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Вершинной связностью / называется наименьшее число вершин, удаление кото- 
рых приводит к несвязному или тривиальному графу. Рёберной связностью Л 
нетривиального графа называется наименьшее число рёбер, удаление которых 
приводит к несвязному графу. Д. Фалкерсон и Л. Шепли решали задачу опреде- 
ления минимального числа рёбер в графе с заданным числом вершин п и с задан- 
ной рёберной связностью Л. В работе исследуются минимальные 10 числу рёбер 
п-вершинные графы, которые имеют заданные значения вершинной и рёберной 
связности. Основной результат состоит в TOM, что определяется минимальное чис- 
ло рёбер, которые могут иметь п-вершинные графы с точкой сочленения и задан- 
ной рёберной связностью A > 1: [(An + ̂ + 1)/2]. Предлагается сх‹ 

графов с таким числом рёбер. Это всегда возможно при п 2 2Л. 
ча построения 
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OPTIMAL GRAPHS WITH A CUT VERTEX AND GIVEN EDGE 

CONNECTIVITY 
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The vertex connectivity А 15 the smallest number of vertices whose removal leads to 

а disconnected ог trivial graph. The edge connectivity A оЁ а nontrivial graph 15 the 

smallest number of edges whose removal leads to a disconnected graph. D. Fulkerson 

and L. Shapley solved the problem of determining the minimum number of edges in 

а graph with а given number of vertices n ап a given edge connectivity Л. In this 

paper, we study the minimal n-vertex graphs with given values of vertex and edge 

connectivity. The main result 15 that ме determine the minimum number of edges 

that n-vertex graphs with ап articulation point and а given edge connectivity A > 1 

can have: [(An + ̂  +1)/2]. A scheme for constructing graphs with such a number оЁ 

edges is proposed. This Iways possible for n > 2. 

Keywords: graph, vertex connectivity, edge connectivity. 

1. Предварительные результаты 

Связным. называется граф, любая пара вершин которого соединена путём. В про- 

тивном случае граф называется песвязным. Тривиальным называется одновершин- 

ный граф. Граф, любые две вершины которого смежны, называется полным. В работе 

рассматриваются простые неориентированные графы. Основные понятия из теории 

графов используются в соответствии с работами |1, 2.
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Определение 1. _ Вершинной связностью k графа G наз 

ло вершин, удаление которых приводит к несвязному или тривиальному графу. 

ывается наименьшее чис- 

Определение 2. Рёберной связностью Л нетривиального графа С называется 

наименьшее число рёбер, удаление которых приводит к несвязному графу. 

Обозначим минимальную степень вершины в графе через д. 

Вершинная связность, рёберная связность и минимальная степень вершины 0 свя- 

заны неравенством Уитни [3]. 

Теорема 1 [3]. Для любого графа С справедливо неравенство k < A < 4. 

Г. Чартрэнд и Ф. Харари в работе |4| доказали, что для подходящих значений k, A 

и ё существует соответствующий граф: 

Теорема 2 [4]. Для любых натуральных чисел a,b, e, таких, что 0 < а < b < ¢, 

существует граф G, у которого & = а, Л = Ь, с = 6. 

В работе |5] рассматривается задача о поиске графов с минимальным числом вер- 

шин и рёбер для любых a,b, с из теоремы 2. Найдено полное решение этой задачи, 

причём для всех рассматриваемых наборов значений a,b, ¢ доказываются значения 

минимального числа вершин и рёбер, а также строятся графы с указанным числом 

вершин и рёбер. Некоторые из полученных результатов существенным образом исполь- 

зуются для решения задачи, которая рассматривается в данной работе: нахождение и 

описание множеств графов, состоящих из заданного числа вершин п с минимальным 

числом рёбер для пар возможных значений & и Л. В частности, далее используются 

следующие результаты из работы |5]: 

Теорема 3 [5|. Граф с наименьшим количеством вершин и рёбер, удовлетворяю- 

щий условию а < b = ¢, у которого k = а, Л = b, с = д, является графом с числом 

вершин 2(c + 1) — а и числом рёбер ¢ — а? -а + с + а, где 

0, если [(2а? — ас — да)/2] <0, 

[(2а? — ас — да)/2]  иначе. 

