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Предлагается и рассматривается модель программ, называемая далее моделью 
пропозициональных программ Мили (ПИМ) и представляющая собой неболь- 

шое синтаксичес: ое обобщение модели дискретных преобразователей Глушкова 

„Летичевского с «осовремененной» семантикой, основанной на понятиях, исполь- 
зующихся в модели пропозициональных последовательных программ, введённой 
В.А. Захаровым (ПППЗ). Предлагается подход к построению эффективных ал- 

горитмов проверки эквивалентности ППМ, являющийся адаптацией известного 
подхода к проверке эквивалентности ПППЗ, основанного на анализе графа сов- 
местных вычислений программ. Демонстрируется применение этого подхода для 
получения эффективных алгоритмов проверки эквивалентности ППМ для неко- 
торых видов семантик прикладного характера. 
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‘We propose and investigate propositional Mealy programs (PMPs), а model that 

15 а slight syntactic generalization ов the discrete processor model studied by 

V.M. Glushkov and А. А. Letichevsky. PMPs employ a “modernized” semanti 

based on notions used in the model of propositional sequential programs proposed 

by V.A. Zakharov (PSPZs). A technique for constructing efficient equivalence check- 

ing algorithms for PMPs is proposed, adapting a known technique for PSPZs based on 

analysis of a graph оЁ consistent program computations. Efficient PMP equivalence- 

checking algorithms based on the proposed technique are obtained for some kinds of 

applied semantics. 

1Исследования поддержаны Московским центром фундаментальной и прикладной математики 

МГУ имени M. В. Ломоносова по соглашению № 075-15-2025-345.



Эффективные алгоритмы проверки эквивалентности программ Мили 73 

Keywords: equivalence problem, equivalence checking, program model 

cessors, propositional sequential programs. 
discrete pro- 

Введение 

Данная работа посвящена исследованию проблемы эквивалентности программ: для 

двух заданных произвольных программ выяснить, имеют ли они одинаковое пове- 

дение. 13 теоремы Райса — Успенского [1], констатирующей неразрешимость любого 

нетривиального свойства частично рекурсивных функций, и алгоритмической пол- 

ноты этого класса функций [2] следует неразрешимость проблемы эквивалентности 

для любого достаточно выразительного (алгоритмически полного) класса програл 

В связи с этим проблема эквивалентности исследуется, в числе прочего, для моделей 

программ с упрощённой семантикой, позволяющей избежать такой неразрешимости, 

с тем чтобы использовать решение этой проблемы в модели в качестве достаточного 

условия эквивалентности программ. Среди таких моделей нас интересуют дискретные 

преобразователи Глушкова — Летичевского (ДПГЛ) [3] и пропозициональные последо- 

вательные программы Захарова [4]. 

Общие черты моделей ДПГЛ и ПППЗ таковы. Программа разделена на синтак- 

сическую и семантическую части. Вычисление программы представляет собой взаи- 

модействие этих двух частей, согласно которому выстраивается последовательность 

состояний управления и состояний данных программы, начиная с заданных входных 

значений и пока не будет достигнуто заданное выходное значение состояния управле- 

ния либо до бесконечности. Результатом конечного вычисления объявляется послед- 

нее состояние данных. Построение вычисления основывается на операторах и логиче- 

ских условиях — символах, обозначающих соответственно способы изменения состоя- 

ния данных программы и способы выбора следующего состояния управления в зависи- 

M. 

мости от текущих состояний управления и данных. Способ преобразования состояний 

данных операторами и выбор логических условий при продолжении вычисления 3a- 

даются семантической частью. Выбор оператора, выполняющегося при продолжении 

вычисления, задаётс. 

Основные результаты, относящиеся K исследованию проблемы эквивалентности 

ДИГЛ [3, 5, 6], представляют собой разделение вариантов этой проблемы на разре- 

шимые и неразрешимые. Но ввиду практической значимости алгоритмов проверки эк- 

вивалентности (подробнее о ней см., например, в [7]) интерес представляет не только 

разрешимость как таковая, но и эффективные решающие алгоритмы — полиномиаль- 

ные достаточно низкой сложности. В [4] введена модель I3, для неё предложе- 

синтаксической частью. 

на техника проектирования таких алгоритмов — техника совместных вычислений — и 

в конце введения KOPOTKO, без деталей и доказательств, отмечается, что модель I3 

является обобщением модели ДПГЛ. В последующих работах, посвящённых пробле- 

ме эквивалентности ПППЗ [7-21] (включая труды, упомянутые в списках литературы 

этих работ), это соотношение между моделями не обсуждается. 

