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A method to construct a net of sequential automata that realizes the given parallel au-
tomaton is described. The parallelism relation of partial states is used to decompose a
given parallel automaton. Each component automaton’s set of states is based on mu-
tually nonparallel partial states of the given parallel automaton. The state assignment
of a component automaton provides decreasing power consumption of the designed
device based on reducing the switching activity of memory elements. The joint low
power assignment of states of component automata takes into consideration the condi-
tional compatibility of states. The component automata exchange with binary signals.
The communication between component automata is minimized.
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JAEKOMIIO3SULINA ITAPAJIJIEJIbHOI'O ABTOMATA B CETb
ITIOCJIEJOBATEJIbHBIX ABTOMATOB

1O. B. IMorTocun

Ob6sedunennuiti uncmumym npobaem ungopmamuru HAH Beaapycu, 2. Munck, Beaapyco

Omucan cuocod IIOCTPOEHHA CeTH U3 II0CIeI0BATE/IbHBIX aBTOMATOEB, pea.nn:syrom,eifi
fﬂa,E[a.HHhIfl Ha[)aﬂﬂeﬂbﬂblﬁ ABTOMAT. Hpﬂ ACKOMITOSHUIINKE HCIIONB3YeTCH OTHOIEHME ITa-
PaLIeJIbHOCTH HaCTHYIHBIX COCTOSAHUIT 3a1aHHOTO IIapa/lIelbHOTO aBTOMAaTA. Muozke-
CTBO COCTOSAHHIT KaA J0Tr0 H3 KOMIIOHEHTHBIX ITOCJTEeJ0BATC/IBHBIX aBTOMATOB 06[)&3}(—
eTCAd Ha OCHOBE MHOXKCCTBA B3AIIMHO HEIIAPAJLICILHDLIX TaCTHYHDLIX COCTOSHUIT 3a1a-
HOT'0 MapaJluiejJbHOI'O aBTOMaTa. KO,H,HI)OBE:].HI{E COCTOAHHNI KOMIIOHEHTHOTO aBToMaTa
nmpegycMaTpuBaeT yMeEHLIIEHIE ':)H(—EpI"OHUTpEGH(—31—11*15[ MIPOEKTHPYEMOT'O y(:’rpoﬁ(:TBa Ha
OCHOBE CHHXeHHN:A MHTCHCHBHOCTH HEI)EK,HH)‘IEHHﬁ DJIEMEHTOB ITaMIATH. Hpﬂ cOBMECT-
HOM Z—)H(—![)F()(!GEI)EFH.H)LLLEM KOOHPOBaHHN COCTOAHHUN KOMITOHEHTHBIX aBTOMATOB VYHIHUThI-
BaeTCsd yCJI0BHAA COBMECTHUMOCTD cocroanmii. KoMmnonenTHbIe aBTOMATBE 00 MEHHBAIOT-
CH JBOMYIHBIMK CHT'HAJTAMHK. Hues10 ME2KKOMIIOHEHTHBIX CBs3eil MHUHHUMHAIHUPYVETCE.

Kirouesnie cJioBa: napameﬂbﬁ.mﬁ. asmoma, YacimudHoe cocmoArue, (}ETCOMROSUU,HR
asmomarmaos, 3?—!-6}')80(366}')680.?0?1{66 ?codu.poeaﬁ.ue cocmoanutl aamomarnmia, 3adava 63ee-
WEHHOZ20 NOKPBITNUA.
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1. Introduction

A parallel automaton is a functional model of a discrete device that gives a concise
representation of the parallelism of controlled interactive processes [1]. This model is close
to widely known Petri net [2|. Unlike the classical finite sequential automaton, the parallel
automaton can be in several states simultancously. They are called partial. The set of all
partial states that a parallel automaton can be in at some time, not being in any other
state, is called global state.

The application of the decomposition way gives the possibility to lower the dimension of
laborious tasks that appear in designing discrete devices. By decomposing a designed device
into separate units, it becomes possible to decrease its power consumption by blocking
clocks supplied to some units [3]. The decomposition of a parallel automaton into a net of
sequential automata is worthwhile because the model of a sequential automaton allows using
wide known effective methods for logical design of discrete devices. This paper considers, as
well, such problems of logical design as state assignment and constructing Boolean functions
of memory element excitation. The state assignment of component automata is fulfilled
jointly. The problem of minimizing interconnections is considered as well.

The problem of state assignment takes a special place in logical design of discrete
devices. Its solving influences considerably on complexity and power consumption of a
designed device. The amount of power consumption is one of the main optimization criteria
in designing discrete devices. It is caused by the tendency to increase the working time of
power supply for portable devices and, on the other hand, by the tendency to lower acuity
of the problem of heat rejection in designing VLSI circuits. As it is said in |4, 5|, the power
consumption of a circuit built on the base of CMOS technology is proportional to switching
activity of its logical and memory elements. It allows solving this problem at the level of
logical design. In particular, decreasing power consumption can be achieved at the stage of
state assignment of an automaton.

2. The used model
A parallel automaton consists of the following objects: a set of partial states Q@ = {q1,
q2, .- .,q~}, a set of input Boolean variables X = {1, x3,...,2,}, a set of output Boolean
variables Y = {y1, 1, ..., ym} and a set of transitions {7y, 7,..., 7}, which is a sequence
of lines of the following form [6]:

T@:S@:—K@—)K;—) S;, (l)

where S; and S; are subsets of @, K; is an elementary conjunction of variables from the
set X, and K7 is an elementary conjunction of variables from the set Y.

