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Maximum likelihood decoding is an extensively used technique for digital commu- 

nication systems. The hardness of the maximum likelihood decoding problem is the 

fundamental basis of the security justification for code-based cryptography. The study 

of code-based cryptography algorithms is considered as one of the main directions in 

the development of post-quantum cryptography. Nevertheless, it is known relatively 

little about the hardness ов the maximum likelihood decoding problem. In this рарег, 

we present an alternative proof of the NP-completeness of the maximum likelihood 

decoding problem that provides additional evidence for the security of cryptographic 

algorithms based оп Classic McEliece. Also, we consider the counting variant оЁ 

the maximum likelihood decoding problem, an important tool for finding collisions. 

‘We obtain a parsimonious reduction from the perfect matching problem and а weakly 

parsimonious reduction from the simple Max Cut problem. As a consequence, we 

obtain the #P-completeness of the counting variant of the maximum likelihood de- 

coding problem. Also, we 

decoding problem for class 

point of view of quantum computing and post-quantum cryptography. In particular, 

ме obtain completeness results for classes WPP, C_P, апа PP. 

msider some counting variants оЁ the maximum likelihood 

s of computational complexity that are of interest from the
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Введение 

Проблема декодирования по принципу максимального правдоподобия является од- 
ной из ключевых алгоритмических проблем теории кодирования. От качества её ре- 
шения зависит эффективность применения кодов. Однако, как показано в работе |1], 
эта проблема является вычислительно трудной даже для двоичных линейных кодов. 
С другой стороны, трудность этой проблемы стала, обоснованием криптографической 
стойкости алгоритма шифрования, предложенного в [2]. Схема алгоритма [2] оказалась 
весьма популярной и продуктивной. Она получила существенное дальнейшее развитие 
(см., например, [3-5]). В частности, в конкурсе NIST (National Institute of Standards апа 
Technology) [6] в качестве кандидатов на постквантовый криптографический стандарт 
участвовали алгоритмы Classic McEliece и NTS-KEM |7, 8]. Алгоритм Classic McEliece, 

по сути дела, отражает изначально предложенную в работе [2] идею. Алгоритм NTS- 
КЕМ является существенной переработкой алгоритмов (2, 9| на основе преобразования, 

подобного преобразованиям [10, 11]. Однако ero криптографическая стойкость во мно- 

гом опирается на тот же фундамент, что и у Classic McEliece. Существенное внимание 

исследователи проявляют и к разработке для алгоритма |2| квантовых аналогов (см., 

например, [12, 13]). 
Развитие квантовых технологий B последние годы значительно усилило интерес 

к проблеме декодирования с различных точек зрения. Существующие и перспектив- 

ные технологии квантовых вычислений критически зависят от методов кодирования и 

эффективности исправления ошибок. Этим обусловлены интенсивное развитие кван- 

товой теории кодирования и разработка новых квантовых кодов [14-16]. Возможная 

стойкость Cl ° McEliece относительно квантовых атак обусловила ряд исследова- 

ний 1o криптоанализу [17-19]. С другой стороны, для нахождения более надёжного 

алгоритма существенное внимание уделяется адаптации Classic McEliece к новым ко- 

дам [20-22]. Исходя из этого, возросла важность дополнительного исследования вы- 

ложности проблемы декодирования как в классическом, так и в кван- 

товом случае. Для квантовой проблемы декодирования рассмотрен ряд формулиро- 

BOK, для которых получены результаты не только по №Р-трудности [23-25), но и по 

#Р-трудности |26, 27]. Значительный интерес проявляется K поиску эффективных ме- 

тодов решения проблемы декодирования. Рассматриваются различные подходы к ре- 

шению проблемы декодирования не только для классических кодов, HO и для кван- 

товых [28-30]. Среди используемых методов можно выделить обучение с подкреп- 

лением [31, 32|, глубокое обучение [33] и различные типы нейронных сетей [34, 35]. 
В частности, можно отметить активное применение свёрточных сетей [36, 37]. Следу- 

€T отметить, что гипотеза о трудности решения проблемы декодирования, так же как 

и проблемы обучения с ошибками (LWE), используемой для обоснования надёжности 

криптографических алгоритмов на решётках, является некоторым противопоставле- 

нием гипотезе об эффективности машинного обучения [38]. Многочисленные попытки 

применения методов машинного обучения для решения задач, связанных с декодирова- 

нием, в значительной мере обусловлены уверенностью в недостаточной обоснованности 

трудности проблемы декодирования с практической точки зрения, что неоднократно 

сследователями [39-41]. 
На практике как B теории кодирования, так и в криптографии обычно предпо- 

лагается, что ошибка должна быть сравнительно мала. Желательно, чтобы она была, 

числительной 

отмечалось и 
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меньше минимального расстояния кода. Для исправления w ошибок необходимо мини- 

мальное расстояние 2w+ 1. Для проблемы декодирования №Р-трудность возможности 

декодирования доказана лишь для очень больших значений ошибки, которые навер- 

няка не встретятся на практике. 

Вопрос о количестве вариантов декодирования является принципиально важным 

для практического применения. От его решения зависит качество декодирования полу- 

чателем информации. Кроме того, задача выяснения количества вариантов декодиро- 

вания возникает при поиске возможных коллизий, что делает её важной с криптогра- 

фической точки зрения. Однако количественные варианты проблемы декодирования 

даже не рассматривались. В частности, в отличие от квантовых кодов, #Р-трудность 

для классических двоичных кодов не доказана. Следует отметить, что трудность KO- 

личественных версий не следует автоматически из №Р-трудности проблемы. Инте- 

ресным примером является проблема NAESAT [42, п. 9.2]. Эта проблема является 

МР-полной [42, теорема 9.3|. Вариант NAESAT, требующий выяснить единственность 

решения, разрешим за полиномиальное время |43], а вариант NAESAT, требующий 

найти количество решений, является #Р-полной проблемой [44]. 

