( ) ( ( ... ))n n nt v b v b v b v

q
+ = + + + + , (5) 

где 
1 2,   ,   ...,   nb b b  – коэффициенты характеристического уравнения матрицы A KC− : 

1

1det( ) ( 1) ( ... )n n n

nA KC sI s b s b−− − = − − − − . 

В [10] доказывается, что при наложенных на систему (1) ограничениях и соответствующем вы-

боре констант M и 
i  оценка (5) будет точной после окончания переходного процесса за конечное 

время. Дополнительно показывается, что если в измерениях присутствует шум с максимальной ампли-

тудой ε, то величина ошибки оценивания функции ( )t  имеет порядок ( 1)/( 1)p n p+ + + .  

В случае 1n n  при прежних ограничениях на неизвестную функцию ( )t  ее оценка может быть 

получена аналогичным образом путем замены размерности n в формулах (4) и (5) на n1.  

В простейшем частном случае, когда n = 1, система (1) имеет вид: 

( ) ( ) ( ) ( ),

( ) ( ),

x t ax t bu t q t

y t x t

= + + 

=
 

и неизвестная функция ( )t  удовлетворяет условию Липшица, т.е. p = 0, получаем: 

( ) ( ) ( ) ( ( ) ( )),z t az t bu t K x t z t= + + −     

1/2 1/2

1 1 1 1 2

2 2 1

1,5 | | sign( ) ,

1,1 sign( ).

v w M v x z v x z v

v M v w

= = − − + − + +

= − −
 

Тогда при 0| |M l   оценка функции ( )t  имеет вид: 

2 1

1
ˆ( ) ( ( ) )t v a K v

q
 = + − ,   | |K a . 

 

2. Построение редуцированной модели 

 

Требование скалярности измерения в модели (1) является недостатком подхода [9, 10], ограни-

чивающим возможности его применения. Этот недостаток, однако, может быть преодолен путем ана-

лиза не исходной системы, а ее редуцированной (имеющей меньшую размерность) модели, которая 

всегда может быть построена так, чтобы быть чувствительной к дефектам, подлежащим оцениванию. 

Для изложения этой идеи рассмотрим класс технических систем, описываемых линейной моделью 

 
1

( ) ( ) ( ) ( ),

( ) ( ) ( ).
l

i ij

x t Fx t Gu t L t

y t Hx t D d t
=

= + + 

= + 
 (6) 

Здесь ( ) nx t R , ( ) mu t R , ( ) ly t R  – векторы состояния, управления и измерений; ,n nF R   ,n mG R   

n qL R   и l nH R   – известные постоянные матрицы; ( ) ct R   – неизвестная функция времени,  

описывающая действующие на систему возмущения; ( )id t R  – функция, описывающая дефекты  

в i-м датчике: при их отсутствии ( ) 0id t = , при появлении дефекта ( )id t  становится неизвестной функ-

цией времени, 1,2,...,i l= ; матрицы 
1D , …, 

lD  связывают дефекты с соответствующими компонентами 

вектора измерений: 
T

1 (1  0  ...   0)D = , …, 
T(0  0  ...   1)lD =  Предполагается, что каждая функция ( )id t  

удовлетворяет условию Липшица с некоторой константой.  
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Для простоты рассмотрим случай, когда дефекты возможны только в одном датчике с соответ-

ствующими элементами D и d(t). Требуется оценить функцию d(t) без предположения о минимальной 

фазовости системы (6).  

Редуцированная модель системы (6), нечувствительная к возмущениям, описывается уравнением 

 
* * * *

* * *

( ) ( ) ( ) ( );

( ) ( ),

*x t F x t G u t J Hx t

y t H x t

= + +

=
 (7) 

где *

kx R  – вектор состояния размерности k n , матрицы 
*F  и 

*H  размеров k k  и 1 k  соответ-

ственно имеют канонический вид: 

 * *

0 1 0 0

0 0 1 0

,         (1 0 0 0).0 0 0 0

0 0 0 0

F H

 
 
 = =
 
 
 
 

 (8) 

В отличие от системы (6) и строящегося ниже наблюдателя, модель (7) является виртуальным объектом; 

фактически она представляет собой часть системы (6). Слагаемое 
* ( )J Hx t  использовано вместо 

* ( )J y t  

для возможности учета дефектов в датчиках. 

Отметим, что для применения методов работ [1–6] к системе (7) требуется выполнение условия 

* * *rank( ) rank( )H J D J D=  или равенства * *( )TPJ D QH=  для некоторой матрицы Q и симметрической 

положительно определенной матрицы P. Первое, в частности, означает, что дефект должен входить 

только в первое уравнение системы (7), которое формирует ее выход 
*y , второе также носит ограни-

чительный характер, что делает невозможным применение этих методов во многих случаях. Описан-

ный в предыдущем разделе подход не предполагает использования этих ограничений. 

Напомним [6], что постоянные матрицы 
*G  и 

*J  определяются на основе решения уравнения  

 ( ) ( )

*1 *( ... )(  ) 0k k

kN J J V B− − = , (9) 

где 

0

1
( )

k

k
k

D HF

HF
V

H

−

 
 

=  
 
 
 

,    

0 0 0 2 0 1

2

( ) 3

0

0 0

0 0 0 0

k

k

k k

D HL D HFL D HF L D HF L

HL HFL HF L
B HL HF L

−

−

−

 
 
 

=  
 
 
 

.  

Решая уравнение (9) с минимальной размерностью k, начиная с k = 1, определяем строку 

*1 *( ... )kN J J− − . Далее из соотношений  

0

*R ND= ,    1 *R H = ,    1 2 *1F J H =  + ,    1 *i i iF J H+ =  + ,    2, 1i k= − ,    *k kF J H = , 

где 0D  – матрица максимального ранга такая, что 0 0D D = , определяются строки вспомогательной 

матрицы   и находится матрица 
*G G=  . Поскольку ( ) ( ) ( )y t Hx t Dd t= + , то в модели (7) слагаемое 

* ( )J Hx t  заменяется на * *( ) ( )J y t J Dd t− . Для простоты предположим, что вектор *J D  содержит только 

одну ненулевую компоненту, равную q. 

 

3. Решение задачи 

 

Сравнивая модель (7) с системами (1) и (2), можно сделать вывод, что в качестве системы (1), 

для которой решается задача оценивания неизвестной функции, может быть использована модель (7) 

с матрицами *A F= , * *(   )B G J= , *L J D= − , *C H=  и переменными 
( )

( ) :
( )

u t
u t

y t
 

=  
 

, *( ) : ( )y t y t=  и 

( ) : ( )t d t = . 
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Нетрудно проверить, что матрица наблюдаемости модели (7) представляет собой единичную 

матрицу, поэтому модель наблюдаема. Будем предполагать, что матрица 
*J D  удовлетворяет следую-

щему условию: комплексная частота s, при которой ранг матрицы Розенброка  

* *

* 0

sI F J D
R

H

− 
=  

 
 

становится меньше 1k + , имеет отрицательную вещественную часть, т.е. система (7) минимально фа-

зовая.  

Наблюдатель (3) в нашем случае принимает вид:  

 
* * * * *( ) ( ) ( ) ( ) ( ),z t F z t G u t J y t K R y y= + + + −       kz R . (10) 

Уравнения (4), описывающие скользящий наблюдатель, сохраняют свой вид с заменой в первом 

уравнении выражения 
1v y Cz− +  на 

1 * *v y H z− + . Значение числа 
1n  совпадает с номером компоненты 

вектора состояния модели (7), в которую входит функция d(t).  

С учетом того, что матрица K представляет собой столбец T

1 2(     ...  )kK k k k= , а 
*F  и 

*H  заданы 

в канонической форме (8), матрица A KC−  принимает вид: 

1

2

* * 3

1 0 0

0 1 0

0 0 0

0 0 0k

k

k

F KH k

k

− 
 −
 

− = − 
 
 − 

. 

Ее характеристическое уравнение имеет вид: 
1

* * 1det( ) ( 1) ( ... )k k k

kF KH sI s k s k−− − = − + + + . 

Отсюда по аналогии с (5) получаем формулу для оценки функции d(t): 

1 1 1 2 1

1ˆ( ) ( ( ... ))n k k nd t v k v k v k v
q

+ −= + + + + . 

 

4. Пример 

 

Рассмотрим линеаризованную модель трехбакового объекта, приведенную в [6] и описываемую 

уравнениями 

1 1 1 2 2 1

2 1 1 2 3 2 3 4 2

3 3 2 3 5 3

1 1 2 3

( ) ,

( ) ( ) ,

( ) ,

,      ,

x x x u

x x x x x u

x x x x

y x d y x

= − − + 

=  − −  − + 

=  − − 

= + =

 

где коэффициенты 1 5    зависят от конструктивных особенностей объекта, 1 3x x  – уровни жидкости 

в баках. В отличие от работы [6] будем полагать, что измеряются уровни в первом и третьем баках. Для 

простоты примем 0L = , а также 1 5... 1 = =  = , что дает следующие матрицы:  

1 1 0

1 2 1

0 1 2

F

− 
 = −
 

− 

,    

1 0

0 1

0 0

G
 
 =
 
 

,    1 0 0

0 0 1
H

 
=  

 
,    1

0
D

 
=  

 
. 

Рассмотрим дефект в первом датчике, для которого 0 (0   1)D = . Нетрудно проверить, что при  

k = 1 уравнение (9) не имеет решения, примем k = 2:  

*1 *2

1 4 5

1 1 0

( ) 00 1 2

1 0 0

0 0 1

N J J

− 
 −
 − − =−
 
 
 
 

, 
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что дает 1N = , *1 (0   4)J = − , 
*2 (1   3)J = − . В результате  

* (0   1)R = ,    
0 0 1

0 1 2
 

 =  
 

,    
*

0 0

0 1
G G

 
=  =  

 
,    

* *

0

1
D J D

 
= − =  − 

,     1q = − . 

Модель (7) принимает вид: 

*1 *2 2

*2 1 2 2

* *1 2

4 ,

3 ,

.

x x y

x y y u d

y x y

= −

= − + −

= =

 

Рассмотрим матрицу Розенброка этой модели 

1 0

0 1

1 0 0

s

R s

− 
 =
 
 

. 

Нетрудно видеть, что она невырождена, т.е. построенная модель минимально фазовая.  

Поскольку 
*

0

1
J D

 
=  

 
, то 1 2n k= = ; примем 

2

1
K

 
=  

 
 и построим наблюдатель Люенбергера (10):  

1 2 2 2 * 2 2 *

2 1 2 2 2 * 1 2 * 2

* 1

4 2( ) 2 2 ,

3 ( ) 2 ,

.

z z y y y z y y

z y y u y y y y y u

y z

= − + − = − −

= − + + − = − − +

=

 

Так как функция d(t) удовлетворяет условию Липшица, принимаем p = 0. Скользящий наблюдатель 

при 
1 1,1 = , 

2 1,5 = , 
3 2 =  принимает вид: 

1/3 2/3

1 1 1 2 *1 1 2 *1 2

1/2 1/2

2 2 2 1 2 1 3

3 3 2

1

2 | | sign( ) ,

1,5 | | sign( ) ,

1,1 sign( ),      

2 ( ) .

v w M v y z v y z v

v w M v w v w v

v M v w

M d t

= = − − + − + +

= = − − − +

= − −



 

Найдем коэффициенты характеристического уравнения матрицы 
* *F KH− : 

* *

0 1 2 2 1
(1 0)

0 0 1 1 0
F KH

−     
− = − =     −     

.  

Тогда 

2

* *

2 1
det( ( )) det 2 1

1

s
sI F KH s s

s

+ − 
− − = = + + 

 
, 

откуда 
1 21,   2b b= = . В результате оценка функции d(t) принимает вид:  

3 1 2
ˆ( ) ( 2 )d t v v v= − + + . 

Отметим, что поскольку функция, описывающая дефект, входит во второе уравнение, методы 

идентификации, рассмотренные в работах [1–5], в данном случае неприменимы.  
 

  

Рис. 1. Результат идентификации функции d(t)  

Fig. 1. Результат идентификации функции d(t) 
Рис. 2. Ошибка идентификации функции d(t) 

 
Fig. 2. Ошибка идентификации функции d(t) 
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В ходе моделирования использовались следующие управляющие воздействия: 
1( ) sin( )u t t= , 

2 ( ) sin(0,3 )u t t= . Дефект имитировался появлением сигнала ( ) 0,2sin( / 2 2π)d t t=  −  на интервале вре-

мени 4–8 с. Были приняты следующие начальные условия: 
1(0) 0,2x = , 

2 (0) 0,05x = , 
3(0) 0,02x = . 

На рис. 1 представлен график оценки функции d(t), на рис. 2 – график ошибки идентификации 

ˆ( ) ( ) ( )t d t d t = − ; видно, что она не превышает 1%. Из рисунков видно, что построенные наблюдатели 

обеспечивают точную оценку величины дефекта после окончания переходного процесса за конечное 

время. 

 

Заключение 

 

В работе была поставлена и решена задача построения скользящих наблюдателей высокого порядка 

для идентификации дефектов в датчиках технических систем, описываемых линейными моделями.  

Задача решается на основе редуцированной (имеющую меньшую размерность) модели исходной си-

стемы, нечувствительной к возмущениям. Это позволило уменьшить сложность средств идентифика-

ции и ослабить ограничения, накладываемые на исходную систему, для решения поставленной задачи. 
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Введение 

 

Повышение обобщающей способности при распознавании является основной целью формирова-

ния ансамблей алгоритмов. Как правило, в процессе формирования используют одну из технологий [1] 

машинного обучения. Чтобы предотвратить переобучение (overfitting), широко используются регуля-

ризаторы. Регуляризаторы являются средством обобщения знания на новые данные, накладывая 

штрафы на сложность модели. 

Смысл термина «обобщенные оценки» [2] ассоциируется с вычислением значений латентных 

признаков для описания объектов в двухклассовой задаче распознавания. Реализация методов вычис-

ления обобщенных оценок основана на идее противопоставления описаний объектов двух классов как 

оппозиции друг другу. 

Формализация описания многообразия пространств из латентных признаков, формируемых раз-

ными методами, сделана в [3]. Методы делятся на линейные и нелинейные, для реализации которых 

используются или не используются критерии оптимизации.  

В статье [2] был предложен алгоритм вычисления обобщенных оценок по комбинации из базовых 

или элементарных классификаторов. Элементарные классификаторы из одного признака формировали 

обобщенные оценки объектов для разделения их на два класса. Для каждого признака вне зависимости 

от шкалы измерений (номинальной или количественной) в представлении прецедентов производилось 

нелинейное преобразование посредством значений функции принадлежности. Обобщенные оценки, 

вычисленные по набору элементарных классификаторов, рассматривались как проекции описаний объ-

ектов на числовую ось, которая использовалась для отнесения объекта к классу по пороговому реша-

ющему правилу. 

В [4] описан многокритериальный метод формирования наборов латентных признаков из исход-

ных. Согласно жадной стратегии иерархического агломеративного алгоритма группировки происходит 

формирование наборов латентных признаков. Множество исходных признаков, входящих в состав  

латентного с наибольшей дискриминантной способностью для определения принадлежности объектов 

к классам, считалось информативным набором. Показано, что существует латентный признак, сфор-

мированный из подмножества исходных, точность распознавания на котором выше, чем по аналогич-

ному признаку для всего множества. Включение очередного признака в группу при синтезе основано 

на минимизации отношения внутриклассового сходства и межклассового различия. Если минимизации 

не происходит, то согласно правила иерархической агломеративной группировки процесс формирова-

ния латентного признака завершается. Нет гарантии, что при этом по значениям латентного признака 

объекты двух классов корректно разделяются на числовой оси.   

Согласно технологии стекинга [5], один или несколько латентных признаков, полученных на ис-

ходных данных, могут использоваться в качестве входных данных для метаалгоритма, который делает 

финальное предсказание. Обучение метаалгоритма на входных данных базовых алгоритмов заключа-

ется в оптимальном их комбинировании. 

Интерес для исследования представляет повышение точности с использованием регуляризато-

ров. Необходимо определить и обосновать условия, обеспечивающие существование (отсутствие) кор-

ректного разделения объектов обучения на классы, не приводящего к переобучению. Обобщающую 

способность алгоритмов имеет смысл оценивать как частоту ошибок на конечной выборке, так как 

вероятность ошибки является величиной ненаблюдаемой, которую невозможно вычислить точно [6].  

Применение регуляризаторов для повышения точности основывается: 

– на увеличении значений отступов между ближайшими объектами из разных классов; 

– удалении аномальных объектов(выбросов) из обучающих выборок; 

– достижении максимума значения меры компактности классов и выборки в целом.  

Отступ – это расстояние между ближайшими объектами двух классов, которые не пересекаются, 

может представляться и как абсолютная, и как относительная величина. Относительный отступ при-

менялся в регуляризаторах метода «ближайший сосед» (NN) [7]. Классическим пониманием отступа 

как абсолютной величины пользуются при обучении алгоритмов распознавания с разделяющимися 
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поверхностями (например, в методе опорных векторов – SVM). Значение отступа является аргументом 

для мажорирующих функций по технологии бустинга.   