В данной работе обращается особое внимание на TO, что пока ещё строго не уста- 

новлено, имеет ли место включение между структурой или выразительными возмож- 

ностями моделей ПППЗ и ДПГЛ. Синтаксис этих моделей несравним: в модели ДПГЛ 

оператор обязан выполняться на каждом шаге вычисления, а в модели ППИЗ может 

и не выполняться на последнем шаге; в модели ПИППЗ выполняющийся оператор од- 

нозначно задаётся следующим состоянием управления, а в модели ДПГЛ он может 

зависеть также и от выбора логического условия, аналогично TOMY, как выходной сим- 

вол автомата Мура зависит только от состояния, тогда как в автомате Мили может
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зависеть и от выбора входного символа [22]. При этом семантика ПППЗ, хотя и более 

«современна» в выборе терминологии по сравнению с семантикой ДПГЛ, но в конеч- 
ном итоге не кажется более широкой, что коротко отмечается в TOM числе и в [23], 
хотя это сравнение требует более развёрнутого обсуждения. 

В связи с обозначенным соотношением ис интакси лантики ДИГЛ и ПЗ 

результаты, полученные для этих моделей, вообще говоря, следует считать незави- 

симыми, пока He будет строго установлена связь между этими моделями. В данной 

работе выполнен первый этап установления этой связи: предложена модель пропо- 

зициональных программ Мили, совмещающая синтаксис ДИГЛ и семантику ПППЗ, 

и к ней, в числе прочего, адаптированы результаты работы [4]: техника совместных 

вычислений и получающиеся с её помощью эффективные алгоритмы проверки эк- 

вивалентности для некоторых видов семантик прикладного характера. Применение 

предложенной техники, то есть эти виды семантик и детали соответствующих алго- 

ритмов, описано в п.7. Кроме того, получены некоторые побочные результаты, свя- 

занные с расширением и структурированием техники совместных вычислений, они 

обсуждаются в заключении. 

Работа имеет следующую структуру. В п. 1 даются используемые понятия и обозна- 

чения общего характера. В п.2 вводятся синтаксис и семантика ППМ, ставится рас- 

сматриваемая проблема эквивалентности и обсуждаются специальные понятия и фак- 

ты, относящиеся к ППМ и требующиеся для формулировки результатов. В п. 3 при- 

водится графовая конструкция, описывающая синхронное выполнение двух ППМ — 

граф совместных вычислений. В п. 4 вводится понятие критериальной системы, пред- 

назначенное для оценки каждой пары состояний данных ППМ характеристикой «уда- 

лённости» этих состояний друг от друга. В п. 5 обсуждается графовая конструкция, по 

сути представляющая собой граф совместных вычислений, снабжённый информацией 

об «удалённости» состояний данных описываемых пар вычислений, — критериальный 

граф. В п. 6 приводится алгоритм проверки эквивалентности ППМ, состоящий B обхо- 

де критериального графа и параметризованный выбором семантики и критериальной 

системы, с обоснованием корректности и оценкой сложности. Наконец, в п. 7 показы- 

вается, как критериальную систему из [4] можно переформулировать в виде критери- 

альной системы данной работы, и обсуждаются алгоритмы проверки эквивалентности 

ПИМ невысокой сложности, основанные на алгоритме п. 6 и критериальных с 

Некоторые утверждения в данной работе представляют собой адаптацию утвер- 

ждений из [4] и смежные не очень сложно обосновываемые свойства рассматриваемых 

понятий. Такие утверждения, строго говоря, являются новыми и требуют обоснования, 

но эта новизна B OCHOBHOM техническая, а He содержательная, и эти утверждения оза- 

главлены словом «Утверждение». Утверждения, полагающиеся 

и нетривиальными, озаглавлены словами «Лемма» и «Теорема». 

стемах 

ущественно новыми 

1. Общие понятия и обозначения 

В связи с обилием областей, из которых далее обширно испол 

зультаты, приведём названия этих понятий, кроме самых общеизвестных, со ссылками 

на работы, в которых можно их найти. Здесь же изложим сопутствующие 0603 

как взятые из упомянутых работ, так и отступающие от них. 

Используемые понятия теории формальных языков [24]: алфавит; буква (символ) 

алфавита; слово в заданном алфавите; пустое слово; длина слова. Обозначения: Л — 

уются понятия и ре- 

начения,
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пустое слово; L* — множество BCeX слов B алфавите ¥; |5| — ра: 

длина последовательности S, в том числе длина слова. 
Используемые понятия теории графов [25]: ориентированный rpad ¢ петлями и 

кратными дугами (далее — орграф); вершина и дуга орграфа; вершина, U3 которой 
исходит дуга и в которую заходит дуга; полный орграф; подграф; орграф, обратный 
к С; путь; длина пути; простой цикл; кратчайший путь от одной вершины 10 другой; 
достижимость одной вершины из другой. Рассмотрим также пути с вершинами задан- 
ного множества без упоминания графа, имея в виду пути в полном орграфе ¢ этими 
вершинами. Про путь будем говорить, что он исходит из первой своей вершины и 
если он конечен, то он ведёт в последнюю свою вершину. Обозначения: 0] —› vg — 

лер множества S и 

дуга (vr,v2) и часть пути (vr, (гл ), о); 0() = пн " = (по = т —> = о) 
для пути р = Vg —> U1 — ... Б)'ДСМ называть отрезком пути 00 —> U1 — ... всякую 

часть 0; — ее —> UJ‘ этого пути и такой отрезок начальным, если з = 0 KdK H B [23]. 