В данной работе доказана вычислительная трудность вопроса о количестве вари- 

антов декодирования. 

1. Основные определения 

Двухэлементное поле будем обозначать через Zp; вес Хэмминга wt(z) вектора 

xr e Z? — количество его ненулевых координат. Рак*(*мотрим (1)0})3]&:[1:1]0[‘ определение 

ПрОбЛ[‘МЫ декодирования по принципу максимального правдоподобия‚ 

MAXIMUM LIKELIHOOD DECODING (MLD) 

JIAHO: Двоичная (т X п)-матрица Н € Z5", вектор s € Zy', число k € № 

ВопРрос: Существует ли вектор & € 73, такой, что Нх = s и wt(z) < k? 

Следуя [45], подсчитывающей машиной Тьюринга будем называть стандартную 
недетерминированную машину Тьюринга с дополнительной лентой, предназначенной 
для печати в двоичном виде количества допустимых вычислений этой машины для 
данного входа. Пусть максимальное время допустимого вычисления на входах, размер 
которых не превосходит 1, равно t(n). Предполагается, что подсчитывающая машина 
Тьюринга в худшем случае имеет сложность 1m0 времени t(n). Таким образом, трудо- 
ёмкость генерации количества допустимых вычислений на дополнительной ленте не 
учитывается. 

Класс #Р состоит из всех функций, которые могут быть вычислены подсчиты- 
вающей машиной Тьюринга за полиномиальное время [45]. Количественная версия 
проблемы MLD может быть сформулирована следующим образом: 

#MLD 

ДАНО: Двоичная (т х п)-матрица Н € Z5™*", вектор s € Z5', число k € № 

НАЙти: Количество попарно различных векторов г © ZY, таких, что На = s и 

wt(z) < k. 

Стандартный подход K доказательству #Р-трудности некоторой алгоритмической 

проблемы А заключается B сведении к ней некоторой #Р-полной проблемы В. Однако 

в отличие от №Р-трудности, кроме полиномиальности сводимости должно выполнять- 

ся требование сохранения количества решений [42]. В некоторых случаях необходимо 

более точное определение условия, накладываемого на полиномиальную сводимость. 

Для произвольных исходных данных Г алгоритмической проблемы П обозначим че- 
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рез #I количество решений проблемы П на входе I. Следуя [46], полиномиальную 

сводимость В проблемы П, к проблеме П будем называть слабо экономной, если 

существует полиномиально вычислимая функция fp, такая, что для любых входов 

I € Ци I Е П, таких, что R(I;) = Iy, имеет место равенство #/ = fr(l)#1s. 

Полиномиальная сводимость R проблемы П, к проблеме Iy н: 

если для любых входов Л € П и Iy € Iy, таких, что А(Д) = I, имеет место равенство 

# = #- 

2. Анализ полиномиальных сводимостей для проблемы декодирования 

ывается экономной, 

Многие известные полиномиальные сведения сохраняют количество решений. 

В этих случаях доказательство №Р-трудности является и доказательством #Р-труд- 

ности [42]. Поэтому имеет смысл проанализировать известные полиномиальные сво- 

димости для проблемы MLD. 

Доказательство №Р-трудности проблемы MLD, предложенное в работе [1], осно- 

вано на полиномиальном сведении проблемы существования трёхмерного сочетания, 

М№Р-трудность которой доказана в [47]. Проблема существования трёхмерного сочета- 

ния может быть сформулирована следующим образом. 

3-DIMENSIONAL MATCHING (3DM) 

ДАНО: Натуральное число п € N, множество Т, такое, что |Т| = n, семейство 

трёхэлементных множеств U С Т х Т х Т. 

ВопРрос: Существует ли И/ С U, такое, что |И/ 

имеют общих компонент? 

= п и никакие два элемента И/ не 

Предположим, что Т = {1,2,...,n}, U = {51,5,...,5,}. Полиномиальное све- 

дение проблемы ЗОМ к MLD определяет матрица Н размера т X & 

S; = (а, , с) тогда и только тогда, когда в й строке матрицы Н ровно три единицы 

и эти единицы располагаются в столбцах ¢ номерами а, b+ п, с + 2n. Следуя рассуж- 

дениям |1|, легко проверить, что сумма менее чем п строк не даёт вектор, состоящий 

из одних единиц, а сумма п CTPOK, дающая вектор, состоящий из одних единиц, нахо- 

дится во взаимно однозначном соответствии с некоторым решением проблемы 3DM. 

Таким образом, полиномиальное сведение проблемы ЗОМ к проблеме MLD сохраняет 

количество решений. Рассмотрим теперь полиномиальные сведения к проблеме 3DM. 

В работе [47] доказательство №Р-трудности проблемы ЗОМ проведено последо- 

вательным полиномиальным сведением от проблемы выполнимости через проблемы 

З-выполнимости, хроматического числа и точного покрытия. Появление проблемы хро- 

матического числа в последовательности полиномиальных сведений очевидным обра- 

зом делает эту последовательность сведением, не сохраняющим количество решений, 

поскольку вместе с каждой допустимой раскраской решением будет и любая взаимно 

однозначная перестановка цветов. Однако гипотетически это можно обойти аналогич- 

но тому, как это сделано для проблемы вычисления перманента [42, теорема 18.3], 

устанавливая соответствие между количеством решений # проблемы 3-выполнимости 

и количеством решений ¢ld проблемы хроматического числа, где ¢ обозначает количе- 

ство цветов. Поэтому мы остановимся на полиномиальном сведении 3-выполнимости 

к проблеме хроматического числа более подробно. Рассмотрим проблемы 3-выполни- 

мости и хроматического числа в формулировках, соответствующих работе [47]. 