The sense of the line (1) is the following. If a partial automaton is in states forming the
set S; and Boolean variables took values that convert K; to 1, then K| takes value 1 and the
automaton comes to partial states in S} from the states composing S;. In other words, let
P={P,P,,..., Pp} be the set of all reachable global states of a given parallel automaton.
Then if S; C F,, where P, is a current global state of the automaton, and the automaton
receives binary signals that turn the conjunction K; into 1, then the global state will be
Py = (P, \ Si) US; at the next time and the automaton will produce binary signals that
turn K into 1. Any conjunction, K; and K], can be absent in the line. The absence of K
means its identical equality to 1. The absence of K] means, according to interpretation
of the model, that either all the variables in Y are equal to 0 or the values of them do
not change. In this paper, we do not consider output signals and omit K. As well as
for a sequential automaton, the synchronous or asynchronous implementation can be for
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a parallel automaton. In a synchronous implementation, the time is divided into fixed
units, during which the automaton goes from one state to another. In an asynchronous
implementation, the duration of the unit is not fixed and is determined by the points of
changing external input signals. When a signal comes to input, the automaton goes to
stable partial states and do not go from them up to the next changing input. This changing
must not occur until the partial states being stable.

The following restrictions are introduced in the model:

1) The initial global state is a one-clement set. For the sake of determinacy, it can

be {q}.

2) For two different lines, i-th and j-th, S; = S; if S; N S; # @.

There are a number of other restrictions given in [1| and connected with correctness of
an automaton description. They will not be considered here, as the correctness problem is
not regarded here. Also, the output signals will not be considered here.

Example 1. Let a parallel automaton be defined by the following sequence of lines:

T =1:—T1x9g — 10; T —=4:—T1 =T,
T =10: — Ty — 2.3.4; T =T:— Tg9 —9;
3=2:—1r1 =5 T =8.9: — Ty — 6;
T4=35:— 19— 8 8=06:— 121 — 1.

Here Q = {1,2,3,4,5,6,7,8,9,10} and X = {21, z3}. Let us take one-element set {1} as
an initial global state. The first line (transition 7) means that the automaton goes from
state {1} and comes to state {10} in the next time unit if z;y = 0 and x5 = 1. The state {10}
is a global one, as well. The automaton stays in state {1} at any other value combination
of z; and z,. The automaton goes from global state {10} to partial states 2, 3 and 4 at
r9 = 0 (transition 73). Those partial states constitute the global state {2,3,4}. At the
next time unit, the automaton changes the partial state 2 for partial state 5 (transition 73)
and the automaton will be in global state {3,4,5}. Having observed the functioning of the
automaton in this way, we get global states {2,3,7}, {2,3,9}, {3,5,7}, {3,5,9}, {7,8},
{4,8}, {8,9} and {6}.

3. Constructing a set of sequential automata

implementing a given parallel automaton
A way of constructing a set of sequential automata implementing a given parallel
automaton is described in |7, 8|. Let a parallel automaton B with a set @ of partial
states be given. Its description is a sequence of lines of the form (1). Let us consider a
set N = (X,A1,As, ..., A,), where X is the set of input Boolean variables, the same as in
the description of B, and Ay, As, ..., A, are component automata with sets Q1,Qa,...,Qp
of states. Each automaton A; is one without outputs, i.e., only transitions are given for

them in the form similar to (1):

g —a;—=q (2)
where «; is a predicate of variables in X and states of component automata A;, As, ...,
Aj_1.Aj, ... Ay Tts value is 1 at a certain value combination of some input variables and
a certain set of states of some component automata. The automaton A j goes to state qf
from ¢’ if a; = 1, otherwise it remains in ¢’.

A net N implements an automaton B if there exists a mapping ¢ of D C Q1 XQa X ... X
X (0, into a set of subsets of @, such that for any transition (1) of B at S; C ¢(q', ¢%,....q")
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it goes to S! C o(q".¢*....,q") if aj =1, and S} C olqt, ¢, ....q" if a;j = 0, according
to (2). The described net N implements in the sense of |9, 10] a sequential automaton A,
modelling B with global states of B.

The set of states Q; of a component automaton A; (j =1,2,...,n) of N is specified as
follows. Every state ¢/ € @); is in a mutually one-to-one mapping with a partial state g of
a parallel automaton B. Among the partial states that correspond to states in @)}, no pair
can be parallel. Partial states of a parallel automaton are called parallel if the automaton
can be in them at the same time. The mapping is denoted as fj (¢7) = q. Let the set
{A1. Ay, ..., A} of component automata of N be enough to exist at least one component A;
with such a state ¢/ that fj(¢’) =q.

The transitions in the component automata are specified according to (2) as follows.
Each line 7; of the form (1) from the description of B corresponds to the set of transitions
in those component automata A;, each of which has such a state ¢ that fj(qj ) e S;US;.
The left part of (2) for the component automaton A; is ¢, for which fj(qj ) € S;. There
is exactly one such a state in @); because, according to determination of Q;, no pair of
states in Q; corresponds to a pair of parallel partial states of B. The state ¢ in (2) is
determined such that f;j(¢/") € S!. At that, a; = 1 if and only if K; = 1 and {f1(q"),
), Fi (@), fisa (@), fald™)} 28]

The set of sequential automata {A, Aa,..., An}, which constitutes the net N imple-
menting the given parallel automaton B, is constructed in the following way. We obtain
all maximal sets of mutually non-parallel partial states of B. The set is maximal in the
sense that any partial state not belonging to it is parallel to some state belonging to it.
Then, a set of these sets covering all the pairs of partial states connected in transitions
must be obtained. Each set in the obtained cover corresponds to the set of states of one of
the component sequential automaton constituting the desired net N.