рассмотрим также орграфы ¢ помеченными вершинами и ду: 

сохраняются при преобразовании графов и рассмотрении и преобразовании путей, и 

использовать в примерах понятие изоморфи: зма таких графов. Дугу 0] — vy, поме- 

ченную значением , будем записывать как U] — 02; ›; кратные дуги U1 — з с разными 

метками 1, . . . , T — как одну помеченную дугу о1 227 1y 

Будем использовать также понятия сужения функции f X — У на множество 

Z C X [26] и частично определённой ф\'пкции [2] и следующие обозначения: /|; — 

сужение функции f на Z; 1 — значение неопределённости, не входящее ни B одно из 

рассматриваемых множеств, кроме случаев, когда это сказано явно; /: Х — YU{Ll} — 

частично определённая функция, в которой f(x) = L означает, что значение f(x) не 

определено; 2X = {У : У C X}; № = №0 {0}. 
При обсуждении алгоритмов следуем терминологии и рекомендациям [27] и ис- 

пользуем известные структуры данных: одномерный и двумерный массивы (далее — 

соответственно векторы и матрицы); односвязный 

ми, считая, что метки 

‘писок; список смежности ориен- 

тированного графа. Под сложностью алгоритма понимаем его сложность по времени 

в худшем случае в модели ВАМ |27, разд. 2.2]. Это означает, в частности, что при 

подсчёте сложности полагаем, что в распоряжении алгоритма есть любое необходимое 

количество пронумерованных ячеек памяти, способных хранить любые целые чи 

и единица сложности отвечает выполнению любой простейшей команды: переход к 

данной команде, безусловный или условный ¢ проверкой значения B заданной ячейке и 

сравнениями (=, #, <, <, >, 2) значений в ячейках; вычисление в заданной ячейке 

MBI, разности, произведения, частного или остатка от деления значений заданных яче- 

ек; копирование значения U3 одной ячейки в другую. Для алгоритма A записью А(г) 

будем обозначать результат выполнения А на входе x. 

Используемые понятия общей алгебры [28, 29]: моноид; образующие (порождаю- 

щие) элементы; определяющие соотношения; подмоноид; конечно порождённый мо- 
ноид; свободный моноид; свободный коммутативный моноид; частично коммутатив- 

ный моноид; прямое произведение моноидов; гомоморфизм моноида А на моноид В 

(сюръективное отображение элементов А в элементы В, сохраняющее нейтральный 

элемент и операцию). Для краткости будем называть моноид с множеством образу- 

ющих Х просто Х-моноидом. Обозначения: M = (М,е, о) — моноид с множеством 

элементов М, нейтральным элементом £ и операцией о; т € M — синоним записи 

т € M; М(а1...а)) = a0 ---0ay, Где ay,...,ay € М; то И = {то в :а € И}; 
И от = {хот: г Е И}; М, х My— прямое произведение моноидов My и М. 
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2. Модель программ 

2.1. Синтаксис 

Символами A и € будем обозначать конечные непустые множества операторов и 

логических условий соответственно; эти два множества считаются заданными. Слова 

в алфавите 2A будем называть (операторными) цепочками. 

Пропозициональной программой Мили над A и © (далее — (2, ©)-программой и про- 

сто программмой) будем называть систему л = (5,еп, ЕХ, Т), где: 

— 5— непустое множество состояний; 

— еп Е 5 — вход; 

— EX © 5 — множество вылодов; 

— Т: (5\ ЕХ) х © — (0 х 5) ) { 1 } — частично определённая функция переходов. 

Будем также использовать следующие обозначения: если Т (5, с) = (а, г), то T%(s,c)=a 

и Т®(в, с) = r. Переходом программы т будем называть четвёрку (S, ¢, а, г), для которой 

верно T'(s,¢) = (а,т). Будем считать, что программа л представляет собой размечен- 

ный орграф, B котором S — множество вершин, «вход» и «выход» — метки вершин и 

каждый переход (s, ¢, а, г) представляет собой помеченную дугу 5 o 

Пример 1. На puc. 1 показаны следующие пропозициональные программы Mu- 

ли над множествами A = {a,b} и € = {е|,со}: m = ({51, 52, 83 51}, 51, {s3}. Th). 