В [6] Д. Фалкерсон и Л. Шепли рассматривают задачу описания графов ¢ мини- 

мальным числом рёбер для заданного числа вершин и рёберной связности \(С). В дан- 

ной работе мы рассмотрим более общую задачу: для заданного числа вершин 77, вер- 

шинной связности k(G) и рёберной связности A\(G) требуется определить минимальное 

число рёбер, которое может иметь rpad С с указанными параметрами |7, 8|. Соглас- 

но неравенству Уитни, минимальная степень вершины в графе не меньше рёберной 

связности, поэтому очевидно, что в искомом графе не может быть меньше чем [An/2] 

рёбер. Семейство графов именно с таким числом рёбер описано в работе 7). Однако 

в общем случае не обязательно, что граф с таким числом рёбер для заданных па- 

раметров существует. Например, оптимальные по числу рёбер п-вершинные графы 

с & = Л = 1 — это деревья с числом рёбер п— 1. Приводимые далее полные результаты 

были анонсированы в работе [8]. 

В [9| приводится список из 14 нерешённых задач теории графов. Задача № 11 с 

дующая: какова наибольшая связность графа с n вершинами и т рёбрами? Решение 

было найдено Ф. Харари в работе [10]: наибольшая связность & графа с п вершинами 

и т рёбрами равна [2m/n] при т 2 п — 1. Достигается она на графах Харари Н, 

в которых все вершины имеют степень К, если kn чётно, либо одна вершина имеет 

степень & + 1, а все остальные вершины имеют степень k, если kn нечётно. Pac 

рим в некотором смысле обратную задачу: какое минимальное число вершин и рёбер 

10T- 
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может быть в графе с заданной вершинной связностью & и рёберной связностью Л. 

Соответствующие значения непосредственно следуют U3 результатов работы [5]. 

Обозначим через М минимальное число вершин, которое может содержать 

граф G с заданной вершинной связностью & и рёберной связностью A: 

2(1 + 1) - &  при ^ > К, 

A+1 при A = k. 
VA = () 

Обозначим через By y минимальное число рёбер, которое может содержать граф G 

с заданной вершинной связностью & и рёберной связностью Л: 

№ —К +k+A+o при Л > К, во= ' @ 
AA+1)/2 при A =k, 

где 

0, если [(2k% — kX —2k)/2] <0, 

[(2k% — kA — 2k)/2]  unaue. 

Заметим, что если HAC интересует минимальное число вершин Ni, которое может 

содержаль граф с заданной вершинной связностью k, то получаем Ny = Ngp =k + 1, 

что соответствует полному графу с числом вершин А + 1. Аналогично для случая 

минимального числа вершин Ny, которое может содержать граф с заданной рёберной 

связностью Л. 

Если нас интересует минимальное число рёбер Е, которое может содержать граф 

с заданной вершинной связностью K, то получаем Ё = Ер = К(& -- 1)/2, что соответ- 

ствует полному графу с числом вершин & + 1. Аналогично для случая минимального 

числа рёбер Ё, которое может содержать граф с заданной рёберной связностью Л. 

Добавим ещё один параметр к поиску и будем рассматривать такую задачу: какое 

минимальное число рёбер может быть в п-вершинном графе с заданной вершинной 

связностью k и рёберной связностью Л? Обозначим это значение через Ej . 13 усло- 

вия Уитни имеем, что минимальная степень вершины B графе д 2 A, поэтому спра- 

ведлива очевидная оценка. 

Ejan 2 [An/2]. 

В работе |7| удалось описать множество значений & i\, при которых достигает- 

ся указанная оценка. Задача поиска оптимальных графов ¢ максимальными мерами 

связности представляет интерес не только с теоретической, но и с практической точки 

зрения, например для построения отказоустойчивых сетей [11, 12]. 

2. Основной результат 

Точкой сочленения в связном графе называется вершина, удаление которой вместе 

со всеми инцидентными ей рёбрами приводит к несвязному графу. Если в графе есть 

точка сочленения, то число вершинной связности & = 1. Расс: 

случай, когда и число рёберной связности A = 1. По формулам (1) и (2) получаем, что 

Ма = 2 и Е1а = 1. Очевидно, что минимальное число рёбер среди графов с п вер- 

шинами с & = 1 и A = 1 имеют деревья. Как известно, п-вершинное дерево содержит 

п — 1 ребро. 