In the case of low power assignment of a parallel automaton, the global states should
be considered and the parallelism of partial states can be easily determined according to
the global states. For the parallel automaton from the Example 1, the matrix of parallelism
relation of partial states is as follows, where only the elements above the main diagonal are
present because of symmetry of the relation:

2 3456789 10
00000000071
11 00 1 0 1 0} 2
1101010][3
1001004

01 01 0 Do
0000/6
1 oof7
10| 8
I 0] 9

We consider this matrix as the adjacency matrix of the graph representing parallelism
relation. The mentioned sets of non-parallel partial states correspond to the independent
sets in the graph. The methods to find independent sets in a graph are described in [11].
The sets {1,2,5,6,8,10}, {1,3,6,8,10} and {1,4,6,7,9,10} are independent sets in the
graph under consideration. All the sets constitute the only shortest cover, and so, the cover
problem must not be solved as it is done in |7, 8].

The states of the component automata are convenient to be denoted by the same symbols
that the corresponding partial states of the given parallel automaton are denoted. So three
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automata will constitute the desired net: Ay with set of states Q1 = {1,2,5,6,8,10}, Ay
with set of states @2 = {1,3,6,8,10} and Az with set of states Q3 = {1,4,6,7,9,10}.
The transitions between states are determined as it is described above according to (2).
We give the behavior of the obtained net N as a system of discrete functions ¢, ¢%
and ¢* that take values from Qq, Q2 and Qs, respectively. Their arguments are Boolean
variables 1, 5 and multivalued variables ¢', ¢ and ¢° that take values from @, Q5 and Q3.
Table 1, which has the generally accepted form of flow tables for an automaton, represents
this system. The rows of Table 1 correspond to the states of the component automata,
and the columns to the triplet xi,xj,qk’ (i, = 1,2; k = 1,2,3). Any element of Table 1
represents the state where the automaton goes under the conditions shown in the row and
column.

Table 1
U]

¢ @2 P 00 01 i1 10

L s
1 1 1]1 1 1]10 10 1w0]1 1 11 1 1
10 10 10] 2 3 410 10 10]10 10 102 3 4
2 3 4 2 3 7 2 3 7 5 3 4 5 3 4
2 3 7|2 3 9|2 3 7|5 3 7|5 3 9
5 3 4|5 3 7|8 8 718 8 45 3 4
2 3 9 2 3 9 2 3 9 5 3 9 5 3 9
5 3 7,5 3 9|8 8 7|8 8 7|5 3 9
5 3 9,5 3 9|8 & 9|8 8 9|5 3 9
8 8 7 8 8 9 8 8 7 8 8 7 8 8 9
8 8 4 8 8 7 8 8 7 8 8 4 8 8 4
8 & 0,6 6 6]8 & 9|8 8 9|6 6 6
6 6 6 6 6 6 6 6 6 1 1 1 1 1 1

. . , . S
As a result of state assignment, when any variable ¢’ (relatively, ¢’ ) is replaced by a

, o
Boolean vector with components 2/ (relatively, 2] ) representing states of memory elements,
the system of functions given by Table 1 is transformed into a system of Boolean functions.

4. The method for state assignment of a sequential automaton

The iterative way described in [11] for state assignment is used. The search for the
maximum cut in a weighted graph is based on it. Let the state assignment of an automaton A
be required. That is, the Boolean vectors (21, 22, .. ., 2x), called state codes, must be assigned
to the states ¢ of A, and different states are assigned with different codes. Partial codes
(21,22,...,%5), j < k, and a weighted graph G = (V| E), whose vertices correspond to
the states of A, describe the current situation in the way fulfilling. An edge connects two
vertices in G if and only if the corresponding states have the same partial code. The partial
codes are empty and G is a complete graph in the initial situation. Every edge vsvy € F
has a weight wg proportional to 1 — pg, where pg is the probability of transition between
states ¢s and ¢ (independently of direction) corresponding to vertices vs and v;. Evidently,
the probability pg is equal to the sum of the probabilities of transitions from ¢ to g; and
from q; to ¢gs. To lower the switching activity of memory elements, the Hamming distance
between the codes of states ¢s and ¢ in the space of Boolean variables z1, 29, . .., 2z must
be made shorter if ps is high.

The process of state assignment of a given automaton is a sequence of steps. At the
i-th step, a partition of the vertex set V of G into two subsets, V; and V5, is obtained.
The variable z; is introduced and receives the value 0 (or 1) for the states corresponding
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to vertices in V; and value 1 (or 0) for the states corresponding to vertices in V3 if those
vertices are ends of any edge. Then, the edges connecting vertices in V| with vertices in V5
are removed, and the next step, (i+1)-th one, is fulfilled. The process is over when graph G
becomes empty.

The problem to partition V into V| and Vj; is reduced to finding the maximum cut in G,
i.e., finding such a partition that the sum of weights of the edges connecting the vertices
of V1 to the vertices of V5 would be maximum. At the last step, only those edges remain
that correspond to the pairs of states connected with transitions of comparatively large
probabilities. The Hamming distances between the codes of those states are equal to one.
To find the cut, the method described in [12] can be applied. It is a sequence of steps, at
each of which a vertex v is selected in Vj and carried to V5. The initial meanings are V} = @
and V5 =V, and the vertex v is selected in the following way.

Let d be the sum of weights of the edges incident with v € V5, and ¢ be the sum of
weights of edges connecting v with the vertices in V. The transfer of the vertex v from V;
to V] increases the sum of weights of edges connecting the vertices from V; with the vertices
in V5 by h = d—2c if it is positive. At the first step, i is equal to d. At any step, the vertex v
with maximum value of & is selected. The process comes to the end when h is not positive
for all the vertices in V5.

5. Calculating probabilities of transitions

The following assumptions are accepted in calculating probabilities of transitions
between states of a sequential automaton. The automaton is completely specified; all the
states are mutually reachable, i.e., for every two states there exists a sequence of input
signals transferring one of them to the other; the automaton works a long time enough.