Бустинг для задач классификации объектов на два класса K1 и K2 строится как серия алгоритмов 

регрессии a1(∙), …, ak(∙), k ≥ 2, со значениями целевого признака из {–1, 1} и правилом: 

– если a1(S) + … + ak(S) > 0, то объект S из класса K1;  

– если a1(S) + … + ak(S) < 0, то объект S из класса K2. 

Решение по бустингу заключается в вычислении отступов и выбранной маожорирующей функции. 

Для практической реализации, как правило, выбор производился из следующего набора функций: квад-

ратичная, кусочно-линейная, сигмоидная, логистическая, экспоненциальная. Итерации бустинга 

можно повторять. Такой вид бустинга называется градиентным, так как фактически вычисляется гра-

диент функции ошибок (потерь), и новый алгоритм получается, как шаг против градиента функции 

ошибок. Интерес представляет применимость к значениям латентного признака (обобщенным оценкам 

объектов) мажорирующих функций для формирования ансамблевых алгоритмов.  

 

1. Предмет исследования 

 

Технология стекинга является методом формирования ансамблей алгоритмов в машинном обу-

чении [7]. Различают базовые модели и модели метауровня, или метамодели. Базовые модели обуча-

ются на исходных данных, затем их результаты используются в качестве входных данных для метамо-

дели. В качестве преимуществ технологии указывалось на возможность комбинирования разных базовых 

моделей (решающих деревьев, логистической регрессии, градиентного бустинга и т.д.). Комбиниро-

вание позволяет использовать сильные и слабые стороны разных моделей с целью повышения точно-

сти. Недостатки технологии выражались в более высокой вычислительной сложности и рисках пере-

обучения. 

Для устранения недостатков вводились ограничения на применение технологии стекинга. Запре-

щалось обучать метаалгоритм на данных, по которым обучались базовые алгоритмы. Считалось, что 

игнорирование запрета приводит к переобучению и недостоверным результатам на новых данных.   

Интерес для исследования представляет процесс формирования латентного признакового про-

странства в качестве входных данных для метаалгоритма. Реализация процесса происходит по резуль-

татам иерархической агломеративной группировки с учетом следующих условий: 

– вхождение всех исходных признаков в состав латентных не является обязательным;  

– максимальная точность распознавания при обучении достигается по базовым алгоритмам; 

– базовый алгоритм необходим для оценки объекта лишь по части признакового пространства. 

Пусть a1(∙), …, ak(∙) – набор из последовательности базовых алгоритмов. Действия базового ал-

горитма: 

– выбор и включение исходного признака в состав латентного; 

– корректировка значений латентного признака (оценок) объектов по отступу от границы между 

классами с помощью мажорирующих функций; 

– включение оценок объектов в обучающую выборку как дополнительного признака для обуче-

ния метаалгоритма. 

Каждый базовый алгоритм, включаемый в набор, не уменьшает точность распознавания преды-

дущего. Эффективность распознавания при обучении растет, так как известны отступы объектов от 

границы между классами, а также в каком направлении от нее нужно производить коррекцию (регуля-

ризацию) оценок с помощью мажорирующих функций. Высокая точность распознавания, полученная 

на последнем базовом алгоритме из набора, не является основанием для выводов о высокой обобщаю-

щей способности для метаалгоритма.  

Требуется изучение влияния мажорирующих функций на результаты метаалгоритма. Проблема 

качества обучения имеет скорее комбинаторную, нежели вероятностную природу [5]. Применительно 

к рассматриваемым ансамблевым алгоритмам речь идет о комбинациях латентных и исходных призна-

ков в зависимости от параметров мажорирующих функций. 



Игнатьев Н.А. Регуляризаторы по наборам обобщённых оценок  

93 

Эффект от применения мажорирующих функций проявляется в повышении точности распозна-

вания на обучающей выборке по базовым алгоритмам. Процедуры обучения на основе жадных страте-

гий являются причиной порождения эффекта переобучения. Включение дополнительных признаков  

в описание объектов обучающей выборки проводится с целью сохранения в них частичной информации 

о скрытых закономерностях в данных. На использование этих закономерностей адаптирован метаал-

горитм при разделении объектов на классы.   

С целью унификации шкал измерений производится преобразование значений количественных 

признаков в градации номинальных. Для преобразования используется разбиение на непересекающи-

еся интервалы, оптимальные значения границ которых определяются по специальному критерию. 

Есть предположение, что переобучение по технологии стекинга связано с выбором параметров 

базовых алгоритмов. Как правило, число базовых алгоритмов изначально не фиксировано, так как оно 

зависит от использования правил иерархической агломеративной группировки и настраиваемых пара-

метров мажорирующей функции. Правила группировки реализованы на основе выбора первого исход-

ного признака для организации ансамбля, результатов анализа отношения внутриклассового сходства 

и межклассового различия, условия останова процесса формирования значений латентного признака.   

Для выбора параметров мажорирующих функций необходим анализ сходимости процесса обуче-

ния к состоянию корректного разделения обучающей выборки на классы и максимальному показателю 

обобщающей способности по метаалгоритму. Показателем для контроля сходимости к корректному 

разделению является отношение внутриклассового сходства и межклассового различия. Анализ вари-

абельности отношений востребован для исследования устойчивости метаалгоритма от переобучения.   

Для вычисления выходных данных (значений дополнительных признаков) по базовым алгорит-

мам помимо отступов объектов от границы требовался идентификатор класса. Вычисление оценок для 

произвольного объекта по набору базовых алгоритмов связывалось с необходимостью использования 

функции потерь. Вид функции и множество ее допустимых значений в общем-то неизвестны. Для ба-

зового алгоритма нет информации, в каком направлении от границы между классами производить кор-

ректировку значений отступа.  

Утверждается, что для произвольного объекта: 

– базовые алгоритмы не вычисляют значения оценок; 

– метаалгоритм может производить распознавание лишь с учетом привнесения в состав таблицы 

обучения дополнительных признаков с помощью базовых алгоритмов. 

Следовало обосновать применимость предлагаемого метода на данных, которые не участвовали 

в процессе обучения. Обоснование строится на доказательстве утверждения, что для распознавания 

объекта не требуется вычислять значения его оценок по базовым алгоритмам. Метаалгоритм для рас-

познавания использует исходные данные объекта и значения дополнительных признаков, полученных 

на объектах обучающей выборки.  

Информацию о вариациях отношений значений внутриклассового сходства к межклассовому 

различию при добавлении исходного признака в латентный можно получать в процессе реализации 

метода агломеративной иерархической группировки [4]. Ценность (востребованность) информации за-

ключается в ее использовании в процессе принятия решений как при включении, так и при отказе от 

включения очередного исходного признака в качестве кандидата в состав латентного.  

 

2. Постановка задачи 

 

Рассматривается стандартная постановка задачи распознавания для объектов из двух непересе-

кающихся классов K1 и K2. Описание объектов в обучающей выборке E0 = {S1, …, Sm} представлено 

набором разнотипных признаков X(n) = (x1, …, xn), σ из которых являются номинальными, (n – σ) – 

количественными.  

Считается, что набор базовых алгоритмов формируется с использованием параметров мажори-

рующих функций по значениям отступов объектов от границы между классами. Для предобработки 

данных используются процедуры: 
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– преобразования значений количественных признаков в градации номинальных; 

– вычисления значения весов признаков и их вкладов в распознавание объектов классов;  

– оптимизации критериев для синтеза латентных признаков из исходных. 

Требуется:    

– определить параметры для вычисления величин штрафов по мажорирующим функциям;  

– построить набор базовых алгоритмов с использованием мажорирующих функций; 

– разработать метаалгоритм для распознавания принадлежности объектов к классам с использо-

ванием дополнительных признаков, определяемых по базовым алгоритмам.     

Пусть для значений признака xc ∊ X(n) в описании объектов E0 = K1 U K2 построена упорядочен-

ная по неубыванию последовательность   

 r1, …, rj, …, rm. (1) 

В качестве границ двух непересекающихся интервалов [π1; π2], (π2; π3], определяемых по (1), ис-

пользуются π1 = r1, π2 = rj, 1 < j < m, π3 = rm. Интервалы [π1; π2] и (π2; π3] идентифицируются соответ-

ственно как первый и второй. Вес признака у объектов классов по (1) вычисляется как максимум про-

изведения внутриклассового сходства и межклассового различия по критерию из [8]:  
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где ( )d
i

d
i uu -3  – количество значений признака xc у объектов из класса Ki (K3–i) в d-м интервале. Множе-

ство допустимых значений критерия (2) принадлежит (0; 1] и используется для оценки объектов клас-

сов на числовой оси. Если в каждом интервале содержатся все значения признака объектов из одного 

класса, то его вес равен 1. 

Граница между классами (порог) для количественного признака xc вычисляется как  

 2

2
c

b +
 = , (3) 

где b – ближайшее к π2 значение из интервала (π2; π3], определяемого по (2). В данной работе граница (3) 

используется для преобразования значений признака xc ∈ X(n) в виде двух градаций (по факту принад-

лежности к одному из интервалов) в номинальной шкале измерений. Далее будем считать, что выборка 

E0 представлена значениями номинальных признаков. 

Обозначим через 
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где ldc – число градаций признака xc в описании объектов из Kd, d = 1, 2.  
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Вес признаку xc ∈ X(n) определяется как  

 ωс = βсλс. (4) 

Множество допустимых значений весов признаков, вычисленных по (4), лежит в интервале [0; 1]. Для 

получения обобщенных оценок объектов [2] на E0 используются вклады градаций признаков. Вклад 

градации j ∈ {1, …, μ} признака xc ∈ X(n) вычисляется как  

 ( )
1 2

1 2

η ω ,
cj cj

c cj
K K

  
= −  

 

 (5) 

где 1 2,cj cj   – количество значений градации j признака xc соответственно в классах K1 и K2; ωс – вес 

признака xc по (4). Обобщенная оценка объекта Sr ∈ E0, Sr = {xri}, по описанию на наборе X(d) ⸦ X(n) 

без использования мажорирующих функций вычисляется как 

( ) ( )
( )

r i ri
x X di

R S x


=  . 

 

2.1. Формирование дополнительных признаков для метаалгоритма 

 

Согласно технологии стекинга вычисление каждого дополнительного признака реализуется от-

дельным базовым алгоритмом. Базовый алгоритм явно не участвует в вычислении оценок произволь-

ного допустимого объекта. Считается, что для каждого xi ∈ X(n) определены вес ωi по (4) и значения 

вкладов ηi(j), j ∈ {1, …, μ}, по (5). Особенности реализации вычисления дополнительных признаков  

в качестве входных данных для метаалгоритма заключаются:   

– в выборе первого признака из X(n) для вычисления обобщенных оценок (значений дополни-

тельных признаков) объектов E0 базовыми алгоритмами; 

– наборе правил для включения (не включения) признака в группу; 

– вычислении значений обобщенных оценок объектов E0 по вкладам признаков (5) и отступу 

между классами по мажорирующей функции.  

Обозначим через P, TUPLAM – множество индексов признаков соответственно из X(n) и форми-

руемых алгоритмом группировки, f(∙) – мажорирующая функция, α – параметр для регуляризации от-

ступа, 0 < α < 1, δ (0 < δ < 0,5) – порог для отношения внутриклассового сходства θ и межклассового 

различия по латентному признаку γ, ϰ – максимальное число дополнительных признаков, ϰ ≤ n – 1. 

Реализация алгоритма по шагам будет следующей: 

Шаг 1. P = {i | xi∈X(n)}.  

Шаг 2. Вычислить arg max
j

j P
u


=  . TUPLAM = {u}.   

Цикл по t ∊ {1, …, m} R(St) = ηu(atu). Конец цикла; cr1 = 10. P = P/{u}. 

Шаг 3. Цикл по u ∊ P. Цикл по t ∊ {1, …, m}. bt = R(St) + ηu(atu).   

Если St ∊ K1, то bt = bt + αf(–bt) иначе bt = bt – αf(–bt). Конец цикла;  

=
 1

1
KS

t
t

bM . =
 2

2
KS

t
t

bM . M1 = M1 /|K1|. M2 = M2 /|K2|. Θ = 0. γ = 0.  

Цикл по t ∊ {1, …, m}. Если St ∊ K1, то θ = θ + |bt – M1|, γ = γ + |bt – M2|. Иначе θ = θ + |bt – M2|,  

γ = γ + |bt – M1|. Конец цикла; 

Если θ/γ < cr1, то cr1 = θ/γ, q = u. Конец цикла;  

Шаг 4. crit = cr1. P = P/{q}. TUPLAM = TUPLAM U{q}. cr1 = 10. 

Цикл по t ∊ {1, …, m}. R(St) = R(St) + ηq(atq).  

Если St ∊ K1, то R(St) = R(St) + αf(–R(St)). Иначе R(St) = R(St) – αf(–R(St)). 

Конец цикла; Вывод {R(St)}t∊{1,…,m}. Если |TUPLAM| < ϰ and crit > δ, то идти 3. 

Вывод TUPLAM.  

Шаг 5. Конец. 

Множество значений {R(St)}t∊{1,…,m}, полученное на шаге 4 алгоритма, формируют дополнитель-

ные (латентные) признаки в описания объектов K1 и K2.  
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Выводы, которые можно сделать по результатам иерархического агломеративного алгоритма: 

– мощность множества исходных признаков для обучения метаалгоритма |TUPLAM| ≤ n; 

– число дополнительных (латентных) признаков p = |TUPLAM| – 1. 

Поставим в соответствие каждому исходному признаку индексы согласно порядку их следования 

в TUPLAM. Обозначим набор исходных и дополнительных признаков объектов E0 для реализации ме-

таалгоритма как Y(2p – 1) = (y0, …, yp, r1, …, rp). С учетом такого обозначения произвольный допусти-

мый объект S будет представлен признаками из TUPLAM как S = (a0, …, ap). В описание по Y(2p – 1) 

объекта обучающей выборки Si ∈ E0, Si = (ai0, …, aip, di1, …, dip) включены дополнительные признаки 

di1, …, dip. Реализация метаалгоритма по шагам для распознавания объекта S будет такой: 

Шаг 1. B1(a0) = {Si ∈ K1| a0 = ai0}, B2(a0) = {Si ∈ K2| a0 = ai0}, j = 0.  

Шаг 2. j = j + 1. B1(aj) = {Si ∈ B1(aj–1)| aj = aij, dij > 0}, B2(aj) = {Si ∈ B2(aj–1)| aj = aij, dij < 0}.     

Шаг 3. Если j < p, то идти 2.  

Шаг 4. 

( ) ( )

( ) ( )

( ) ( )

1 1 2

2 2 1

1 2

,| 1 | / | | | 2 | / | |,

,| 2 | / | | | 1 | / | |,

0,| 1 | / | | | 2 | / | | .

j j

j j

j j

S K B a K B a K

S K B a K B a K

B a K B a K

  



 


=

  

Шаг 5. Конец. 

 

2.2. О точности ансамблевых алгоритмов 

 

Для вычисления точности ансамблевых алгоритмов распознавания методы кросс-валидации не-

применимы. Доказательство этого утверждения относительно ансамблевых алгоритмов, формируемых 

по методу вычисления обобщенных оценок, приводится в [2]. Возникла необходимость поиска альтер-

нативных способов оценки точности. Предлагается исследование связи между точностью на обучении 

по базовым алгоритмам и метаалгоритму.  

Для обозначения отношения внутриклассового сходства к межклассовому различию, так же как 

в описании алгоритма иерархической агломеративной группировки, будем использовать θ/γ. Значение 

данного отношения рассматривается как средство для проверки истинности гипотезы о компактности 

объектов классов на многообразии латентных признаков. Интерес для исследования при формирова-

ния ансамблевых алгоритмов представляют: 

– размеры отступов между классами в зависимости от параметров мажорирующей функции; 

– наличие (отсутствие) равномерной сходимости значений / min  →  при иерархической агло-

меративной группировке по последовательности латентных признаков базовых алгоритмов; 

– условия отсутствия корректного разделения объектов обучающей выборки по базовому и мета-

алгоритму. 

Результаты исследования свойств сходимости / min  →  могут быть использованы при: 

– выборе параметров мажорирующей функции; 

– обосновании сходства точности по базовому и метаалгоритму. 

Преобразование значений количественных признаков в градации номинальных увеличивает ве-

роятность появления совпадающих описаний объектов обучения из двух классов. Граница между клас-

сами по (3), используемая для такого преобразования, определяется на основе реальной (не гипотети-

ческой) плотности распределения значений признака.  

Проблема появления объектов из разных классов с совпадающими описаниями решается за счет 

использования мажорирующих функций. С помощью этих функций формируются несовпадающие зна-

чения латентных или дополнительных признаков для метаалгоритма. Наличие набора дополнительных 

признаков уменьшает вероятность отказа от распознавания по метаалгоритму.  
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3. Вычислительный эксперимент 

 

Формирование ансамблей алгоритмов зависит от свойств распределений признаков в описании 

прецедентов для обучения. Учет этих свойств позволяет гибко подстраивать систему выбора как ис-

ходных, так и дополнительных признаков для метаалгоритма. В качестве мажорирующей используется 

сигмоидная функция с параметром α ∈ (0; 1). Применение других мажорирующих функций и их влия-

ние на отступы с целью сравнительного анализа в данном исследовании не рассматриваются. Счита-

ется, что для количественных признаков произведено преобразование в градации номинальных по (1). 