п, такая, что 
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SATISFIABILITY WITH AT MOST 3 LITERALS PER CLAUSE (<3SAT) 
т 

ДАНО: Булева функция f(z1,22,...,7m) = A Di, где для любого 1 < # < r функ- 
i=1 

ция D; является дизъюнкцией He более TPEX литералов U3 множества переменных и 

их отрицаний {z1, T, ..., Ty, T, T2, . .., Ty . 

Вопрос: Существует ли набор значений переменных ) € {0,1}, 1 < j < т, такой, 

что выполняется равенство [(Z1, g, ..., &py) = 17 

CHROMATIC NUMBER (CN) 

ДАНО: Граф G = (V, E), заданный множеством вершин V' и множеством рёбер Ё, 

натуральное число & € № 

ВопРос: Существует ли функция ф : N — {1,2,... , К}, такая, что ¢(u) # ¢(v) для 

любого ребра (u,v) € E? 

В предположении m 2 4 в работе [47] полиномиальное сведение проблемы K3SAT 

к проблеме СМ задаётся следующими соотношениями: 

У = {21,22, .. ., бто } О {21,720, 2w О {о1, 0, 0 } О { 1, Do, В, ), 
E={(z;,~z;): 1 <i<m}U < 

U{(vi,vj) : 1 < 6< т 1<j<m, ## ЛО 

U{(vi,ay) : 1 < ё < т, 157 <т, i # )) 

U{(vi, ау) :1 < б < т, 15 )к т # 53U 
О{(а, Э)) :1 < ё < т, 1 < 7 <т, x & ОО 

О{(саь Э)) :1 < г < т, 1 <) <т, —а & Dy}, 
k=m+1. 

Включение {(vj,v;) : 1 S i <m, 1 < ) < т, i#j} СЕ гарантирует, что ¢(v;) # é(v;) 

для всех 1 < 7 © т, 1 < ] < т, 1 # ). Так как значения функции ¢ для всех вершин из 

множества {щ‚ оее и…} попарно различны и & = т +-1, имеется лишь одно значение 

функции ¢, TAKOE, что оно не является элементом множества {@(v1), Ф(1»), ..., Ф(от)}- 

Обозпачим это значение через а. ВКЛ!ОЧ(‚‘ЦИ(‚‘ 

(o) 11 < 6< т 1 < )< т, #2 )) О{(оы а) 1 1<i<m, 1< )< т i £j}C B 

гарантирует, что для всех 1 < # < т, 1 < j < т, # # j выполняется ф(0;) # Ф(2)) и 

@() # ©(-). Поэтому д(2)) € {Ф(оу),а} н д7р © {9(»)),а} для всех 1 < j < m. 
Из включения {(х;, ;) : 1 < # < т} С Ё получаем {д(г)), Ф(-г))} = {Ф(0)), а} для 

всех 1 < j < т. Поскольку т 2 4 и дизъюнкции содержат не более трёх литералов, 
для любого # найдётся такое j, что @) ¢ Dy u —) & D;. Тогда из условия 

{(г Э)) :1 < # < т, 1 <j<ragD} Ч {(а D)) 11 < б < т 1 < 7 <га р))} СЕ 

получим, что ¢(D;) # а для всех 1 < # < r. Кроме того, отсюда же следует, что 

$(Р)) Е {Ф(и)) : ) € Э,, 1 < 7 < т} О {$()) : а) € Dy, 1 < 7 <т} 

для всех 1 < { © г. Таким образом, функция ф : N — {1,2,... k}, такая, что 

Ф(и) # ¢(v) для любого ребра (u,v) € Е, существует тогда и только тогда, когда для 

любой дизъюнкции найдётся литерал w с условием ¢(w) # а. Мы можем интерпрети- 
ровать а как 0, рассматривая все элементы множества {Ф(11), ¢(va), ..., Ф(от)} как 1.
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Это позволяет убедиться в TOM, что данное полиномиальное сведение не сохраняет KO- 

личество решений. В частности, значение ¢(D;) может совпадать со значением ф для 

любого истинного литерала из дизъюнкции D;. 

Кроме доказательства №Р-трудности проблемы 3DM, предложенного в работе [47], 

имеется доказательство, приведённое в [42, 48], через полиномиальное сведение стан- 

дартной версии проблемы 3-выполнимости, предполагающей наличие ровно трёх лите- 

ралов в каждой дизъюнкции. Однако это полиномиальное сведение тоже не сохраняет 
количество решений. В частности, в обозначениях [48, теорема 3.2| каждой дизъюнк- 

ции ¢j соответствует множество 

©; = {(wilj], 51[7), 52[Л) : ш; € ¢} { (Л 517 52[Л) : (Wi € 5} 

13 этого множества в трёхмерное сочетание M’ можно выбрать любой элемент, C 

ответствующий истинному литералу, что позволяет по одному решению проблемы 

З-выполнимости построить несколько различных трёхмерных сочетаний. 

Мы убедились в ToM, что имеющиеся для проблемы ЗОМ сводимости не подходят 

для доказательства #Р-трудности проблемы #MLD. Однако сводимость, построен- 

ную в работе [1], несложно адаптировать для проблемы совершенного паросочетания 

для двудольного графа. Рассмотрим несколько более общий подход, установив своди- 

мость для произвольного графа. 

PERFECT MATCHING (PM) 

JAnO: Граф G = (V, E), заданный множеством вершин \ и множеством рёбер Ё. 

ВопРос: Существует ли М С Ё, такое, что каждая вершина графа С инцидентна 

ровно одному ребру из множества М? 

Теорема 1. Существует экономная сводимость проблемы РМ к проблеме MLD. 