The probability of transition of a sequential automaton from a state g; to a state g;
caused by an input signal = (z1,22,...,2,) is equal to the probability of coming z.
If there are several input signals transferring the automaton from g; to g;, the conditional
probability pgj of such a transfer is equal to the sum of the probabilities of those signals as
a probability of incompatible events. The condition is that the automaton is in the state g;.
The absolute probability p;; of the transition from g; to g; for all the time of the automaton
working is equal to the product p(¢;) p;j, where p(q;) is the probability that the automaton
is in the state ¢; — this event and the incoming signals that transfer the automaton from ¢;
to ¢; are independent events.

To calculate the probabilities p(¢i), ¢ = 1,2,...,m, where m is the number of
states of the automaton, the Chapmann — Kolmogorov equations for discrete-time Markov
Chains [13] can be applied. That method was used in |7, 8, 14|. Similarly to Kirchhoff’s
low in electrical engineering, one may say that the sum of the probabilities of transitions
to some state is equal to the sum of the probabilities of transitions from this state.
Based on the considerations above, the following equations with unknown quantities p(g;)
(i=1,2,...,m) can be derived:

m
le(qa:)pij =plg), j=1,...,m,
1=
m
2 p(a) =1
i=1
The probabilities pgj must be known. So, having solved this system of equations, the

probabilities p(g;) will be obtained. As it was said above, the absolute probability p;; is
defined as p;; = p(qi)p};-
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An input signal of a component automaton in a net consists of an input signal of the
net and signals on the states of the other components of the net. Due to interconnection
in the network, the state of a component automaton and the input signal it receives are
not independent events. To calculate the probabilities of transitions between component
automata, the modeling a parallel automaton by a sequential automaton is suggested. The
states of the modeling sequential automaton are the global states of the given parallel
automaton. The probabilities of transitions between the global states are defined as it
is shown above for the modeling sequential automaton. The probabilities of transitions
between the partial states and, relatively, between the states of component automata are
determined using the probabilities of transitions between global states. The probability of
the transition between partial states g; and g; is equal to the sum of the probabilities of the
transitions between those global states Py and F;, for which ¢; € P; and ¢; € P, or q; € P
and g; € P..

The transitions between the global states of the parallel automaton in the considered
example is shown in Table 2, where rows and columns correspond to global states, and its
entry is the condition of the transition from the global state corresponding to the row into
the global state corresponding to the column. Using Table 2, the conditional probabilities
are determined easily. Table 3 shows them with common denominator. Here, we regard
binary input signals 1 and x2 as independent and equally probable.

Table 2
States | {1} [{10}]{2,3,4}[{2,3.7}]13.4, 5}[{2,3, 91 ]{3.5,7}|{3.5,9} | {7, 8} |{4, 8} | {8. 0} {6}
{1} €I VEQ 519;'2
{10} xo T2
234} T T
'2: 3: 7} 519;'2 Elfg Trra 93132
'3:4:5} Ty T1To Tixo | x1T2
239} T r
357} Tra T
359} Ta T2
{78} To To
48} Ty r
89} ro | To
{6} Iy El
Table 3
States | (17 | (10} 12,3, 4} [(2.3. 71103, 4,512, 3,911 (3.5. 7} (3.5, 07 (7, 8} {4 81 (5,9} | {6}
(i} |3/4] 14
{]_0} 2/4 2/4
'2;3;4} 2/4 2/4
3,3,7} 1/1 14 | 1/4 | 1/4
’3;4;5} 1/4 1/4 ]./4 ]./4
'2;3;9} 2/4 2/4
(3,5,7} 2/ | 2/4
{3.5,9} 3/1 271
7, 8} 2/4 2/4
(1,8} 2/1 | 2/4
5.0} 271 [ 2/4
{6} 2/4 2/4
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The following system of equations is obtained for the probabilities of global states {1},
{10}, {2,3,4}, {2,3,7}, {3,4,5}, {2,3,9}, {3,5,7}, {3,5,9}, {7,8}, {4,8}, {8,9} and {6}
according to Table 3:

p(1) =3/4p(1) +2/4p(6),
p(10) =2/4p(10) 4+ 1/4p(1),
p(2:3.4) = 2/4p(10),
p(2.3.7) =2/4p(2.3.4) + 1/4p(2.3.7),
p(3.4.5) =2/4p(2.34) + 1/4p(3.4.5),
p(2.3.9) =2/4p(2.3.9) + 1/4p(2.3.7),
p(3.5.7) =1/4p(3.4.5) + 1/4p(2.3.7),
p(3.5.9) =2/4p(2.3.9) + 1/4p(2.3.7) + 2/4p(3.5.7) +2/4 p(3.5.9),
p(7.8) =2/4p(7.8) 4+ 1/4p(3.4.5) + 2/4p(3.5.7) +2/4p(4.8),
p(4.8) =2/4p(4.8) + 1/4p(3.4.5),
p(8.9) =2/4p(7.8) +2/4p(8.9) 4+ 2/4 p(3.5.9),
p(6) = 2/4p(6) + 2/4p(8.9),
p(1) 4+ p(10) + p(2.3.4) + p(2.3.7) + p(3.4.5) + p(2.3.9) + p(3.5.7) + p(3.5.9) +
+p(7.8) +p(4.8) + p(8.9) + p(6) = 1.

The solution of this system gives the probabilities

p(1) = 12/46, p(10) = 6/46,  p(2.3.4)=3/46,  p(2.3.7) = 2/46,
p(3.4.5) = 2/46, p(23.9)=1/46,  p(3.5.7) =1/46,  p(3.5.9) = 3/46,
p(7.8) = 3/46, p(4.8) = 1/46, p(8.9) = 6/46, p(6) = 6/46.