В табл. 1 представлен пример построения ансамбля при наличии равномерной сходимости / min  →  

на данных Molecular-biology [9]. Значение отношения θ/γ получено на последнем в последовательности 

дополнительном признаке, сформированным базовым алгоритмом. Условием останова процесса фор-

мирования было θ/γ < 0,1. В скобках указана точность по метаалгоритму.   

Т а б л и ц а  1  

Результаты распознавания при наличии равномерной сходимости 

α Число дополнительных признаков Значение отношения θ/γ Точность, % 

0,10 9 0,0982 100 (100) 

0,20 6 0,0885 100 (100) 

0,30 5 0,0818 100 (100) 

 

Сходимость по θ/γ при разных значениях параметра α (см. табл. 1) к относительно малому зна-

чению δ (δ = 0,1) при корректном разделении объектов на классы по базовому и метаалгоритму увели-

чивает возможности выбора набора из исходных и дополнительных признаков. При α = 0,3 набор был 

представлен шестью из 56 исходных и пятью дополнительными признаками.   

На данных Heart + Disease  [10] показана важность отбора значения параметров α и ϰ для уста-

новления максимального соответствия результатов между базовыми алгоритмами и метаалгоритмом 

при отсутствии равномерной сходимости по отношению θ/γ (табл. 2).  

Т а б л и ц а  2  

Результаты распознавания при отсутствии равномерной сходимости 

α 
Число дополнительных признаков ϰ 

5 12 

0,05 91,11 (87,04) 92,96 (92,96) 

0,10 94,44 (86,67) 98,15 (98,15) 

0,20 99,63 (97,41) 99,63 (99,26) 

0,30 100,00 (97,41) 100,00 (99,26) 

 

Компромисс или малое расхождение при высокой точности распознавания между результатами 

по базовым и метаалгоритму достигнут на α = 0,2 и ϰ = 12. Максимум по базовому алгоритму составил 

99,63%, и 99,26% – по метаалгоритму (см. табл. 2).   

Для демонстрации влияния коэффициентов регуляризации на значение меры компактности обу-

чающей выборки и связи коэффициентов с обобщающей способностью метрического алгоритма «бли-

жайший сосед» в [6] были использованы данные Spambase [11]. Так же, как и в [6], для тестирования 

предлагаемого ансамбля алгоритмов было произведено разбиение 4 204 объектов Spambase на две рав-

ные по мощности выборки. При этом использован порядок следования четных и нечетных номеров 

индексов объектов в каждом классе. Каждая выборка (Chet и Nechet) применялась для обучения и те-

стирования.  

По причине отсутствия на данных Spambase равномерной сходимости / min  →  для анализа 

состава исходных и дополнительных признаков использовалось значение параметра ϰ. Результаты рас-

познавания по составам исходных и дополнительных признаков при коэффициенте α = 0,2 приводятся 

в табл. 3. 
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Т а б л и ц а  3  

Результаты распознавания на данных Chet и Nechet 

Выборка 
Число дополнительных признаков ϰ 

10 20 56 

Chet 100,00 (94,96) 100,00 (97,95) 100,00 (99,24) 

Nechet 100,00 (93,34) 100,00 (96,34) 100,00 (99,48) 

 

Как видно из табл. 3, точность распознавания по метаалгоритму не превосходит точность по ба-

зовому алгоритму.  

Для проверки обобщающей способности ансамбля алгоритмов распознавания в качестве преце-

дентов использованы выборки Chet и Nechet, результаты которых приведены в табл. 4. В скобках ука-

зана точность, полученная на регуляризаторах для метрического алгоритма NN из [7]. 

Т а б л и ц а  4  

Точность распознавания на тестовых выборках, % 

Обучающая выборка 
Тестовая выборка 

Chet Nechet 

Chet – 99,48 (88,20) 

Nechet 99,24(88,73) – 

 

В табл. 4 демонстрируется превосходство по точности при использовании регуляризаторов по 

обобщенным оценкам относительно регуляризаторов для метрического алгоритма NN.   

 

Заключение 

 

Разработан новый метод формирования ансамблей алгоритмов распознавания по технологии сте-

кинга. Отметим изменения, которые привнесены в эту технологию:    

– число базовых алгоритмов связано с выбором параметров модели;  

– есть два ограничения на число признаков, определяемых явно или по специальному условию; 

выполнение условия зависит от значения отношения внутриклассового сходства и межклассового раз-

личия; 

– роль базовых алгоритмов сводится к вычислению дополнительных признаков для обучающей 

выборки; 

– высокая обобщающая способность на обучающих и тестовых выборках по метаалгоритму объ-

ясняется размерами отступов между классами.   

Метод рекомендуется для использования в моделях, основанных на знаниях. Совершенствова-

ние метода связано с решением проблемы выбора прецедентов для обучающей выборки и разработкой 

новых способов формирования множества дополнительных признаков.  

 
Список источников 

 

1. Zhou Z.H. Ensemble learning: foundations and algorithms. Chapman & Hall/CRC, 2021. 394 p. 

2. Ignatev N.A. On Nonlinear Transformations of Features Based on the Functions of Objects Belonging to Classes // Pattern Recog-

nition and Image Analysis. 2021. V. 31 (2). P. 197–204. 

3. Игнатьев Н.А., Акбаров Б.Х. Оценка близости структур отношений объектов обучающей выборки на многообразиях набо-

ров латентных признаков // Вестник Томского государственного университета. Управление, вычислительная техника и 

информатика. 2023. № 65. С. 69–78. doi: 10.17223/19988605/65/7 

4. Ignatev N.A., Rahimova M.A. Formation and analysis of sets of informative features of objects by pairs of classes // Scientific and 

Technical Information Processing. 2022. V. 49 (6). P. 439–445. 

5. Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference and prediction. 2nd ed. Springer, 

2009. 767 p. (Springer Series in Statistics). 

6. Воронцов К.В. Комбинаторный подход к оценке качества обучаемых алгоритмов // Математические вопросы кибернетики / 

под ред. О.Б. Лупанов. М. : Физматлит, 2004. Т. 13. С. 5–36. 



Игнатьев Н.А. Регуляризаторы по наборам обобщённых оценок  

99 

7. Игнатьев Н.А., Турсунмуротов Д.Х. Цензурирование обучающих выборок с использованием регуляризации отношений 

связанности объектов классов // Научно-технический вестник информационных технологий, механики и оптики. 2024.  

Т. 24 (2). С. 2226–1494. doi: 10.17586/2226-1494-2024-24-2-322-329 

8. Згуральская Е.Н. Алгоритм выбора оптимальных границ интервалов разбиения значений признаков при классификации // 

Известия Самарского научного центра Российской академии наук. 2012. № 4-3. С. 826–829.   

9. UCI repository of machine learning databases/molecular-biology/promoter-gene-sequences. URL: https://archive.ics.uci.edu/ 

dataset/67/molecular+biology+promoter+gene+sequences (accessed: 02.07.2025). 

10. UCI repository of machine learning databases. Ionosphere. URL: http://archive.ics.uci.edu/ml/ datasets/Heart+Disease (accessed: 

02.07.2025). 

11. UCI repository of machine learning databases. spambase. URL: https://archive.ics.uci.edu/dataset/94/spambase (accessed: 02.07.2025). 

 

References 

 

1. Zhou, Z.H. (2021) Ensemble Learning: Foundations and Algorithms. Chapman & Hall/CRC. 

2. Ignatev, N.A. (2021) On Nonlinear Transformations of Features Based on the Functions of Objects Belonging to Classes. Pattern 

Recognition and Image Analysis. 31(2). pp. 197–204. 

3. Ignatev, N.A. & Akbarov, B.Kh. (2023) Estimation of the proximity of structures of relations of objects of the training sample  

on manifolds of sets of latent features. Vestnik Tomskogo gosudarstvennogo universiteta.  Upravlenie, vychislitelnaya tekhnika  

i informatika – Tomsk State University Journal of Control and Computer Science. 65. pp. 69–78. doi: 10.17223/19988605/65/7  

4. Ignatev, N.A. & Rahimova, M.A. (2022) Formation and Analysis of Sets of Informative Features of Objects by Pairs of Classes. 

Scientific and Technical Information Processing. 49(6). pp. 439–445. 

5. Hastie, T., Tibshirani, R. & Friedman, J. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction.  

2nd ed. Springer.  

6. Vorontsov, K.V. (2004) Combinatorial approach to assessing the quality of learning algorithms. Matematicheskie voprosy kiber-

netiki. 13. pp. 5–36.  

7. Ignatev, N.A. & Tursunmurotov, D.Kh. (2024) Censoring training samples using regularization of relatedness relations of class 

objects. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. 24(2). pp. 322–329. doi: 10.17586/2226-

1494-2024-24-2-322-329  

8. Zguralskaya, E.N. (2012) Algorithm for selecting optimal boundaries of intervals for partitioning feature values during classification. 

Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 4–3. pp. 826–829.  

9. UCI Repository of Machine Learning Databases. Molecular Biology. Promoter Gene Sequences. [Online] Available from: https://ar-

chive.ics.uci.edu/dataset/67/molecular+biology+promoter+gene+sequences (Accessed: 2nd July 2025). 

10. UCI Repository of Machine Learning Databases. Ionosphere. [Online] Available from: http://archive.ics.uci.edu/ml/datasets/ 

Heart+Disease (Accessed: 2nd July 2025). 

11. UCI Repository of Machine Learning Databases. Spambase. [Online] Available from: https://archive.ics.uci.edu/dataset/94/spambase 

(Accessed: 2nd July 2025). 

 

Информация об авторе: 

Игнатьев Николай Александрович − доктор физико-математических наук, профессор кафедры программного инжиниринга 

и искусственного интеллекта Национального университета Узбекистана им. Мирзо Улугбека (Ташкент, Узбекистан). E-mail: 

n_ignatev@rambler.ru 

 

Автор заявляет об отсутствии конфликта интересов. 

 

Information about the author:  

Ignatev Nikolay A. (Doctor of Physical and Mathematical Sciences, Professor of the National University of Uzbekistan named after 

Mirzo Ulugbek, Tashkent, Uzbekistan). E-mail: n_ignatev@rambler.ru 

 

The author declares no conflicts of interests. 

 

Поступила в редакцию 19.07.2025; принята к публикации 02.12.2025 

 

Received 19.07.2025; accepted for publication 02.12.2025 

mailto:ign1122@mail.ru


© О.С. Исаева, С.В. Исаев, Н.В. Кулясов, 2025 

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2024               Управление, вычислительная техника и информатика               № 73 

 
Научная статья 

УДК 004.738 

doi: 10.17223/19988605/73/12 

 

Подход к выделению значимых признаков сетевой активности  

устройств Интернета вещей 
 

Ольга Сергеевна Исаева1, Сергей Владиславович Исаев2, Никита Владимирович Кулясов3 
 

1, 2, 3 Институт вычислительного моделирования Сибирского отделения Российской академии наук, Красноярск, Россия 
1 isaeva@icm.krasn.ru 

2 si@icm.krasn.ru 
3 razor@icm.krasn.ru 

 

Аннотация. Исследуются признаки сетевой активности устройств Интернета вещей и предлагается метод 

сокращения размерности признакового пространства для повышения эффективности анализа данных. Предло-

женный подход устраняет мультиколлинеарность, нелинейную зависимость и избыточность признаков, сохра-

няя их семантическую интерпретируемость. В его основе лежит комбинированное использование статистиче-

ских характеристик взаимной информации, корреляции, критериев стабильности и значимости для фильтрации 

признаков. Применение подхода позволило существенно сократить признаковое пространство и улучшить его 

свойства: численную устойчивость данных, обобщающую способность моделей, качество кластеризации. 
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Введение 

 

Среди ключевых трендов развития современного общества широкую популярность набирает 

концепция Интернета вещей (Internet of Things, IoT), направленная на построение киберфизических 

систем, объединяющих физические и цифровые объекты на основе информационно-коммуникацион-

ных технологий [1]. Его применение становится актуальным в различных сферах жизни: от контроля 

качества продукции до прогнозирования отказов технических систем и мониторинга состояния окру-

жающей среды. Однако значительные преимущества, предоставляемые технологиями Интернета ве-

щей, требуют усиленного внимания к вопросам безопасности и надежности связанных с обеспечением 

их функционирования процессов, которые являются привлекательной целью для кибератак из-за раз-

нообразия и уязвимости устройств и протоколов их подключения [2]. Особенностью сетевого трафика 

Интернета вещей является изменчивость, вызванная множественностью происходящих событий, сце-

нариев атак и их последствий, зависящих от развития средств уклонения. Сложность диагностирования 

аномалий увеличивается по мере роста числа взаимосвязанных систем и разнообразия типов входных 

данных [3]. Постоянное изменение характеристик нормального поведения затрудняет автоматическое 

обнаружение аномалий, которые могут возникать из-за различных факторов, таких как отказ исполь-

зуемых устройств или внешняя атака, что требует не только их выявления, но и классификации видов 

и причин деструктивных воздействий. Методы машинного обучения позволяют получать дополни-

тельную информацию о происходящих в сетевой инфраструктуре событиях безопасности, а также 

предотвращать нежелательные инциденты. Но для их эффективной работы необходимы специализи-

рованные датасеты, охватывающие длительные периоды наблюдения и содержащие сведения о харак-

терных видах атак, типичном поведение пользователей и свойствах реальных сетей, в рамках которых 

строится система обнаружения вторжений.  

Актуальность применения методов машинного обучения для обеспечения сетевой безопасности 

широко освещается в современной научной литературе. В работах [4–5] представлен детальный обзор 

популярных наборов данных, используемых для выявления сетевых вторжений, а также предложены 

критерии оценки их применимости для решения практических задач. В [6] рассматривается проблема 

несбалансированности данных публичных датасетов. Предложен метод синтезирования и сжатия вы-

борок для уменьшения дисбаланса классов. Важным аспектом анализа сетевых данных являются извле-

чение признаков из исходных файлов и их последующее сопоставление с размеченными данными [7]. 

При этом исследования отмечают наличие ряда ограничений в публичных датасетах, таких как исполь-

зование искусственных имитационных сред, неоднородность данных, ошибки в расчетах значений 

признаков, их дублирование и некорректное разбиение на сессии. Эти факторы существенно влияют 

на качество моделей машинного обучения. В [8] отмечается важность учета контекста, включающего 

не только архитектурные особенности сети, но и свойства протоколов, используемых на отдельных 

уровнях межмашинного взаимодействия.  

Для преодоления ограничений, присущих публичным датасетам, авторами настоящего исследо-

вания была разработана и внедрена инфраструктура сбора данных и имитации угроз безопасности для 

сети Интернета вещей Красноярского научного центра [9]. После организации сбора данных встала 

задача исследования признакового пространства для сокращения его размерности, исключения избы-

точности, повышения обобщающей способности моделей, улучшения их точности, устойчивости и ин-

терпретируемости результатов. Существующие подходы к решению этой задачи можно разделить на 

четыре группы: встраиваемые (Embedded), обертывающие (Wrapper), фильтрующие (Filtered) и дей-

ствующие на основе экспертных оценок. Встраиваемые методы интегрируют выбор признаков в про-

цесс обучения, что позволяет использовать скрытую структуру данных. Однако такой подход потребует 
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обработки не только множественности признаков, но и данных, генерируемых IoT-устройствами. 

Обертывающие методы используют алгоритмы роевого интеллекта для эвристического обхода комби-

наций признаков и выбора их подмножества, соответствующего целевой функции [10]. Такой способ 

поиска является NP-сложной задачей и также не подходит для крупномасштабных данных Интернета 

вещей. Процесс фильтрации признаков заключается в выявлении наиболее информативных и значи-

мых из них. Они конструируют критерии ранжирования признаков с помощью статистических харак-

теристик, корреляции, взаимной информации или условной энтропии [11]. Методы экспертных оценок 

выполняют отбор признаков на основе знаний о предметной области, но при большом размере призна-

кового пространства их необходимо интегрировать с методами фильтрации.  

Цель данной работы – анализ признаков сетевой активности IoT-устройств для уменьшения раз-

мерности признакового пространства за счет применения фильтрации, основанной на критериях ста-

бильности и информационной значимости. Подход, представленный в исследовании, учитывает осо-

бенности функционирования реальной сети Интернета вещей, но может быть обобщен на другие типы 

сетевого трафика. Работа является важным шагом к построению системы информационной безопасно-

сти, специализированной для исследуемой корпоративной сети, учитывающей ее архитектурные и тех-

нические особенности.  

 

1. Особенности сбора данных сетевой активности 

 

В рамках исследований, проводимых в Красноярском научном центре, технология Интернета 

вещей была внедрена для мониторинга микроклимата в помещениях, где размещено сетевое оборудо-

вание [12]. Для анализа безопасности IoT-сети в реальных условиях эксплуатации созданы инстру-

менты сбора данных и имитации угроз. Межмашинное взаимодействие строится на основе протокола 

прикладного уровня MQTT (Message Queuing Telemetry Transport). На рис. 1 приведена схема разме-

щения основных узлов инфраструктуры сбора данных сетевой активности устройств Интернета ве-

щей.  
 

