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A method to construct а net оЁ sequential automata that realizes the given parallel au- 

tomaton is described. The parallelism relation of partial states is used to decompose a 

given parallel automaton. Each component automaton’s set of states is based on mu- 

tually nonparallel partial states of the given parallel automaton. The state assignment 

of a component automaton provides decreasing power consumption of the designed 

device based on reducing the switching activity of memory elements. The joint low 

power assignment of states of component automata takes into consideration the condi- 

tional compatibility оЁ states. The component automata exchange with binary signals. 

The communication between component automata is minimized. 
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sub-graph, weighted cover problem. 
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Описан способ построения сети I3 последовательных автоматов, реали: ующей 

‘тся отношение па- аданный параллельный автомат. При декомпозиции исполь- 

раллельности ча ичных состояний заданного параллельного автомата. Множе- 

CTBO с тояний каждого из компонентных последовательных автоматов образу- 

стояний задан- 

ного параллельного автомата. Кодирование состояний компонентного автомата 

ергопотребления проектиру‹ устройства на 

лементов памяти. При совмест- 

ном энергосберегающем кодировании состояний компонентных автоматов учиты- 

ичных C ется на основе множества. взаимно непараллельных ча 

мого предусматривает уменьшение 

основе снижения интенсивности переключений 

вается условная совместимость состояний. Компонентные автоматы обменивают- 

ся двоичными сигналами. Число межкомпонентных связей минимизируется. 

Ключевые слова: параллельный автомат, частичное состояние, декомпозиция 

автоматов, энергосберегалющее кодирование состояний автомата, задача взве- 

‚шенного покрытия.
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1. Introduction 

A parallel automaton is a functional model of a discrete device that gives a concise 

representation оЁ the parallelism оЁ controlled interactive processes [1]. This model 15 close 

to widely known Petri net [2]. Unlike the classical finite sequential automaton, the parallel 

automaton can be in several states simultancously. They are called partial. The set оЁ all 

partial states that а parallel automaton can be in at some time, not being in any other 

state, 15 called global state. 

The application of the decomposition way gives the possibility to lower the dimension of 

laborious tasks that appear in designing discrete devices. By decomposing a designed device 

into separate units, it becomes possible to decrease its power consumption by blocking 

clocks supplied to some units [3]. The decomposition оЁ а parallel automaton into а net оЁ 

sequential automata is worthwhile because the model of a sequential automaton allows using 

wide known effective methods for logical design of discrete devices. This paper considers, as 

well, such problems of logical design as state assignment and constructing Boolean functions 

оё memory element excitation. The state assignment оЁ component automata 15 fulfilled 

jointly. The problem оЁ minimizing interconnections 15 considered ав well. 

The problem оЁ state assignment takes а special place in logical design оЁ discrete 

devices. Its solving influences considerably on complexity and power consumption of a 

designed device. The amount of power consumption is one of the main optimization criteria 

in designing discrete devices. It is caused by the tendency to increase the working time of 

power supply for portable devices and, on the other hand, by the tendency to lower acuity 

оё the problem оЁ heat rejection in designing VLSI circuits. As it 15 said ш [4, 5], е power 

consumption of a circuit built on the base of CMOS technology is proportional to switching 

activity of its logical and memory elements. It allows solving this problem at the level of 

logical design. In particular, decreasing power consumption can be achieved at the stage of 

state assignment of an automaton. 

2. The used model 

A parallel automaton consists оЁ the following objects: а set оЁ partial states Q@ = {qi, 

G2, -- - › 4 }. а set оё input Boolean variables X = {1, zs,...,2,}, а set оЁ output Boolean 

variables Y = {y1,15,...,yn} and а set оЁ transitions {71, 7,..., 7}, which 15 а sequence 

оё lines оЁ the following form [6]: 

Ti=5i:—K; —> К; — S, (1) 

where 5; ап 5; are subsets оЁ @, К; 15 ап elementary conjunction оё variables from the 

set X, and К; 15 ап elementary conjunction оЁ variables from the set Y. 

The sense оЁ the line (1) 15 the following. If a partial automaton is in states forming the 

set 5; and Boolean variables took values that convert К; 50 1, then К; takes value 1 апа the 

automaton comes 50 partial states in S} from the states composing S;. In other words, let 

Р ={P,P,,..., Py} be the set оЁ all reachable global states of a given parallel automaton. 

Then if S; C Py, where Py is а current global state of the automaton, and the automaton 

receives binary signals that turn the conjunction К; into 1, then the global state will be 

Р, = (P;\ Si) О 5; аб the next time and the automaton will produce binary signals that 

turn K7 into 1. Any conjunction, К; and K7, can be absent ш the line. The absence оЁ К; 

means its identical equality to 1. The absence оЁ K] means, according to interpretation 

оЁ the model, that either а the variables ш У are equal 50 0 ог the values оЁ them @0 

not change. In this paper, ме do not consider output signals and omit K. As well а5 

for a sequential automaton, the synchronous or asynchronous implementation can be for
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а parallel automaton. In а synchronous implementation, the time & divided into fixed 

units, during which the automaton goes from one state to another. In an asynchronous 

implementation, the duration of the unit is not fixed and is determined by the points of 

changing external input signals. When а signal comes 50 input, the automaton goes 10 

stable partial states and do not go from them up to the next changing input. This changing 

must not occur until the partial states being stable. 

The following restrictions are introduced in the model: 

1) The initial global state is a one-element set. For the sake of determinacy, it can 

be {q1}. 
2) For two different lines, 6Ь and j-th, S; = 5) # 5;П 5) # @. 