Доказательство. Bes ограничения общности можем полагать, что граф име- 

ет чётное количество вершин. Рассмотрим граф © = (\, Е), заданный множеством 

вершин V = {vy, v, ..., v, } и множеством рёбер E = {ey, e, ..., en}. Для графа G pac- 

смотрим двоичную матрицу Н размера m X n, такую, что её элемент h; j равен единице 

тогда и только тогда, когда вершина v; инцидентна ребру е;. Пусть & = п/2. Будем 

полагать, что вектор 5 состоит из одних единиц. Легко понять, что вектор = € Zf, 
такой, что На = 5 и wt(x) < k, существует тогда и только тогда, когда в графе G 

существует совершенное паросочетание, т. е. такое подмножество М C Ё, что каждая 

вершина графа С инцидентна ровно одному ребру из множества M. Более того, рёбра 

множества М и единицы вектора & находятся во взаимно однозначном соответствии. @ 

В работе [45] доказано, что проблема вычисления перманента двоичной матрицы 

является #Р-полной относительно полиномиальной сводимости. Поскольку значение 

перманента двоичной матрицы равно количеству совершенных паросочетаний в дву- 

дольном графе, заданном этой матрицей, из теоремы 1 и результала [45] вытекает 

Следствие 1. Проблема #MLD является #Р-полной относительно полиноми- 

альной сводимости. 

Кроме полиномиального сведения, предложенного в |1|, существует ещё один под- 

ход к обоснованию М№Р-трудности проблемы MLD. Он основан на использовании 

МР-трудности проблемы существования максимального разреза, которая может быть 

сформулирована следующим образом [39, 42].
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SiMPLE Max Cut (SMC) 
ДАНО: Натуральное число п € N, граф G = (V, E). 

Вопрос: Существует ли такое множество вершин W С М, что |F| 2 n, где F = 

={(u,v):uecW, ve V\W}? 

NP-nosmora проблемы SMC доказана в работе [49] (см. также [42, теорема 9.5]). 

В [50] предложен подход к построению кодов по графам. В [39] указано, что пробле- 

ма MLD является №Р-полной, и это можно доказать, используя матрицу смежности 

графа и вектор, состоящий из одних единиц [39, предложение 1]. Идея [39] получила 

поддержку исследователей (см., например, [51]). Кроме того, на основе МР-полноты 

проблемы SMC предложен ряд подходов к получению альтернативных доказательств 

М№Р-трудности проблемы MLD через промежуточные сведения [52, 53]. Однако подход, 

предложенный в [39], без некоторой доработки использовать нельзя. Например, можно 

рассмотреть полный трёхвершинный граф Кз. Очевидно, что для K3 максимальный 

разрез равен 2. B то же время граф K3 можно представить B виде 

Ка = (/, Е), К = {а о, аз}, E={b1,b.bs}, 

Ы = (а1,02), ba=(a1,a3), — Вз = (а2, а3). 

В этом случае строки матрицы Н имеют вид (1,1,0), (1,0,1), (0,1,1). Матричное урав- 

нение На = s для вектора S, состоящего из одних единиц, равносильно системе урав- 

нений 

аа + о = 1, 

х1 + аз =1, 

хо аз = 1, 

которая, очевидно, не имеет решений. Аналогичная ситуация имеет место для любого 

графа, He являющегося двудольным, а. для двудольных графов максимальный разрез 

всегда равен количеству рёбер графа, что тривиально влечёт разрешимость проблемы 

SMC для двудольных графов за линейное время. 

Непосредственное применение подхода из [39] позволяет получить альтернативное 

доказательство №Р-трудности известной проблемы существования ближайшего кодо- 

вого слова, которую можно сформулировать следующим образом 5|. 

NEAREST CODEWORD (NC) 

ДАНО: Двоичная матрица Н € Z5™", вектор s € Z5', число & € № 

ВопРрос: Существует ли вектор такой г € 73 что м6( На + в) < k? 

3. Полиномиальная сводимость для проблемы максимального разреза 

Проблема MLD активно используется в криптографических целях. В частности, 

большое количество криптографических алгоритмов построено на основе схемы [2|. 

Однако полиномиальная сводимость, установленная B [1], гарантирует трудность про- 

блемы MLD лишь для исходных данных, которые не могут быть использованы на 

практике. Поэтому представляет значительный практический интерес нахождение 

альтернативных доказательств №Р-трудности проблемы MLD. Учитывая существен- 

ное внимание K использованию проблемы SMC для обоснования трудности проблемы 

MLD, установим корректность полиномиальной сводимости проблемы SMC к пробле- 

ме MLD. 

Для произвольного алфавита ¥ обозначим через X", где n € N, множество всевоз- 

можных слов длины п в алфавите 3. Обозначим через 0" и 1", где n € N, единственные 

элементы множеств {0}" и {1}" соответственно.
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Рассмотрим граф © = (V, Е) без петель и кратных рёбер, заданный множеством 

вершин V = {v1, vy, ..., v} и множеством рёбер E = {е1, ey, . . ., е(}. Каждой вершине v; 

поставим в соответствие слово й; € {0, 1}(P“)q, Пусть для любого 1 < @ < р слово h; 

имеет вид ; = @1012... Qig, TAC ;) = 1741 если е; = (vi,v) для некоторого k € 

e {l,...,p}, и а;) = 0P+ если ej # (vi,v) для любого k € {1,...,p}. Определим 

слово 
+1 i = hiphiz .. Рар € {0,1} Н! 

для любого р + 1 < ? < р + (р + 1)g, полагая 

1, j=i-p 1 
0, j#i—p 1 @ hij = 

Пусть вектор 5 состоит из одних единиц, т = p+(p+1)g, п = (p+1)g. С помощью слов 

hi, 1 < 1 < т, определим матрицу Н размера т X n, где i-g строка матрицы Н равна 

слову h; для любого 1 < { < т. Заметим, что подматрица размера n X п матрицы Н, 
состоящая из строк fy, где p+1 < 1 < т, в силу соотношения (1) является сдиничной. 