 

Рис. 1. Инфраструктура сбора данных устройств Интернета вещей 

Fig. 1. Infrastructure for collecting data from IoT devices 
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Основные элементы сети: издатель (Publisher), производящий данные, подписчик (Subscriber), их 

использующий, и брокер (Broker), выполняющий распределение данных от издателей подписчикам. 

Использование технологии IoT в сочетании с протоколом MQTT позволяет создать эффективную систему 

мониторинга, способную оперативно обрабатывать большие потоки данных в темпе их поступления. 

В рамках исследования были развернуты брокеры на платформах Eclipse Mosquitto, EMQX, NanoMQ 

и VerneMQ. Сбор данных осуществлялся как на самих брокерах, так и на proxy-сервере, через который 

передается внутренний и внешний сетевой трафик по портам протокола MQTT, включая легитимные 

сессии, а также несанкционированные попытки соединения и сканирования различных сервисов. 

Собранные сетевые данные являются неструктурированными, и для их эффективного использо-

вания требуется этап предобработки, включающий разделение трафика на сессии и вычисление пара-

метров полученных сессий. Для этого мы выбрали программное обеспечение с открытым кодом 

NTLFlowLyzer, которое использовано [13] при построении публичного датасета BCCC-CIC-IDS201. 

Данный инструмент является усовершенствованной версией сетевого анализатора CICFlowMeter, ле-

жащего в основе популярного датасета CICIDS2017. Мы выполнили проверку параметров выделяемых 

сессий для сетевых журналов, собранных в рамках нашего исследования. Для решения специфических 

задач, связанных с Интернетом вещей, в наших данных содержатся метрики брокеров и флаги исполь-

зуемых протоколов [14]. В сформированный датасет вошло более 300 признаков, охватывающих шесть 

ключевых категорий: временные характеристики, флаги протоколов TCP и MQTT, параметры скорости 

соединений, статистические данные по заголовкам пакетов, свойства полезной нагрузки и объемные 

характеристики при массовой передаче данных.  

Дальнейшее исследование выявило ряд проблем, существенно затрудняющих применение со-

бранных данных для анализа аспектов безопасности Интернета вещей. К таким проблемам относятся 

разноплановость представленной информации для типичных сессий и высокоразмерность признако-

вого пространства, которая приводит к экспоненциальному росту объема данных, необходимого для 

получения надежных результатов моделей машинного обучения, а также наличие избыточных и сла-

боинформативных признаков, которое снижает эффективность алгоритмов кластеризации и увеличи-

вает их временную сложность. Еще одной значимой проблемой является высокая корреляция призна-

ков, которая искажает структуру данных и приводит к несогласованным результатам кластеризации.  

Использование методов снижения размерности, заключающееся в формировании новых призна-

ков, ограничивает возможность семантической интерпретации взаимосвязей между объектами в мно-

гомерных данных. Традиционные подходы к сокращению признакового пространства, такие как ре-

курсивное исключение признаков (RFE) [15], адаптируют набор признаков под конкретный класс  

моделей, однако не учитывают сложные линейные и нелинейные зависимости между признаками, что 

сказывается на качестве получаемых подпространств. Стандартные метрики оценки качества моделей 

(например, MSE, MAE, точность, F1-мера и др.) не могут быть применены в нашем случае, поскольку 

они предполагают сравнение предсказаний модели с известными целевыми значениями. В нашей задаче 

требуется первоначально построить целевой показатель путем кластеризации данных, что затрудни-

тельно ввиду большого признакового пространства. Таким образом, необходим механизм направлен-

ной фильтрации признаков, обеспечивающий сохранение обобщающих свойств и удовлетворяющий 

выбранным критериям качества данных.  

 

2. Сокращение признакового пространства 

 

Для решения вышеописанных проблем предложен метод сокращения размерности признакового 

пространства, выделяющий сложные зависимости между признаками с сохранением его информатив-

ности. Введем обозначения, необходимые для описания подхода:  

 
n m

ijX x  =   , (1) 

где X – матрица наблюдений размерности n × m, n – количество объектов наблюдения, m – количество 

признаков, xij – значение j-го признака для i-го объекта наблюдения, I = {1, 2, …, n} – множество иден-
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тификаторов, соответствующих каждому объекту наблюдения, J = {1, 2, …, m} – множество иденти-

фикаторов, соответствующих каждому признаку. Каждый объект наблюдения i I  описывается век-

тором ( )1 2, , , m
i i i imX x x x=   значений всех признаков для i-го объекта. Признак j J  представ-

лен вектором ( )1 2, , , n
j j j n jP x x x=   значений j-го признака для всех объектов.  

    1 2 1 2n mX X X X P P P


= = . (2) 

Для центрированной матрицы cX  можно построить квадратную матрицу X c cX X =  размер-

ности m × m (здесь и далее мы не умножаем на нормировочный коэффициент, поскольку данные пред-

варительно стандартизованы) и вычислить 1 2, ,..., m    – собственные числа, 1 2, ,..., mv v v  – собственные 

векторы, 1 2, ,..., m   , i i =   – сингулярные числа.  

Введем целевую функцию, описывающую требования к признаковому пространству: 

 ( ) ( ) ( )1 2 3,
1

( ,)
L

l l
l

X X XL M R F X
=

=   +   +    (3) 

Весовые коэффициенты α позволяют изменять влияние каждого компонента на результат целе-

вой функции, ( ) max minX =    – число обусловленности, max  – наибольшее, а min 0   – наимень-

шее сингулярные числа, показывают наличие линейной зависимости и мультиколлинеарности данных, 

( )M X  выполняет оценку меры нелинейной зависимости признаков: 

 ( )
1 1

2

( 1)

m m

jk
j k j

M M
m m

X
= = +

=  
−

,     
( , ) ( , )

ln
( ) ( )

i j j i k k

i j ik i j ik

jk
x P x P i j ik

p x x n p x x
M

n p x p x 


=  


, (4) 

где jkM  определяет величину взаимной информации между jP  и kP  [16], ( , )i j ikp x x  – частота сов-

местного появления значений признаков jP  и kP , ( )i jp x  и ( )ikp x  – частота появления каждого значе-

ния признака в отдельности.  

Значение ( ),lR F X  – мера cложности Радемахера [17] для семейства функций lF  относительно 

выборки X: 

 
( ) ( ) ( )

1

1
s p, u

l

n
l

l i i
if F

R F f X
n

X
=

=  , (5) 

где εi – случайная величина, Fl – семейство функций вида f. Это теоретическая мера, которая показы-

вает способность аппроксимировать данные и избегать переобучения.  

Пусть A – множество действий по изменению признакового пространства P. На каждом шаге 

 0,1, ,hh S H =  действие hA A  применяется к множеству признаков так, что ( )1h h hA P P− = . Тогда 

итоговое множество признаков HP  получается следующим образом: 

 ( ) ( ) ( ) ( )( )1 1arg min , ,
h

H h h h h h h h

h S
P P A A P A P P PL L L− −


=  = , (6) 

при условии: max,m
jP m m     ( )

1

0
n m

i j
i j

x
=

 =  =     jj     , где maxm  – ограничение на раз-

мерность пространства, ( )   – индикационная функция, j  – стандартное отклонение,   – пороговое 

значение. Действия из множества A заключаются в фильтрации признакового пространства hP  раз-

мерности hm  и удалении из него признаков, удовлетворяющих следующим условиям: 

I. Подмножество коррелирующих признаков: 

   ( ) { }

, 1

, :
h

j k h
j k jk

j k j k m

С C P P P


  

= =     , (7) 

где , h
j kP P P , hm  – число признаков в hP , jk  – коэффициент корреляции между признаками,   – 

пороговое значение корреляции.  
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II. Подмножество мультиколлинеарных признаков: 

     ( )
,

: ,
j k h

j k k k
j k

V
k j

C C P P P V




= =       , (8) 

( )arg maxh
j

k
k VVP P =  , 

V  – граница мультиколлинеарности, kV  – коэффициент инфляции диспер-

сии (Variance Inflation Factor; VIF), который показывает, насколько сильно взаимная корреляция между 

признаками увеличивает дисперсию:  

 ( )
1

21kV D
−

= − , ( ) ( )
22

2

1 1

n n

j ijij ij
i i

D x x x x
= =

= − −  , (9) 

где 2D  – коэффициент детерминации, jx  – среднее значение, 0ij ik k
k j

x x


=  +   – предсказанное зна-

чение, вычисленное через разложение 0 1 1 2 2j m mP P P P=  +  +  + +  , ( )k jk j k =    , jk  – коэф-

фициент корреляции, j  – стандартное отклонение.  

III. Подмножество взаимозависимых признаков: 

   ( ) { }

, 1

, :
h

j k h
j k jk M

j k j k m

C С P P P M

  

= =    , (10) 

где jkM  вычисляется по (5), M  – порог сильной зависимости. 

Для множества С C C C  =  вводятся критерии исключения признаков. Признак 

{ }j kP C C   исключается из hP  и { }\ j kC C C= , если выполняется условие 

 ( ) ( )( ) ( ) ( )( ){ } :j kQ C P S P S Q W P W Q     , (11) 

где ( ) stabS P S  – коэффициент стабильности, stabS  – порог, ( )W P  – агрегированный вес признака.  

Коэффициент стабильности вычисляется как 

 ( ) ( )
1

( ) ( 1)

1

1
,

1

T
t t

t

S P M P P
T

−
+

=

= 
−

,  (12) 

где T – количество случайных выборок, полученных из X, ( )( ) ( 1),t tM P P +  – взаимная информация (4) 

между признаком P на t-й и (t + 1)-й выборках.  

Агрегированный вес признака определятся как 

 ( ) ( )
1 1

k
i

i k
i m m

v PW P
= =


= 


, (13) 

где ( ) 11min j m
ii jik j ===       – глубина редуцированного пространства, содержащего ς диспер-

сии исходного набора данных, i  – собственное значение, ( )iv P  – компонента собственного вектора 

iv , соответствующая признаку P. Действия по выбору и фильтрации признаков выполняются до тех 

пор, пока не останется групп для рассмотрения или признаков по критерию (11). 

 

3. Применение подхода к данным сетевой активности 
 

Предложенный подход был апробирован на данных сетевой активности устройств Интернета ве-

щей, собранных в корпоративной сети научного центра. В рамках анализа данных были построены 

диаграммы рассеивания, демонстрирующие зависимости между парами признаков. На рис. 2 представ-

лен пример визуализации, выполненный на логарифмической шкале, для признаков «Длительность по-

тока (сек)» и «Объем переданных данных (байт)». Для каждой пары признаков добавлена тепловая 

карта плотности, показывающая распределение точек на графике, и построена аппроксимация данных 

с использованием полиномиальных или линейных моделей. Визуализация позволила оценить характер 

взаимосвязей между признаками, а также выделить аномалии в данных.  
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Рис. 2. Пример зависимых признаков 

Fig. 2. Example of dependent features 
 

Сформировано множество С C C C  =  зависимых признаков по формулам (7)–(10). Для 

каждого признака из полученного множества рассчитан коэффициент стабильности по формуле (12)  

и исключены признаки, удовлетворяющие критерию (11), не сохраняющие стабильность своих харак-

теристик на различных подвыборках данных и демонстрирующие существенную зависимость от более 

устойчивых признаков.  

Для определения весовых коэффициентов признаков проведен анализ собственных значений и 

накопительной объясненной дисперсии (рис. 3). Установлено минимальное количество главных компо-

нент, достаточное для описания данных (95% объясненной дисперсии). Вычислены весовые коэффи-

циенты признаков в этих компонентах. Признаки, которые не вносят значимый вклад в формирование 

главных компонент или имеют меньший вес по сравнению с другими зависимыми от них признаками, 

согласно критерию (13), были удалены из рассмотрения. На каждом шаге вычисляется значение целевой 

функции (3), и результаты изменения признакового пространства, не удовлетворяющие условию (6), 

не принимаются. 
 

 

Рис. 3. Определение числа компонент для расчёта весов признаков 

Fig. 3. Determining the number of components for calculating feature weights 
 

В таблице приведены пошаговые результаты применения предложенного подхода и их сравне-

ние с методом рекурсивного исключения признаков (RFE) для модели случайного леса. 

Пошаговые результаты сокращения размерности 

Выполненные  

действия 
Признаков Число обусл. 

Сложность по Радермахеру 

Лог. регресс. Случ. лес Лин. мод., случ. вес 

0. Предобработка 275 768,26 0,264 0,199 0,417 

1. Корр., нестабильные 223 450,6 0,253 0,196 0,415 

2. Корр., незначимые 79 90,4 0,181 0,191 0,233 

3. Мультикол., нестабильные 25 17,08 0,108 0,163 0,145 

4. Взаимные, нестабильные 22 12,5 0,099 0,143 0,117 

5. Взаимные, незначимые 17 2,23 0,053 0,079 0,087 

Время выполнения: 6,72 с (~ 1 000 строк), 58,46 с (~ 10 200 строк). Корр.: 0. Взаимозависимые: 0 

RFE (случ. лес) 17 75,17 0,097 0,182 0,083 

Время выполнения: 41,42 с (~ 1 000 строк), 147,42 с (~10 200 строк). Корр.: 8. Взаимозависимые: 56 
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Применение подхода к сокращению признакового пространства демонстрирует не только значи-

тельное сокращение размерности, но и улучшение ключевых характеристик данных. Снижение числа 

обусловленности свидетельствует о повышении численной устойчивости данных, что может быть до-

полнительно усилено за счет регуляризации сокращенной матрицы. Заметное уменьшение сложности 

моделей, описывающих данные, способствует снижению риска переобучения и улучшению их обоб-

щающей способности.  

Выполнено сравнение результатов кластеризации для полного и обработанного признакового 

пространства. На рис. 4 приведены графики силуэтного коэффициента, которые показывают повыше-

ние компактности кластеров и их лучшую разделенность. 
 

 

Рис. 4. Сравнение силуэтного коэффициента 

Fig. 4 Comparison of silhouette coefficient 

 

В результате анализа объектов, отнесенных к выделенным кластерам, было установлено, что  

сокращение размерности признакового пространства обеспечило возможность описать характери-

стики сформированных групп и предложить объяснения для наблюдаемого разбиения. Первый кластер 

объединяет попытки установления соединений без получения ответа от принимающих устройств. Вто-

рой содержит легитимные сессии, сопровождаемые передачей данных. Третий также включает леги-

тимные сессии, но значительной длительности, характеризующие взаимодействие с устройствами ин-

тернета вещей. Четвёртый кластер состоит из запросов на соединение и коротких сессий, соответству-

ющих сканированию сети на транспортном уровне без детализации по прикладному протоколу. Пятый 

включает короткие соединения, представляющие собой более глубокое сканирование сети на уровне 

прикладного протокола, в отличие от поверхностного анализа, характерного для предыдущего кла-

стера. Таким образом, проведенное исследование позволило повысить степень интерпретируемости 

данных. 

 

Заключение 

 

Предложенный в исследовании подход направлен на решение ключевых проблем, возникающих 

при работе с высокоразмерными данными, таких как избыточность признаков, наличие корреляций и 

сложных нелинейных зависимостей. Он позволяет эффективно сокращать размерность признакового 

пространства, одновременно улучшая численные характеристики данных и снижая сложность моделей 

машинного обучения. Основные преимущества подхода включают: 

1. Эффективное устранение избыточных зависимостей, достигаемое за счет комбинированного 

использования взаимной информации и анализа корреляций. 

2. Обеспечение семантической интерпретируемости данных за счет сохранения исходных при-

знаков и связей между объектами. 

3. Улучшение характеристик кластеризации и обобщающей способности моделей благодаря 

уменьшению нестабильности признаков и снижению сложности. 

Существенное сокращение размерности признакового пространства без потери информативно-

сти делает данный подход применимым для широкого спектра задач – от предварительной обработки 

данных до повышения эффективности алгоритмов классификации, регрессии и кластеризации. 
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Введение 

 

Среди математических моделей, описывающих потоки заявок в компьютерных и телекоммуни-

кационных сетях, наиболее приближенной к реальности считается модель дважды стохастического  

потока [1]. Для нее характерно следующее: сопровождающий случайный процесс является принципи-

ально ненаблюдаемым, и моменты наступления событий случайны. Дважды стохастические потоки 

делятся на два класса: к первому классу относятся потоки, интенсивность которых есть непрерывный 

случайный процесс [2, 3], ко второму – потоки с интенсивностью в виде кусочно-постоянного случай-

ного процесса с конечным числом состояний [4–9]. 

Многие исследования в теории массового обслуживания предполагают, что все события входя-

щего потока в систему доступны для наблюдения. Однако это условие на практике часто не выполня-

ется, поскольку поступившее событие может вызывать период мертвого времени регистрирующего при-

бора, в течение которого последующие события потока становятся ненаблюдаемыми (теряются) [10]. 

Наличие мертвого времени осложняет решение задачи оценивания состояний потока или его парамет-

ров по наблюдаемым моментам времени наступления событий. 