There are a number of other restrictions given in [1] and connected with correctness of 

ап automaton description. They will not be considered here, ав the correctness problem 15 

not regarded here. Also, the output signals will not be considered here. 

Example 1. Let а parallel automaton be defined by the following sequence оЁ lines: 

T1=1:— 2112 — 10; т = 4 : — T —› 7; 

то = 10 : — Ty — 2.3.4; то = Т: — Tg —› 9; 

та = 2 : — 11 — 5; тт = 8.9 : — Ty — 6; 

та = 3.5 : — то — &; та = 6: — 21 —› 1. 

Неге © = {1,2,3,4,5,6,7,8,9,10} and X = {г1, 1э}. Let us take one-element set {1} а5 

an initial global state. The first line (transition т|) means that the automaton goes from 

state {1} апа comes to state {10} т the next time unit if 21 = 0 апа 25 = 1. The state {10} 

is a global one, as well. The automaton stays in state {1} at any other value combination 

оЁ х1 апа z,. The automaton goes from global state {10} to partial states 2, 3 and 4 аб 

хо = 0 (transition 7). Those partial states constitute the global state {2,3,4}. At the 

next time unit, the automaton changes the partial state 2 for partial state 5 (transition 73) 

апа the automaton will be ш global state {3,4,5}. Having observed the functioning оЁ the 

automaton in this way, we get global states {2,3,7}, {2,3,9}, {3,5,7}, {3,5,9}, {7,8}, 

{4, 8}, {8,9} апа {6}. 

3. Constructing a set of sequential automata 

implementing а given parallel automaton 

А way оЁЁ constructing а set оЁ sequential automata implementing а given parallel 

automaton 1 described ш [7, 8|. Let a parallel automaton В with а set @ оЁ partial 

states be given. Its description is a sequence of lines of the form (1). Let us consider a 

set N = (X, A1, Ag, ..., 2 A,), where X 15 the set оЁ input Boolean variables, the same а5 in 

the description оЁ B, апа Ay, Ay, ..., / A, are component automata with sets @1, О2 .. ., Qn 

of states. Each automaton A; is one without outputs, i.e., only transitions are given for 

them ш the form similar to (1): 

д : - о) — @, (2) 

where а; is a predicate оЁ variables in Х and states оЁ component automata Ay, A, ..., 

Aj 1, Арнь oo, Ay Tts value № 1 аба certain value combination of some input variables апа 

а certain set оЁ states оЁ some component automata. The automaton Aj goes to state qJ' 

from @ if а; = 1, otherwise it remains № @. 

A net N implements ап automaton В if there exists а mapping ¢ of D С Q1 X Q3 X ... X 

х @, into а set оЁ subsets of @, such that for any transition (1) оЁ В at 5; © 9(4 ¢%,.. ., 4') 
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it goes 10 57 С ¢(q¢", 4%, ..., @)н а; = 1, апа 5; C wlgh @-- q") if а; = 0, according 

to (2). The described net N implements in е sense of [9, 10| а sequential automaton A, 

modelling B with global states of B. 

The set оЁ states @) оё а component automaton A; (j =1,2,..., п) of N is specified а5 

follows. Every state ¢/ € @) & in а mutually one-to-one mapping with а partial state ¢ of 

а parallel automaton В. Among the partial states that correspond to states in @), no pair 

can be parallel. Partial states of a parallel automaton are called parallel if the automaton 

can be in them at the same time. The mapping is denoted as fj(qj) = ¢. Let the set 

{ А1, Ay, ..., А„ } оё component automata оЁ № be enough 50 exist at least one component A; 

with such а state ¢/ that f;(¢’) = 4- 

The transitions in the component automata are specified according to (2) аз follows. 

Each line 7; оЁ the form (1) from the description оЁ B corresponds 10 the set оЁ transitions 

in those component automata Aj, each оё which has such а state @ that fj(qj) € 505 

The left part оЁ (2) Юг the component automaton A; is ¢, for which fj(qj) € ;. There 

is exactly one such а state ш ©; because, according to determination оЁ @, no pair оЁ 

states in ©) corresponds to а pair оЁ parallel partial states оЁ В. The state @'в (2) в 

determined such that fj(¢/") € 5/. At that, a; = 1 if and only if К; = 1 and {fi(¢"), 

F2A@), s б(Ф ), б(а .. falg™)} Э 5. 
The set of sequential automata { А1, А А,}, which constitutes the net N imple- 

menting the given parallel automaton B, is constructed in the following way. We obtain 

all maximal sets of mutually non-parallel partial states of B. The set is maximal in the 

sense that any partial state not belonging to it 15 parallel to some state belonging to it. 

Then, a set of these sets covering all the pairs of partial states connected in transitions 

must be obtained. Each set ш the obtained cover corresponds to the set оЁ states оЁ one оЁ 

the component sequential automaton constituting the desired net N. 

In the case of low power assignment of a parallel automaton, the global states should 

be considered and the parallelism оЁ partial states can be easily determined according to 

the global states. For the parallel automaton from the Example 1, the matrix of parallelism 

relation of partial states is as follows, where only the elements above the main diagonal are 

present because оЁ symmetry оЁ the relation: 
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We consider this matrix as the adjacency matrix of the graph representing parallelism 

relation. The mentioned sets of non-parallel partial states correspond to the independent 

sets in the graph. The methods to find independent sets in а graph are described ш [11]. 

The sets {1,2,5,6,8,10}, {1,3,6,8,10} and {1,4,6,7,9,10} are independent sets in the 

graph under consideration. All the sets constitute the only shortest cover, and so, the cover 

problem must not be solved ав it 5 done in |7, 8]. 

