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з&Д&ЧИ кластеризации являются важной частью анализа, данных. В них требует- 

ся ра:ібИТЬ заданное множество объектов на несколько подмножеств (КЛ&СТЕрОВ) 

на основе сходства объектов друг © другом. з&Д&Ч& кластеризации вершин гра- 

фа является формализацией 

с помощью p'.)ep некоторого гр&ф&_ вершины которого взаимно однозначно со- 

ответствуют объектам. Сущ‹ 

на число и размер клас 

задачи кластеризации. Сходство объектов задаётся 

вует множество вариантов задачи: с ограничением 

еров, взвешенные и ориентированные постановки; все 

известные варианты задачи являются №Р-трудными. Данная работа посвящена 

одному из подходов к решению задачи построению MO 

линейного программирования. Приве, 

подходы к построению таких моделе: 

ей целочисленного 
‘н обзор известных и предложены новые 

. Новые мод‹ 

для нахождения точных решений, так и для построения приближённых алгорит- 
и могут использоваться как 

мов. Проведён вычислительный эксперимент, направленный на оценку времени, 

необходимого алгоритмам, опирающимся на различные модели, для накхождения 

точного решения. Показано, что один из алгоритмов, опирающихся на новые MO- 

дели, быстрее других находит решение для задачи ¢ ограниченным числом кла- 

стеров. 

Ключевые слова: кластерный граф, целочисленное линейное программирова- 
nue, №Р-трудная задача. 
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Clustering problems form an important section of data analysis. In these problems, 

we need to partition a given set of objects into several subsets (clusters) based on 

the similarity of the objects to each other. Correlation clustering is a formalization 

of the clustering problem. Similar objects are connected by edges of a graph and 

vertices are in one-to-one correspondence with the objects. The problem has several 

variants: with limited number and size of clusters, weighted, and directed. All known 

variants are NP-hard. We investigate an approach to solve the problems that involves 
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building integer linear programming models. We review existing models апа propose 

new approaches to model building. The new models can be used both to find exact 

solutions and to construct approximate algorithms. An experimental study has been 

conducted to evaluate the computation time to find exact solutions by algorithms 

based on different models. It showed that one of the algorithms based on the new 

models is faster than others in finding solutions for a variant of the problem with a 

limited number of clusters. 

Keywords: cluster graph, integer linear programming, NP-hard problem. 

Введение 

В задаче кластеризации требуется разбить заданное множество объектов на под- 

множества (кластеры) на основе сходства между объектами. Одной из наиболее на- 

глядных формализаций этой задачи является задача кластеризации вершин графа |1| 

(correlation clustering |2], cluster editing |3, 4] и др.), где сходство объектов задаётся 
рёбрами графа, вершины которого взаимно однозначно соответствуют объектам. 

Будем рассматривать только неориентированные графы без петель и кратных рё- 

бер, то есть обыкновенные графы. Обыкновенный граф G = (V, Е) называется кла- 

стерным, если каждая его компонента связности является полным графом. 

Если Gy = (V, Е)) и Gy = (V, E3) — помеченные графы на одном и том же множестве 

вершин V, 10 расстояние d(Gy, G2) между ними определяется как 

d(G1,Ga) = |Е, \ Bo| + | Bz \ Е, 

10 есть d(Gy, G2) равно числу различающихся рёбер B графах С и С». 

Определим следующие множества кластерных графов: 

1) CGS(V) (Cluster Graph Set) — множество всех кластерных графов на множестве 

вершин V; 

2) СС5,(И) — множество всех кластерных графов на И, имеющих & компонент 

связности (1 < & < |И|); 
3) CGS<(V)— множество всех кластерных графов на И, имеющих не более k ком- 

k 
понент связности (1 < & < [V]). Очевидно, что CGS<,(V) = ) CGS;(V). 

Эти множества тесно связаны CO следующими минимизационными вариантами за- 

дачи кластеризации вершин графа: 

— MIN-DISAGREE. Для произвольного графа G = (V, E) найти ближайший к G 

кластерный граф С* € CGS(V), 10 есть rpad, для которого величина d(G,C*) 

минимальна среди всех графов из CGS(V). 

— MIN-DISAGREE;,. Для произвольного графа G = (V, Е) и целого числа k, 2 < k < 

< |V, найти ближайший к G кластерный граф С* € CGSy (V). 

— MIN-DISAGREE;, формулируется аналогично. 

Изучение задач кластеризации вершин графа имеет множество приложений. Р. Solé 

и Т. Zaslavsky |5| показали связь этих задач с теорией кодирования; В. Shamir, 

В. Sharan и D. Tsur [3], а также А. Ben-Dor, В. Shamir и Z. Yakhimi [4] — с вычисли- 
тельной биологией. Изучая задачи классификации документов, N. Bansal, А. Blum и 

5. Chawla |2| фактически переоткрыли эти задачи. Кластеризация вершин графа свя- 

зана с такими проблемами, как кластеризация многомерных данных |6], бикластери- 

зация [7] и др. 
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Вычислительная сложность задач кластеризации вершин графа долгое время оста- 

валась неизвестной. В 1986 г. M. КНуйпеК и J. Mordvek [8] доказали, что задача MIN- 

DISAGREE является №Р-трудной, однако их работа осталась незамеченной. В 2004 г. 

N. Bansal, А. Blum и 5. Chawla [2| и независимо В. Shamir, В. Sharan и D. Tsur [3] по- 

зали №Р-трудность задачи MIN-DISAGREE. B [2] также доказано, что задача MIN- 

DISAGREE, является №Р-трудной при любом фиксированном & 2 2; в 2006 г. 1. Giotis 

и У. Guruswami [9] опубликовали более простое доказательство этого результата. В том 

же году А. А. Arees, В. П. Ильев, А. В. Кононов и А. С. Талевнин [10] доказали, что за- 

дачи MIN-DISAGREE; и MIN-DISAGREE<; МР-трудны уже на кубических графах, 

откуда вывели, что все упомянутые ранее задачи кластеризации вершин графа явля- 

ются №Р-трудными, включая задачу MIN-DISAGREE ;. 