В работах [11–14] решены задачи оценивания длительности мертвого времени, когда наступив-

шие в течение периода мертвого времени события не вызывают его продления (непродлевающееся 

мертвое время).  

Поток событий, рассматриваемый в данной работе, относится ко второму классу дважды стоха-

стических потоков. В отличие от упомянутых исследований здесь предполагается, что событие, насту-

пившее в период мертвого времени, хотя и не наблюдается, способно продлить общий период нена-

блюдаемости (продлевающееся мертвое время). При этом длительность мертвого времени считается 

фиксированной, а общий период ненаблюдаемости потока является случайной величиной. 

В работе [15] решена задача оценивания длительности продлевающегося мертвого времени  

в обобщенном асинхронном потоке событий в случае соотношения параметров 2 1 0z z−   (общий случай). 

Однако интерес представляет решение задачи оценивания длительности продлевающегося мертвого 

времени в рекуррентном обобщенном асинхронном потоке событий в случае 2 1 0,z z− =  называемом  

в дальнейшем особым случаем. Аналитически выводится уравнение моментов, решение которого воз-

можно численно; проводятся статистические эксперименты с целью установления качества получае-

мых оценок. 

 

1. Постановка задачи 

 

Рассматривается обобщенный асинхронный поток событий, обладающий следующими свой-

ствами: стационарностью, ординарностью, наличием последействия. В общем случае исследуемый  

поток является коррелированным. 

Сопровождающий процесс данного потока ( )t  является принципиально ненаблюдаемым ку-

сочно-постоянным случайным процессом с двумя состояниями 
1S  и 

2S ; будем говорить, что имеет 

место состояние iS  процесса ( )t , если 1 2( ) , 1,2, 0.it i =  =      Длительность пребывания про-

цесса ( )t  в состоянии iS  является случайной величиной с функцией распределения ( ) 1 ,it

iF t e
−

= −  

0, 1,2.t i =  В течение времени пребывания процесса ( )t  в состоянии 
1S  имеет место пуассоновский 

поток событий с параметром 
1 ; в течение времени пребывания процесса ( )t  в состоянии 

2S  − пуас-

соновский поток событий с параметром 
2 . 

В момент перехода сопровождающего случайного процесса ( )t  из состояния 
1S  в состояние 

2S  

с вероятностью (0 1)p p   инициируется дополнительное событие потока в состоянии 
2S  (сначала пе-

реход из 1S  в 2S , затем наступление дополнительного события в 2S ). Аналогично при переходе сопро-

вождающего случайного процесса ( )t  из состояния 2S  в состояние 1S  с вероятностью (0 1)q q   
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инициируется дополнительное событие потока в состоянии 
1S  (сначала переход из 

2S  в 
1S , затем 

наступление дополнительного события в 
1S ). 

В момент наступления каждого события потока наступает период ненаблюдаемости фиксиро-

ванной длительности Т (мертвое время), так что другие события, наступившие в течение времени Т, 

недоступны наблюдению. Каждое событие, ненаблюдаемое в течение мертвого времени, вызывает 

продление периода ненаблюдаемости на величину T; наблюдаться будет лишь то событие, которое 

наступило после окончания последнего периода ненаблюдаемости. 

На рис. 1 приведены схема формирования наблюдаемого потока событий и одна из реализаций 

сопровождающего процесса ( )t , где , 1,2iS i = , − состояния процесса ( )t ; t1, t2, … − моменты вре-

мени наступления событий в наблюдаемом потоке. Наблюдаемые события обозначены незакрашен-

ными кругами, а ненаблюдаемые события, т.е. недоступные наблюдению из-за наличия мертвого вре-

мени, обозначены закрашенными кругами. Штриховкой обозначен период ненаблюдаемости. Длитель-

ность общего периода ненаблюдаемости ξ  − случайная величина. 

 

 

Рис. 1. Формирование наблюдаемого потока событий 

Fig. 1. Formation of the observed event flow 
 

Матрицы инфинитезимальных характеристик сопровождающего процесса (t) имеют вид [16]: 

1 1 1 1 1

2 2 2 2 2

( ) (1 )
, .

(1 ) ( )

p p

q q

−  +  −   
= =

−  −  +   
0 1D D  

Элементами матрицы 
1D  являются интенсивности переходов процесса (t) из состояния 

iS   

в состояние , , 1,2 ,jS i j =  с наступлением события потока. Недиагональные элементы матрицы 
0D  – 

интенсивности переходов процесса (t) из состояния iS  в состояние , , 1,2 ,jS i j =  без наступления со-

бытия. Диагональные элементы матрицы 
0D  – интенсивности выхода процесса (t) из своих состоя-

ний, взятые с противоположным знаком. 

В работе [15] проведено исследование в случае 2 1 0z z−  , где  

( )
( )

2

1 1 1 2 2 1 1 2 2 1 2

2

2 1 1 2 2 1 1 2 2 1 2

2 1

,
1

λ λ (λ λ ) 4 (1 )(1 )
2
1

λ λ (λ λ ) 4 (1 )(1 ) ,
2

.

z p q

z p q

z z

= +  + +  − +  − −  +   − −

= +  + +  + +  − −  +   − −


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Отметим, что при получении одномерной плотности в [15] имеет место деление на величину 
2 1z z− . 

Из явного вида параметров 
1z  и 

2z  следует, что ситуация 
2 1 0z z− =  возможна, если одновременно 

выполняются условия 
1 1 2 2 0, (1 )(1 ) 0.p q +  −  −  = − − =  

Решение системы уравнений приводит к трем вариантам соотношения параметров потока:  

1) 
1 1 2 2 0 +  −  −  = , 1, 0 1p q=   ; 

2) 1 1 2 2 0 +  −  −  = , 1, 0 1q p=   ; 

3) 1 1 2 2 0 +  −  −  = , 1p q= = . 

Цель настоящего исследования – вывод и решение уравнения моментов для получения оценки 

длительности продлевающегося мертвого времени в исследуемом потоке в особом случае соотноше-

ния параметров потока, а также проведение на имитационной модели потока серии статистических 

экспериментов и анализ качества полученных оценок. 

 

2. Условия рекуррентности обобщенного асинхронного потока в особом случае 

 

Будем рассматривать первый вариант задания параметров потока. Предполагается, что обобщен-

ный асинхронный поток событий функционирует в условиях полной наблюдаемости (T = 0) в стацио-

нарном режиме. 

Лемма 1. Для обобщенного асинхронного потока событий, функционирующего в условиях пол-

ной наблюдаемости, сопровождающий кусочно-постоянный случайный процесс (t) является марков-

ским процессом [16]. 

Пусть 1 2, , ..., , ...kt t t  – моменты времени наступления событий в потоке.  

Лемма 2. Последовательность { ( )}kt , порождаемая совокупностью моментов наступления со-

бытий 1 2, , ..., , ...kt t t , является вложенной цепью Маркова [16]. 

Обозначим 1 , 0k k k kt t+ = −   , – значение длительности k-го интервала между соседними собы-

тиями 
kt  и 

1kt +
, 1, 2, ... ,k =  наблюдаемого потока. В силу стационарного режима функционирования 

потока для плотности вероятности значений 
k  справедливо ( ) ( ), 0,k kp p k =     . 

Это позволяет без ограничения общности считать момент наступления события 
kt  равным нулю, 

или, что то же самое, момент наступления события есть 0 = . 

В общем случае исследуемый поток в условиях полной наблюдаемости является коррелирован-

ным потоком. Для достижения поставленной цели необходимо выписать условия реккурентности  

потока и определить явный вид плотности вероятности значений длительности интервала между со-

седними событиями потока.  

Воспользуемся следующей теоремой. 

Теорема 1. Плотность вероятности значений длительности интервала между соседними со-

бытиями в обобщенном асинхронном потоке в особом случае имеет вид [17]: 

   1 1( ) 1 1 1
1 1 2 2 1 1 2

1 1 1 2 1 1

( )
( ) (0) (1 )(1 ( ) ) , π (0)

( ) ( )
(τ) 0; .q e

q
p −  +    + 

 +  −   − −  +   =
  +  +   + 

=    (1) 

Обозначим 1 2( , )p    − совместная плотность вероятности длительностей двух соседних ин-

тервалов 1 2 2 3 1 2 1 2 3 2( , ), ( , ); ,t t t t t t t t = −  = −  − значения длительностей, 1 20, 0    . В силу стацио-

нарного режима расположение одного интервала 
1( , )k kt t +

 либо двух соседних интервалов 

1 1 2( , ), ( , )k k k kt t t t+ + +  между моментами наступления событий 1 2, , ... , , ... , 1, 2, ... ,kt t t k =  на временной 

оси произвольно. 

Справедлива следующая теорема. 

Теорема 2. Совместная плотность вероятности 1 2( , )p    длительностей двух соседних интер-

валов для обобщенного асинхронного потока событий в особом случае имеет вид [17]: 
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 

( )( ) 1 1 1 2

2

1 2 1 2 1 2

1 2 1 2 2
2

1 1 1 2 1 2

1 1 1 1 1 2

1 2

( )( )

(1 ) ( )
( , ) ( ) ( )

( ) ( )

1 ( ) 1 ( )

0, 0,

,

q q
p p p

q

e
−  +  +

  −   −  
  =   − 

  +  −   −   

 −  +   −  +  

   

 (2) 

где ( )kp   определены в (1) для , 1,2.k k =  =  

Из анализа (2) вытекает условие рекуррентности 1 2 1 2 0q  −   = , с использованием которого 

находится величина 
2 2 2 1(0) (1 )q  − =  −  , входящая в (1). Тогда плотность вероятности значений 

длительности интервала между соседними событиями в рекуррентном обобщенном асинхронном по-

токе событий принимает вид: 

   1 1( )

1 2 1 2 1 2( ) ( ) , 0.p e
−  + 

 =  +  +   −       (3) 

 

3. Преобразование Лапласа плотности вероятности общего периода ненаблюдаемости  

рекуррентного потока  

 

Пусть ξ  – длительность общего периода ненаблюдаемости в рекуррентном обобщенном асин-

хронном потоке, функционирующем в условиях продлевающегося мертвого времени фиксированной 

длительности 0T  . Последовательность 1 2, , ...t t  моментов наступления событий в наблюдаемом по-

токе образует вложенную цепь Маркова, и рекуррентность наблюдаемого потока сохраняется. 

Рассмотрим функцию Пальма 0 ( ) ( )
T

T p x dx



 =   – вероятность того, что на интервале (0, )T  собы-

тий рекуррентного потока не наступит при условии, что в начальный момент времени интервала (0, )T  

событие наступило [18]; здесь ( )p x  − плотность вероятности длительности интервала между сосед-

ними событиями в дважды стохастическом рекуррентном потоке. 

Теорема 3. Преобразование Лапласа плотности вероятности значений длительности общего 

периода ненаблюдаемости в рекуррентном обобщенном асинхронном потоке с продлевающимся 

мертвым временем в особом случае имеет вид: 

 ( )
1 1

1 1

1
( )

( )20

1 1 1 2 2 1 1 12

1 1 1 1

( ) 1
( ) 1 ( ) ( )( ) ,

( )

s T
s T

sT

T e T
g s s e

e s s

−
−  + +

−  + +



  −
 = −  +  +  +  +  −   +    +  +  +  + 

 (4) 

где   1 1( )

0 2 1( ) 1 ( )
T

T T e
−  +

 = +  −  . 

Доказательство. Воспользуемся результатом, полученным в [17]. Преобразование Лапласа 

плотности вероятности значений длительности общего периода ненаблюдаемости в рекуррентном два-

жды стохастическом потоке событий, функционирующем в условиях продлевающегося мертвого вре-

мени, имеет вид: 

 

1

0

0

( )
( ) 1 ( ) .

T

sx

sT

T
g s e p x dx

e

−

−



 
= − 

 
  (5) 

Переобозначая плотность ( )p  , определенную в (3), на ( )p x , подставляя в (5) и выполняя необ-

ходимые преобразования, приходим к (4). Теорема доказана. 

Лемма 3. Математическое ожидание длительности общего периода ненаблюдаемости ξ  в рекур-

рентном обобщенном асинхронном потоке событий с продлевающимся мертвым временем в особом 

случае имеет вид: 

 ( )( ) ( )1 1( )

0 1 1 2 12

0 1 1

1
1 ( ) ( ) 1 ,

( )( )

T
M T e

T

−  + = −   +  +  −  −
   + 

ξ  (6) 

где 0 ( )T  определена в (4). 
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Доказательство. Нетрудно показать, что с использованием вида ( )g s , определенного в (4), ма-

тематическое ожидание общего периода ненаблюдаемости ξ  запишется в виде: 

 
0

0 0

1
( ) ( ) .

( )

T

s
M g s T xp x dx

T
 =
= − = +

 ξ  (7) 

Подставляя ( )p x , определенную в (3), в (7) и выполняя необходимые преобразования, находим (6). 

Лемма доказана. 
 

4. Преобразование Лапласа плотности вероятности длительности интервала  

между соседними событиями в наблюдаемом потоке  
 

Рассмотрим интервал времени 
1( , )k kt t +

, значение длительности которого есть 
1k k kt t+ = − . В то 

же время длительность этого интервала равна = +τ ξ η , где η  – длительность интервала между момен-

том окончания общего периода ненаблюдаемости и моментом 
1kt +
. В силу произвольного расположе-

ния интервала на временной оси индекс k опущен. Случайные величины η  и ξ  являются зависимыми. 

Тогда плотность вероятности ( )p   длительности интервала между событиями в наблюдаемом потоке 

запишется в виде: 

 
0 0

( ) ( ) ( ) ( ) ( ) .p p p d p p d

 

 =    =   −     (8) 

Теорема 4. Преобразование Лапласа плотности вероятности значений длительности интервала 

между соседними событиями в рекуррентном обобщенном асинхронном потоке с продлевающимся 

мертвым временем в особом случае имеет вид: 

  2 2

1 1 1 2 1 2 1 22

1 1 1 2

1
( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( )
g s s g s sg s

s
  =  +   +  + −  −   +  +

 +  +  + 
 (9) 

где функция ( )g s  определена формулой (4); 1 2( )g s  +  +  определена формулой (4), в которой 

нужно заменить аргумент s на 1 2 s +  + . 

Доказательство. Найдем выражение для ( )p  −   . Пусть момент наступления события в на-

блюдаемом потоке есть 0 = . Рассмотрим временной интервал (0, ) (0, ) =  +   и зафиксируем  . 

Пусть ( )ijp  −   – условные вероятности того, что в интервале длительности  =  −   не наступит со-

бытий наблюдаемого потока и ( ) j  +  =   при условии, что ( ) i  =  , , 1, 2i j = . По смыслу введен-

ные условные вероятности не отличаются от вероятностей ( )ijp   для обобщенного асинхронного по-

тока в особом случае, полученных в [17]: 

 
1 1

1 1 1 1

2

( )τ
11 12

( )τ ( )τ
21 22

(τ) , (τ) 0,

(τ) (1 ) , (τ) , 0.

p e p

p q e p e

+

+ +

− 

−  − 

= =

= −   =  
 (10) 

Тогда условные вероятности ( ), , 1, 2 ,ijp i j −  =  определяются формулами (10), в которых ар-

гумент τ заменен на  −  . 

Введем 1 2( ) ( ) ( )i i iP p p −  =  −  +  −   – условная вероятность того, что в интервале ( , )   собы-

тий наблюдаемого потока не произойдет при условии, что ( ) , 1, 2.i i  =  =  Тогда условная плотность 

вероятности длительности интервала ( , )   по определению есть ( ) ( ), 1, 2.i ip P i −  = −  −  =  Учиты-

вая (10), находим 

 

( ) ( )( )

( )   ( )( )

1 1

1 1

1 1 1

2 2 1 1 2

( ) ,

( ) (1 ) (1 )( ) 1 ,

.

p e

p q q e

−  + −

−  + −

 −  =  + 

 −  = −  − −  +   −  −  +

  

 (11) 
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Введем вероятность ( )i    – условная вероятность того, что ( ) , 1, 2,i i  =  =  при условии, что 

в момент 0 =  событие наступило и наступило мертвое время длительности  . Тогда 

 1 1 2 2( ) ( ) ( ) ( ) ( ).p p p −   =   =    −  +   =    −   (12) 

Вероятности ( )i  =    по смыслу совпадают с вероятностями ( ), 1, 2i T i = , определенными  

в [17], в которых вместо периода ненаблюдаемости T следует рассматривать ξ: 

 

1 2

1 2

1 2

( )

12 2( )

2 2 2 2 2 2 ( )

1 1 1 2 1 2
12 2 1 22

1 1 1 2 1 1

1
( ) ( ) (0 ) , (0 ) ,

1

, , ; ( ) 1 ( ).
( )

p e
e

e
q

p

−  + 

−  + 

−  + 

 +  − 
   =   =  =  −  −     =  − 

    −  
=  =  =   =   = −   =  

 +   +   + 

 (13) 

Принимая во внимание условие рекуррентности 1 2 1 2 0q  −   = , запишем формулы (13) в виде: 

 ( )1 2( )1 1
2 2 1 1 2 1

1 1 1 1 1 2

(0 ) , ( ) ( ) , 0.
( )( )

e−  +  
  =   =  +  +  −   =

 +   +   + 
 (14) 

Подставляя (11), (14) в (12), находим 

    1 1( )( )

1 1 2 2 1 1

0, 0 ,
( )

( ) ( ) (1 ) 1 ( )( ) , .
p

q e−  + −

   
 −   =   +  −    − −  +   −    

 (15) 

Найдем преобразование Лапласа плотности ( )p  , используя (8) и (15). Имеем 

   1 1

0

0 0 0

( )( )

1 1 2 1 1 2

0

( ) ( )

( ) ( ) ( ) ( )

( ) (1 ) 1 ( )( ) ( ) .

s

s s

s

g s e p d

e p p d d p e p d d

p e q e d d



− 



   

−  − 



 

−  + −− 



=   =

  
=   −     =   −     =  

    
 

=   +  −  − −  +   −      
  



   

 

 

В выражении для ( )g s  выполним замену переменных: , . −  =   =  +   Тогда 

   1 1( )( )

1 1 2 1 1 2

0 0

( ) ( ) (1 ) 1 ( ) ( )sg s p e q e d d

 

−  + − +



 
=   +  −  − −  +       

 
  . 