The states of the component automata are convenient to be denoted by the same symbols 

that the corresponding partial states of the given parallel automaton are denoted. So three
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automata will constitute the desired net: A; with set оЁ states Q1 = {1,2,5,6,8,10}, A, 

with set оЁ states Qy = {1,3,6,8,10} and Аз with set оЁ states Q3 = {1,4,6,7,9,10}. 

The transitions between states are determined as it is described above according to (2). 

We give the behavior оЁ the obtained net N а5 а system оЁ discrete functions а', @° 

and д° that take values from @1, @› апа Qs, respectively. Their arguments are Boolean 

variables 1, 2 and multivalued variables ¢', д° апа 4° that take values from ), Q5 апа Q3. 

Table 1, which has the generally accepted form of flow tables for an automaton, represents 

this system. The rows of Table 1 correspond to the states of the component automata, 

and the columns to the triplet zi,zj,qk' (i, = 1,2; & = 1,2,3). Any element оЁ Table 1 

represents the state where the automaton goes under the conditions shown in the row and 

column. 

Table 1 

122 
@а @ @ 00 01 П 0 

тФ Y A 
T 1 1|1 1 110 1 w]1 1 1][1 1 1 
0 10 102 3 410 10 10][10 10 10]2 3 4 
2 3 4 2 3 7 2 3 7 5 3 4 5 3 4 

2 3 7 2 3 9 2 3 7 5 3 7 5 3 9 

5 3 4 5 3 7 8 8 7 8 8 4 5 3 4 

2 3 9 2 3 9 2 3 9 5 3 9 5 3 9 

5 3 7 5 3 9 8 8 7 8 8 7 5 3 9 

5 3 9 5 3 9 8 8 9 8 8 9 5 3 9 

8 8 7 8 8 9 8 8 7 8 8 7 8 8 9 

8 8 4 8 8 7 8 8 7 8 8 4 8 8 4 

8 8 9 6 6 6 8 8 9 8 8 9 6 6 6 

6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 

As а result оЁ state assignment, when any variable ¢/ (relatively, ¢/') & replaced by а 

Boolean vector with components 2/ (relatively, 2/ ) representing states of memory elements, 

the system of functions given by Table 1 is transformed into a system of Boolean functions. 

4. The method for state assignment of a sequential automaton 

The iterative way described ш [11] for state assignment is used. The search for the 

maximum cut in а weighted graph 15 based оп it. Let the state assignment of an automaton A 

be required. That is, the Boolean vectors (z1, 22, . . ., 2к), called state codes, must be gned 

to the states ¢ of A, and different states are assigned with different codes. Partial codes 

(21,22,...,2), 7 < k, and а weighted graph G = (V, E), whose vertices correspond to 

the states of A, describe the current situation in the way fulfilling. An edge connects two 

vertices in G if and only if the corresponding states have the same partial code. The partial 

codes are empty and G is а complete graph ш the initial situation. Every edge vsvy € Е 

has а weight wg proportional to 1 — pg, where ра is the probability оЁ transition between 

states g5 and ; (independently оё direction) corresponding to vertices v and о,. Evidently, 

the probability ра is equal to the sum оЁ the probabilities оЁ transitions from g5 50 ¢ апа 

from @ 10 gs. To lower the switching activity оЁ memory elements, the Hamming distance 

between the codes оЁ states @в апа @ in the space оЁ Boolean variables z1, 22, . .., 2 must 

be made shorter 1Ё ра is high. 

The process of state assignment of a given automaton is a sequence of steps. At the 

i-th step, а partition оЁ the vertex set И оЁС into two subsets, И, and V5, is obtained. 

The variable z; is introduced and receives the value 0 (or 1) for the states corresponding 
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to vertices in И, апа value 1 (or 0) Юг the states corresponding to vertices in V5 if those 

vertices are ends оЁ any edge. Then, the edges connecting vertices in И) with vertices in V5 

are removed, апа the next step, (4 1)-th one, 15 fulfilled. The process is over when graph G 

becomes empty. 

The problem to partition V' into И) апа № 15 reduced to finding the maximum cut in G, 

i.e., finding such а partition that the sum оЁ weights ОЁ the edges connecting the vertices 

оЁ Vi to the vertices оЁ V5 would be maximum. At ®е last step, only those edges remain 

that correspond to the pairs оЁ states connected with transitions оЁ comparatively large 

probabilities. The Hamming distances between the codes of those states are equal to one. 

To find the cut, the method described 1 [12] can be applied. It 15 а sequence оЁ steps, at 

cach оЁ which а vertex v 15 selected in V] апа carried to V5. The initial meanings are V) = & 

and V5 =V, апа the vertex v 15 selected in the following way. 

Let а be the sum оЁ weights оЁ the edges incident with v € V3, апа ¢ be the sum оЁ 

weights оЁ edges connecting v with е vertices in V. The transfer оЁ the vertex v from V; 

to И, increases the sum оЁ weights of edges connecting the vertices from И, with the vertices 

ш V5 by h = d—2c if it is positive. At the first step, & 15 equal 50 4. At any step, the vertex v 

with maximum value оЁ Л is selected. The process comes to the end when & is not positive 

for all the vertices ш V5. 

5. Calculating probabilities of transitions 

The following assumptions are accepted in calculating probabilities of transitions 

between states of a sequential automaton. The automaton is completely specified; all the 

states are mutually reachable, i.e., Юг every two states there exists а sequence оЁ input 

signals transferring one of them to the other; the automaton works a long time enough. 

The probability оЁ transition оЁ а sequential automaton from а state д; to а state 4; 

caused by ап input signal & = (x1,29,...,2,) 15 equal to the probability of coming @. 