The absolute probabilities of transitions between global states according to p;; = p(qi)p;j
are in Table 4.

Table 4
States {1} {10} 1{2,3,4}{{2,3,7}{{3.4,5}[{2,3,9}[{3,5. 7}{{3.5, 9} |{7.8}|{4, 8}|{8.9}| {6}
{1} 18/92 | 6/92
{10} 6/92 | 6/92
(2,3,4} 3/92 3/92
(2,3, 7} 1/92 1/92 1/92 1/92
(3.4, 5} 1/92 1/92 1/9211/92
2,3,9} 1/92 1/92
(3,5, 7} 1/92 | 1/92
(3.5.9} 3/92 3/92
7.8} 3/92 3/92
4,8} 1/92|1/92
{8,9} 6/92 ] 6/92
{6} 6/92 6/92

As it is said above, the probabilities of transitions between partial states are determined
using the probabilities of transitions between global states. For example, the automaton in
the considered example goes from partial state 2 to partial state 5 (transition 73) when it
goes from global states {2,3,4}, {2,3,7} and {2, 3,9} to global states {3,4,5}, {3,5,7}
and {3,5,9}. The sum of the probabilities of those incompatible events is 6/92. It is
the probability of the transition from partial state 2 to partial state 5. The component
automaton A, goes from state 2 to state 5 with the same probability.
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6. Joint state assignment of component automata
As the weight of an edge in the graph G; for the automaton A;, 1 = 1,2, 3, we take the
numerator of fraction 1 — pf,, where p?, is the probability of the transition in any direction
between states ¢, and ¢; that correspond to the end of the edge. The adjacency matrices of
weighted graphs G, Gy and G35 for automata A;, Ay and A3, where the values below the
main diagonal are omitted because of symmetry of the matrices, are the following:

2 5 6 8 10

92 92 86 92 86 1 3 6 8 10
92 86 92 867 1
1 — 86 92 92 86 | 2 o 6 2 8601
oL 92 86 92 | 5 0 27 92 86 86 | :
g6 02 | ¢ 86 92 | 6
86 92 | 6 26
92 | s ‘ .
4 6 7 9 10

92 86 92 92 867 1

Lo — 92 86 92 86 | 4

o8 92 86 92| 6

86 92 | 7

92 | 9

The method described above is applied for the search for the maximum cuts in Gy,
G9 and G3. The maximal values of d in GGy, G and G35 determine the result of the first
step of the partition. They are dj(1) = 448, dy(1) = 356 and d3(1) = 448. According
to them, the following partitions are obtained: {{1},{2,5,6,8,10}}, {{1},{3,6,8, 10}}
and {{1},{4,6,7,9,10}}. The next partitions are determined by the maximal values
hi(6) = 276, hy(6) = 184 and hg3(6) = 276: {{1,6},{2,5,8,10}}, {{1,6},{3,8,10}} and
{{1,6},{4,7,9,10}}. Finally, according to h1(8) = 92, h2(10) = 0 and h3(9) = 92, we obtain
the cuts of the graphs in the form of partitions {{1,6,8},{2,5,10}}, {{1,6},{3,8,10}} and
{{1,6,9},{4,7,10}}.

The values of the coding variables z}, 22 and 22, which are introduced after having
found the recurrent cuts, are determined taking into consideration the state compatibility.
After i-th step in the process of state assignment, the variable 2] must take different values
for the states of A; corresponding to the vertices from different parts of the cut of G if
these states are incompatible, and must not take different values if they are compatible.
The state compatibility of component automata is defined as it is described in [15], in the
following way. Let fj(qf ) = fe(qt) = g5 and fi(¢)) = fe(qF) = @, where qf and ¢/ are the
states of the component automaton A;, g, and ¢ are the states of Ay (j # k), gs and ¢ are
partial states of the given parallel automaton B, f; and fi are mappings of the states of A;
and Ap into partial states of B. One of the pairs, (¢/,¢)) and (g%, ¢*), can be regarded
as compatible, while the other is incompatible. The optimal choice of it requires special
investigation is not considered in this paper.

The following matrices give the values of z{, 2} and z3:

ot

2 6 8 10 3 6 8 10 4 6 7 9 10
1 0 0 1 01 1 01 0

1] -] ol
Here, the states 1 and 10 of the automaton A; are incompatible, and the variable zf takes
different values for them, while the values of 2 and 2} remain indefinite for the states of Ag
and A3 mapped into the same partial state of B.
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i
[SEC~]
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1 1 2 1 3
[0 [0 i [o P
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The following matrices are obtained after removing the edges corresponding to the pairs
of states with different values of coding variables and to the pairs of compatible states:

2 5 6 8 10 46 7 9 10
3 6 8 10
" 8[;3 806 902 806 ; 0 86 0 041 " 806 806 902 8[:5 alx
A= ' : Ay = 0 86 86 3, A3= ' ' .
0 0 92 5° A I 0 8 0 | 6
$6 0 | 6 0 92| 7
0 | s L 0 J 8 92 | 9

The partitions {{1,5},{2,6,8,10}}, {{1,3},{6,8,10}}, {{7.9,10},{1,4,6}} and, relatively,

the values of zé, z% and zg are obtained by the same way:

1 25 6 8 10 4 1 3 6 8 10 ¢ 146 79 10 g
01 1 0 0 1] =2, 01 0 1 — | =%, 01 010 — ] 2.
0011 — 0] =2 -0 — 1 1| =22 0001 1 1| =23

The values of z4 are given by vector (0011 — 0) according to the partition {{1,5},
{2,6,8,10}} and taking into consideration the state compatibility. Vector (1010—0) could
give the values of 25 as well, but then, the probability of the transitions between states
with changing values of z3 is 6/92, while there are no such transitions at the first variant.
Therefore, the first variant gives less switching activity.