Известно множество приближённых алгоритмов для задач кластеризации вершин 

графа. В |2] представлен 3-приближённый алгоритм для задачи МП\-ОТЗАСВЕЕ -; 

в [10] доказано существование рандомизированной полиномиальной приближённой 

схемы для задачи М!\-ОТ5АСВЕЕ-2, а в [9] предложена рандомизированная поли- 

номиальная приближённая cxema для задачи МИ\-ОТ5АСВЕЕ-; (для любого фикси- 

рованного & 2 2). Указав, что сложность схемы из [9] лишает её перспективы прак- 

тического применения, Т. Coleman, J. Saunderson и А. Wirth [11] в 2008 г. разработали 

2-приближённый алгоритм решения задачи М1\-ОГВАСВЕЕ-2, применив процедуру 

локального поиска K каждому допустимому решению, полученному с помощью 3-при- 

ближённого алгоритма из [2]. Для задачи MIN-DISAGREE, В. П. Ильев, С. Д. Ильева 

и А. А. Навроцкая [12] в 2011 г. предложили 3-приближённый алгоритм, а в 2020 г. 

В.П. Ильев, С. Д. Ильева и А. В. Моршинин [13] усилили этот результат, предложив 

2-приближённый алгоритм. Эти же авторы в |14] представили два 6-приближённых 

алгоритма для задачи MIN-DISAGREE 3. 

Что касается задачи MIN-DISAGREE, 1o в 2005г. M. Charikar, У. Guruswami и 

А. Wirth [15] показали, что она является АРХ-трудной, и разработали 4-прибли- 

жённый алгоритм её решения, опирающийся на модель целочисленного линейного 

программирования (ЦЛП). В 2008г. N. Ailon, M. Charikar и А. Newman [16] предло- 

жили 2,5-приближённый алгоритм для задачи MIN-DISAGREE. В 2015г. 5. Chawla, 

K. Makarychev, Т. Schramm и С. Yaroslavtsev [17] разработали для этой задачи 2,06- 

приближённый алгоритм. 

Настоящая работа посвящена построению моделей ЦЛП для задач кластеризации 

вершин графа. В п.1 приводится обзор известного подхода к построению моделей 

ЦЛИ для рассматриваемых задач и предлагается простой способ сокращения количе- 

ства переменных и ограничений модели. В п.2 описаны новые подходы к построению 

моделей ЦЛП, показано, что один из них позволяет значительно сократить количество 

ограничений для варианта задачи с ограниченным числом кластеров. В п. 3 приведе- 

ны результаты экспериментального исследования времени работы точных алгоритмов, 

опирающихся на известные и новые модели ЦЛП. 

ка 

1. Известные модели ПЛИ для задач кластеризации вершин графа 

1.1. Характеризация множеств CGS, СС5, и CGS« 

запрещёнными графами 

Модели ЦЛИП, представленные здесь, опираются на характеризацию кластерных 

графов запрещёнными графами. Множество кластерных графов может быть описано 

конечным множеством запрещённых графов, которые не могут содержаться в качестве 

(порождённых) подграфов ни в одном из графов данного множества.
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Известно, что граф G = (V, E) принадлежит множеству CGS(V) тогда и только 

тогда, когда он не содержит в качестве порождённого подграфа простую цепь Р, |18]. 

Легко проверить, что граф G = (V, E) принадлежит множеству СС5-;(У) тогда и 

только тогда, когда он принадлежит множеству CGS(V) и не содержит в качестве 

порождённого подграфа пустой граф О1 

Сложнее определить принадлежность графа к множеству СС5,(И). Помимо огра- 

ничения количества кластеров CBEPXY, необходимо также ограничить их количество 

снизу. Используем следующее определение: звёздный лес 5Р графа G = (V, Е) — это 

остовный подграф графа С, каждая компонента связности которого является звез- 

дой [19] (рис. 1); 5Е обозначает звёздный лес, содержащий ровно & звёзд. 

° Ж 

Рис. 1. Звёздный лес графа G выделен жирным. Очевидно, что С & CGS;(V),i=1,2,3 

Утверждение 1. Граф G = (\, Е) принадлежит множеству СС5,(У) тогда и 

только тогда, когда: 

1) Ge CGS«(V) 

2) G не содержит в качестве подграфа звёздный лес 5 Г. 

Доказательство. 

Необходимость. Пусть С Е СС5,(И). Очевидно, что G € СС5-;(И). Поскольку 

G имеет ровно & компонент связности и каждая компонента содержит как минимум 

одну звезду в качестве остовного подграфа, то минимальный звёздный лес в G состоит 

ровно из & звёзд. 

Достаточность. Пусть С Е СС58=;(И) и С не содержит в качестве подграфа 

звёздный лес SFi_1. По определению множества СС$<;(И), граф G принадлежит 

СС5/(У) для некоторого 1 < j < k. Предположим, что j < k. Тогда, как дока: 

но ранее, С содержит некоторый звёздный лес SFj. Если j = & — 1, то С содержит 

звёздный лес 5К 1. Пусть j < & — 1. Поскольку пустой граф Op является звездой, 

сделаем следующую процедуру: в SFj возьмём любую вершину степени 1 и удалим 

ребро, одним U3 концов которого является эта вершина. Полученный таким образом 

граф будет звёздным лесом С с 7 + 1 звездой. Последовательно повторяя процедуру 

К — 1 — 7 > 0 раз, можно построить звёздный лес 5 Р_1. Полученное противоречие 

доказывает, что k = j, а значит, G € CGSy(V). 