If there are several input signals transferring the automaton from 4; to g;, the conditional 

probability plfj of such a transfer is equal to the sum of the probabilities of those signals as 

а probability оЁ incompatible events. The condition 15 that the automaton 15 in the state ¢;. 

The absolute probability p;; оЁ the transition from 4; to 4; for all the time оЁ the automaton 

working is equal to the product p(qi)plfj. where p(g;) 5 the probability that the automaton 

15 in the state @; — this event and the incoming signals that transfer the automaton from @; 

to ¢j are independent events. 

To calculate the probabilities р(@), ¢ = 1,2,...,m, where т & the number оЁ 

states оЁ the automaton, the Chapmann — Kolmogorov equations Юг discrete-time Markov 

Chains [13] can be applied. That method was used т [7, 8, 14]. Similarly to Kirchhoff’s 

low in electrical engineering, one may say that the sum оЁ the probabilities оЁ transitions 

to some state is equal to the sum of the probabilities of transitions from this state. 

Based оп the considerations above, the following equations with unknown quantities p(g;) 

(i=1,2,...,m) can be derived: 

m 

le(qi)péj:PWj)‘ j=1,...,m, 
i= 

m 
>oplg) =1 
i=1 

The probabilities plfj must be known. So, having solved this system of equations, the 

probabilities p(g;) will be obtained. As it was said above, the absolute probability p;; is 

defined ав p;; = p(g;)pi;-
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An input signal of а component automaton Ш а net consists оЁ ап input signal оЁ the 

net and signals on the states of the other components of the net. Due to interconnection 

ш the network, the state оЁ а component automaton апа the input signal it receives are 

not independent events. To calculate the probabilities оЁ transitions between component 

automata, the modeling a parallel automaton by a sequential automaton is suggested. The 

states оЁ the modeling sequential automaton are the global states оЁ the given parallel 

automaton. The probabilities of transitions between the global states are defined as it 

is shown above for the modeling sequential automaton. The probabilities of transitions 

between the partial states and, relatively, between the states of component automata are 

determined using the probabilities оЁ transitions between global states. The probability оЁ 

the transition between partial states д; and 4) is equal 10 the sum оЁ the probabilities оЁ the 

transitions between those global states Р, апа P, for which ¢; € Р, and 4) € Py, ог ¢; € Р, 

апа д € Ps. 

The transitions between the global states оЁ the parallel automaton in the considered 

example is shown in Table 2, where rows and columns correspond to global states, and its 

entry 5 the condition оЁ the transition from the global state corresponding 50 the row into 

the global state corresponding to the column. Using Table 2, the conditional probabilities 

are determined easily. Table 3 shows them with common denominator. Here, we regard 

binary input signals z; ап 22 as independent and equally probable. 

Table 2 

States | {1} [{10}]{2, 3,4}][2,3, 7}]{3,4, 5} 12,3, 9}[{3,5, 7} 13,5, 9} | {7, 8| {4, 8} | {3, 9} [ {6} 
{1} [z У э 2 
{10} @э о 

{2,3,4} т а 
{2,3,7} т 29 | а122 | @17 

1Ty 172 122 | 2122 
Е2 1 

T2 22 
T 22 

22 ®э 
7 | @ 

@о | Ty 
2а КТ 

Table 3 

States [ {1} | {10} [{2, 3,4}]{2, 3 71 (3,4, 5} [{2 3, 93] 13, 5, TY[ {3, 5, 9 [ {7 S} [ {4, 8(8 9} {6} 
3/4 ] 1/4 

2/ | 2/4 
2/а | 24 
/1 /1 | 14 | 14 

/4 /1 4 14 
2/4 2/4 

2/1 | 2/4 
2/1 2/4 

2/4 2/4 
2/4 | 2/4 

2/4 [ 2/4 
2/4 2/4 
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The following system of equations is obtained for the probabilities of global states {1}, 

{10}, {2,3,4}, {2,3,7}, {3,4,5}, {2,3,9}, {3,5,7}, {3,5,9}, {7,8}, {4,8}, {8,9} апа {6} 
according to Table 3: 

p(1) =3/4p(1) + 2/4p(6), 
p(10) =2/4p(10) + 1/4p(1), 

p(2.3.4) = 2/4р(10), 
p(23.7) = 2/4р(2.3.4) + 1/4р(2.3.7), 
p(3.4.5) = 2/4р(2.3.4) + 1/4р(3.4.5), 
p(23.9) =2/4p(2.3.9) + 1/4p(2.3.7), 
p(35.7) = 1/4p(34.5) + 1/4p(2.3.7), 
p(3.5.9) =2/4p(2.3.9) + 1/4p(2.3.7) + 2/4 р(3.5.7) + 2/4p(3.5.9), 
p(7.8) = 2/4р(7.8) + 1/4р(3.4.5) + 2/4 p(3.5.7) +2/4p(4.8), 
p(4.8) =2/4p(4.8) + 1/4p(3.45), 
p(8.9) =2/4p(7.8) + 2/4p(8.9) + 2/4 р(3.5.9), 
p(6) =2/4p(6) + 2/4 р(8.9), 
p(1) + р(10) + p(2.3.4) + p(2.3.7) + р(3.4.5) + р(2.3.9) + р(3.5.7) + р(3.5.9) + 

+ р(7.8) + р(4.8) + p(8.9) + p(6) = 1. 
The solution оЁ this system gives the probabilities 

p(1) = 12/46, p(10) = 6/46,  p(23.4)=3/46,  p(2.3.7) = 2/46, 
p(3.4.5) = 2/46, p(23.9)=1/46,  p(3.57)=1/46,  p(3.5.9) = 3/46, 
p(7.8) = 3/46, p(4.8) = 1/46, p(8.9) = 6/46, p(6) = 6/46. 