After removing edges, the graph G5 has become empty and state assignment of Ay has
fulfilled. The matrices for A; and Aj are

2 5 6 8 10 4 6 7 9 10
0000 071 0000 D071
B 00 0 8 | 2 000 0| 4
Ay = 00 0! 5> A = 00 0 6"
0 0| 6 0 92| 7
0| 8 922 | 9

They make us to introduce variables zé and zg. The following matrices represent the result
of state assignment of the component automata:

1 2 5 6 8 10 ¢ ) 1 4 6 7 9 10 g
1 36 8 10 ¢

.1 _ 7 .3

011001,,% 0010 1 —] 22 01 0 1 0 3

001 1 — 0] = 0 -1 1] 00 0 1 1 1| =3

-0 - — — 1| =2 2 - — — — 0 1| =23

Substituting the vectors of values of the components z/ to the symbols of states in
Table 1, we obtain the interval representation of the system of incompletely specified
Boolean functions z

!
f of excitation of memory elements. It is convenient to represent the
system in Table 5.
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Table 5
&Tdo Z]]:Z%Z% Z%Z% Z?Zgz% Z]]:!Z%!Z%! Z%!Z%! Z?!Zg!.@g!
01 00— 0— 00— 101 -1 011
-0 ] 00— [0—=]00- 00— 0— 00—
1— 00— 0— 00— 00— 0— 00—
-1 101 -1 011 101 -1 011
-0 101 -1 011 100 10 10—
1 - 100 10 10— 11— 10 10—
0— 100 10 10— 100 10 11—
00 100 10 11— 100 10 010
01 100 10 11— 100 10 11—
11 100 10 11— 11— 10 11—
10 100 10 11— 11— 10 010
10 11— 10 10— 11— 10 10—
00 11— 10 10— 11— 10 11—
01 11— 10 10— 0— - 11 11—
11 11— 10 10— 00— — 11 10—
0— 100 10 010 100 10 010
1 - 100 10 010 11— 10 010
-0 11— 10 11— 11— 10 010
-1 11— 10 11— 0— - 11 11—
-0 11— 10 010 11— 10 010
-1 11— 10 010 00— — 11 010
-1 | 0—-— 11 11— 0—— 11 11—
-0 0—-— 11 11— 0— - 11 010
1 - 00— — 11 10— 00— — 11 10—
0— 0— — 11 10— 0—— 11 11—
-1 |0—-— 11 010 0— - 11 010
-0 0—-— 11 010 01— 0— 00—
0— 01— 0— 00— 01— 0— 00—
1- 01— | 0—-1] 00— 00— 0— 00—

7. Reduction of interconnection

The component sequential automata in the net implementing the given parallel
automaton exchange with binary signals as the Boolean variables zf The problem of
reducing these connections makes sense when the reduction of the number of input pins of
a logic circuit is necessary. Solving this problem, as it is described in [16], by decreasing
the number of arguments of Boolean excitation functions of memory elements for each
component separately is suggested.

Let a pair of matrices (X,Y) be an interval representation of a system of incompletely
specified Boolean functions, where the rows of X represent the intervals of Boolean space of
the arguments, and the rows of Y the values of the functions at the corresponding intervals.
The condition of correctness requires the row orthogonality of X and the orthogonality of
the corresponding rows of Y. The distinction matriz of the rows of X is constructed. For
each pair of rows of X corresponding to orthogonal rows of Y, the distinction matrix has
a row obtained by modulo 2 addition of those rows of X. The modulo 2 addition of don’t
care “—" with zero or one gives zero. The shortest column cover must be found in the
distinction matrix, that is the least set of columns such that each row of the matrix has
one in these columns. The obtained cover shows the set of essential arguments, and when
selecting the columns to form the cover, we prefer those that correspond to the variables
coding the states of the automaton under consideration. Thus, we decrease interconnection
of components.
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For the system of excitation functions in automata A;, Ay and Aj, the distinction
matrices are as follows after applying the reduction rule in solving the cover problem (if
row 7 has 1s everywhere, where row j has 1s, row i can be removed [17]):

T .1 .1 .2 .2 .3 .3 .3
_9.“,1 T2 2] g &3 A g &1 g za_
OO0 1 00O0O0OT1UO0UD go 2l 21 o1 .2 .2 .3 .3 .3
2 %1 ®2 F3 F1 3 Rl A2 A3
0010000010 e R A
O 0o 0001 0010
0O 00O O01O0O0T1O0
0O 001 00O O0OO0OTUDO
01 00 00O0OT1UO0
0100 0O0OO0OOTU DO
1 000 0O0O0OTO0OTUO
100 0 0O O0OOTODO]” ’
01 00O0O0OTUOD1
0O 010 0O0OT1TUO0OTUO0ODO0
0100 01 00O
0O 0o0o0O01O01UO0O0
0O 0O0O1 01001
0010000001 001000000
0O 000101100 - -
L0000 10100 1]
-xl €T Z% Z% Z% Zg Z? Zg’ Zg_
00 0 0O0O0OO0ODT1F@0
0O 000D O0OO0OT1TUO0DUDO0
0100 0O0O0CUODO
1 00 0 0 0O OO0
0O 010 O0O0O0TUO0DT1
001 0O01QO0UO0U0
OO0 010 O0O0O0O0
(00001100 1]

The process of forming the desired covers begins by introducing into them the columns
2, 23, 23 from the first matrix, columns 2?7, 23 from the second matrix and 27, 23, 23 from
the third matrix. Relatively, the column covers {xzq, x2, z%,z%,z%, zf}, {xa, z%, z%,zf,z%, z?}
and {1, z9, z%, z%, z?, 223, zg} are obtained.