то = ({r1, 72, 73,74}, 71, {7з, 4}, Т)), таблицы значений функций переходов Т\ и Т) при- 

ведены на рис. 2. Здесь и далее вход помечается символом *, а выход — двойным конту- 

ром. Содержательное понимание элементов синтаксиса пропозициональных программ 

Мили совпадает с пониманием соответствующих элементов синтаксиса дискретных 

преобразователей Глушкова — Летичевского и может быть почеринуто из |3, разд. 2|. 

В данной работе ограничимся небольшим примером для иллюстрации основных по- 

нятий и результатов. На рис. 3 приведён фрагмент кода на языке C++ [30], которому 

отвечает программа л1, если буквами а и b обозначены соответственно присваивания 

«х = х + 1» и <у = у + 1», а буквами ¢; и со — множества состояний данных, в которых 

соответственно истинно и ложно условие <y < 1». 

Программа‚ л1 Программа ло 

Рис. 1. Пропозициональные программы Мили (пример 1) 

с с х х + 1; 

Ti(s,c) ® [а Ty(s, ©) “ [ а: while (y < 1? { 

х = х + 1 
51 || а, 52 | а, 52 5 1 || а, 7з | В, гэ у=ун ; 

5 | 52 || Р, 53 | а, 54 T L |а, га } 

8а || , 52 | ® 52 у =у т 1; 

Рис. 2. Таблицы значений функций переходов 
Рис. 3. Фрагмент кода на языке 

программ (пример 1) C++ (пример 1)
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Путь в программе и в других графах будем называть входным, если он исходит 
. Р с/а 

из входа, и выходным, если он конечен и ведёт в выход. Цепочкой nymu p = (50 —— 
cafay 

51 — ... ) будем называть цепочку ааэ... (для бесконечного пути — бесконечную 

последовательность операторов). 
Программу будем называть конечной, если множество её состояний конечно, и пол- 

ной, если её функция переходов всюду определена. Размером || конечной программы 
п = (5,еп, ЕХ, Т) будем называть число |S|. 

2.2. Семантика 

Детерминированной динамической шкалой над A (далее — {-шкалой и просто шка- 

лой) называется система F = (D, @, о), где: 

— —- непустое множество состояний; 

— @ € О — вгод; 

— о: D х ® — Р — операция шкалы. 

Перегодом шкалы F будем называть тройку (4, а, е), удовлетворяющую равенству 

4 оа = е. Считаем, что шкала F представляет собой размеченный орграф, в кото- 

ром D — множество вершин, «вход» — метка вершин и переход (а, а, е) представляет 

собой помеченную дугу @ < e. Цепочкой пути р = (do “ а, ® ...) будем называть 

цепочку a1dy ... (для бесконечного пути — бесконечную последовательность операто- 
ров). Записью F(d,h) для а € D и h € A* будем обозначать последнее состояние пути 

в Л, исходящего из d и имеющего цепочку Л, и записью F(h) — состояние /(@, h). 

Пример 2. На рис. 4 представлен фрагмент шкалы 7% = ({zg, 20 + 1, о + 2, 

.. } х {в0, о-- Lyo+2, ..}, (2о, у) о) над A = {a, b}, где zo, yo € Z, (v,y)oa = (z+1,y) 
и (z,y)ob= (z,y+1). Этой шкалой определяется CEMAHTUKA операторов U3 примера 1 

для (неограниченных) целочисленных переменных , Y, имеющих значения To и Yo 

соответственно в начале выполнения программы. Заметим, что для всех то, 0 € 7 

шкалы 70% изоморфны как размеченные графы. Поэтому далее B примерах B основ- 

ном используем шкалу FOO, 

[го - Г, —[то Е1 + -б о 1, yo + - 
af af а] 

[T, о-— о, yo + L—L—a0, yo + 22 

Рис. 4. Фрагмент детерминированной динамической шкалы (пример 2) 

Графом Я-вычислений программы л = (5,еп, ЕХ, Т) назовём программу л ® F = 

(S х D, (еп, @), ЕХ х D,T), в которой функция переходов 7 задаётся так: если 

T(s,c) = L, 10 T((s,d),¢) = L, иначе T((s,d),c) = (T%(s,¢),(T%(s,c),d о Т"(5, с))). 
Вершины графа л ® F u пути в нём будем называть соответственно Р-конфигурация- 
ми и F-mpaccamu программы л, элементы s и d конфигурации (s, @) — соответственно 
состоянием управления и состоянием данмых этой конфигурации. Путь в программе 
и путь B шкале будем называть парными, если их цепочки одинаковы. Для парных пу- 

с/а сэ/а: 
тсйш:(зощ›зіЩ›.…)ир;:(іоі›щз› ) одинаковой длины в программе 

а/а cafay 
и шкале соответственно записью 1 ® э обозначаем путь (sg,do) — (s1,d1) —— ...; 