Покажем, что максимальный разрез графа G He меньше T тогда и только тогда, 

когда существует такой вектор г € 4, что На = s и wt(z) < k, где k = p+(q—7)(p+1). 

Допустим, что максимальный разрез графа G равен r. Без ограничения общности 

можно считать, что г > 0. Тогда существует разбиение / = Vi U \ на непустые 

подмножества Vi и ), такие, что 

{(u,v) : и Е М, © Е , (uv)e Е}| >r (2) 

Каждому ребру e; = (v, )) € E, 1 < # < 4, поставим в соответствие набор столбцов 

матрицы Н с номерами от (t — 1)(р + 1) + 1 до (t — 1)(р + 1) + р + 1. В каждом из 

этих столбцов ровно три единицы: две единицы в первых р строках столбца (по одной 

на каждую вершину ребра €;), что следует из определения слов iy при 1 < 1 < p, u 

одна единица в последних п строках в силу единичности подматрицы, состоящей из 

строк My, где р + 1 < 1 < т. Эти единицы расположены в строках с номерами i, j, 

I+ p, где | — номер столбца. Поэтому в й строке, соответствующей вершине v;, для 

каждого инцидентного вершине v; € И ребра е, имеется группа из p+ 1 единиц в таких 

столбцах, что все остальные CTPOKH, соответствующие вершинам U3 Vi, имеют в этих 

столбцах нули. Отсюда и из неравенства (2) получаем соотношение 

я (;„ hi) >r(p+1). ) 

Из неравенства (3) очевидным образом следует, что вектор 

> м (0 
че 

имеет не более п —т(р--1) нулевых координат. Обозначим через N множество нулевых 

координат вектора (4). По определению вектора s из (1) получаем равенство 

> hi+ > hy 
v EVL J—peN 

(5) 

Рассмотрим вектор 

@ = (1,2, 7)", (6)



О проблеме декодирования MO принципу максимального правдоподобия 13 

такой, что для любого #, 1 < # < п, равенство г; = 1 выполняется тогда и только тогда, 

когда v; € Vi или 1 — р € N. Заметим, что соотношение 1 — р € N гипотетически может 

выполняться лишь при # 2 р + 1. По определению матрицы H получаем равенство 

Hr= % hi+ > h (7) 
„;ЕМ 7-рЕМ 

Из (5) и (7) получаем равенство На = 5. По определению вектора & имеет место 

‚ (8) 

Поскольку вектор (4) имеет не более п — т(р + 1) нулевых координат, по определению 

множества № должно выполняться неравенство 

wt(z) = [Vi| + |М 

Ы <п-т(+1). ) 
Мощность множества V] не превосходит мощности множества всех вершин графа С. 
Поэтому из соотношений (8) и (9) следует неравенство wt(z) < р + п — т(р 1). Так 
как п = (p+1)q, wt(x) < p+(p+1)g—r(p+1)=p+(¢—7)(p+1), что и требовалось. 

Предположим теперь, что существует вектор (6), такой, что На = s и 

м() <р+ @- 01 (10) 
Пусть 

P={ite;=1i<p}, @ = {1: л; =1, 1> р} (11) 

Из (11) по определению матрицы Н получаем равенство 

На =73 hi+ Y й). 
i€P 1Е0 

По предположению На = s, поэтому s = Y hi + 3 hj. Отсюда по определению век- 
зЕР JjEQ 

тора 5 получаем соотношение 

wt (E hi+ 3 hj> =(p+1)q. (12) 
зЕР JjEQ 

По определению расстояния Хэмминга выполняется неравенство 

зЕР 1Е0 зЕР jeQ 

wt (E hi+ X hj> <wt (E /ц) + wt (E hj> В (13) 

По определению матрицы H из (11) получаем 

JeQ 

Из соотношений (6), (11) и (14) следует, что wt( > hj) < wit(z). Отсюда по предпо- 
JEQ 

ложению (10) получаем 

wt (E hj> < р+ (а - т)(р+ 1). (15) 
JeQ
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Из соотношений (12) и (13) очевидным образом следует, что 

(р + 1а < №% (2/11)4…@ > hy). (16) 
зЕР JEQ 

Из (15) и (16) можно получить неравенство 

(p+1)g < wt (Ehl) +p+(g—r)(p+1). (17) 
зЕР 

Соотношение (17) равносильно неравенству 

=D+ v (э)- as) 
ieP 

Множество Р задает множество вершин V(P) = {v; : i € P}, которое определяет 

некоторый разрез E' С Е графа G. Пусть Y hy = (a1, ay, ..., @(р+1)4). Легко понять, 
ЕР 

что для произвольного #, 1 < # < ¢, выполнимость равенства а;) = 1 для какого-либо j, 

удовлетворяющего условию 

=D+ +1<7 < (— )(р+1) +р 1, 

равносильна тому, что выполняется соотношение е, € E' и равенство а; = 1 имеет 

место для всех #, для которых справедливо 

=D+ +1<7< #- )(р+ ) нр 1, 

т.е. в векторе (а1, а, . .., @(р+1)4) все сдиничные координаты разбиваются на непересе- 
кающиеся группы, каждая из которых состоит из р + 1 единиц и соответствует неко- 

торому ребру е; из множества Ё/. Следовательно, wt ( > Л, | = (р + 1)|Е'|. Поэтому 
ЕР 

из неравенства (18) следует требусмое соотношение [E'| > г. 
Таким образом, мы установили полиномиальную сводимость проблемы 5 МС к про- 

блеме MLD. Однако полученное сведение не сохраняет количество решений, поскольку 
для фиксированного разреза каждое разбиение V =V} UV, определяет два вектора , 
а количество таких разбиений существенно зависит от свойств разреза. Более того, яс- 
10, что никакая полиномиальная сводимость, развивающая предложенную в [39] идею 
кодирования векторов вершинами графа, не будет сохранять количество решений. 