Утверждение 1 доказано. @ 

1.2. Модели ЦЛП для задачи MIN-DISAGREE 

Рассмотрим произвольный граф G (V,E) с л вершинами. В [15] предложена 

модель ЦЛП для задачи MIN-DISAGREE. Кластеризация вершин может быть пред- 

ставлена с помощью бинарных переменных г;;, определённых для всех пар вершин # 

и 7, где 

0 

1 — иначе. 

‚ если вершины ¢ и j принадлежат одному кластеру, 
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По умолчанию будем считать, что T 

лежности к кластеру следует, что если Tjj 

обеспечивается неравенствами треугольника: 

0. Из транзитивности отношения принад- 

О и г = 0, 10 77 = 0. Это свойство 

Tir < 1р Tjp для BeeX #, ),г € V. 

Эти неравенства гарантируют, что результирующий кластерный граф не содержит 

простую цепь Py в качестве порожденного подграфа. О. Е. Wahid и Е. Hassini в лите- 

ратурном обзоре задач кластеризации [20] в явном виде записали ограничение, отра- 

жающее неориентированность исходного графа: 

xij = @родля всех i,j € М. 

Таким образом, получаем следующую модель ЦЛИП для задачи MIN-DISAGREE: 

> @ij+ > (1 — л)) — min; (1) 
ЕЕ ТЗа 

Tip < © + Ty ля всех 4, )г €V (2) 

xij = @родля всех 17 €V (3) 

x5 © {0,1} для всех 4,5 € V. (4) 

Jlerko видеть, что для каждой пары вершин необходимо две симметричные перемен- 

ные, для каждой тройки вершин — шесть неравенств треугольника. Чтобы избавиться 

от симметричных переменных, запишем вместо неравенства треугольника, для каждой 

упорядоченной тройки вершин три неравенства треугольника для каждой неупорядо- 

ченной тройки вершин: 

> @i+ > (1 — а)) — min; (5) 
ЕЕ ЁЕ 

Tip < Tij + уу 
Tij < Tir + Tjr для Beex 1, ),г € V7 (6) 

Tjr < Tij + ау 

x5 € {0,1} для всех 17 € V. (7) 

Обе модели содержат O(n?) переменных и O(n?) ограничений, но модель (5)-(7) со- 

держит в 2 раза меньше переменных и ограничений, чем модель (1)—(4). 

1.3. Модели ЦЛП для задачи MIN-DISAGREE < 

и MIN-DISAGREE, 

Для построения модели ЦЛП для задачи MIN-DISAGREE;, достаточно дополнить 

базовые модели (1)-(4) и (5)-(7) следующим ограничением: 

Tigiy T oot iy, < (К 2)(& — 1)/2 для всех iy, ... gy € М. (8) 

Это неравенство гарантирует, что B любом подмножестве из (k+1) вершин хотя бы одна 
пара принадлежит одному кластеру, что исключает появление пустого подграфа О. 

Обе расширенные модели (1)-(4),(8) и (5)-(8) содержат О(п**+!) ограничений ти- 
ца (8). Однако модель (1)-(4),(8) требует примерно в (k+1)! раз больше таких ограни- 
чений, чем модель (5)-(8), из-за необходимости учитывать все перестановки вершин.
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В задаче MIN-DISAGREE), необходимо ограничить количество кластеров снизу. 

Утверждение 1 позволяет легко ввести это ограничение для & = 2, а именно: необхо- 

димо, чтобы С не содержал в качестве подграфа звёздный лес SF). Для этого доста- 

точно, чтобы не все вершины графа G были смежны ¢ вершиной 1. Это утверждение 

можно записать в виде следующего неравенства: 

Yzl (9) 

Однако для случая k 2 3 построение аналогичных компактных линейных ограничений 

представляет значительную сложность. В п. 2 представлен новый подход к построению 

моделей ЦЛП для этих задач, который позволяет простым способом ограничить KO- 

личество кластеров как сверху, так и сни: 

2. Новые модели ЦЛИП для задач кластеризации вершин графа 

2.1. Анализ неравенства тре игольника 

Как было отмечено ранее, для каждой тройки вершин модели (1)-(4) и (5)-(7) с 
держат соответственно 6 и 3 неравенства треугольника. Рассмотрим следующий под- 
ход к сокращению их количества. 

Ключевое наблюдение: в моделях (1)-(4) и (5)—(7) неравенство треугольника за- 
прещает появление Py как порождённого подграфа. Для любой тройки вершин сумме 
S = г + @iy + @), Соответствует (рис. 2): 

1) 5 = 3: пустой граф Оз; 

) 5 =2: граф Ю Н О\; 

3) S =1: простая цепь P, (запрещенная конфигурация); 

) S =0: полный граф K3 (все вершины в одном кластере) 

.V 
Puc. 2. Все неизоморфные графы ¢ тремя вершинами 

Для исключения запрещённого случая S = 1 применим метод линеаризации из 
работы [21]. Введём условие 

it Tt Ty — Ц 2Е 

для некоторого небольшого € > 0 (например, € = 1073). 

Используя бинарные переменные ууу € {0,1}, связывающие две области допусти- 

мых значений, и большое число М (например, M = 10%), получаем 

> =ы + > (1 — а))) — ш; (10) 
1ЕБ ijEE 

Tij+ оаЕ оуу — 1 2 Е — (1 -— yijp) M для всех 4, /г €V (11) 
Tij + T + T — 1 < —Е + Yy для всех 4, ),г € V7 (12) 

x5 € {0,1} для всех i,j €V, (13) 
мк © {0,1} для всех #)г € V. (14) 

Переменная y;j, равна 1, если а;) + x4 + &)» — 1 > €, иначе она равна 0.
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Для каждой тройки вершин вместо шести неравенств в модели (1)-(4) и трёх нера- 

венств в модели (5)-(7) имеется два неравенства. Нам пришлось добавить O(n®) пере- 

менных. Эта модель имеет иную структуру области допустимых решений, что являет- 

ся хорошим аргументом для её дальнейшего теоретического исследования (например, 

для построения приближённых алгоритмов). Однако данный подход не решает фун- 

даментальную проблему поиска точных решений: количество неравенств (8) всё ещё 

быстро растёт. Это требует разработки новых методов построения моделей ЦЛП. 