пути p1, P2 называем соответственно NYMEM управления и путём данных пути py ® py.
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Пример 3. На puc. 5 приведён фрагмент графа вычислений программы л) из 

примера 1 на шкале 7%° из примера 2. Входной путь (51, (0,0)) —— Щ/Ц (s2,(1,0)) — cn/b 

(5з, (1,1)) в этом графе можно представить B виде p1 & po, где путь управления 1 = 

= (щ i} S9 і› 53)7:#10 входной путь B л1 и путь данных Py = ((0,0) N (1,0) — 

(1,1)) — это парный входной путь в 7% 

.<о.0)]№›(е2.<1.0))№›{93.<1.1)) 

a/d] b1 /b b .0 е B ol 55 (2,2)) 

й—%”’ ol 
Рис. 5. Фрагмент графа вычислений (пример 3) 

ЫЕ 

Утверждение 1. Для любых программы л и шкалы 7 входными путями B я®.Л 
являются всевозможные пути /1 ® P2, где ру и з — парные пути B ли Л, и только они. 

Доказательство. Пусть л = (S,en, ЕХ,Т) и F = (D,d’ o). По устройству 

путей вида py ® з и графа @ F, во-первых, все такие пути начинаются со входа этого 
c/a o графа, и, во-вторых, множества переходов (s,d) —> (r,€), исходящих из заданной 

конфигурации (s,d) в таких путях и в этом графе, равны: метка с/а произвольно 
выбирается среди меток переходов, исходящих из s в л; т = Т(5); е = 4оа. m 

Детерминированной динамической моделью над Ф и © (далее — просто моделью) 
называется система Т = (F,L), где F = (0,@,о) — шкала и L : D — ©. Такую 

модель будем также называть Л-моделью и считать графом, получающимся из F 
пометкой каждой вершины @ значением L(d). Будем называть Z-mpaccoli, a также 

. . с/а, . 
трассой, реализующейся в I, F-Tpa для каждого перехода (s,d) —>› o которой 

верно ¢ = L(d). Будем называть Z-Tpaccy т программы полной, если она является самой 

длинной среди всех Т-трасс этой программы, исходящих из 7(0). Полную входную 

Z-tpaccy программы будем называть Т-вычислением, этой программы. 

Пример 4. На рис. 6 приведён фрагмент модели Zy над A = {a,b} и € = {со, c1 }, 

содержащей шкалу 7% из примера 2 и разметку её состояний логическими условиями 

согласно содержательной трактовке из примера 1. Рассмотрим также /°°-модель Zo, 

в которой каждое состояние помечено условием €], и программы л1 и лэ из приме- 

( (0.0)) 85 (s2.(1,0) L5 
(5з, (2,2)). Тэ-вычисление Ty программы л1 бесконеч- 

но и начинается так: (51, (0,0)) — а, (s2,(1,0)) —> а, (54, (2,0)) —> ал (s2,(2,1)) ал 

(s4,(3,1)) СА—/Ь› ... Т-вычисление T3 программы ло устроено так: (rq,(0,0)) Щ 

(r2,(0,1)). 
Утверждение 2. Для любой программы л и любой модели 7 существует ровно 

одно Т-вычисление программы л. 

ра 1. Л-вычисление т программы л1 устроено та 

(50,(2,0) °^ (, (2,1)) ®^ 

Доказательство. Пусть 7 = (F,L). 

Существование. Входной путь длины 0 в графе 76 F существует и является 
входной 7-трассой. Значит, существует и входная Т-трасса наибольшей длины.
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Y ¢ 4 ¢ Y о 

[T, O} -П 2} L T 31-L 
af ¢ « со af со af ¢y 

[0, 0—2—{0, T {0, 2} 0, 31-L 

Рис. 6. Фрагмент детерминированной динамической модели (пример 4) 

Единственность. Достаточно показать единственность входной Т-трассы т 

программы л заданной длины. Для этого заметим, что 1) первая конфигурация каж- 

дой Я-трассы задана однозначно и 2) для каждого перехода (s,d) Ё› (г, е) значе- 

ниями 5 и d однозначно задаются остальные значения: с = L(d), в л содержится не 

более одного перехода, исходящего из 5 и помеченного условием ¢, и этим переходом 

однозначно задаются а, т и е = F(d,a). @ 

Далее будем без отсылки к утверждению 2 использовать понятие Т-вычисления 

программы для модели Z, имея в виду, что такое вычисление существует и единствен- 

но. Будем называть итогом конечной трассы состояние данных её последней конфигу- 

рации, результатом, выходной трассы — её UTOT, а результатами TPACC, не являющихся 

выходными, — значение L. Результат Т-вычисления программы л обозначим Т(п). Для 

шкалы /` будем называть 7 -вычислением Т-вычисление для любой Я-модели Т. 