The absolute probabilities of transitions between global states according to pij = p(qi)plfj 

are in Table 4. 

Table 4 

States | {1} | {10} [12,3,4}[12,3, 7} [13: 4 5Y[12. 3, 9013, 5, 71135, O} [{7, 8} {4, 8}[{8,9}] {6} 
T [18/92 | 6/%2 
{10} 6/92 | 6/92 

3/92 | 3/92 
1/92 1/92 | 1/92 | 1/92 

1/92 1/92 1/92 |1/92 
1/92 1/92 

1/92 [1/92 
3/92 3792 

3792 3/92 
1/92 [1/92 

6/92 | 6/92 
/92 6/92 

As it 15 said above, the probabilities оЁ transitions between partial states are determined 

using the probabilities of transitions between global states. For example, the automaton in 

the considered example goes from partial state 2 to partial state 5 (transition 73) when it 

goes from global states {2,3,4}, {2,3,7} and {2,3,9} to global states {3,4,5}, {3,5,7} 
ава {3,5,9}. The sum of the probabilities оЁ those incompatible events is 6/92. It is 

the probability of the transition from partial state 2 to partial state 5. The component 

automaton A; goes from state 2 to state 5 with the same probability.
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6. Joint state assignment of component automata 

As the weight оЁ ап edge in the graph G; Юг the automaton A;, i = 1,2, 3, we take the 

numerator оЁ fraction 1 — p¥,, where ру, is the probability оЁ the transition in any direction 

between states д5 апа д that correspond to the епа оЁ the edge. The adjacency matrices оЁ 

weighted graphs Gy, Gy and С Юг automata А1, Ay and Аз, where the values below the 

main diagonal are omitted because of symmetry оЁ the matrices, are the following: 

2 5 6 8 10 

92 92 86 92 867 1 3.6 8 10 92 86 92 867 1 86 92 92 86 | 2 А, = 9 86 92 | 5 Ay = 92 86 86 | 3 
` . 86 92 | 6 86 92| 6 92 | & 92 | 8 

4.6 7 9 10 
92 86 92 92 867 1 

Ao — 92 86 92 86 | 4 
23 = 92 86 92| 6 

86 92| 7 
92 | 9 

The method described above is applied Юг the search Юг the maximum cuts in Gy, 

G5 апа G3. The maximal values оЁ in Gy, G5 апа G3 determine the result оЁ the first 

step оЁ the partition. They are dy(1) = 448, dy(1) = 356 and d3(1) = 448. According 

to them, the following partitions are obtained: {{1},{2,5,6,8,10}}, {{1}.{3,6,8,10}} 

and {{1},{4,6,7,9,10}}. The next partitions are determined by the maximal values 

h1(6) = 276, hy(6) = 184 апа h3(6) = 276: {{1,6},{2,5,8,10}}, {{1,6},{3.8,10}} апа 

{{1,6},{4,7,9,10}}. Finally, according to h1(8) = 92, h2(10) = 0 апа h3(9) = 92, we obtain 

the cuts оЁ the graphs ш the form оЁ partitions {{1,6,8},{2,5,10}}, {{1,6},{3,8,10}} апа 

The values of the coding variables z}, 2? and 2}, which are introduced after having 

found the recurrent cuts, are determined taking into consideration the state compatib: 

After i-th step in the process оЁ state assignment, the variable 2/ must take different values 

for the states оЁ A; corresponding to the vertices from different parts оЁ the cut оЁ Gj if 

these states are incompatible, and must not take different values if they are compatible. 

The state compatibility оё component automata is defined а5 it 15 described ш [15], in the 

following way. Let fj(qf) = fulqt,) = 4; апа /’і(аі) = fi(q¥) = @, where qf‘ ап @ аге the 

states оЁ the component automaton A;, @, апа @ are the states of Ay (j # k), 4в and g are 

partial states оЁ the given parallel automaton B, fj апа fi are mappings of the states оЁ A; 

and А, into partial states оё В. One оЁ the pairs, (, @) and (¢¥,¢¥), can be regarded 

а5 compatible, while the other is incompatible. The optimal choice оЁ it requires special 

investigation is not considered in this paper. 

The following matrices give the values оЁ 2{, 21 and 2}: 

2 5 6 810 
1 00 1] е

 

е
 

н
а
 

3 6 8 10 4 6 7 910 

101 -] 1010 -] 

Here, the states 1 and 10 of the automaton A; are incompatible, and the variable zf takes 

different values Юг them, while the values оЁ z? апа 2} remain indefinite for the states of A, 

and Az mapped into the same partial state оЁ В. 

Y
 1 1 1 2 1 8 

[0 1° [0 i [0 ЦИ
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The following matrices are obtained after removing the edges corresponding to the pairs 

of states with different values of coding variables and to the pairs of compatible states: 

2 5 6 8 10 4 6 7 9 10 3.6 8 10 

A 0 0 92| 5) @ = 08[?8[? Ё*АЗ: 0 8 0 | 6° 
86 0| 6 0 92 | 7 

о | в | о] 8 92| 9 

The partitions {{1,5},{2,6,8,10}}, {{1,3},{6,8,10}}, { {7, 9, 10}, {1,4, 6} } and, relatively, 

the values оЁ 2%. z% and zg are obtained by the same way: 

1256 8 10 4 13 6 8 10 Ф 1467910 @ 
0110 0 1] =, 01 0 1 =] 2%, 01010 23 . 
0011 - 0] 2 -0 - 1 1] 2 0001 1 1] 2 

The values оЁ 2} are given by vector (0011 — 0) according to the partition {{1,5}, 

{2, 6, 8, 10} } апа taking into consideration the state compatibility. Vector (1010—0) could 

give the values оЁ z} ав well, but then, the probability оЁ the transitions between states 

with changing values оЁ z} is 6/92, while there are no such transitions at the first variant. 