4. Количественная версия проблемы максимального разреза 

Для количественного варианта проблемы SMC, пожалуй, наиболее естественно 

рассматривать требование нахождения количества разрезов. Однако нас интересует 

другая версия проблемы. 

#SMC 

ДАНО: Натуральное число п € N, граф G = (V, E). 

НАЙТи: Количество множеств вершин И/ С \/, таких, что выполняется неравенство 

|F| 2 п, где Р ={(u,v): (u,v) Е В, и Е Woo e V\Wh 

Нетрудно убедиться, что полиномиальная сводимость проблемы NAESAT к про- 

блеме $МС [42, теорема 9.5| является слабо экономной сводимостью проблемы 



О проблеме декодирования MO принципу максимального правдоподобия 15 

#NAESAT к проблеме #SMC. В частности, для любого решения проблемы 

#NAESAT мы получаем ровно два решения проблемы #SMC: W и У \ W. 

С учётом тривиальной принадлежности проблемы #SMC классу #Р отсюда и из 

#Р-полноты проблемы #NAESAT относительно слабо экономной сводимости [44] вы- 

текает #Р-полнота проблемы #5 МС относительно слабо экономной сводимости. 

Легко проверить, что полиномиальная сводимость проблемы SMC к проблеме 

MLD, рассмотренная B п. 3, является экономной сводимостью проблемы #5 МС к про- 

блеме #MLD: каждому множеству вершин W, задающему разрез, соответствует един- 

ственный вектор , и наоборот. Поскольку принадлежность проблемы #MLD клас- 

су #Р очевидна, отсюда и из #Р-полноты проблемы #5 МС вытекает 

Теорема 2. Проблема #MLD является #Р-полной относительно слабо эконом- 

ной сводимости. 

5. Полные проблемы для различных классов количественных проблем 

Современная теория квантовых вычислений ассоциирует эффективную вычисли- 

мость с квантовой машиной Тьюринга и рассматривает класс ВОР как класс эф- 

фективно решаемых задач [56, 57). Точное соотношение класса ВОР ¢ классическими 

классами P, NP и PSPACE пока не выяснено. Однако господствует мнение, что 

NP & BQP. Это позволяет разрабатывать постквантовые криптографические алго- 

ритмы, основываясь на трудности №Р-полных проблем [57]. В 1o же время веду 

ся активные исследования в области специализированных квантовых вычислителей. 

В частности, архитектура D-Wave ориентирована на эффективное решение широко- 

го класса №Р-полных проблем [58-60]. Поэтому для важных криптографических мо- 

делей представляет значительный интерес исследование вычислительной сложности 

проблем 3a пределами класса NP [61, 62]. 

Для произвольной квантовой машины Тьюринга Т обозначим через Р,сс(х) Bepo- 

ятность того, что на входе г машина Т переходит в допустимое состояние. Соответ- 

ственно через Р..)(2) обозначим вероятность того, что машина Т отвергает вход . 

Следуя [63] (см. также [64, 65]), будем полагать, что 

— EQP — класс языков L С 3*, для которых существует полиномиальная квантовая 

машина Тьюринга Т, такая, что @ € L = Pa(z) = Ти г ¢ L = Р(х) = 1 для 

любого г € X% 
— BQP — класс языков L С 3*, для которых существует полиномиальная квантовая 

машина Тьюринга Т, такая, что @ € L = Вс(т) > 2/3 и г & L = Р(х) > 2/3 для 

любого г € X% 
— NQP — класс языков L С 3*, для которых существует полиномиальная квантовая 

машина Тьюринга Т, такая, что @ € L = Рс(т) > Ои г ¢ L = Pacc(x) = 0 для 

любого а Е ¥*. 

Для классов EQP, ВОР и МОР имеют место следующие очевидные включения: 

EQP C ВОР C NQP. 

Классы EQP, ВОР и NQP обычно рассматриваются как квантовые аналоги класси- 

ческих классов P, ВРР и NP соответственно |63]). Следует отметить, что алгоритмы 

Шора позволяют решать задачи факторизации и дискретного логарифма в классе 

ВОР [66]. Обычно именно класс ВОР рассматривается как класс алгоритмических 

проблем, которые могут быть эффективно решены на квантовой машине Тьюринга. 

Соответственно класс МОР следует рассматривать в рамках теоретически допустимой 

перспективы. 
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В работе [67] предложен модифицированный вариант квантовой машины Тьюрин- 

га, допускающий возможность измерения вероятности бита после завершения шага 

вычисления. Для этого варианта квантовой машины Тьюринга в [67] определён класс 

PostBQP, являющийся аналогом ВОР. Хотя возможность практической реализации 

варианта машины, предложенного в |67], с точки зрения физики не считается pea- 

листичной, сам класс PostBQP при определённых условиях может быть реализован 

на стандартных квантовых машинах. Поэтому класс PostBQP, как и класс NQP, 

следует учитывать в перспективных возможностях 

Определение класса NP и его криптографического подкласса ОР через класс #Р 

позволяет легко увидеть естественные аналоги NP и UP, расположенные выше 

в иерархии классов вычислительной сложности. Обозначим через ЕР класс разреши- 

мых за полиномиальное время функциональных проблем. Для произвольной недетер- 

минированной машины Тьюринга Т' обозначим через #асст(г) и #rejp(x) количество 

допускающих и отвергающих вход & вычислений соответственно. Обозначим через 

GapP класс всех функций f, для которых существует недетерминированная машина 

Тъюринга Т, такая, что f(x) = #асст(х) — #rejp(z) для всех г. Следуя [63, 68], дадим 