Выполняя достаточно трудоемкие преобразования, приходим к (9). Теорема доказана. 

Замечание 1. Для второго варианта задания параметров потока имеет место условие рекуррент-

ности 
1 2 1 2 0p  −   = , с учетом которого все выкладки аналогичны предыдущему случаю и приводят 

к преобразованию Лапласа ( )g s , определённому в (9). Третий вариант задания параметров потока не 

вызывает интереса, поскольку в указанном случае поток вырождается в простейший.  

 

5. Оценка длительности мертвого времени 

 

Преобразование Лапласа (9) позволяет получить начальные моменты 
( )

0
( ) ( 1) ( ) , 1,2, ...l l l

s
M g s l =

= − =τ  

Будем решать задачу оценивания длительности мертвого времени T методом моментов. Введем 

статистики 
1

1
,  1, 2, ... ,

n
l

l k

k

С l
n =

=  =  где 
1k k kt t+ = −  – значение длительности интервала между момен-

тами 
kt  и 

1kt +
 наступления событий в рекуррентном обобщенном асинхронном потоке с продлеваю-

щимся мертвым временем. 

Предположим, что параметры потока 1 2 1 2, , , , ,p q     являются известными. При количестве 

наблюдений n →   выборочный момент 1С  стремится к теоретическому моменту ( )M τ  [19]. Тогда 

для оценки длительности мнртвого времени T имеем уравнение моментов 1( )M C=τ . 
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Вычислив производную от (9) по s в точке s = 0 и взяв ее со знаком минус, получим уравнение 

для нахождения значения T̂  оценки Т̂ : 

 

 ( )1 1

1 2

1 1 2

1

( )

1 1 0 1 22

1 1 1 2 1 1 0

( )2 2
( 2 )1 2 0 1 1 1 2 1 2

2 2

1 1 1 2 1 1 2

( 21 1 1 2

1 1 2

2 1 1
( ) 1 ( ) ( ) 1

( ) ( )

( ) ( ) ( ) ( )( )
1 1

( ) ( ) ( 2 )

( )( )

2

T

T

T

T e
T

T e
e

Te

−  +

−  +

−  +  +

−  + 

 − +  +  −  −  −  − +  +   +   +  

 −    +  +  +   + 
 + − − −   +   +   +  + 

 +   − 
−

 +  + 
1 2

1

)

1,
T C

−

+ 
=



 (16) 

где 0 ( )T  определена в (4). 

Обозначим левую часть уравнения (16) через ( )f T . Можно показать, что функция ( ), 0f T T  , 

является возрастающей. Уравнение 
1( )f T C=  решается численно на интервале 

min0 ,T    

min min{ }, 1, .k k n =  =  Возможные ситуации: 

1)
1( 0)f T C=  ; в качестве значения оценки Т̂  выбирается *ˆ 0Т = ;  

2)
1( 0)f T C=  , тогда возможны случаи: a) корень уравнения моментов (16) попадает в полуин-

тервал 
min(0, ] , тогда он и выбирается в качестве значения оценки *ˆ ˆТ Т= ; б) корень уравнения (16) 

больше 
min , тогда в качестве значения оценки Т̂  выбирается 

*

minТ̂ =  . 

 

6. Результаты статистических экспериментов 

 

Для получения статистики 
1С  построена имитационная модель, выходом которой является по-

следовательность 1 2, , ...t t  моментов наступления событий. 

Имитационная модель реализована на языке программирования C# с использованием техноло-

гии WPF и библиотеки Math.NET Numerics. Результат работы программы имитационного моделирова-

ния для длительности мертвого времени T = 0,3 и параметров потока λ1 = 2, λ2 = 1, α1 = 4, α2 = 5, p = 1, 

q = 0,1 приведен на рис. 2. 
 

 

Рис. 2. Результат работы программы имитационного моделирования 

Fig. 2. The result of the simulation program 
 

В верхней части рис. 2 показана реализация сопровождающего процесса λ(t); ниже короткие го-

ризонтальные линии обозначают периоды мертвого времени фиксированной длительности T; далее 

ниже показана реализация случайной величины – общего периода ненаблюдаемости, где круги зеле-
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ного цвета обозначают ненаблюдаемые события пуассоновского потока, круги красного цвета обозна-

чают ненаблюдаемые дополнительные события потока; наконец, на нижней временной оси отмечены 

наблюдаемые события – дополнительные события обозначены окружностями с красной границей, со-

бытия пуассоновского потока – окружностями с границей зеленого цвета. 

Для получения значения T̂  оценки Т̂  длительности мертвого времени T разработан следующий 

алгоритм оценивания: 

1) задаются параметры потока с учетом условия особого случая 
1 1 2 2 +  =  +   и условий ре-

куррентности 
1 2 1 2 1 2, , 0 1, 1p p q     =     =  или 

1 2 1 2 1 2, , 0 1, 1q q p     =     = ; 

2) табулируется функция ( )f T  и численно устанавливается, что ( )f T  является возрастающей 

функцией;  

3) в течение 
mT  ед. времени работает имитационная модель потока для получения выборки 

1 2, ,..., n   , находится 
min min{ },k =   вычисляется статистика 

1С ; 

4) численно решается уравнение (15) методом Ньютона; корень уравнения моментов (16) явля-

ется единственным; 

5) в результате шагов 1–4 вычисляется *

1T̂  – значение оценки T̂  в первом опыте; 

6) шаги 2–4 повторяются для N опытов и находятся значения оценок 
* * *

1 2
ˆ ˆ ˆ, , ... , .NT T T  

Выборочное среднее оценки и выборочная вариация оценки вычисляются по формулам 

*

1

1ˆ ˆ ˆ( )
N

j

j

M T
N =

= T , 
* 2

1

1ˆ ˆ ˆ( ) ( )
N

j

j

V T T
N =

= −T , где T – значение длительности мертвого времени, известное из 

имитационной модели потока. 

Выборочное среднее количество событий исходного потока и выборочное среднее количество 

событий наблюдаемого потока вычисляются по формулам 
( )

1

1 N
j

исх исх

j

n n
N =

=  , 
( )

1

1 N
j

набл набл

j

n n
N =

=  , где ( )j

исхn  – 

количество событий исходного потока в j-м опыте, ( )j

наблn  – количество событий наблюдаемого потока 

в j-м опыте.  

На рис. 3 представлен график функции ( )f T  при значениях параметров λ1 = 2, λ2 = 1, α1 = 4, α2 = 5, 

p = 1, q = 0,1. Статистика 
1С  является результатом работы программы имитационного моделирования 

для T = 0,5 и времени моделирования Tm = 2 000 ед. времени. 
 

 

Рис. 3. График функции f(T) 

Fig. 3. Graph of the function f(T) 
 

Пересечение графика функции ( )f T  и статистики 
1С  отмечено на рис. 3 красной точкой. Абс-

цисса точки пересечения есть значение оценки *T̂  – решение уравнения моментов (16) в одном опыте. 

Возрастание функции ( )f T  в области определения 0 1T   свидетельствует о единственности реше-

ния уравнения моментов для заданного набора параметров. 
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Для установления качества полученной оценки выполнен эксперимент, который заключается  

в том, что при одних и тех же параметрах потока λ1 = 2, λ2 = 1, α1 = 4, α2 = 5, p = 1, q = 0,1 меняется 

значение длительности мертвого времени T от T = 0,1 до T = 1 ед. времени; количество опытов полага-

ется равным N = 1 000 и время моделирования Tm = 2 000 ед. времени. 

Численные результаты работы алгоритма оценивания приведены в таблице. В первой строке за-

дается значение длительности мертвого времени T; во второй и третьей строках – выборочное среднее 

оценки ˆ ˆ( )M Т  и выборочная вариация ˆ ˆ( )V T  соответственно; в четвертой и пятой строках – выборочное 

среднее количество событий исходного потока 
исхn  и выборочное среднее количество событий наблю-

даемого потока 
наблn ; в шестой строке – процент наблюдаемых событий ( / ) 100%набл исхp n n=  . 

Зависимость ˆ ˆ ˆ ˆ( ), ( ), , ,исх наблM V n n pТ T  от значения длительности мертвого времени T 

T 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

ˆ ˆ( )M Т  0,0986 0,1970 0,2963 0,3967 0,4970 0,5975 0,6928 0,7985 0,8933 0,8668 

ˆ ˆ( )V T  1,0·10–6 2,0·10–6 3,0·10–6 5,0·10–6 9,0·10–6 1,4·10–5 3,0·10–5 5,6·10–5 2,7·10–3 6,8·10–2 

исхn  16 002 16 010 16 004 16 002 16 005 16 001 16 002 16 000 15 997 15 999 

наблn  11 415 7 710 5 024 3 193 1 992 1 224 744 448 268 160 

p 71,33 48,16 31,39 19,95 12,45 7,65 4,65 2,80 1,68 1,00 

 

Анализ результатов оценивания, представленных в таблице, показывает, что с ростом значения 

длительности мертвого времени число событий в наблюдаемом потоке уменьшается, выборочная ва-

риация ˆ ˆ( )V T  растет, что является естественным. 

Замечание 2. Поскольку: а) длительности интервала между соседними событиями наблюдае-

мого потока 
2, ,..., k1τ τ τ  являются независимыми и одинаково распределенными случайными величи-

нами; б) теоретический момент ( )M τ  существует; в) численно показано, что уравнение моментов (16) 

имеет единственное решение, оценки T̂  являются состоятельными [19]. 

 

Заключение 

 

В данной работе рассмотрен дважды стохастический обобщенный асинхронный поток событий 

с двумя состояниями, функционирующий в стационарном режиме в условиях продлевающегося мерт-

вого времени, в особом случае соотношения параметров потока. Полученные результаты показывают 

возможность оценивания длительности продлевающегося мертвого времени, выступающего искажаю-

щим фактором, по результатам текущих наблюдений за потоком событий. Предложенный подход, ос-

нованный на применении преобразования Лапласа и метода моментов, позволяет получить приемле-

мые в смысле выборочной вариации оценки длительности мертвого времени при достаточно больших 

выборках наблюдений. 
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Аннотация. Рассматриваются результаты исследования набора архитектур нейронных сетей с изменяе-

мыми параметрами обучения для обработки данных с газоаналитических медицинских приборов, предназна-

ченных для неинвазивной диагностики рака легких и верхних дыхательных путей. Алгоритм обеспечивает 

структурирование формата входных паттернов для нейронной сети с учетом обеспечения критерия максимума 

информации во входных данных. Диагностические данные с газоаналитических медицинских приборов пред-

ставляют собой массивы целочисленных значений кодов с аналого-цифровых преобразователей. Алгоритм 

нейросетевой обработки данных реализован на языке программирования Python. В исследовании использова-

лись оцифрованные пробы выдыхаемого воздуха от 154 человек. Для случаев отдельной дифференциации  

здоровых добровольцев, пациентов с раком легких и верхних дыхательных путей алгоритм нейросетевой  

обработки данных показал точность, в среднем превышающую 87%. 

Ключевые слова: обработка данных; классификатор; искусственная нейронная сеть; архитектура нейронной 

сети; формат входных данных; оптимизация входных данных; параметры обучения; признак дифференцирования; 

эффективность классификатора. 
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Abstract. The results of a study the set of neural network architectures with variable learning parameters for pro-

cessing data from gas-analytical medical devices designed for noninvasive diagnosis of lung and upper respiratory tract 

cancer are considered. The algorithm provides structuring of the input pattern format for the neural network, taking 

into account the criterion of maximum information in the input data. Diagnostic data from gas-analytical medical  

devices are arrays of integer values of codes from analog-to-digital converters. The neural network data processing 

algorithm is implemented in the Python programming language. The study used digitized exhaled air samples from  

154 people. For cases of separate differentiation of healthy volunteers, patients with lung and upper respiratory tract 

cancers, the neural network data processing algorithm showed an average accuracy exceeding 86%. 
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Введение 

 

Интенсивное внедрение технологий искусственного интеллекта и нейронных сетей в медицин-

скую практику, в том числе в скрининг, позволяет обеспечить своевременный доступ людей к медицин-

ским услугам в условиях значительного увеличения объема биомедицинских данных, необходимых для 

постановки диагноза, а также для назначения эффективного лечения с учетом индивидуальных особен-

ностей пациентов. Автоматизация процессов диагностики и назначения терапии с применением про-

граммного обеспечения на алгоритмах искусственного интеллекта становится все более востребованной 

при отсутствии возможности личного посещения медицинских учреждений, пиковом увеличении коли-

чества обследуемых людей и интенсивном развитии технологий персонализированной медицины [1]. 

Повышение эффективности исследований и развитие инструментов анализа медицинских дан-

ных предполагает разные направления для применения технологий искусственного интеллекта. В ра-

боте [2] применялись нейросетевые алгоритмы многоклассовой сегментации изображений и метрики 

оценки качества mIoU и mDic для решения задачи различения нечетких локальных визуальных 
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признаков в биологических тканях во время сегментации изображений лапароскопической хирургии. 

Были достигнуты сравнительно высокие показатели эффективности нейросетевого алгоритма в сред-

нем на уровне mIoU и mDic 78,19 и 83,84% соответственно. Данный подход позволяет автоматизиро-

вать процесс сегментации изображений на практике. 

Алгоритмы искусственного интеллекта применяются при разработке лекарств, в том числе при вы-

явлении и оптимизации противовоспалительных агентов для терапии рака. В работе [3] были выделены 

основные провоспалительные механизмы, участвующие в прогрессировании опухоли, такие как NF-κB, 

STAT3, COX-2 и ось JAK/IL-6, и продемонстрировано, как инструменты искусственного интеллекта, 

включая глубокое обучение и языковые модели, могут ускорить разработку и проверку терапевтических 

кандидатов. Появление индивидуализированной терапии рака, основанной на глубоком анализе мик-

роокружения опухоли, тоже представляет собой революционную трансформацию в онкологии [4, 5]. 

В последние годы алгоритмы искусственного интеллекта все чаще входят в состав технологиче-

ских инструментов цифровой ортопедии, в том числе в области виртуализированной дополненной ре-

альности, 3D-печати и хирургических роботов [5, 6]. В медицинской практике становится частым при-

менение дистанционной роботизированной хирургии, что позволяет решать проблему неравномерного 

распределения медицинских специалистов высшей категории на местах. 

Визуализация в медицине является одним из основных инструментов для диагностики и лечения 

разных заболеваний. Интеграция технологий машинного зрения с искусственным интеллектом приме-

няется в гепатологии [7], диагностике и лечении кожных заболеваний [8], онкологии [9, 10] и др. 

Современные большие языковые модели (LLM) искусственного интеллекта в медицине обещают 

решать задачи от поддержки принятия клинических решений до обучения пациентов [11]. Достижения 

LLM в виде агентов еще больше расширяют их полезность, обеспечивая мультимодальную обработку 

и многозадачную обработку в сложных диагностических и клинических процессах [12]. Большие язы-

ковые модели, такие как GPT-4o, DeepSeek-R1, Gemini 2.0, Command-R, Claude 3, Qwen и Grok 3, де-

монстрируют различные частные характеристики, но в целом общую возможность в формировании 

сложной логики. Они быстро расширяются, ускоряя переход медицинского сектора от парадигмы  

Интернет+ к парадигме ИИ+ [13, 14]. 

Современные технологии искусственного интеллекта дают возможность для освоения и приме-

нения новых принципов работы медицинских изделий, которые ранее не могли быть оценены как эф-

фективные в силу того, что обработка данных в этих медицинских приборах выполнялась оператором, 

а программная реализация алгоритмов обработки данных представлялась нерешаемой задачей [15]. 

Учитывая этот факт, технологии выявления летучих органических соединений в выдыхаемом воздухе 

все чаще рассматриваются в качестве перспективного инструмента для ранней диагностики рака. Это 

обусловлено неинвазивностью метода и возможностью проведения обследования человека за короткое 

время, что особенно важно при скрининге. Благодаря низкой растворимости в крови, летучие органи-

ческие соединения легко проникают в альвеолярный воздух и выводятся из организма с выдыхаемым 

воздухом, что делает их доступными для анализа и диагностики заболеваний. 