Далее рассмотрим случай & = 1 и A > 1. В этом случае М ) можно вычислить 

следующим образом: 

иотрим сначала частный 

Ми = 2(1 +1) - к = 2Л +1.
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Teopema 4. Пусть & = 1, A > 1. Тогда для всех n > Ny = 2А + 1 минимальное 

число рёбер Ё\дл, которое может иметь п-вершинный граф с заданными & и A, равно 
[(Ап + Л+ 1)/2]. Эта оценка является достижимой. Соответствующий оптимальный по 

числу рёбер п-вершинный граф с заданными А и A существует и имеет следующий 
вид: 

— если A чётное или п нечётное, то в таком графе степень одной вершины (точки 

сочленения) равна ЭЛ, а остальных — A; 

— если Л нечётное и п чётное, то граф может иметь один U3 двух видов: 

— степень одной вершины (точки сочленения) равна 2\ + 1, а остальных — Л 

— степень одной вершины (точки сочленения) равна 2\, степень ещё одной Bep- 

шины — A + 1, а остальных — Л. 

Доказательство. Рассмотрим произвольный п-вершинный граф © с & = 1, 

А > 1, п 2 2Л--1. Пусть вершина v — точка сочленения графа G. Согласно неравенству 

Уитни, минимальная степень вершины B графе G не может быть меньше Л. Покажем, 

что степень d(v) точки сочленения не может быть меньше 2Л. Предположим обратное: 

пусть d(v) < 2Л. Удаление вершины v из графа С приводит к несвязному графу, 

который состоит не менее чем U3 двух компонент связности. Обозначим через G одну 

из этих компонент, через G — оставшуюся часть. Так как d(v) < ЭЛ, то вершина v 

инцидентна менее чем A вершинам либо из С, либо из Ga. Не ограничивая общности, 
можно считать, что вершина © инцидентна менее чем Л вершинам из С1. Удалив эти 

рёбра из графа G, мы нарушим его связность, а это противоречит тому, что рёберная 

связность графа G равна Л. Следовательно, степень точки сочленения не может быть 

меньше 2. 

Таким образом, оптимальный 10 числу рёбер п-вершинный граф G с & = 1, A > 1 

должен иметь по крайней Mepe одну вершину степени не менее 2\ (точку сочленения) 

:о степенью не ниже Л, что даёт оценку числа рёбер и остальные вершины — 

Eipn 2 Мп + 1)/2. 

Однако с учётом того, что количество вершин нечётной степени должно быть чётно, 

оценку можно уточнить для случая, когда Л нечётно, a n чётно. Рассмотрим подграфы 

графа G, порождённые вершинами G и вершиной v, Go и вершиной v. Обо: 

через пу и Ny число вершин в этих подграфах. Очевидно, что n = ny + пэ — 1. Так как 

7 чётно, количество вершин B одном из этих подграфов чётное, а в другом нечётное. 

Следовательно, в подграфе с нечётным числом вершин все вершины не могут иметь 

нечётную степень и одна U3 вершин должна иметь степень на 1 больше, чем указано. 

Это может быть либо вершина v, которая имеет степень A+ 1 (и соответственно 2^ + 1 

в графе G), либо какая-то другая вершина, которая имеет степень A + 1. В любом 

следующую оценку числа рёбер: 

начим 

случае это дё 

Вуда 2 (Mn+1)+1)/2. 

С учётом первого случая можно записать оценку в общем виде: 

Eipn 2 [(№п + А + 1)/2]. 

Далее покажем, что эта оценка является достижимой: п-вершинный граф с & = 1, 
Л > 1 и числом рёбер [(№ + ̂ + 1)/2] существует для всех n > Npx =20+ 1. 

Предыдущие рассуждения предлагают и схему построения соответствующего оп- 
тимального графа: необходимо взять два графа Hy и Hy ¢ количеством вершин п и Ny
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с рёберной связностью Л. Если п) и пэ чётные, то графы Hy и Н» должны быть Л-регу- 

лярными. Если число вершин в одном из графов нечётно, то он должнен быть почти 

А-регулярным с единственной вершиной степени A + 1. Далее в графах Н, и Hy вы- 

бираются произвольные вершины U1 и Uz, графы соединяются путём отождествления 

выбранных вершин. Получаем п-вершинный граф G, n = па + па — 1. 

Для доказательства того, что эта схема реализуема, заметим, что достаточно B ка- 

честве графов Hy и Hz взять графы Харари Hyp,, и Нэум,, степени вершин в которых 

имеют в точности указанные значения. Как известно, граф Харари Нул существует 

для к > 1ип2 К +-1 [9|. @ 

Рассмотрим более подробно схему построения искомых графов из доказательства 

теоремы 4 для каждого случая по отдельности с примерами и обсудим вопрос един- 

ственности построения: 

1) Пусть A чётное или n нечётное. Графы Hy и Hy — два Л-регулярных графа с рё- 

берной связностью A, которые соединяются одной общей вершиной (точкой сочлене- 

ния). Её степень равна 2Л. При этом оба подграфа для случая, когда Л нечётное, 

должны содержать чётное число вершин. 