Пример 5. Результаты вычислений Ty, Ty и T3, привед 

соответственно (2,2), Lu L. 

2 

Программы л1, my будем называть эквивалентными 6 модели T, а также Т-экви- 

валентными, если Т(п1) = Т(пэ), и эквивалентными на шкале F, а также Р-эквива- 

лентиными, если они эквивалентны в каждой Я-модели. Будем обозначать Р-эквива- 

лентность программ л1 и Ty как л1 >р по. Проблема. эквивалентности программ, на 

шкале F состоит в TOM, чтобы для заданных произвольных конечных программ л1, 7 

проверить соотношение л1 -; Ty. Будем называть программы сильно эквивалентины- 

MU, если они эквивалентны в любой модели (а значит, и на любой шкале). 

“нных в примере 4 равны 

Эквивалентность 

Пример 6. Эквивалентность программ на шкале означает, что результаты вы- 
числений этих программ обязательно равны, если смысл логических условий неизве- 
стен, а относительно операторов известны только свойства, задаваемые этой шкалой. 
В частности, шкала 7% из примера 2 отвечает свойству перестановочности (коммута- 
тивности) операторов а и b: итог трассы не зависит от порядка выполнения операторов. 
Этим свойством обладают присваивания, которым сопоставлены буквы а и b в приме- 
pe 1. Для программ лу и лэ из примера 1 верно Zy(m) # 1 (пэ) (см. примеры 4 и 5), а 

значит, T 7буо,о о. 

2.4. Вспомогательные понятия и свойства 

Будем считать заданной шкалу F = (D,do,o) и BC 

для произвольной такой шкалы. 

Шкалу F будем называть уравновешенной, если для любых цепочек h, g из pa- 

венства F(h) = F(g) следует |h| = |4|. Записями Ry и Br обозначаем соответственно 

множества {F(h) : h € A} и {(F(h),F(g)) : Р,а € A*, |h| = |g|}. 

Пример 7. Шкала FOO из примера 2 уравновешенна, так как для любых k,m € 

€ № все слова Л, для которых FOU(h) = (К, т), имеют одинаковую длину (& + т). 

утверждения сформулируем 
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Шкала F = ({d},d, о) над A = {a,b}, B которой 4 оа = dob = а, не уравновешенна: 

Пополнением программы л = (S, en, ЕХ, Т) для значений loop ¢ S u a € 2 будем 

называть программу mOP¢ = (S U {loop}, en, EX, T%°P), где TP отличается от Т 

только тем, что если Т(5,с) = L или s = loop, то T%P(s, ¢) = (a,loop). Состояние s 

программы назовём завершаемым, если из него в этой программе достижим выход, 
иначе — незавершаемым. Весом ||5||; состояния 5 программы т считаем длину крат- 5 

чайшего пути из 5 в какой-либо выход в л (если такого пути HET, то вес бесконечен). 

р.' loop,a й 
Пример 8. Пополнение л) программы лэ из примера 1 приведено на рис. 7. 

Рис. 7. Пополнение программы (пример 8) 

Пример 9. Для программ л из примера 1 и m = 7r12°°p’“ из примера 8 верно сле- 

дующее: ||5з|\к, = з к, = lIrallxy = ©; |5э|к, = ак, = а], = L5 5к = 5а , = 2 
[[loop|lz, = со. Состояние loop незавершаемо, остальные состояния завершаемы. 

Назовём Я-трассы программ совместными (B том числе одну трассу — совмест- 

ной), если существует Я-модель, в которой реализуются все эти трассы. Произведе- 

nuem F-mpace 71 = ((50, @) еч (в1, &) 2/г „) и = ((го, ео) /b ) /b 

2 b 
.) одинаковой длины будем называть путь 71 ® 72 = (((s0,70), (do, о)) ауе 

(c2,62)/(az,b2) 
((s1,71), (dy, 1)) ————= ...), такие трассы л) и T будем называть соответственно 

первой и второй проекциями этого пути. 

Пример 10. Рассмотрим модели Iy, Ty и FOO-rpace 71, Ty, T3 из примера 4. Трас- 

сы ту и T3 совместны, так как обе они реализуются в Д1. Трассы 7 и T3 совместны, так 

как обе они реализуются B Zo. Трассы т и 7 несовместны, так как если они обе реали- 

зуются в некоторой модели Z, то, согласно устройству 71, состояние (2,1) в 7 должно 

быть помечено условием со, а согласно устройству To, — условием c¢p. Путь 7' ® 73 

имеет вид (s1,71), ((0, 0), (0,0))) 0 (5, о), ((1 0). (0 1)))- 
Утвер›кдение 3. ‹П!ОбЫ(‚‘ две программы _}_-ЭКВИВЗЛСПТЦЫ тогда и только тогда, 

когда результаты любых совместных Я-вычислений этих двух программ равны. 