2.2. Модели ЦЛИП для задач MIN-DISAGREE < 

и М1№М- о15 АСВЕЕ» 

Идея работы с абсолютными величинами, применённая для модели (10)-(14), мо- 

жет быть эффективно использована для построения моделей ЦЛП другого типа. Рас- 

смотрим задачу MIN-DISAGREE,. 

Для каждой вершины { € // введём бинарную переменную 2;: 

0, если вершина i принадлежит первому кластеру, 
T = В 

1, если вершина # принадлежит второму кластеру. 

Заметим, что если для вершин #, j € V в графе G существует ребро ij € E, то вы- 
ражение |z; — x;| равно 0 при z; = @), иначе оно равно 1. Если для этих вершин не 
существует ребра ij ¢ Ё, то выражение |1; + x; — 1| равно 0 при z; # @), иначе оно 
равно 1. Используем данный факт для построения модели целочисленного програм- 
мирования (ЦП): 

> i — x|+ X ; + п) — 1] — min, 
ijeE 38Б 

а; € {0,1} для всех i Е V. 

Эта модель He является линейной. Применим известный приём, который сделает её 
линейной [22]. Представим каждый модуль в целевой функции в виде суммы двух 
бинарных переменных ;; + Vij, а выражение под модулем — в виде разности этих пе- 
ременных ©;; — шу (ч * ; = 0): 

> wij + vij —> min; (15) 
ijev. 

тр — @)- ацу — у =0 для всех i, j eV, ij € E; (16) 

T+ x;—1+u;—v; =0 для веех 17 Е М, ij & E; (17) 

z; € {0,1} для всех i € V; (18) 

ujj € {0,1} для всех i,j € V; (19) 

vi; © {0,1} для всех 1, 7 € V. (20) 

Эта модель содержит O(n?) переменных и О(п?) ограничений. Легко получить модель 

ЦЛИ для задачи MIN-DISAGREE,, добавив всего два ограничения. Они гарантируют, 

что не все вершины одновременно принадлежат одному кластеру: 

E i 2 1; (21) 
i€V 

уа <-а 22) 
i€V
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2.3. Модели ЦЛИП для задач MIN-DISAGREE ¢, 

и MIN-DISAGREE, 

Для задач ¢ ограничением на число кластеров при & 2 3 нельзя использовать одну 

бинарную переменную для описания принадлежности вершин к кластерам. Вместо 

этого используем унитарный код. Для каждой вершины # € V и кластера т € {1,...,k} 

введем бинарную переменную Ty 

1, если вершина { принадлежит кластеру T, 
Tip = 

0 — иначе. 

Таким образом, для каждой вершины i € У существует унитарный код (хта,... , Tik), 

в котором лишь одна координата равна 1. 

Заметим, что при таком кодировании если для вершин i, j © У существует ребро 

В 1k R 
ij € Е, 10 сумма 3 > |#ir — @j,| равна 0 тогда и только тогда, когда вершины # и / 

=1 
принадлежат одному кластеру, иначе она равна 1. С другой стороны, если ij & Е, то 

1/& ‚ 
значение 5 | Y |z + 2 — 1] — & + 2 | равно 0 тогда и только тогда, когда вершины # 

1 
и j принадлежат разным кластерам, иначе оно равно 1. 

Действительно, если вершины # и j принадлежат одному кластеру, то им соответ- 
ствуют одинаковые унитарные коды, если разным, TO их унитарные коды отличаются 
в двух координатлах. В первом случае, покомпонентно вычитая векторы и беря полу- 
ченную разность по модулю, мы либо получим вектор из 0 (i и j принадлежат одному 
кластеру), либо вектор только ¢ двумя 1 (i и j принадлежат разным кластерам). Ана- 
логично во втором случае: мы либо получим вектор из 1 (i и j принадлежат одному 
кластеру), либо вектор только с двумя 0 (i 1 7 принадлежат разным кластерам). Даль- 
нейшие вычисления тривиальны. 

Используя замену, аналогичную замене для модели (15)-(20), мы получаем следу- 
ющую модель ЦЛИП для задачи MIN-DISAGREE -: 

k 
35 3 шу» + уу — min; (23) 
ijev r=1 

ir — Tjr + у — уу = 0 для всех i, j €V, ij € B, re{l,... k}; (24) 

Tip + 2р — 1 + уу — уу =0 для всех 1, ) Е М, ij ¢ В, re{l,... k}; (25) 

[ 
3` г = 1 для всех 1 Е М, re{l,... .k} (26) 
т= 

х € {0,1} для всех # Е М, геЕ {1,..., К) (27) 

шу € {0,1} для всех 4,7 €V, re{l,... k}; (28) 

vigr © {0,1} для всех i, j Е М, ге {1,... k}. (29) 

Равенство (26) означает, что одна вершина может принадлежать одному кластеру. 
В отличие от моделей (1)-(4),(8), (5)-(8) и (10)-(14),(8), легко построить модель 

ЦЛШП для задачи MIN-DISAGREE,. Для этого достаточно добавить неравенства, га- 

рантирующие, что в каждом кластере есть хотя бы одна вершина: 

Sy 21 для всех г Е {1,...,&}. (30) 
iev
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Заметим, что модели (23)-(29) и (23)-(30) содержат O(kn?) переменных и O(kn?) огра- 
ничений. Таким образом, полученные модели имеют значительно меньше ограничений, 
хотя количество переменных в O(k) раз больше. 