Figure 1 shows the net implementing the given parallel automaton. The following
matrices represent the systems of disjunctive normal forms of the excitation functions in the
component automata that are obtained separately for each automaton by the minimization
method described in [18]:

i
(33
L
(33
Lol V)
[
e
[
el

axr ra

(%3

~ > _ »‘v’% o 2l 2l 2 .2 .3 L2 L2
0 — 0 1 — - [0 1 0] e T
01 — 0 — 0 101 Lo 4 01
-0 0 — — 1 01 0 S0 - - - 01
-1 - — 1 =17 oo 1 ) ) R R B
- -1 0 - - 100 Sy L0
1 — — — 0 1 01 0 Lo o1 Lo
|- 0 1 1 -] 11 0]
RS z% z% ,:/LI’ ,:/g ,:/g ) ) z%! z%! ,:/%!_
o - - 0 - 0 - 01 1
-1 1 - - 1 1 011
- - - -1 1 - 0 1 0
- 01 - - -1 1 0 0
o - - -1 0 -7 10 10
-1 - - - 1 - 0 1 0
- 01 - — 1 0 01 0
-1 - -1 - - 1 0 0
|- - - =10 -] |10 0]
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X1
X2
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Zy Z;
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1
Zy

Fig. 1. Net of sequential automata

8. Asynchronous implementation

The probabilities of transitions between partial states of a parallel automaton were
determined above with the help of modelling its behavior by a sequential automaton
with the states corresponding to the global states of the parallel automaton. Not any
parallel automaton admits such modelling under asynchronous implementation [1]. Here, we
restrict ourselves to consideration of parallel automata that admit modelling by sequential
automaton. The parallel automaton in the Example 1 is an example of such an automaton.
We consider only transitions between stable states (partial and global) and regard the
probability of unstable state to be negligibly small. The stable global states of the automaton
in the Example 1 are {1}, {10}, {3,4,5}, {2,3,9}, {3,5,9}, {7,8}, {4,8}, {8,9} and {6}.

The component sequential automata are determined by the same way that was applied
above. The given parallel automaton is decomposed into asynchronous automata A;, As
and Az with the sets of states Q1 = {1,2,5,6,8,10}, Q5 = {1,3,6,8,10} and Q3 = {1,4,6,
7,9,10}. Table 6 shows transitions between states of the component automata, where the
stable states are marked with bold.

Table 6
x1wo

¢ 2 ¢ 00 01 11 10

& & &l & | A &
1T 1 1]1 1 1]10 10 w0]1 1 11 1 1
10 10 10 2 3 9 10 10 10|10 10 10 5} 3 4
H 3 4 5 3 9 8 8 7 8 8 4 5 3 4
2 3 9 2 3 9 2 3 9 8 8 9 5 3 9
5 3 9 5 3 9 8 8 9 8 8 9 5 3 9
8 8 7 6 6 6 8 8 7 8 8 7 1 1 1
8 8 4 6 6 6 8 8 7 8 8 4 8 8 4
8 8 9 6 6 6 8 8 9 8 8 9 1 1 1
6 6 6,6 6 6|6 6 6|1 1 1|1 1 1

For low power race-free state assignment of component automata, the approach
described in detail in [19] is applied. The pairs of transitions between states at the same
input signal are considered. For example, Table 6 shows that when =y = 0, 93 = 1, the
automata A, Ay and As have the pairs of transitions, (1 — 10,5 — 8), (1 — 10,3 — §)
and (1 — 10,4 — 7), relatively. The condition for absence of critical races in a pair of
transitions is formulated by a ternary vector whose components correspond to the states
of the automaton and have values 1 or 0 depending on what the transition of the pair
the corresponding states belong to. For the pairs named above, (0—1-10), (01—-10) and
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(01—-1—-0) are such vectors where 0s and 1s can change places. Only one of such conditions
is sufficient to fulfill. We call it obligatory. The optimal choice of obligatory conditions
requires a special research.

All the obligatory conditions in the form of the vectors above constitute the condition
matrix that has not implied rows [6]. A ternary vector a implies a ternary vector b if b is
obtained from a by replacing some Os or 1s by the value “—7 and, perhaps, by inverting the
obtained result. For example, vector (10—101) implies (10——01) and (01——1—). The sense
of this relation is that the condition represented by b is satisfied if the condition represented
by a is satisfied. For component automata of the considered net, the condition matrices can
be as follows:

14 6 7 9 10

1 2 5 6 8 10 01 - 0 - 1] 1
- 01 - - 07 1 _13??1(?1 01 — — 0 1| 2
0 - 11 — | 2 6 10 - 11 9 -0 - 01 —| 3
01 1 - 0 —| 3° o 101 -1 3’ -~ =0 0 1 —| 4°
0 — 1 — 1 0 4 o — 1 - ol i 0 — 0 — — 1|5
L—O———ljﬁ 001 — 0 — 1/ 6

-1 - = — 0| 7

A ternary matrix R implies a matrix S if for every row of S there is a row in R that
implies it. The problem of race-free state assignment is reduced to finding a matrix with the
minimal number of rows that implies the condition matrix and is called shortest implying
form of the condition matrix. The rows of this matrix represent the desired codes of the
states.