Доказательство. Напрямую следует из соответствующих определений. @ 

Утверждение 4. Любая программа сильно эквивалентна любому своему попол- 

нению. 

Доказательство. Для любой модели Т Т-вычисления программы и её попол- 

нения отличаются только тем, что если вычисление программы конечно и ведёт не 

в выход, то вычисление её пополнения бесконечно. При этом результаты всех конеч- 

ных 7-вычислений, оканчивающихся не B выходе, и бесконечных вычислений равны L. 

Значит, для любой модели 7 результаты Т-вычислений программы и €€ пополнения 

равны. @ 

Утверждение 5. Любая конечная Я-трасса т любой программы имеет итог 

F(d,h), где d— состояние данных конфигурации 7(0) и h — цепочка трассы т.
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Доказательство. Достаточно применить индукцию 10 длине трассы, заметив, 
с/а. 

что для любого перехода (s, F(d, h)) —> (r, €) трассы т верно е = F(d, ha) (по опреде- 

лению трассы). @ 

Утверждение 6. Итогом любой конечной входной Р-трассы т любой программы 

является значение F(h), где h— цепочка трассы т. 

Доказательство. Следует из утверждения 5 и того, что состояние данных кон- 
фигурации 7(0) есть F(A) (по соответствующим определениям 

Утверждение 7. Для любой вершины (ss, dd) произведения T ® Ty любых вход- 

ных Я-трасс Tj, Ty одинаковой длины любых программ верно dd € В. 

Доказательство. Достаточно показать, что утверждение верно для последней 
вершины (s, dd) каждого конечного начального отрезка р пути 7y ® тэ. Пусть путь р 
имеет длину n. По определению произведения трасс р = 71|" ® т и dd = (dy, @5) для 

состояний данных @, @› конфигураций 71(n), 2(n). По утверждению 6 для некоторых 
цепочек h и g одинаковой длины п верно @ = F(h) и аз = F(g). Значит, (@1, ф) € Br 

по определению этого множества. @ 

Утверждение 8. Любой набор F-Tpacc любых программ совместен в том и толь- 
с1 /а сэ/а: 

/X переходов (51, @\) Ц оу и (52, @) Щ oy 

этого набора из равенства di = @» следует равенство €] = Ca. 

KO в том случае, если для любых дв; 

любых трас: 

Доказательство. 

Необходимость. Если набор Я-трасс совместен, то существует модель 

7 = (F,L), B которой реализуются все трассы этого набора, и для любого состоя- 
с/а cafaz 

ния данных @ и любых переходов (si,d) —— оу и (s2,d) —— ао трасс этого набора 

¢y = L(d) = сэ. 

Достаточность. Пусть свойство переходов, сформ улированное в условии, 
верно. Рассмотрим любую модель Z = (F, L), обладающую таким свойством: если 

. с/а, | 
в какой-либо из трасс содержится переход (s,d) — o, то L(d) = с. Согласно пред- 

. /b, 
полагаемому свойству переходов, для любого перехода (r,d) —› ё рассматрива‹ 

набора трасс верно ¢ = ¢ = L(d). Значит, интерпретация Т задана корректно ( 

ствует). По определению все трассы рассматриваемого набора реализуются в Т. @ 

Утверждение 9. Любые отрезки любых совместных Я-трасс совместны. 

Доказательство. Следует из утверждения 8 и того, что все переходы отрезка 

трассы являются переходами этой трассы. @ 

Утверждение 10. Любые Я-трассы любых программ совместны тогда и только 

тогда, когда совместна каждая пара конечных начальных отрезков этих трасс. 

Доказательство. 

Необходимость следует из утверждения 9. 

Достаточность. Рассмотрим произвольный несовместный набор трасс. 
РУ 

По утверждению 8 в этих трассах существуют переходы t = ((51,й) —=—5 о)) и 
с/а 

® = ((s2,d2) —›2/ = сэ), для которых @1 = @› и с # сэ. Тогда существуют и конечные 

начальные отрезки т{, Ty некоторых трасс этого Habopa, содержащие переходы & и 6 

соответственно. Трассы 7{, 75 несовместны по утверждению 8. @
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3. Граф совместных вычислений 

В данном пункте считаем заданными полные программы m = (Si,eny, EXy, Т\) 

и то = (5»,епо, EXy, Т)) и уравновешенную шкалу F = (D,d’ o). Все утверждения 

формулируются для произвольных таких л1, ло и F. 
Произведением программ m и па будем называть (A х A, @ х ©)-программу 

m ® M = (51 х Sy, (eny,eny), (ЕХ, х 5») U (51 х EX,),T), функция переходов 

которой задаётся так: если Т\(5,с) # L и Th(r,0) # L, то Т((5,г),(с,0)) = 

= ((TX(s, ¢), T(r, 0)), (T (s, ¢), Ty*(r, 0))), иначе T((s,r),(¢,€)) = L. Произведением 

шкал Р = (Dl,d(f,ol) и Fy= (Dz,dg,oz) называем (A х A)-mkany Fi ® 75 = (D1 х D2, 

(@, @), о), B которой операция o задабтся равенством (d,e) o (a,b) = (d о1 a,e о» b). 