3. Экспериментальное исследование 

3.1. Описание вычислительного эксперимента 

Все перечисленные модели ЦЛП могут быть интересны для построения прибли- 

жённых алгоритмов, которые могут стать объектом дальнейшего исследования. Мы 

7K€ сосредоточимся на исследовании времени работы точных алгоритмов, опирающих- 

ся на описанные модели, при нахождении оптимальных решений на графах малой раз- 

мерности. Такое исследование интересно по двум причинам. Во-первых, существуют 

практические задачи, в которых количество объектов не может быть слишком велико. 

Таковой является, например, задача разделения небольшой социальной группы (ра- 

бочий коллектив, школьный класс и др.) на подгруппы, максимизирующая взаимную 

симпатию внутри подгрупп [23]. Очевидно, что предпочтительно уметь находить оп- 

тимальное решение для групп как можно большего размера. Во-вторых, нахождение 

точных решений позволяет проводить предварительный анализ приближённых алго- 

ритмов, направленный на построение статистических оценок точности. Здесь также 

чем большую задачу можно решить оптимально, тем качественнее будет предвари- 

тельный анализ. При этом для нахождения «хороших» допустимых решений на гра- 

Ффах большей размерности можно использовать приближённые алгоритмы, описанные 

во введении. 

Для сравнения времени работы точных алгоритмов, опирающихся на различные 

модели ЦЛП, проведён вычислительный эксперимент. Цель эксперимента заключа- 

лась в TOM, чтобы на основе статистических данных сравнить различные точные ал- 

горитмы между собой и выявить лучший из них для каждой из задач. Все описанные 

модели реализованы с помощью языка программирования Python и его библиотеки 

Python-MIP. В качестве решателя выбран IBM ILOG CPLEX. Вычисления произво- 

дились на NEOS Server с четырьмя ядрами центрального процессора. Выбор библио- 

теки Python-MIP мотивирован простотой записи реализованной модели в файл MPS- 

формата, который отправлялся на NEOS Server. Весь необходимый код доступен по 

ссылке github. com/BIGADIL/graph_correlation_clustering_mip. 

Опишем схему проведения вычислительного эксперимента: 

1) вводится вероятностное распределение на множестве входов исследуемой зада- 

чи, то есть задаётся вероятностное пространство на множестве графов; 

2) в соответствии с вероятностным распределением проводится случайный выбор 

N графов, на которых исследуемыми алгоритмами решается задача; 

3) для каждого полученного решения вычисляется время работы, которое являет- 

ся случайной величиной; 

4) на основе статистических данных вычисляются оценка математического ожи- 

дания времени работы и его доверительный интервал для исследуемых алго- 

ритмов. 

Итак, введём на множестве всех графов вероятностное распределение. Для этого 

зафиксируем параметр р Е (0,1). Случайный п-вершинный граф G = (V, Е) будем 

получать с использованием следующей процедуры. Для каждой пары вершин (и, 9) 

проводится независимый случайный эксперимент, исходами которого будут наличие 

ребра uv с вероятностью р и отсутствие ребра с вероятностью 1 — р. Таким образом, 
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граф G можно рассматривать как случайный вектор, каждая координата которого 

соответствует паре вершин графа С. Семейство п-вершинных графов с введённым 

таким образом распределением обозначается С(п,р) и используется как при теорети- 

ческом изучении графов, так и в экспериментальных исследованиях (модель Эрдеша — 

Реньи) [24]. 
Параметр р в вероятностной модели представляет собой математическое ожида- 

ние плотности случайного графа G = (V, Е), которая определяется как 2| Е|/п(п — 1). 

В экспериментах использовались значения р из множества {0,33, 0,5, 0,67}. 

Рассмотрим теперь параметр п семейства G(n, p). Главным ограничением на коли- 

чество вершин в тестовых задачах была сложность отыскания оптимального значения 

целевой функции. В рамках эксперимента для каждой пары значений n и р было ре- 
шено по 100 задач. Если для какого-то значения п из 100 тестовых задач исследуемый 

алгоритм не справлялся хотя бы с 3 % задач за 6500 ¢, Takoe значение п не участвова- 

ло в исследовании. Также соблюдалось ограничение NEOS Server на размер модели, 

равное 16,5 Мбайт. Таким образом, для каждого алгоритма и для каждого значения р 

было подобрано своё граничное значение п. 

В качестве оценки математического ожидания времени работы алгоритма при за- 

данных значениях параметров п и р взято его среднее время работы по серии задач 

при этих параметрах. Поскольку распределение времени работы чаще всего не яв- 

ляется нормальным, построение доверительного интервала среднего производилось 

с помощью процедуры бутстрепа. Опишем простейшую реализацию этой процедуры. 

Из имеющейся выборки генерируется В псевдовыборок того же размера, что и ис- 

ходная, методом случайного выбора ¢ возвращением. Для каждой псевдовыборки вы- 

числяется псевдостатистика среднего времени работы. После этого псевдостатистики 

сортируются в порядке возрастания. На уровне значимости @ слева и справа отбра- 

сывается по [о/В/2] элементов. Среди оставшихся крайние левый и правый элементы 

являются границами доверительного интервала среднего времени работы. В рамках 

эксперимента использовалась реализация метода бутстрепа с коррекцией смещения 

и ускорением (ВСа) из библиотеки SciPy со значениями параметров В = 10000 и 

а = 0,05. Более подробно o процедуре бутстрепа и ВСа можно прочиталь в [25, 26]. 