определение ряда классов вычислительной сложности как классов распознаваемых 

A3BIKOB: 

— NP — класс языков L С ¥*, для которых существует функция / € #Р, такая, что 

z€ L & /(х) > 0 для любого z € №*; 
— UP — класс языков L С ¥*, для которых существует функция / € #Р, такая, что 

х ЕГ => [(х) = 1и п # L= f(r)=0 для любого т € X*; 

— РР — класс языков L С X%, для которых существует функция / € СарР, такая, 

что т € L © f(x) > 0 для любого т € X*; 

— $ РР — класс языков L С ¥, для которых существует функция / € СарР, такая, 

что @ € L= f(z) = 1и г ¢ L= /(т) = 0 для любого т € X*; 

— C_P — класс языков L С ¥, для которых существует функция / € СарР, такая, 

что т € L © f(x) =0 для любого т € X*; 

— WPP — класс языков L C ¥, для которых существуют функции / Е СарР и 

g € FP, такие, что для любого а € №* значение функции 0(2) отлично от нуля и 

х ЕГ => /(х) = д(т) и х & L= /(х) = 0. 

Для этих классов справедливы следующие важные соотношения |63]: 

Р С ОР С ©5РР С \УРР С С-Р С РР, 

со — NP C C_P, 

NP C co— C_P =NQP, 

Р СЕОР CBQP С WPP С со — С-Р. 

Кроме того, в работе [67] доказано, что PP = PostBQP. 

Исходя из определений, очевидными аналогами классов NP и ОР представляются 

классы РР и SPP соответственно. При этом классы РР и С-Р размещают в иерар- 

хии классических классов вычислительной сложности на верхней границе квантовых 

вычислений, а класс \УРР на сегодняшний день определяет безопасную границу для 

криптографии. Соответственно класс SPP является «плохим» аналогом для ОР: пер- 

спективные криптографические алгоритмы желательно строить на базе \УРР или 

даже C_P. 

Следует отметить, что с теоретической точки зрения нет фундаментальных пре- 

пятствий для построения криптографических алгоритмов на базе столь сложных клас-
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сов, какими являются классы \УРР и С-Р. Рассмотрим эквивалентное определение 

класса PP, не использующее класс GapP: РР — класс языков L С 3*, для которых 

существуют функции f € #Р и g Е FP, такие, что 2 € L & /(х) > g(z) для любо- 

го а Е ¥* [68]. Классические криптографические схемы предполагают, что легальные 

участники передачи информации А и B, зная некоторую секретную информацию К, 
могут легко решить задачу f(z) > 0, а для злоумышленника С, не имеющего доступа 

к информации К, решение задачи /(т) > 0 является трудным. В случае класса РР 

участники А и В могут выбирать функции g € ЕР С #Р, удобные для отображения 

f(z) — 9(2) — /'(2) Е #P. B результате, зная некоторую секретную информацию К 

и функцию 4(х), А и В могут решить задачу f'(z) > 0, сложность которой сравнима 

€O сложностью задачи f(x) > 0, т.е. находится на уровне №Р. Злоумышленник С, не 

имеющий доступа к информации К, должен решать задачу f(z) > g(z), сложность 

которой находится на уровне PP, или суметь демаскировать /'(2) по f(z) и g(z). Та- 

ким обр: 

совершенно аналогична схеме, предложенной в [2| и предполагающей, что злоумыш- 

ленник либо должен решать №Р-трудную задачу декодирования, либо демаскировать 

исходную матрицу С по матрице G = SGP. 

Естественно, между отсутствием фундаментальных препятствий и практической 

реализацией всегда имеется значительный разрыв, требующий построения соответ- 

ствующей теории. Однако некоторую перспективу для разработки практического под- 

хода для построения криптографических алгоритмов на базе класса РР можно про- 

иллюстрировать на основе известных результатов для следующей проблемы. 

MAJORITY SATISFIABILITY (MAJSAT) 

JIAHO: Булева функция f(x1,x2,. .., Tn). 

ВопРос: Верно ли, что не менее половины наборов значений г € {0,1}, 1 < ] < т, 

позволяют получить /(л1,22,...‚2т) =17 

зом, мы имеем ситуацию, которая с точки зрения вычислительной сложности 

В общем случае проблема МАЗЗАТ является РР-полной [69]. Если вместо про- 

извольной булевой функции /(л1,22,...‚@т) рассматривать 3-КНФ, то проблема 

MAJSAT разрешима за полиномиальное время |70|. Кроме того, известны варианты 

MAJSAT, которые являются РР-полными при ограничении функции /(л1, 22,...‚2т) 

на случай 3-KH®, но требуют другой доли в общем количестве решений [71]. Таким 

образом, легальные участники передачи информации А и В могут представлять от- 

крытый текст в виде исходных данных проблемы MAJSAT для 3-KH®. Шифрование 

будет заключаться в преобразовании 3-КНФ в булеву функцию произвольного вида 

или другую 3-КНФ с другой долей решений. Хороший фундамент для маскировки 

булевых функций может предоставить шифрование логики |72-74], а преобразования, 

позволяющие изменять или сохранять долю решений, найти не представляет труда. 

Например, для произвольной булевой функции /(21, 22, . .., &,,) булева функция 

(/(21, 2, т) ̂  Эта) М (f(21, 22, -) 2т) Л тат) 

имеет ровно в 2 раза больше решений, чем исходная. 