The shortest implying form of a ternary matrix is found in the following way. A set
of rows of a matrix is called compatible if there is a vector implying each row of this set.
A compatible set is the mazimal one if it is not a proper subset of any other compatible
set. We should find all the maximal compatible sets of the rows of the condition matrix and
then obtain the shortest cover of the rows by these sets. Every compatible set correspond
to the vector implying all the rows belonging to this set. The vectors corresponding to the
elements of the obtained cover constitute the shortest implying form of the condition matrix
under consideration. Below, the matrices are given whose rows imply the elements of the
maximal compatible sets from the obtained shortest cover; the numbers of the rows of the
condition matrix implied by each row of the given matrices are to their right:

1467 9 10
1 25 6 8 10 Bi%iio Lo 01000 1] 1,256
001 1 1 0] 1,24, 00110l 14 01 00 1 1| 1,456 .
011 - 100 3,5 o101 1| 23 011101 2,3,4
0000 1 1| 3457

We determine the relation for each variable z; and the set of transitions between states
with codes, where z; changes its value at those transitions. That is the i-th memory element
in the real circuit implementing the given automaton changes its state. The switching
activity is connected with the probabilities of transitions between states. The probability of
transition when z; changes its value is put into the correspondence to z;. This probability is
equal to the sum of the probabilities of all the transitions when z; changes its value, because
those transitions are incompatible events.

The probabilities of the transitions (independently of the direction) between the partial
states of the given parallel automaton coinciding with the probabilities of the transitions
in component automata are obtained by the method described above. Table 7 shows them,
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where the rows and columns correspond to the states and empty entries mean that there
are no corresponding transitions.

Table 7
States 3 5 6 7 8 9 10

1 13/282 | 3/282 | 8/282 | 8/282 | 24/2%2
2 6,/282 6/282 12/282
3 17282 | 247282 21282
1 6/282 1282 | 12/282
5 18/282 12/282
6 3/282 | 13/282 | 8/282

7

8

9 12/282

Every compatible set of rows of the condition matrix and, correspondingly, vector
implying all the rows in the set have the weight as the value proportional to the sum of the
probabilities of the transitions connected with this vector. The minimal weight cover of the
row sets of the condition matrix with the maximal compatible sets is obtained. The weight
of a cover is the sum of the weights of its elements. The problem of minimal weighted cover
is investigated in detail in [20].

All the family of maximal compatible sets for A; coincides with its shortest cover.
According to the matrices above, the sets {1,4} and {2,3} constitute the shortest cover
with the minimal weight for A, and {1,2,5,6} and {3, 4,5, 7} for A3. The following matrices
give the codes of the states of A1, Ay and As, respectively:

1 256 8 10 4 1 3 6 8 10 ¢ 1 4679 10 ¢
001 1 1 — 1] =f, 00 11 0] 22, 01 000 1] =27.
011 —0 0] 2 01 0 1 1| =22 00001 1| =

Table 8 is the interval specification of the system of incompletely specified Boolean
s
functions zf of excitation of memory elements. In this specification, the intervals of the

space of internal variables that are determined by the transitions between states of the
component automata are used [6].

After decreasing the number of arguments and minimization of the system of the
excitation functions, the following matrices representing the systems
forms are obtained:

of disjunctive normal

@ @ 2 o 2 2 A8 ) ) 2 z%’_ R 2 o2h 2% 22 23 ) ) 22 22 )
-1 1 - - 1 - 1 0 o - - -1 - - 1 0
o - 0 1 - - - 01 o - - —-— 0 1 - 0 1
1 1 - - - 0 1 0 1 - - - - =1 0 1
- -1 0 - -1 1 0 o1 0 - — — - 0 1
0o - 1 1 - - ’ 1 0 -1 1 - - 1 - ’ 11
o 0 - - - 1 - 01 11 - - - 1 0 11
1 0 - 0 - 1 11 - - -1 -1 1 0
- 0 1 1 1 - 11 1 - 0 1 — 1 - 01

110 -1 - 1 -] 11 |- 0 -1 - 1 —| 0 1
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ST X 2} 23 22 B 2 . ) z?! zg"_
1 - - - - 1 - 10
-1 0 - - 1 - 11
o 1 0 0 — — — 1 1
-0 - 1 0 0 — |, 01
-1 1 - -1 01
1 1 - - - — 1 0 1
o - - - - -1 01
00 — 1 0 — — | 01
Table 8
o | 22 | 2323 | 2523 zllzzl ,:/1!,:/2! ,:/1!,:/2!
-0 1] 00 00 00 00 00 00
1- 00 00 00 00 00 00
01 00 0 — 0— 00 01 11
-1 00 01 11 00 01 11
00 0— 01 -1 01 01 01
10 |——=101|1- 11 01 10
10 11 01 10 11 01 10
00 11 01 | — — 11 01 01
01 1— | -1 | =0 10 11 00
11 1-— —1 10 10 11 10
0— 01 01 01 01 01 01
11 | ——] =11/ 01 10 11 01
10 -1 01 01 11 01 01
-0 11 01 01 11 01 01
-1 f(1—-|-11]01 10 11 01
—1 10 11 00 10 11 00
00 10 (11— 00 1- 10 00
10 -0 —-——100 00 00 00
1— 10 11 10 10 11 10
01 10 11| -0 10 11 00
00 10 [ 1—-1| =0 1- 10 00
-1 10 11 01 10 11 01
10 -0 —=10- 00 00 00
00 10 (1 -] 0- 1- 10 00
0— | 1- 10 00 1-— 10 00
1— | —-—=1]10 00 00 -0 00

Figure 2 shows the net of asynchronous sequential automata implementing the given
parallel automaton.

X1

X

Z|3

2
Z2

Fig. 2. Net of asynchronous sequential automata
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9. Conclusion

The suggested approach to decomposition of a parallel automaton can be applied in the

synthesis of distributed control systems. In such a system controlling a set of objects distant
from each other, all the blocks are connected in a network, with each block located at one
of the controlled objects. So the problem of minimization of interconnection considered in
the paper is interesting from the point of view of reliability. Using the decomposition of a
parallel automaton allows decreasing the dimension of laborious problems of logical design.

The suggested approach is intended for using in a computer aided logical design system.
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