2) Пусть A нечётное и n чётное. Один из подграфов перестаёт быть \-регулярным: 

степень одной из его вершин равна Л +-1. За счёт выбора вершины для отождествления 

появляется два варианта. Если выбираются вершины степени A, то точка сочленения 

будет иметь степень 2\, одна вершина — степень A + 1, а остальные вершины — степе- 

ни Л. Либо вершина, которая является общей (точкой сочленения) для подграфов, со 

стороны одного подграфа имеет степень A+ 1, со стороны другого — степень A, степе- 

ни всех остальных вершин равны Л. Таким образом, степень точки сочленения равна 

22+ 1. 

На рис. 1 показана реализация графа ¢ минимальным числом рёбер при n = 6, 

Л =2, & = 1. Количество рёбер в этом графе равно [(An+A+1)/2] = [(12+2+1)/2] = 7. 

Рис. 1. Пример графа, удовлетворяющего первому случаю (A =2, & = 1, п = 6) 

2 показаны две реализации графа с минимальным числом рёбер при n = 8, 

-лучае точка сочленения (вершина 3) имеет степень 2\ = 6, 

степень вершины 8 равна 4 = A + 1, а степени всех остальных вершин равны A = 3. 

Во втором случае степени всех вершин, кроме точки сочленения, равны A = 3. Степень 

точки сочленения со стороны левого подграфа равна A = 3, а со стороны правого — 

A+ 1 = 4. Таким образом, степень точки сочленения равна 2\ + 1 = 7. Очевидно, 

что графы неизоморфны. Количество рёбер в этих графах равно [(Лп + Л + 1)/2] = 

= [(24 + 3+-1)/2] = 14. 

Последний пример показывает, что есть два неизоморфных &-вершинных графа, 

которые имеют точку сочленения и рёберную связность Л = 3, с минимальным BO3- 

можным числом рёбер. Формулировка теоремы указывает, что при нечётном A > 1 

и чётном п 2 2\ + 1 существует как минимум два неизоморфных оптимальных 
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Рис. 2. Примеры графов, удовлетворяющих второму случаю (A = 3, & = 1, п = 8) 

п-вершинных графа ¢ заданными значениями & и Л. Однако из доказательства след; 

€T, что в общем случае таких оптимальных графов может быть больше: вместо графа 

Харари можно взять любой К-связный граф с таким же числом рёбер либо графы 

Харари с разным числом вершин. Например, для случая n = 7, Л = 2 будет также два 

неизоморфных оптимальных графа. Действительно, имеем два способа выбора графов 

для соединения: два цикла с числом вершин 4 либо цикл с числом вершин 3 и цикл 

с числом вершин 5. 

Выбор вершин для отождествления также может привести к неизоморфным опти- 

мальным графам. Проведён эксперимент по вычислению количества неизоморфных 

оптимальных графов с точками сочленения и заданной рёберной связностью, его ре- 

зультаты приведены в таблице. 

Количество оптимальных п-вершинных графов 

с точкой сочленения и рёберной связностью Л 

N X 
T [2[3[4]5 

3 [1 (- |- -- 
12 |-|- -- 
5 [ 3 [ -[ - - [= 
616 [1 ] - -- 
7 11 2 1 — | — 

8 | 23 [ 2 |? | - | - 
9 | 47 [ 3 |? [1 | - 
10 | 103 | 3 | 19 | 1 | — 

п [235 [ 4 п [ 4 [1 

Как уже отмечалось, при A = 1 оптимальными по числу DS 

деревья, значения в столбце 2 согласуются с извес: 

ер графами являются 
ными данными [13]. Для n < 10 зна- 

чения согласуются с данными сайта « Мир графов» [14]. Прочерки в таблице означают, 
что при соответствующих значениях п и Л подходящих графов не существует. 

ЛИТЕРАТУРА 

1. Харари Ф. Теория графов. M.: Мир, 1973. 

2. Богомолов А. M., Салий В. Н. Алгебраические основы теории дискретных систем. М.: На- 

ука, 1997. 

3. Whitney Н. Congruent graphs and the connectivity of graphs // Ашег 

Iss. 1. P. 150-168. 

4. Chartrand С. ата Harary F. Graphs with prescribed connectivities // Theory оЁ Graphs. 

N.Y.: Academic Press, 1968. Р. 61-63. 