Для исследования выбраны задачи MIN-DISAGREEg, при & 2,3 и MIN- 

DISAGREE; задача MIN-DISAGREE; не изучалась. Такой выбор обусловлен следу- 

ющими факторами: 

1) выбранные задачи являются наиболее изученными; 
2) для задачи MIN-DISAGREE; к моделям (1)-(4),(8), (5)-(8) и (10)-(14),(8) необ- 

ходимо добавить одно ограничение (9), а к модели (15)—(20) — два ограниче- 
ния (21) и (22), что значительно меньше количества других ограничений. Это 
дополнение незначительно влияет на общее время решения; 

3) для задачи MIN-DISAGREEy, & > 3, к модели (23)-(29) необходимо добавить 

& ограничений (30), что значительно меньше количества других ограничений. 
Эти дополнения незначительно влияют на общее время решения. К тому же не 
существует альтернативы для модели (23)-(30), ¢ которой её можно было бы 

сравнить. 

Модель (1)-(4) эквивалентна модели (5)-(7), но содержит больше переменных и 
ограничений. Результаты разведочного анализа показали, что алгоритмы, опирающи- 
еся на модель (1)-(4) и её производные, требуют значительно больше времени для 
достижения оптимума по сравнению с алгоритмами, опирающимися на модель (5)-(7)
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и её производные. Так, для задачи MIN-DISAGREE, при значении параметров n = 35 

и р = 0,33 точный алгоритм, опирающийся на модель (1)—(4),(8), находит оптимальное 
решение в среднем за 2807,1 с. При тех же параметрах точный алгоритм, опирающий- 
ся на модель (5)-(8), находит точное решение в среднем за 1231 с, что более чем 
в 22 раза быстрее. На основании этих результатов было принято решение исключить 
модель (1)-(4) и её производные из экспериментального исследования. 

3.2. Экспериментальное исследование алгоритмов 
для задачи MIN-DISAGREE <; 

Начнём со случая & = 2. Обозначим через TR, IN и МОР точные алгоритмы, 

опирающиеся на модели (5)-(8), (10)-(14),(8) и (15)-(20) соответственно. 
Табл. 1 содержит размер (B мегабайтах) каждой из моделей в зависимости от коли- 

чества вершин. Видно, что модели (5)—(8) и (10)—(14),(8) имеют примерно одинаковый 
размер и превышают выделенные 16,5 Мбайт при n = 55. В свою очередь, модель 

(15)-(20) остаётся компактной 10 n = 95 включительно. Тем не менее дополнительные 
ограничения могут сужать область допустимых решений, ускоряя поиск оптимального 
решения. 

Таблица 1 

Размер моделей ЦЛП для задачи 

MIN-DISAGREE - 

п | ©)-©®) | 15 @) [ (0)-(11)5) 
20 0,04 

25 0,07 

30 0,10 

35 0,15 

40 0,20 

45 0,25 

50 0,32 

55 0,39 

60 0,46 

65 0,55 

70 0,64 

75 0,74 

80 0,84 

85 0,96 

90 1,07 

95 1,20 

Среднее время работы точных алгоритмов сильно отличается при р = 0,33 / 0,5 и 

р = 0,67 (табл. 2-4 и рис. 3). 
В случае р = 0,33 /0,5 худшие результаты принадлежат алгоритму IN. При n = 40 

и р = 0,5 его среднее время работы составляет 3612,7 ¢, что почти в 4 раза больше, чем 

у алгоритма TR. При п = 40 и р = 0,33 среднее время работы алгоритма IN в 1,8 раз 

больше, чем у алгоритма TR, среднее время работы которого равно 812.4 с. Однако 

оба алгоритма сталкиваются с ограничением 10 времени при п = 45. Лучшие резуль- 

таты принадлежат алгоритму МОР. Лишь при р = 0,33 и n = 50 среднее время ero 

работы приближается к 3600 с и при п = 55 сталкивается с ограничением по времени. 

При п = 40 и р = 0,33 среднее время работы алгоритма МОР в 8,4 раз меньше сред- 

него времени работы алгоритма TR, а при n = 40 ир = 0,5 — в 5,8 раз. Отметим, что 
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Рис. 3. Среднее время (#, с) работы алгоритмов для задачи MIN-DISAGREE<2 

доверительные интервалы среднего времени работы всех алгоритмов не пересекаются, 

а значит, среднее время работы алгоритма МОР статистически значимо наименьшее. 

Таблица 2 

Среднее время работы алгоритмов 

для задачи MIN-DISAGREE <, с 

Р 
n 0,33 05 0,67 

TR | MOD TR | MOD 
20| 05 | 01 02 | 02 
25 | 37 | 12 09 | 06 
30 34 | 31 
35 73 | 67 
10 166 | 243 
45 288 | 26,1 
50 639 | 53,1 
55 | — Е 854 | 58,8 
60 | — Е Е Е Е Е — [ 949 
65 | — Е Е Е Е Е - 135 | - 
0 — = = = = = — [2038 | — 
75 | — Е Е Е Е Е = [ 34л | — 
80 | — Е Е Е Е Е — [ 5878 | — 
85 | — Е Е Е Е Е — [ 9932 [ — 
90 | — = = = = = — 15605 | — 
95 — = = - — = — [26946 | — 

В случае р = 0,67 худшие показатели также принадлежат алгоритму IN. При 

n = 55 среднее время его работы составляет 595,2с. В свою очередь, алгоритмы TR 

и MOD при том же значении п тратят в среднем 85 4 и 58,8 ¢ соответственно. Интерес- 

HO, что доверительные интервалы среднего времени работы алгоритмов TR и MOD 

пересекаются до п = 55 включительно. Это не позволяет говорить о статистически 

значимых различиях. Однако при n = 60 занимаемый объём памяти становится пре- 

пятствием к отысканию оптимальных решений для алгоритмов TR и IN, в то время 

как алгоритм MOD сталкивается ¢ ограничением 1o времени при n = 100. 