Общим результатом рассмотренных выше работ является повышение эффективности процессов за 

счет внедрения автоматизированных алгоритмов интеллектуальной обработки данных. В нашей работе 

представлены результаты создания базовой нейронной сети и алгоритма обработки данных, предназначен-

ных для нейросетевой классификации данных с газоаналитических медицинских приборов диагностики 

рака легких и верхних дыхательных путей. Применение технологий искусственного интеллекта напрямую 

может влиять на увеличение средней продолжительности и улучшение качества жизни для большого числа 

людей, поскольку в случаях отдельных заболеваний раннее выявление практически определяет исход вы-

живаемости человека в борьбе с заболеванием или способствует снижению уровня инвалидности.  

 

1. Данные с газоаналитического медицинского прибора 

 

В исследовании измерение концентрации компонентов выдыхаемого воздуха проводится с по-

мощью газоаналитических медицинских приборов. Во всех приборах реализуется единый порядок взятия 
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проб выдыхаемого воздуха у всех участников исследования в контролируемых нормальных внешних 

условиях. Во время работы прибора полупроводниковые неселективные датчики функционируют в ре-

жиме термоциклирования, т.е. периодически нагреваются и охлаждаются. В процессе сбора данных 

регистрируется 10 полных циклов – от начальной точки нагрева до завершающей стадии остывания 

процесса термоциклирования [15, 16]. Всего в приборе применяется 24 датчика, а выходной сигнал  

с каждого датчика преобразуется в цифровой десятичный код в диапазоне от 0 до 1 023 с помощью 

аналого-цифрового преобразователя (АЦП). Пример формы сигнала с датчика 12 для групп пациентов 

с раком легких и здоровых добровольцев представлен на рис. 1. 
 

 

Рис. 1. Форма сигналов с датчика 12 для групп пациентов с раком легких (класс RL) и здоровых добровольцев (класс ZD) 

Fig. 1. Waveform from sensor 12 for groups of lung cancer patients (class RL) and healthy volunteers (class ZD) 
 

В качестве критерия для возможной последующей качественной дифференциации двух классов 

с помощью нейронной сети на начальном этапе исследования бралось во внимание превышение более 

чем на 1% относительного отклонения средних значений этих классов. Такое отличие демонстрирует, 

например, датчик 12 на последнем импульсе термоциклирования. Средние значения сигналов для двух 

классов датчика 12 представлены на рис. 2. На последнем – десятом – импульсе сигналы с датчиков 

выходят на уставку, и возникает статическое различие между классами. Для различных патологий 

наборы датчиков, сигналы которых имеют большие отклонения средних значений, отличаются. В част-

ности, для выборки здоровых пациентов и больных с раком головы и шеи разница средних значений 

для датчика № 12 меньше в 2–3 раза, а значит, извлекаемые паттерны будет сложнее различить нейрон-

ной сетью по этому датчику. 

Выходные XML-файлы с газоаналитических медицинских приборов содержат избыточное коли-

чество данных в виде кодов АЦП, которые нецелесообразно в полном объеме применять в нейросетевой 

обработке. В связи с этим они преобразуются в один входной для нейронной сети txt-файл, в котором 

содержится информация о количестве объектов обучающей выборки, размеры входного и выходного 

слоев нейронной сети, массивы данных обучающей выборки, содержащие значения кодов АЦП по-

следнего импульса термоциклирования. При чтении массива данных десятого импульса термоцикли-

рования из XML-файлов применяется прореживание данных, что позволяет уменьшить размер вход-

ного слоя в пять раз без значительной потери качества нейросетевого классификатора. Каждый из  

18 подряд выстроенных паттернов (признаков, значений) во входном массиве данных нейронной сети 

принадлежит 24 датчикам. Таким образом, размер входного слоя составляет 432, размер выходного 

слоя – 2. В выходном слое возможны два случая: [1, 0] – здоровый доброволец (состояние 1, класс ZD); 

[0, 1] – пациент с раком легких (состояние 2, класс RL). На рис. 3 представлена сигнатура по 24 датчи-

кам для одного паттерна (признака, значения, точки) в пике десятого импульса термоциклирования. 

Данная сигнатура обладает такой специфичностью, что для человека задача классификации по ней 

представляется невозможной, но не для нейронной сети. 
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Рис. 2. Средние значения сигналов с датчика 12 для групп пациентов с раком легких (класс RL)  

и здоровых добровольцев (класс ZD) и относительное отклонение между ними 

Fig. 2. The average values of the signals from sensor 12 for groups of patients with lung cancer (class RL)  

and healthy volunteers (class ZD) and the relative deviation between them 

 

 

Рис. 3. Паттерн для групп пациентов с раком легких (класс RL) и здоровых добровольцев (класс ZD)  

по 24 датчикам для восьмой (пиковой) точки десятого импульса термоциклирования 

Fig. 3. A pattern for groups of lung cancer patients (class RL) and healthy volunteers (class ZD)  

with 24 sensors for the eighth (peak) point of the tenth thermal cycling pulse 
 

Не менее важным вопросом является изучение влияния сущности паттернов на точность 

нейросетевого классификатора. С учетом определенной далее в работе архитектуры и гиперпараметров 

нейронной сети исследования показали, что использование паттернов в виде разницы последней волны 

и первой или отношение последней волны на первую не вносят особого вклада как с точки зрения 

математики, так и с точки зрения физики газовых процессов. Основной вклад вносится последней вол-

ной, когда происходит выход на уставку. 

 

2. Архитектура нейронной сети 

 

Задача поиска оптимальной архитектуры нейронной сети для обработки данных является одной 

из ключевых в области машинного обучения и искусственного интеллекта. Это связано с тем, что 
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архитектура нейронной сети напрямую влияет на ее способность решать поставленные задачи: каче-

ство работы модели, ее производительность, вычислительную эффективность и возможность масшта-

бирования [17]. 

Исходя из последующего применения в предварительной диагностике заболеваний, наиболее 

подходящими кандидатами для дифференциации здоровых добровольцев и пациентов с патологией 

являются нейронная сеть прямого распространения типа многослойный персептрон (полносвязная 

нейронная сеть) и сверточная нейронная сеть. В отличие от полносвязной нейронной сети сверточная 

выявляет не столько вклад каждого отдельного паттерна в результат, сколько вклад совокупностей 

этих паттернов. На рис. 4 приведена оптимальная архитектура нейронной сети для классификации име-

ющегося набора экспериментальных данных с газоаналитических медицинских приборов. 
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Рис. 4. Архитектура нейронной сети для диагностики рака легких и верхних дыхательных путей по выдыхаемому воздуху 

Fig. 4. Neural network architecture for lung and upper respiratory tract cancer diagnosis by exhaled air 
 

Для поиска оптимальной архитектуры нейронной сети использовались такие стратегии, как слу-

чайный поиск [16] и байесовская оптимизация. Суть обеих методик заключается в автоматизации про-

цесса подбора параметров нейронной сети. При случайном поиске параметры побирались случайным 

образом, а при байесовской оптимизации использовалась вероятностная модель для представления неиз-

вестной целевой функции (функции потерь). Приоритет в работе был отдан байесовской оптимизации.  

При использовании этой стратегии определялось количество и содержание скрытых слоев, в каж-

дом слое задавались диапазон изменения количества нейронов и шаг, с которым это количество меня-

лось. Задавались варианты функций активации, например linear, tanh, sigmoid или relu. Для компиляции 

модели выбирался оптимизатор, например Adam или SGD, задавался диапазон изменения скорости 

обучения, выбиралась категория потерь. Для решаемой задачи это всегда categorical_crossentropy. 

Определялась метрика, например accuracy, precision, recall или f1-score. В нашей работе оценка каче-

ства нейронной сети проводилась по метрике accuracy. Далее определялись количество комбинаций 

гиперпараметров для проверки, количество запусков для каждой комбинации, количество эпох и раз-

мер партии. В результате реализации байесовской оптимизации получена архитектура нейронной сети 

с параметрами, обеспечивающими лучшие показатели по выбранной метрике, точность на первой пе-

рекрестной группе для рака легких составила 90%. Во всех скрытых слоях нейронной сети использо-

валась функция активации relu. Для используемых наборов данных нейронные сети с тремя скрытыми 

слоями показали себя эффективными: обучение проходит относительно быстро, а качество получается 

сравнительно высоким. В дальнейшем в нейросетевом классификаторе предполагается использование 

трехслойной архитектуры сверточной нейронной сети. 

Нейронная сеть в работе обучалась методом обратного распространения сигнала ошибки с учетом 

сверточной архитектуры. Завершение процесса обучения нейронной сети происходило по достижении 
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минимума ошибки, получаемого на верифицируемом множестве данных образцов выдыхаемого воз-

духа. Верифицирующее множество наборов данных выделялось из исходного набора данных проб  

выдыхаемого воздуха, из которого также отбирались пробы для обучения без пересечения обучающих 

и верифицирующих наборов. 

Полная размерность входного слоя нейронной сети соответствует количеству значений с ана-

лого-цифровых преобразователей по 24 датчикам прореженного десятого импульса термоциклирова-

ния и составляет 432 значения. Выходной слой – два нейрона, принимающие значения в диапазоне  

от 0 до 1. Исходный порог разделения проб составляет 0,5, но в процессе обучения истинное значение 

порога уточняется с учетом разного количества проб в классах обучающего набора нейронной сети. 

Значение на втором нейроне, близкое к 1, выше порога разделения означает вероятностную оценку 

принадлежности пробы выдыхаемого воздуха к классу пациентов с раком легких или верхних дыха-

тельных путей, ниже порога до 0 – к классу здоровых добровольцев. 

При определении оптимальных параметров обучения нейронной сети на наборах данных, полу-

ченных с газоаналитических медицинских приборов, проводился подбор гиперпараметров: количества 

эпох обучения, размера партии и скорости обучения. В результате оптимальное значение скорости обу-

чения learning_rate составило 0,001. Исследование зависимости эффективности классификатора от ко-

личества скрытых слоев показало, что чем их больше, тем точнее классификатор, однако увеличение 

количества скрытых слоев более трех не способствует значительному увеличению точности нейронной 

сети, но способствует существенному увеличению времени ее обучения. Размер партии влияет на ско-

рость обучения нейронной сети и ее эффективность, этот гиперпараметр всегда должен быть как можно 

больше, но он ограничен ресурсами вычислительной машины. В нашей работе размер партии 

batch_size составил 128. Количество эпох обучения, как правило, выбирается с учетом необходимости 

научить нейронную сеть обобщать, а не запоминать. Исследования показали, что для нашего набора 

данных этот процесс происходит за 20 эпох. 

 

5. Экспериментальная часть 

 

Программная реализация алгоритма нейросетевой обработки данных осуществлялась в среде  

Jupyter Notebook на языке программирования Python под управлением операционной системы Linux 

Ubuntu. Для этого использовались встраиваемые библиотеки TensorFlow и Keras. 

При запуске алгоритма выполняются предварительная обработка исходных данных, обучение 

нейронной сети и перекрестная проверка. После обработки исходных данных осуществляются их ана-

лиз и визуализация. По результатам обучения нейронной сети формируются зависимости потерь и точ-

ности от эпох, визуализация t-SNE и выполняется решение обратной задачи нейронной сети. По ре-

зультатам перекрестной проверки строятся зависимости ROC и PR [18], вычисляются их показатель 

AUC [19] и пороги разделения проб, формируется диаграмма распределения проб и матрицы неточно-

стей. 

В первом эксперименте по нейросетевой обработке данных с газоаналитических медицинских 

приборов использовался набор проб от 47 здоровых добровольцев и 53 пациентов с раком легких. По-

сле обучения нейронной сети были сформированы метрики оценки ее эффективности, в том числе 

ROC-характеристика, и определено значение параметра AUC. График ROC-характеристики представ-

лен на рис. 5. Точность предварительной диагностики с классификатором на основе сверточной 

нейронной сети составила в среднем 90% при средних показателях чувствительности 86,79% и специ-

фичности 93,62%. 

Порог разделения положительных и отрицательных проб определен путем анализа ROC-харак-

теристики. Его значение составило 0,534, и оно учитывается при проведении перекрестной проверки  

и для определения показателей специфичности и чувствительности нейросетевого классификатора.  

Величина AUC-ROC составила 0,950, что указывает на высокое качество классификации проб выды-

хаемого воздуха с помощью сверточной нейронной сети и имеющегося обучающего набора экспери-

ментального данных.  
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Рис. 5. ROC-характеристика качества обучения нейронной сети для классификации здоровых добровольцев  

и пациентов с раком легких 

Fig. 5. ROC-characteristic of the neural network training quality for classifying healthy volunteers and patients with lung cancer 
 

Во втором эксперименте были проведены аналогичные исследования с использованием набора 

данных, включающего 47 здоровых добровольцев и 53 пациента с раком верхних дыхательных путей, 

в том числе головы и шеи. Этот эксперимент позволил расширить исследование и оценить воспроиз-

водимость полученных результатов в другой клинической группе. Анализ данных пациентов с раком 

верхних дыхательных путей проводился с использованием аналогичных методологических подходов, 

как и в первом эксперименте, что обеспечило сопоставимость результатов. Полученные результаты 

подтвердили статистическую значимость выявленных закономерностей и продемонстрировали потен-

циал применяемого подхода для диагностики онкологических заболеваний разных локализаций. Ре-

зультаты формирования ROC-характеристики для второго эксперимента приведены на рис. 6. 
 

 

Рис. 6. ROC-характеристика качества обучения нейронной сети для классификации здоровых добровольцев  

и пациентов с раком верхних дыхательных путей 

Fig. 6. ROC-characteristic of the neural network training quality for classifying healthy volunteers  

and patients with upper respiratory tract cancer 
 

В результате второго эксперимента точность предварительной диагностики составила в среднем 

87% при показателях чувствительности 92,45% и специфичности 82,98%. Порог разделения положи-

тельных и отрицательных проб выдыхаемого воздуха был найден с помощью анализа ROC-характери-

стики и составил 0,448. Величина AUC составила 0,926, что ниже, чем в первом эксперименте, но опре-

деляющее высокое качество работы классификатора.  

Результаты исследований, представленные в работе, подтверждают наличие обобщенного при-

знака дифференциации выдыхаемого воздуха от здоровых добровольцев, пациентов с раком легких  

и пациентов с раком верхних дыхательных путей. На имеющемся сравнительно небольшом наборе 

экспериментальных данных с учетом применяемых метрик качества обучения нейронной сети этот 
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признак дифференциации классов определяется с высокой достоверностью (P < 0,05). Решение обрат-

ной задачи позволяет выявить датчики и, как следствие, группы летучих органических соединений, ха-

рактерные для отдельной рассматриваемой патологии в сравнении с группой здоровых добровольцев.  

На текущем этапе исследования изучались возможность и эффективность использования цифро-

вых паттернов выдыхаемого воздуха с разным форматом и разными архитектурами нейронных сетей 

для дифференциации здоровых добровольцев и пациентов с патологией. С учетом полученных резуль-

татов можно также заключить, что большой перспективой обладает технология оцифровки не только 

выдыхаемого воздуха человека, но и всех возможных прямых и косвенных данных, характеризующих 

состояние здоровья человека, включая анамнестические показатели, биохимические и др., с формиро-

ванием медицинского информационного цифрового двойника человека. Применение цифровых двой-

ников человека совместно с алгоритмами нейросетевой обработки данных, учет дополнительных све-

дений, например таких, как возраст, имеющиеся хронические заболевания и др., позволит выявлять 

закономерности в изменении состояния здоровья и с высокой точностью определять рекомендации для 

его улучшения. 

 

Заключение 

 

В работе предложена архитектура нейронной сети для проведения процедуры предварительной 

диагностики злокачественных новообразований легких и верхних дыхательных путей по анализу вы-

дыхаемого воздуха. В исследовании применялись полносвязные и сверточные нейронные сети для 

классификации сигналов, поступающих в виде цифровых кодов с неселективных полупроводниковых 

газовых датчиков. Сравнительный анализ архитектур показал, что сверточная нейронная сеть (CNN) 

демонстрирует большую эффективность по сравнению с полносвязной (DNN) на данных с газоанали-

тических медицинских проборов. Это обусловлено способностью CNN выявлять общие сигнатуры  

в сигнале за счет использования ядер свертки, что особенно актуально при анализе временных рядов 

термоциклирования датчиков. Полносвязные сети, хотя и способны обучаться сложным зависимостям, 

страдают от избыточности параметров, что приводит к более быстрому переобучению, особенно при 

увеличении объема входных данных. 

Исследование показало, что использование полного набора данных сигнала с одного цикла из-

мерения не является необходимым для достижения высокой точности классификации. Наибольшую 

информативность несет последняя волна сигнала – финальный этап термоциклирования, когда датчики 

достигают максимальной чувствительности к отдельным летучим органическим соединениям малой 

концентрации в выдыхаемом воздухе. Прореживание данных в пределах последнего импульса термо-

циклирования не оказывает существенного влияния на качество классификатора, что позволяет сокра-

тить объем входных данных без потери точности. В то же время подача на вход всей последовательности 

сигнала увеличивает время обучения, требует больше вычислительных ресурсов и ускоряет процесс 

перехода в состояние переобучения, особенно в случае полносвязной архитектуры нейронной сети. 