Tepebun B. А., Абросимов M. Б. Оптимальные реализации графов ¢ заданными мерами 

связности // Матем. заметки. 2023. Т. 113. № 3. С. 323-331. 

Math. 1932. У. 54. 

<
 



Оптимальные графы с точкой сочленения и заданной рёберной связностью 71 

10. 

11. 

12. 

13. 

14. 

o
 

10. 

11. 

12. 

13. 

14. 

Fulkerson D. В. апа Shapley L. 5. Minimal k-arc-connected graphs // Networks. V.1. №.1. 

P.91-98. 

Tepebun B. А., Абросимов M. B. Об одном семействе оптимальных графов с заданны- 

ми мерами связности // Прикладная дискретная математика. Приложение. 2022. Ne15. 

C.116-119. 

Tepebun Б. А., Абросимов М. B. O графах с заданной рёберной связностью, точками CO- 

членения и минимальным числом рёбер // Материалы XIV Междунар. семинара «Дис- 

кретная математика и её приложения» имени академика О. Б. Лупанова (Москва, МГУ, 

20-25 июня 2022 г.) / под ред. В. В. Кочергина. М.: ИПМ им. Келдыша, 2022. С. 200-203. 

Берж K. Ж. Теория графов и её применения. М.: ИЛ, 1962. 323 c. 

Harary Е. The maximum connectivity of a graph // Proc. NAS USA. 1962. V.48. Р. 1142 

1146. 

Steiglitz K., Weiner P., and Kleitman D. The design of minimum-cost survivable networks // 

IEEE Trans. Circuit Theory. 1969. V.16. №. 4. P. 455-460. 

Jafarpour M., Shekaramiz M., Javan А., апа Moeini А. Building graphs with maximum 

connectivity // Proc. IETS. Orem, UT, USA, 2020. P.1-5. 

oeis.org/A000055 — Number of trees with п unlabeled nodes. 2025. 

graphworld.ru— Мир графов. 2025. 

REFERENCES 

Harary Е. Graph Theory. N.Y., Addison-Wesley, 1969. 274 p. 

Bogomolov А. М. апа Saliy V. N. Algebraicheskie osnovy teorii diskretnykh sistem [Algebraic 

foundations of the theory оЁ discrete systems|. Moscow, Nauka, 1997. (in Russian) 

Whitney H. Congruent graphs ап the connectivity оё graphs. // Amer. ). Math. 1932. V. 54. 

Iss. 1. P. 150-168. 

Chartrand С. апа Harary Е. Graphs with prescribed connectivities. Theory оЁ Graphs. N.Y., 

Academic Press, 1968, рр. 61-63. 

Terebin В. А. апа Abrosimov М. В. Optimal graphs with prescribed connectivities. Math. 

Notes, 2023, vol. 113, iss. 3, pp. 319-326. 

Fulkerson D. В. апа Shapley L. 5. Minimal k-arc-connected graphs. Networks, vol.1, no.1, 

рр. 91-98. 

Terebin В. А. апа Abrosimov М. В. Ob odnom semeystve optimal'nykh grafov s zadannymi 

merami svyaznosti [One family оё optimal graphs with prescribed connectivities|. Prikladnaya 

Diskretnaya Matematika. Prilozhenie, 2022, no. 15, pp.116-119. (in Russian) 

Terebin В. А. апа Abrosimov М. В. O grafakh s zadannoy rebernoy svyaznost’yu, tochkami 

sochleneniya i minimal'nym chislom reber [On graphs with given edge connectivity, cut points 

and minimum number of edges|. Proc. XIV Intern. Seminar “Discrete Mathematics and its 

Applications” named after Academician О. В. Lupanov (MSU, June 20-25, 2022), Moscow, 

Keldysh Institute оё Applied Mathematics, 2022, рр. 200-203. (in Russian) 

Berge C.J. Theorie des graphes et ses applications. Dunod, 1958, 270 p. (in French) 

Harary Е. The maximum connectivity of а graph. Ргос. NAS USA, 1962, vol. 48, pp. 1142 

1146. 

Steiglitz K., Weiner P., and Kleitman D. The design of minimum-cost survivable networks. 

IEEE Trans. Circuit Theory, 1969, vol. 16, no. 4, рр. 455-460. 

Jafarpour M., Shekaramiz M., Javan А., апа Moeini А. Building graphs with maximum 

connectivity. Ргос. IETS, Orem, UT, USA, 2020, рр. 1-5. 

oeis.org/A000055 — Number of trees with п unlabeled nodes, 2025. 

graphworld.ru. 2025. 