Таким образом, можно утверждать, что наилучшим алгоритмом для задачи MIN- 

DISAGREEc; является алгоритм МОР. Его среднее время работы при р = 0,33 /0,5 

статистически значимо наименьшее. При р = 0,67 нет статистически значимых отли- 
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Таблица 3 

Границы доверительного интервала среднего времени работы алгоритмов 
для задачи М1№-Ю15АСВЕЕ-2, р = 0,33 и р = 0,5, с 

Р 
n 05 

MOD 
20 0, 
25 [18, 
30 
35 
10 109,5] ‚ ‚ 
45 554,5] Е Е ‚ Е 
50) Е [3031.5, 4373,9] Е Е [1881.5, 2479,4] Е 

Таблица 4 

Границы доверительного интервала среднего 
времени работы алгоритмов для задачи 

MIN-DISAGREE ;, р = 0,67, с 

чий в среднем времени работы алгоритмов TR и MOD, однако последний требует 

гораздо меньше памяти. 

Отметим, что в случае р = 0,33 /0,5 оптимальным решением в 100% случаев яв- 

ляется кластерный граф с двумя кластерами. При р = 0,67 лишь в 49,5% случаев 

оптимальным является граф с двумя кластерами, в оставшихся 51,5 % случаев опти- 

мальный граф содержит один кластер. Это один из факторов, объясняющих лучшее 

среднее время работы всех алгоритмов на плотных графах. 

Перейдём к случаю & = 3. В табл. 5 приведены размеры моделей для задачи MIN- 

DISAGREE 3 в мегабайтах (Мбайт). Как и в случае & = 2, модели (5)-(8) и (10)-(14), 
(8) имеют примерно одинаковый размер и превышают выделенные 16,5 Мбайт при 

n =40, модель (23)-(29) занимает немного памяти до п = 70 включительно. 

Результаты эксперимента представлены в табл. 6-8 и на рис. 4. Худшее среднее вре- 

мя работы в случае р = 0,33 /0,5 принадлежит алгоритму IN. При р = 0,5 и п = 30 

доверительные интервалы среднего времени работы алгоритмов IN и TR пересека- 

ются, что не позволяет говорить O статистически значимых отличиях. Однако при 
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р = 0,33 их доверительные интервалы среднего времени работы не пересекаются, а 

при р = 0,33 и п = 30 среднее время работы алгоритма ТЕ. составляет 1039,1¢, что 

более чем в 3 раза меньше, чем среднее время работы алгоритма IN. Оба алгоритма 

сталкиваются с ограничением 10 времени при п = 35. Вновь лучшие результаты при- 

надлежат алгоритму МОР. Его доверительные интервалы среднего времени работы 

не пересекаются с доверительными интервалами алгоритмов IN и ТВ. Среднее время 

работы алгоритма MOD при р = 0,33 и n = 30 в 5 раз меньше, чем у алгоритма TR, 

Таблица 5 
Размер моделей ЦЛП для задачи 

MIN-DISAGREE 3 

" | ©)-©®) @) @) | (10) (10.6) 
15 0,48 0,07 0,50 

20 1,55 0,14 1,60 

25 | 3,92 101 
30 8,25 8,40 

35 15,37 

40 26,48 

45 42,98 

50 66,16 

55 97,47 

60 | 138,64 

65 | 191,46 193,18 

70 | 258,65 260,48 

а при р = 0,5 ип = 30 — почти в 19 раз. 

Среднее время работы алгоритмов 

для задачи MIN-DISAGREE.3, ¢ 

Таблица 6 

Р 
n 05 

TR N N 
15 | 01 04 0.7 13 
20| 26 2,6 20,1 14 
25 | 518 | 181 2509 281 
30 | 1039,1 | 187,1 6138,6 75,2 
35 | — | 199, Е 600,8 
40 - Е Е Е - - 
B — Е Е Е Е - 
50 — Е Е = = = = 
55 — Е Е Е Е Е Е 
60 | — Е Е Е Е Е Е 
65| — Е Е Е Е Е = 
0 — Е Е = = = = 
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Таблица 7 

Границы доверительного интервала среднего времени работы алгоритмов 
для задачи MIN-DISAGREE 3, р = 0,33 и р = 0,5, с 

n 05 
MOD 

15 [0,3, 0,4] 0] 
20 [3,1,3,3] [18,2, 22,1] 
25 ‚ 23] | [15,3,17,9] | [228,8, 280,0] 
30| [914,4, 1216,7] 6002,5]| [232,2, 280,6] |[5378,5, 7125,3] 
35 Е Е [2211,5, 2715,7] = 

Таблица 8 

Границы доверительного интервала среднего 
времени работы алгоритмов для задачи 

MIN-DISAGREEg3, р = 0,67, с 

т TR 
[0.1,0,2] 

160,8] 

0. 983.7] 

6,000 

» 4,000 |- ] 

2,000 - 

0 
0 20 30 40 50 60 70 

В n 

p=033 p=067 
— TR — MOD ----IN 

Рис. 4. Среднее время (#, ¢) работы алгоритмов для задачи MIN-DISAGREE<3 

При р = 0,67 алгоритм IN опять показывает себя хуже алгоритмов TR и MOD. 

Интересно, что до n = 25 алгоритм TR имеет лучшее среднее время работы, чем 

алгоритм MOD, причём их доверительные интервалы не пересекаются. При n = 30 

среднее время работы алгоритма MOD становится меньше среднего времени работы 

алгоритма TR, однако их доверительные интервалы пересекаются. При n = 35 до- 

верительные интервалы перестают пересекаться и среднее время работы алгоритма 

MOD становится меньше, чем у алгоритма TR. При n = 40 опорные модели алгорит-
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мов IN и ТЕ. исчерпывают память, а алгоритм МОР сталкивается ¢ ограничением 

1o времени при п = 70. 