Сверточная архитектура оказалась более устойчивой к вариативности экспериментальных дан-

ных и обеспечила лучшую обобщающую способность. Характеристики точности CNN достигли 

уровня 86,79% по показателю чувствительности и 93,62% по специфичности для 47 проб выдыхаемого 

воздуха от здоровых добровольцев и 53 – от пациентов с раком легких; 92,45% по показателю чувстви-

тельности и 82,98% по специфичности для 47 проб здоровых добровольцев и 53 – пациентов с раком 

верхних дыхательных путей, что сопоставимо с эффективностью современных рентгенологических 

методов визуальной диагностики рассматриваемых патологий. Эти показатели были получены в усло-

виях обеспечения баланса между сложностью модели и объемом входных данных, что обусловлено 

необходимостью как выбора оптимальной архитектуры нейронной сети, так и оптимизации формата 

входных данных и информационного пространства входных признаков дифференциации. Таким обра-

зом, сверточная нейронная сеть с использованием только последнего импульса сигнала термоцикли-

рования представляет собой достаточное и рациональное решение с точки зрения производительности, 

точности и устойчивости к переобучению, что делает ее предпочтительной для интеграции в газо-
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аналитические медицинские приборы скрининга злокачественных новообразований легких и верхних 

дыхательных путей. 
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Введение 

 

При исследовании систем массового обслуживания (СМО) [1] одной из главных задач является 

получение в аналитическом виде распределения вероятностей числа заявок в системе, обычно в стаци-

онарном режиме работы. При этом из-за трудностей математического характера только в редких слу-

чаях возможно получить точный аналитический результат. В некоторых случаях удается аналитически 

получить аппроксимации распределений, используя асимптотические методы [2, 3] или аппроксимации 

исходных распределений [4]. В остальных случаях возможно получение рекуррентных алгоритмов [5] 

либо – чаще всего – проведение численного или имитационного моделирования [6]. 

Имитационное моделирование позволяет получить численный результат практически для любой 

конфигурации СМО. Поэтому возникает идея – провести серию экспериментов по имитационному мо-

делированию одной и той же СМО с разными значениями параметров, получить наиболее подходящие 

в каждом случае распределения вероятностей числа заявок в системе, а затем систематизировать эти 

результаты и оценить влияние каждого входного параметра на результирующую функцию распреде-

ления. Таким образом, в качестве результата будет предложена аппроксимация функции распределе-

ния вероятностей числа заявок в системе в виде какой-то известной функции распределения, пара-

метры которой определяются в терминах исходных параметров модели. В приложении реализован банк 

распределений, среди которых производится поиск. 

В настоящее время в ИПМКН ТГУ ведется разработка программного комплекса SimQ [7], пред-

назначенного для имитационного моделирования систем массового обслуживания. Предполагается  

использовать ядро этой системы для выполнения непосредственно процесса имитационного модели-

рования и получения эмпирических распределений, а затем с помощью надстроенного каскада моду-

лей построить аналитическую аппроксимацию числа заявок в системе. В данной работе предложена 

концепция архитектуры программного комплекса, который будет выполнять эту задачу, описаны за-

дачи каждого модуля, основные идеи по реализации алгоритмов. 

 

1. Концепция архитектуры приложения 

 

Чтобы реализовать описанный процесс, предлагается следующая концепция архитектуры разра-

батываемого программного комплекса (рис. 1; на рисунках используется нотация UML [8]). Мы выде-

ляем пять основных частей системы: Интерфейс пользователя (UI), Управление (AF_Controller), Мо-

дуль оценки параметров (Estimator), Ядро моделирования SimQ и Модуль подбора аналитических вы-

ражений (Analytic). 

Пакет UI предназначен для элементов, формирующих интерфейс пользователя. С помощью этих 

элементов пользователь выбирает конфигурацию системы массового обслуживания, задает параметры 

модели и параметры процесса построения аналитической аппроксимации. Здесь же находятся объекты, 

с помощью которых производится вывод результатов по окончании процесса построения аналитиче-

ской аппроксимации. 

Пакет AF_Controller реализует функции управления процессом построения аппроксимации, мно-

гократно запускает имитационное моделирование выбранной системы (конфигурации СМО) для раз-

личных значений варьируемых параметров модели, получает от модуля Estimator соответствующие 

оценки распределений и передает их в модуль Analytic. 

Работа пакета Estimator подробно описана в [9]. Его задачами являются поиск наиболее близкого 

распределения вероятностей из имеющейся коллекции распределений и оценка его параметров. На са-

мом деле оценки строятся для каждого распределения из коллекции, если это возможно, при этом вы-

числяется метрика близости построенной оценки к эмпирическому распределению (в настоящей статье 

для этого используется расстояние Колмогорова). 

Ядро моделирования SimQ [7] занимается непосредственно имитационным моделированием за-

данной СМО и выдает в качестве результата эмпирическое распределение вероятностей числа заявок 

в системе. 
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Наконец, задачей пакета Analytic является построение аппроксимации распределения вероятно-

стей числа заявок в выбранной СМО в аналитической форме. Для этого используются выражения для 

распределений из имеющейся коллекции, а также построенные с помощью Estimator оценки распреде-

лений и их метрики близости к результатам имитационного моделирования. 
 

 

Рис. 1. Концепция архитектуры приложения для построения аналитической аппроксимации 

Fig. 1. Concept of the architecture of the application for constructing analytical approximation 

 

В результате пользователь получает в аналитическом виде предполагаемое распределение веро-

ятностей числа заявок в системе для выбранной модели СМО. Это распределение в рамках данной 

работы будем называть аналитической аппроксимацией. В принципе, приложение может выдавать 

пользователю все аналитические аппроксимации, полученные для каждого элемента коллекции рас-

пределений, сортированные по значению некоторой агрегированной метрики близости, чтобы пользо-

ватель наглядно видел точность каждого вида аппроксимации и мог выбрать подходящую, даже если 

значение метрики близости (погрешность) было не минимальным. Это полезно, например, в тех слу-

чаях, когда погрешность отличается незначительно, но одно из распределений является более удобным 

для использования на практике. 

 

2. Общий контур процесса построения аппроксимации 

 

Рассмотрим общий ход предлагаемого процесса построения аналитической аппроксимации рас-

пределения вероятностей в разрабатываемой системе (рис. 2). 

Пользователь выбирает конфигурацию (тип) СМО, в некоторых случаях задает значения неиз-

меняемых параметров модели, а также параметры самого процесса построения. Эти данные поступают 

в AF_Controller, который в цикле перебирает все значения варьируемых параметров модели, необхо-

димые для построения аналитических выражений, запускает для них имитационное моделирование 

соответствующей СМО в Ядре моделирования SimQ, передает получаемые при этом эмпирические 

распределения модулю Estimator, который строит для них оценки распределения и вычисляет значения 

метрики качества для каждой оценки. Эти оценки и соответствующие значения метрик записываются 

в Структуру ПРО («Параметры–Распределение–Оценки»), которая индексируется по выбранным зна-

чениям параметров СМО. Этот процесс продолжается до тех пор, пока не будут выбраны все необхо-

димые значения варьируемых параметров модели. 
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Далее сформированная Структура ПРО передается модулю Analytic, который на ее основе строит 

аналитические аппроксимации распределения вероятностей числа заявок в СМО выбранной пользова-

телем конфигурации, а также для каждой такой аппроксимации вычисляет некоторую агрегированную 

метрику качества, например, используя значения метрики качества оценок распределений, полученных 

ранее и хранящихся в Структуре ПРО. 
 

 

Рис. 2. Процесс построения аналитической аппроксимации 

Fig. 2. Process of constructing of the analytical approximation 

 

Результат выдается пользователю в виде аналитических выражений аппроксимаций для распре-

деления вероятностей, выполненных в терминах исходных (варьируемых) параметров СМО. 

 

3. Общая архитектура системы, связанная с построением аналитических аппроксимаций 

 

На рис. 3 показана часть элементов пакетов системы, которые задействованы в процессе постро-

ения аналитических аппроксимаций. 

В пакете AF_Controller содержатся следующие важные для текущего рассмотрения классы:  

CollectAFs – класс, который запускает вычисление аналитических функций параметров оценен-

ных распределений (аппроксимаций) [9]. Его операции: 

AFs_Collect(init: String): AF[*] – метод, который запускает вычисление аналитических аппрок-

симаций параметров и выдает результаты в виде массива структур AF (см. ниже). Сначала вызывается 

метод формирования массива структур ПРО (массив содержит формулы для всех возможных парамет-

ров всех необходимых оценок) класса CalcPDE, и на основе этого массива запускается формирование 

массива структур AF, обращаясь к пакету Analytic. init – атрибут, который хранит конфигурацию и 

значения параметров СМО и параметры симуляции. 
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PDEs_Collect(): PDE[*] – метод, который в цикле перебирает все значения варьируемых пара-

метров модели, запускает формирование структур ПРО (класс PDE, см. ниже), обращаясь к методам 

класса CalcPDE, и собирает из этих структур массив. 
 

 

Рис. 3. Структура пакетов Analytic, Estimator, AF_Controller 

Fig. 3. Structure of the Analytic, Estimator, AF_Controller packages  

 

CalcPDE – класс, который запускает процесс имитационного моделирования, чтобы получить 

эмпирическое распределение и его оценки (аппроксимации распределениями из банка распределений 

с оценками их параметров), а после формирует массив ПРО. 

PDE_Calc(init: String): PDE – вызывает методы пакетов Ядро SimQ для генерации эмпирических 

распределений и Estimator для получения оценок и соответствующих значений метрик качества,  

а также вызывает свои методы для записи этих оценок и метрик в Структуру ПРО. Возвращает Струк-

туру ПРО. 

PDE – класс, который представляет в приложении структуру ПРО, содержит следующие атри-

буты: 

var_params: Real[*] – массив исходных параметров системы и их значений;  

emp: Real[*] – массив значений эмпирического распределения; 

est_name: String – название оценки (распределения); 

est_params: Real[*] – массив оценок параметров;  

est_tests: String[*] – массив метрик качества оценок параметров. 

Структура PDE и пример заполнения данными приведены на рис. 4. Массив исходных парамет-

ров системы и их значений var_params содержит значения параметров исходной СМО, в том числе 

заданные и изменяемые в классе CollectAFs; массив значений эмпирического распределения emp со-

стоит из пар «значение–вероятность», представляющих эмпирическое распределение вероятностей, 

полученное в результате имитационного моделирования; оценки распределения: названия оценок 

est_name – ключевые слова, определяющие распределение вероятностей из банка распределений, 
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массив оценок параметров est_params – массив пар «параметр–значение», полученный на основе по-

строения оценок параметров для одного est_name на основе текущего emp, массив метрик качества 

est_tests содержит набор значений метрик качества (точности) соответствующей оценки распределе-

ния. Обозначения λ, γ и β приведены в качестве примера варьируемых параметров, для конкретной 

конфигурации, рассматриваемой СМО, они могут означать, например, соответственно интенсивность 

входящего потока, интенсивность обслуживания заявок и интенсивность ухода заявок из очереди. Дру-

гие обозначения, используемые на рисунке: Kolm.Dist, ω2 – метрики качества (расстояние Колмогорова 

и метрика «омега-квадрат» соответственно), p – параметр геометрического распределения, μ, σ – пара-

метры дискретизированного нормального распределения (математическое ожидание и среднеквадра-

тическое отклонение). 
 

 

Рис. 4. Структура типа PDE (ПРО) и пример ее заполнения 

Fig. 4. Structure of PDE type and an example of its filling 

 

Пакет Estimator, представленный впервые в [9], модифицирован и дополнен. Он содержит сле-

дующие классы, важные для текущей работы: 

AbstractDist_Est – абстрактный класс, представляющий одно распределение вероятностей из 

банка распределений и включающий в себя всю информацию об оценке его параметров (в том числе 

метрики качества). Его атрибуты и операции:  

name: String – имя распределения (оценки распределения); 

Calc_Everything(init: String, emp: Emp): AbstractDist_Est – для заданного эмпирического распре-

деления emp строит оценку и вычисляет для нее значения метрик качества. 

Dist_Est_Collection – класс, позволяющий осуществлять операции над классами-потомками  

AbstractDist_Est: создавать экземпляры этих классов, вызывать их методы и т.п. Фактически представ-

ляет собой точку доступа к коллекции распределений вероятностей из банка распределений. Доступ 

осуществляется через следующий атрибут: 

Collection: AbstractDist_Est[*] – в нем содержатся экземпляры каждого класса-потомка 

AbstractDist_Est (по одному на класс) из банка распределений. Этот массив формируется на старте при-

ложения и позволяет другим классам работать с банком распределений для оценок. 

Пакет Analytic содержит следующие важные для рассмотрения классы: 

CalcAF – его задачей является построение (аппроксимация) аналитических зависимостей значе-

ний параметров оценок распределений от исходных параметров конфигурации СМО. Основной интер-

фейс этого класса:  

AF_Calc(x: Real[*], y: Real[*]): AF[*] – метод, который формирует аналитические аппроксима-

ции параметров оценок распределения в виде функций исходных параметров (конфигурации) СМО. 

На вход подается массив значений x оцениваемого параметра; массив значений y параметра конфигу-

рации СМО. Возвращает массив аналитических оценок выражений для параметра x через параметр y.  

AF – класс, который представляет в приложении структуру, содержащую необходимую инфор-

мацию по аналитическим оценкам параметров распределения. Имеет следующие атрибуты: 

est_name: String – название распределения; 

var_params: Real[*] – массив варьируемых параметров и их значений; 

est_params: Real[*] – массив параметров распределения; 

param_afs: String[*] – массив аналитических функций оценок параметров; 
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param_afs_tests: String[*] – массив метрик качества для аналитических функций оценок парамет-

ров. 

Этот тип данных предназначен для сохранения аналитических выражений оценок параметров 

распределения, полученных в методе AF_Calc(…) класса CalcAF. AF состоит из названия распределения-

оценки, значений варьируемых параметров, параметров оценки, массивов полученных аналитических 

функций оценок параметров, массивов метрик качества для каждой аналитической оценки. Структура 

данного класса и пример заполнения атрибутов представлены на рис. 5.  
 

 

Рис. 5. Структура класса AF и пример ее заполнения  

Fig. 5. Structure of AF class and an example of its filling 

 

4. Реализация общего контура процесса построения аналитических аппроксимаций 

 

На рис. 6 представлена общая реализация поведения прототипа в виде взаимодействия между 

элементами системы.  
 

 

Рис. 6. Реализация общего контура процесса построения аналитических аппроксимаций 

Fig. 6. Implementation of the general outline of the process of constructing analytical approximations 
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Вычисление аналитических функций начинается с запуска метода AFs_Collect(…) объекта класса 

CollectAFs, который сначала формирует массив Структур ПРО (коллекцию объектов типа PDE). Для 

этого в цикле с разными значениями входных параметров он обращается к классу CalcPDE, вызывая 

его метод PDE_Calc(…) для генерации массива Структур ПРО. Метод PDE_Calc(…), в свою очередь, 

обращается к Ядру SimQ, запуская процесс имитационного моделирования заданной СМО с соответ-

ствующими значениями параметров. В результате получаем эмпирическое распределение целевой слу-

чайной величины. Далее в цикле вычисляются оценки этого распределения (аппроксимации и метрики 

их точности) через обращение к объектам из коллекции Collection класса Dist_Est_Collection пакета 

Estimator, и возвращается Структура ПРО (объект PDE).   

После этого на основе массива сформированных Структур ПРО класс CollectAFs в цикле вызы-

вает метод класса CalcAF для построения аналитических функций параметров оценок. 

Основная теоретическая проблема, решение которой является критически важным для реализа-

ции модуля Analytic и работы всей системы, – это разработка методов построения самих аналитических 

аппроксимаций параметров оценок по имеющимся наборам данных. Здесь авторы видят возможность 

использования как прямых методов (построение уравнений и их решение), так и методов регрессион-

ного анализа [10, 11] и даже, возможно, методов машинного обучения [12–14]. Выполнена опытная 

апробация работоспособности предложенной концепции архитектуры с прототипом модуля Analytic. 

 

Заключение 

 

Таким образом, в результате работы сформулированы общая концепция архитектуры приложе-

ния и основной контур построения аналитических аппроксимаций распределения числа заявок в СМО, 

конфигурацию которой определяет пользователь. Представленная концепция предлагает общую архи-

тектуру, ключевые элементы и описание основных контуров взаимодействия программного комплекса, 

предназначенного для поиска аппроксимаций распределений вероятностей числа заявок и других ве-

роятностных характеристик функционирования СМО в аналитическом виде. Реализация программного 

комплекса позволит получать аналитические выражения или их аппроксимации для указанных харак-

теристик для СМО различных конфигураций, в том числе и таких, где получение аналитических ре-

зультатов не представляется возможным.  
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