Рассмотрим ряд непосредственных следствий из теоремы 1, позволяющих устано- 

вить некоторые аналоги проблемы MLD для классов вычислительной сложности за 

пределами класса №Р и представляющих интерес с точки зрения постквантовой крип- 

тографии. Сформулируем следующие проблемы. 
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Р1ЕЕРМ -0 

ДАНО: Графы С = (И,, Ey), Gy = (Va, Ey). 

Вопрос: Верно ли, что количество множеств My © Ej, таких, что каждая Bep- 

шина графа С инцидентна POBHO одному ребру из множества М, равно количеству 

множеств My © Ё», таких, что каждая вершина графа С» инцидентна ровно одному 

ребру из множества My? 

Р1ЕРРМ -0 

ДАНО: Графы С = (И,, Ey), Gy = (Va, Ey). 

Вопрос: Верно ли, что количество множеств My С Ey, таких, что каждая верши- 

на графа G| инцидентна ровно одному ребру из множества М\, больше количества 

множеств My © Ё», таких, что каждая вершина графа С» инцидентна ровно одному 

ребру из множества My? 

DIrrPM=, 

ДАНО: Графы С = (Vi, E1), G2 = (Va, E»), натуральное число k. 

ОБЕЩАНИЕ: Пусть X — количество множеств My С Ej, таких, что каждая вершина 

графа G| инцидентна ровно одному ребру из множества M1, У — количество множеств 

/› С E,, таких, что каждая вершина графа Gy инцидентна ровно одному ребру из 

множества М5. Известно, что X =Y или X =Y + k. 

ВопРос: Верно ли, что Х =Y + k7 

DIFFMLD—g 

JIAHO: Двоичные матрицы Hy € ZJ ™, Hy € Z5" ™ | векторы 51 € 73 5 € 7}?, 

натуральные числа k1 и Г. 

Вопрос: Верно ли, что количество попарно различных векторов х © Zb', таких, 

что На = s; и wt(z) < ki, равно количеству попарно различных векторов у € 75° 

таких, что Нэу = sy и wt(y)) < ko? 

DirFMLD. 

JIAHO: Двоичные матрицы Hy € 2314 Hy € Z5"*™ векторы 51 € 73 sy € L5, 

натуральные числа k1 и Г. 

Вопрос: Верно ли, что количество попарно различных векторов х © Zb', таких, 

что Нх = 51 и wt(z) < ki, больше количества попарно различных векторов у © 75° 

таких, что Нэу = 52 и №б(у) < ky? 

DirrMLD_, 

ДАНО: Двоичные матрицы Hy € Z5"*™ Н, € Zy" ™, векторы s € Zy", sy € 7)?, 
натуральные числа ki, Ko, k. 

ОБЕЩАНИЕ: Пусть X — количество попарно различных векторов @ € 7!, таких, 

что Нх = 51 и wt(z) < ki, У — количество попарно различных векторов у © 75?, 

таких, что Нэу = 52 и wt(y) < №. Известно, что X =Y или X =Y + k. 

ВопРос: Верно ли, что Х =Y + k7 

Заметим, что в отличие от большинства классов вычислительной сложности, для 

определения которых достаточно использования одной функции /, определение класса 

\УРР содержит функции / и g, что затрудняет формулировку естественных проблем 

для класса \УРР при помощи традиционного определения того, что дано, и вопро- 

са. Обычно формулировка проблемы для класса WPP включает не только исходные 

данные и вопрос, но и некоторое обещание выполнимости какого-то условия. Пред- 

полагается, что алгоритм, решающий проблему, получает на вход исходные данные. 

Алгоритм не знает, выполняется ли условие, содержащееся в обещании, для этих ис- 

ходных данных, и не проверяет его выполнимость. Алгоритм, решающий проблему,
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должен гарантировать правильность ответа, если условие выполняется. Если усло- 

вие не выполняется, то алгоритм может выдать ошибочный ответ. В частности, алго- 

ритм, решающий проблему DIFFMLD_g, должен ориентироваться на обещание того, 

что X =Y или X =Y +k, и ответить на вопрос о том, верно ли, что X =Y +k. Полу- 

чив на вход исходные данные, алгоритм должен выдать ответ «Да», если X =Y + k; 
ответ «Нет», если Х =Y если ни одно из равенств X =Y и X =Y + А не выполняет- 

ся, то алгоритм может выдать любой из ответов «Да» и «Нет» или вообще не выдать 

ответа, продолжая работать вечно. 

В [75] доказано, что проблема Э1ЕЕРМ -) является С-Р-полной. В работе |76] для 
проблем DIFFPM.o и DIFFPM_, показана полнота в классах РР и \УРР соответ- 

ственно. Из этих результатов и теоремы 1 непосредственно вытекает 

Следствие 2. Проблемы DIFFMLD_,, DIFFMLD_o и О1РЕМГР о являются пол- 

ными в классах WPP, С-Р и РР соответственно. 

Заключение 

В работе рассмотрен количественный аналог #MLD проблемы декодирования по 

принципу максимального правдоподобия MLD. Для проблемы MLD установлена эко- 

номная сводимость от проблемы совершенного паросочетания и слабо экономная сво- 

димость от проблемы максимального разреза. Как следствие, мы получили #Р-пол- 

ноту проблемы #MLD. Кроме того, это позволило сформулировать вычислительно 

трудные аналоги проблемы декодирования по принципу максимального правдоподо- 

бия для классов вычислительной сложности, представляющих интерес ¢ точки зрения 

постквантовой криптографии. В частности, доказана полнота проблем DIFFMLD_,, 

Р1ЕРМТО-о и DIFFMLD. в классах WPP, С-Р и РР соответственно. Кроме того, 

получено альтернативное доказательство №Р-полноты проблемы MLD, что является 

дополнительным обоснованием надежности криптографических алгоритмов на основе 

Classic McEliece. 
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