Therefore, the first variant gives less switching activity. 

After removing edges, the graph G has become empty ап state assignment оЁ Ay has 

fulfilled. The matrices for A; and Az are 

25 6 8 10 46 79 10 
0000 071 0000 0171 

— 000 8 | 2 — 000 о | 4 
А= 00 0|5 M= 00 01 6° 

0 0|6 0 92 | 7 
0] 8 92 |9 

They make us to introduce variables zé and zg, The following matrices represent the result 

of state assignment of the component automata: 

12 5 6 8 10 @ 2 1 4 6 7 910 @ 136 8 10 ¢ 
1 -1 23 0 1 1 0 0 1] & 0101 -] 2, 010 10 4 

001 1 - 0] = P 00 0 1 1 1] = 
- 0 - - - 1] 4 2 - - - -0 1] & 

Substituting the vectors of values of the components 7j to the symbols of states in 

Table 1, we obtain thv interval representation оЁ the system оЁ incompletely specified 

Boolean functions zf of excitation of memory elements. It is convenient to represent the 

system in Table 5
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Table 5 

01 00— о — 00 — 101 -1 011 

—0 00 — о — 00 — 00 — о — 00 — 

1 — 00 — о — 00 — 00 — о — 00 — 

—1 101 —1 011 101 -1 011 

—0 101 —1 011 100 10 10— 

1 — 100 10 10 — 11 — 10 10 — 

о — 100 10 10 — 100 10 11 — 

00 100 10 11 — 100 10 010 

01 100 10 11 — 100 10 11 — 

11 100 10 11 — 11 — 10 11 — 

10 100 10 11 — 11 — 10 010 

10 11 — 10 10 — 11 — 10 10 — 

00 11 — 10 10 — 11 — 10 11 — 

01 11 — 10 10 — 0 — — 11 11 — 

11 11 — 10 10 — 0 — — 11 10 — 

0 — 100 10 010 100 10 010 

1 — 100 10 010 11 — 10 010 

—0 11 — 10 11 — 11 — 10 010 

-1 11 — 10 11 — 0 — — 11 11 — 

—0 11 — 10 010 11 — 10 010 

—1 11 — 10 010 0 — — 11 010 

— 1 10— - 11 11 — 0 — — 11 11 — 

—0 0 - —- 11 11 — 0 — — 11 010 

1 — 0 — — 11 10 — 0 — — 11 10 — 

о — 0 — — 11 10 — 0 — — 11 11 — 

— 1 |0- - 11 010 0 — — 11 010 

—0 |0—— 11 010 01— 0 — 00 — 

0 — 01— 0 — 00 — 01— 0 — 00 — 

1 — 01 — о — 00 — 00 — о — 00 — 

7. Reduction of interconnection 

The component sequential automata in the net implementing the given parallel 

automaton exchange with binary signals as the Boolean variables zf The problem оЁ 

reducing these connections makes sense when the reduction of the number of input pins of 

а logic circuit is ne ry. Solving this problem, as it is described in [16], by de ing 

the number оЁ arguments оЁ Boolean excitation functions оЁ memory elements Юг each 

component separately is suggested. 

Let а pair of matrices (X,Y) be ап interval representation оЁ а system оЁ incompletely 

specified Boolean functions, where the rows of X represent the intervals of Boolean space of 

the arguments, апа е rows оЁ Y the values of the functions аб the corresponding intervals. 

The condition of correctness requires the row orthogonality of X and the orthogonality of 

the corresponding rows of Y. The distinction matriz of the rows of X is constructed. For 

cach pair оЁ rows оЁ X corresponding to orthogonal rows оЁ Y, the distinction matrix has 

a row obtained by modulo 2 addition of those rows of X. The modulo 2 addition of don’t 

care “—” with zero ог one gives zero. The shortest column cover must be found in the 

distinction matrix, that is the least set of columns such that each row of the matrix has 

one in these columns. The obtained cover shows the set of essential arguments, and when 

selecting the columns to form the cover, we prefer those that correspond to the variables 

coding the states of the automaton under consideration. Thus, we decrease interconnection 

of components.
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For the system оЁ excitation functions @ automata А1, Ay and Аз, the distinction 

matrices are as follows after applying the reduction rule in solving the cover problem (if 

row # has 15 everywhere, where row j has 1s, row i can be removed [17]): 

1.1 .1 .2 2 .3 .3 .3 а1 @о 2 29 23 2 % 2 25 23 
00100O0OO0OT1O0O0 ли 

2 A1 #2 23 A1 29 21 % 23 0010000010 000000100 
000O0OT1TO0OOTL1O0 

00O0O0OT1O0TO0OT1O 
00010O0O0O0OTO0O0 

01000O0O0OT1O 
01 00O0OO0OOOO0O0 

1 0000O0OO0O0O 
10000O0O0COOG®O]|” Ы 

010000O0OO0T1 
00100O0OT1O0TU0O0 

010001000 
000O0OT1TOTI1O0O0 

00O0T1O010O0T1 0010000001 001000000 
000O0OT1O0T1T1O00 

LDDDDIDIDDIJ 

000O0OODOT1O0 

000O0OODTLIO0O0 

01 00O0O0OO0O0O0 

1 0000O0OO0DO 

00 100O0O0CTO0T1 

00100T1TO0TO0TO0 

000100O0O0O0TO0 

000O0OT1T1O0TO0T1 

The process of forming the desired covers begins by introducing into them the columns 

21, 23, 23 from the first matrix, columns 27, 23 from the second matrix апа z}, 23, 23 from 

the third matrix. Relatively, the column covers {z1, 9, 21, 23, 23, 22}, {29, 21, 23, 22, 23, 23} 

and {zl,zz,zf,z{z?,zza,zg} are obtained. 