Заметим, что результаты эксперимента очень похожи на результаты эксперимента 

при & = 2. При р = 0,33 / 0,5 оптимальным решением в 99,4% случаев является граф 

с тремя кластерами, а в 0,6 % — с двумя. При p = 0,67 лишь в 7,4 % случаев оптималь- 

ное решение содержит три кластера, в оставшихся случаях — один или два кластера 

(41 и 51,6 % соответственно). 

3.3. Экспериментальное исследование алгоритмов для 

задачи MIN-DISAGREE 

Если в модели (23)-(29) заменить & на n, то получится модель ЦЛП для зада- 

чи MIN-DISAGREE. Эта модель содержит О(п3) переменных и O(n®) ограничений. 

Сравним её с другими моделями. Вновь обозначим через TR, IN и MOD точные 

алгоритмы, опирающиеся на модели (5)-(7), (10)-(14) и (23)-(29) (табл.9-12). 

Таблица 9 

Размер моделей ЦЛП для 

задачи MIN-DISAGREE, 
Мбайт 

я [ (5)=0) [ @99 | (0)-(11) 
15 0,15 0,38 0,17 

20 0,39 0,96 0,44 

25 0,79 1,96 0,90 

30 | 142 347 1,50 
35 2,31 5,64 2,58 

40 3,51 8,55 3,93 

45 5,05 12,30 5,67 

50 7,01 7,88 

55 9,39 10,58 

Таблица 10 

Среднее время работы алгоритмов 

для задачи MIN-DISAGREE, с 

Р 
п 0,33 0,5 0,67 

TR [MOD [ IN | TR [ мОр ] IN | TR [ мОр | IN 
15| 01 1,0 01 | 01 14 0.4 0,1 0,7 0,1 
20 | 0,7 187,0 11 2,3 602,9 58 0,2 57,6 0,4 

25 | 48 | 37875 | 94 22 — 50,2 08 129729 | 1,9 
30 | 27,7 — 94,3 | 841,2 — 1227,3 y — 11,2 
3 |440,5 | — |9718| — Е Е — [ 199 
40 | — - - - - - — [ 2644 
5| - Е Е Е Е Е X — [8668 
50 — = - — = — 2041 — - 
55 | — Е Е Е Е — |5938 [ — Е 

13 табл. 9 видно, что для задачи MIN-DISAGREE больше всего памяти требуется 

модели (23)-(29). При n = 50 она занимает более 16,5 Мбайт, B то время как размер 

моделей (5)-(7) и (10)-(14) растёт медленнее и почти одинаково.
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Таблица 11 

Границы доверительного интервала среднего времени работы алгоритмов 
для задачи MIN-DISAGREE, р = 0,33 и p=0,5, с 

Р 
п I 0,5 

MOD 
15 2] [ 6] 
20 [155,2, 231,4] 5] [525,3, 698,9] 

25 [2303,9, 5508 2] Al — 
30 — [730,1, 1003,3] — 
35 — — — — 

При всех значениях параметра р алгоритм MOD имеет наихудшее среднее время 

работы (табл. 10-12 и рис. 5). Так, при p = 0,33 и п = 25 среднее время его работы 

равно 3785,5¢, что в 789 раз больше, чем у алгоритма TR, и в 403 раза больше, чем у 

алгоритма IN. При всех значениях параметра р среднее время работы алгоритма TR 

меньше, чем у алгоритма IN. Поскольку доверительные интервалы всех алгоритмов 

не пересекаются, то среднее время работы алгоритма TR статистически значимо наи- 

меньшее. 

Таблица 12 

Границы доверительного интервала среднего 
времени работы алгоритмов для задачи 

MIN-DISAGREE, р =0,67, с 

MOD 
[0.6, 0,7] 

‚ 731] 
15 

20 
25 

30 

35 

40 
45 

50 | [125,7, 469,6] — — 

55 | [292,9, 1288.1] — — 

6,000 - 

4,000 

~ 2,000 | 

0 й 
60 

n n 

p=033 p=0,67 
— TR —- МОр ----IN 

Рис. 5. Среднее время (#, с) работы алгоритмов для задачи MIN-DISAGREE



62 А. В. Моршинин 

По результатам исследования можно сделать следующие выводы: 

1) в задачах ¢ ограничением числа кластеров наименьшее среднее время достиже- 

ния оптимума принадлежит алгоритму MOD, при этом опорная модель ЦЛИ 

требует небольшой объем памяти. Алгоритмы TR и IN требуют больше време- 

ни и памяти; 

2) в задачах без ограничения числа кластеров наименьшее среднее время дости- 

жения оптимума принадлежит алгоритму TR, при этом опорная модель ЦЛИ 

требует небольшой объем памяти. Алгоритм IN требует больше времени, а ал- 

горитм МОФ — больше времени и памяти; 

3) все модели являются перспективными для дальнейшего теоретического иссле- 

дования из-за разной структуры областей допустимых значений (например, для 

построения приближённых алгоритмов). 

Заключение 

В работе рассматриваются задачи кластеризадии вершин графа. Изучается под- 

ход к построению моделей ЦЛП для этих задач. Приведён обзор известных моделей 

ЦЛШ, а также предложены новые подходы K их построению, один из которых позво- 

ляет значительно сократить количество неравенств для задачи ¢ ограничением числа, 

кластеров. Из результатов вычислительного эксперимента следует, что один U3 ал- 

TOPHTMOB, опирающийся на новые модели, является наилучшим при поиске точных 

решений в задачах с ограничением числа кластеров. В то же время в варианте за- 

дачи без ограничений лучшие результаты принадлежат алгоритму, опирающемуся Ha, 

известную модель. Все описанные модели представляют интерес для теоретического 

исследования в контексте построения приближённых алгоритмов. 
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