Figure 1 shows the net implementing the given parallel automaton. The following 

matrices represent the systems of disjunctive normal forms of the excitation functions in the 

component automata that are obtained separately for each automaton by the minimization 

method described in [18]: 

оаа Таа o 2 o 
о- о1 - - 010 R т 
о1 - 0 -0 101 P о1 
00 - - 1 010 ос о1 

-1 - - 1 - ’ ]oo1 т - - ’ от 
- - 10 - 100 нн 1o 
т - о1 010 т 1o 
L7011 7J L110J 

о- - о-0 - 011 
-1 1 - - 11 011 
- - - - 11 - 010 
-0 1 - --а 100 
о - - - 10 - |’ о10 
-1 - - - 1 - 010 
-0 1 - - 10 010 
-1 - - 1 - 100 
- - - - 10 - 100
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2 
а а 

4, Az А 

Fig. 1. Net of sequential automata 

8. Asynchronous implementation 

The probabilities of transitions between partial states of a parallel automaton were 

determined above with the help оё modelling its behavior by а sequential automaton 

with the states corresponding to the global states of the parallel automaton. Not any 

parallel automaton admits such modelling under asynchronous implementation [1]. Here, we 

restrict ourselves to consideration of parallel automata that admit modelling by sequential 

automaton. The parallel automaton ш the Example 1 is ап example оЁ such ап automaton. 

We consider only transitions between stable states (partial and global) and regard the 

probability of unstable state to be negligibly small. The stable global states of the automaton 

in the Example 1 are {1}, {10}, {3,4,5}, {2,3,9}, {3,5,9}, {7.8}, {4,8}, {8,9} and {6}. 

The component sequential automata are determined by the same way that was applied 

above. The given parallel automaton & decomposed into asynchronous automata А1, Ay 

апа Аз with the sets оЁ states Q1 ={1,2,5,6,8,10}, Q2 = {1,3,6,8,10} апа Q3 = {1,4,6, 

7,9,10}. Table 6 shows transitions between states оЁ the component automata, where the 

stable states are marked with bold. 

Table 6 

2172 

а @ @ 00 01 П 0 
" 7 7" & T & ЪАИ d & 

T 1 1[1 1 1|10 Ю w0]1 1 1[1 1 1 
10 10 10 2 3 9|10 10 10|10 10 10| 5 3 4 
5 3 4 5 3 9 8 8 7 8 8 4 5 3 4 

2 3 9 2 3 9 2 3 9 8 8 9 5 3 9 

5 3 9 5 3 9 8 8 9 8 8 9 5 3 9 

8§ 8 7 6 6 6 8 8 7 8 8 7 1 1 1 

8 8 4 6 6 6 8 8 7 8 8 4 8 8 4 

8 8 9 6 6 6 8 8 9 8 8 9 1 1 1 

6 6 6|6 6 6|6 6 6|1 1 1[1 1 1 

For low power race-free state assignment of component automata, the approach 

described in detail ш [19] is applied. The pairs оЁ transitions between states аё the same 

input signal are considered. For example, Table 6 shows that when z; = 0, то = 1, the 

automata Ay, Ay and Аз have the pairs оЁ transitions, (1 — 10,5 — 8), (1 — 10,3 — 8) 

апа (1 — 10,4 — 7), relatively. The condition for absence оЁ critical races in a pair оЁ 

transitions is formulated by а ternary vector whose components correspond to the states 

of the automaton and have values 1 or 0 depending on what the transition of the pair 

the corresponding states belong to. For the pairs named above, (0—1—10), (01—10) апа
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(01—1—0) are such vectors where (5 and 1s can change places. Only one оЁ such conditions 

is sufficient to fulfill. We call it obligatory. The optimal choice of obligatory conditions 

requires a special research. 

All the obligatory conditions in the form of the vectors above constitute the condition 

matrix that has not implied rows [6]. A ternary vector а implies а ternary vector b Ё b is 

obtained from а by replacing some 05 ог 15 by the value “—” and, perhaps, by inverting the 

obtained result. For example, vector (10—101) implies (10——01) апа (01——1—). The sense 

of this relation is that the condition represented by b is satisfied if the condition represented 

by а 15 satisfied. For component automata оЁ the considered net, the condition matrices can 

be ав follow 

14 6 7 910 
12 5 6 8 10 от -0 - 171 
-0 1 - - о71 _1361?131 01 - - 0 1] 2 
о- - 11 —| 2 010 - 1l 2 -0 -0 1 - | з 
01 1 — 0 —| 3° o101 - | 3 - -0 о1 —| 4 
о- т -1 0 4 o -1 - ol 4 о-0 - 1f 5 
L—O———IJH 01 -0 116 I - 
A ternary matrix R implies a matrix S if for every row of S there is a row in R that 

implies it. The problem of race-free state assignment is reduced to finding a matrix with the 

minimal number of rows that implies the condition matrix and is called shortest implying 

form оЁ the condition matrix. The rows оЁ this matrix represent the desired codes оЁ the 

states. 

The shortest implying form of a ternary matrix is found in the following way. A set 

of rows of a matrix is called compatible if there is a vector implying each row of this set. 

А compatible set 15 the mazimal опе if it & not а proper subset оЁ any other compatible 

set. We should find all the maximal compatible sets оЁ the rows of the condition matrix апа 

then obtain the shortest cover of the rows by these sets. Every compatible set correspond 

to the vector implying all the rows belonging to this set. The vectors corresponding to the 

clements оЁ the obtained cover constitute the shortest implying form оЁ the condition matrix 

under consideration. Below, the matrices are given whose rows imply the elements of the 

maximal compatible sets from the obtained shortest cover; the numbers оЁ the rows оЁ the 

condition matrix implied by each row of the given matrices are to their right: 

14679 10 

125 6 810 ЁЁЁЁЁО 12 010001 

001 110 ' 010011 
00110 1,4 

011 - 00 00101 1 23 011101 

”° 000011 

We determine the relation Юг each variable г; and the set of transitions between states 

with codes, where z; changes its value at those transitions. That 15 the i-th memory element 

in the real circuit implementing the given automaton changes its state. The switching 

activity is connected with the probabilities of transitions between states. The probability of 

transition when z; changes its value is put into the correspondence to z;. This probability 15 

equal to the sum of the probabilities оЁ all the transitions when z; changes 

those transitions are incompatible events. 

The probabilities оё the transitions (independently оЁ the direction) between the partial 

states оЁ the given parallel automaton coinciding with the probabilities оЁ the transitions 

in component automata are obtained by the method described above. Table 7 shows them, 

ts value, because
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where the rows and columns correspond to the states and empty entries mean that there 

are no corresponding transitions. 

Table 7 
States 3 5 6 7 8 9 10 

1 13/282 | 3/282 | 8/282 | 8/282 | 24/282 
2 6/282 6/282 12/282 
3 1/282 | 24/282 21/282 
1 6/282 1/282 | 12/282 
5 18/282 12/282 
6 3/282 | 13/282 | 8/282 
7 
8 
9 12/282 

Ev 'y compatible set оЁ rows of the condition matrix and, correspondingly, vector 

implying all the rows in the set have the weight as the value proportional to the sum of the 

probabilities of the transi оп5 connected with this vector. The minimal weight cover оЁ the 

of the condition matrix with the maximal compatible sets is obtained. The weight 

of a cover is the sum of the weights of its elements. The problem of minimal weighted cover 

is investigated т detail in [20]. 
All the family of maximal compatible sets for A; coincides with И5 shortest cover. 

According to the matrices above, the sets {1,4} and {2,3} constitute the shortest cover 

with the minimal weight for Ay, and {1,2,5,6} апа {3,4,5, 7} Юг Аз. The following matrices 

give the codes оЁ the states ОЁ Ay, Ay апа As, respectivel 

1256 8 10 g 1368 10 @ 14679 10 4 
001 1 1 -] 4, 0011 0] 22, 01000 1] 2. 
011 -0 0] А 0101 1] 22 00001 1] 23 

Table 8 is the interval specification оЁ the system оЁ incompletely specified Boolean 

functions 713' of excitation оё memory elements. In this specification, the intervals оЁ the 

space of internal variables that are determined by the transitions between states of the 

component automata are used [6]. 

After decreasing the number of arguments and minimization of the system of the 

excitation functions, the following matrices representing the systems оЁ disjunctive normal 

forms are obtained: 
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о1 о 2 2y 2P A 2 E 
1 - - - - 1 10 

-1 0 - - 1 - 11 

o 10 0 - -— — 11 

- о- 100 —|, o1 
-1 1 - 1 0 1 

11 - - - - 1 0 1 

0 - - — -1 0 1 

o0 - 10 - - о1 

Table 8 

12 | 2123 | 2323 | 2823 I 21 23 | 2923 | 21 23 
—0 00 00 00 00 00 00 

т - 00 00 00 00 00 00 

01 00 | о- о- 00 01 11 

-1 00 01 11 00 01 11 

00 о— 01 -1 01 01 01 

10 | -- | 01 т - 11 01 10 

10 11 01 10 11 01 10 

00 11 01 | — — 11 01 01 

01 1-]-1]-0 10 11 00 

11 11— -1 10 10 11 10 

0 — 01 01 01 01 01 01 

11 — — | -1 01 10 11 01 

10 -1 01 01 11 01 01 

—0 11 01 01 11 01 01 

—1 1—- | -1 01 10 11 01 

-1 10 11 00 10 11 00 

00 10 т — 00 т - 10 00 

10 —0 | - - | 00 00 00 00 

1 — 10 11 10 10 11 10 

01 10 11 —0 10 11 00 

00 10 1-1-0 т - 10 00 

—1 10 11 01 10 11 01 

10 —0 | -- | о- 00 00 00 

00 10 т | о- т - 10 00 

о— т - 10 00 т - 10 00 

1— | -- | 10 00 00 —0 00 

Figure 2 shows the net оЁ asynchronous sequential automata implementing the given 

parallel automaton. 

X1, 

Xz 
ГЫ 

22 

Fig. 2. Net оЁ asynchronous sequential automata
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9. Conclusion 

The suggested approach to decomposition of a parallel automaton can be applied in the 

synthesis of distributed control systems. In such a system controlling a set of objects distant 

from each other, all the blocks are connected in a network, with each block located at one 

of the controlled objects. So the problem of minimization of interconnection considered in 

the paper is interesting from the point of view of reliability. Using the decomposition of a 

parallel automaton allows decreasing the dimension of laborious problems of logical design. 

The suggested approach is intended for using in a computer aided logical design system. 
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