Для (2 х %)-шкалы F и цепочек h = ay...aqp и g = by...by, где & € № и 

а,. .. @к, 1, ... by © A, используем сокращения F(d, hy, hy) = F(d, (ал, ) ... (ак, by)) 

и F(hy, ha) = F(d°, hy, hy). Графом совместных вычислений программ Ty и Ty на шка- 

ле F назовём подграф Г{…„? графа (л1 ® лэ) ® (F ® F), содержащий все вершины и 

дуги, кроме дуг вида ((s,r), (а, е)) {60768 v, в которых d = e u ¢ # (. 
асс й ‚ — . loopa Пример 11. Рассмотрим программы л1 и Ty = п) и шкалу 7%° из примеров 1, 

2 и 8. Положим ¢;j = (i, ¢5), Ozy = (2,y) и дузьт = ((, ), (К, т)). На рис. 811 приведены 

соответственно программа л1 ® л), фрагмент шкалы 7%° @ 7%0, фрагмент графа (m © 
л)) ® (7°° @ 7°°) и фрагмент графа ГЁ;‚?‚ 

со1/два 
* Cu/fl%a /a, 

бъ т ба B A {s4,loop) 

соо/даа со!/ааь» соо/ аы €00/ @a; €01/ дъа с 10/ да а 
сло/ада | 1/%0 €10/ aba; с 11 / ава 611/ баа 

(G273 (53, 1oop 52, loop 
€00/ @b 
со1 / ава 

Рис. 8. Произведение программ (пример 11) Рис. 9. Фрагмент произведения 

шкал (пример 11) 

((3з, ), ди: )) ((s4,74),02011) ((s4,100p), дго11) 
€01/ ава 

* Ttu/a.m chG/aba-,cGl/aba:ch/aba:cll/aba 

[(51-, ), Doooo)—’[(sz-, ra), дшш] 5./ ба [(52-‚ loop), 1’2121)—{(54; loop), 351 31] 
со1/даь: <10/даа: 

о0/ даа, €00/ ва " |c00/ ба › €01/ да с11/а, (° с11/а, Ы Ы 
€10/ daa н/бь о/ аа со1 /два /а Lm/aba;tu/aba 

[(52-‚%)-‚171010] [(53-‚100[3)-‚171111]] [(53-‚100[3)-‚172231] : 

Рис. 10. Фрагмент графа вычислений произведения программ (пример 11) 

Утверждение 11. Для любых совместных входных JF-Tpacc Ti, T2 одинаковой 

длины программ л1, T2 соответственно путь т & T — это входной путь B Г{‚ „о° 

Доказательство. Докажем утверждение для конечных трасс индукцией 10 
длине, после чего — для бесконечных трасс. 

База: 7 и то имеют длину 0. Тогда т; — это трасса из одной конфигурации (еп;, @), 
зЕ {1,2}, и T ® то — путь из одной вершины ((eny,eny), (@,@)), являющейся входом 

графа Ff‘ „п 1О есть ВХОДНОЙ Путь B Г{А ‚°



Эффективные алгоритмы проверки эквивалентности программ Мили 83 

(Cs3,r4), 00111) со1/дыа ((s4,74),02011) ((94 loop), 172011] 

+ Т‹п/д.ш 7 Есо/ ава со1/ а 0/ ба 11 / ба 
[(91 ), Duouo)—’[(92 ra), 1’1001] €10/ бча [( ‚109р), 172121)—{(54-‚100[3)-‚173131] 

ісоо/д /8 lcou/aba Cuu/abal 11/00 lc /a1 / аа 00/ да €11/ ба 
((s2,73),01010) (Cs3,100p), 01111) (Cs3,100p), 03231) : 

Рис. 11. Фрагмент графа совместных вычислений программ (пример 11) 

Индуктивный переход: 7 и 75 имеют длину п + 1, п € №, и )' = 
Ci/ai 

= 71|"®@T,|" — это входной путь B Г{И„?‚ Положим для ясности, что (5;, @;) ——> / (га ©;) — 

последний переход трассы т;, # € {1,2}. По устройству произведения трасс последней 
вершиной пути )' является ((51, 52), (di, йэ)). o устройству графа (m ® по) ® (F ® F) 

в нём содержится дуга t = (((51,52), (d1.dz)) ее ((r1,72), (е1, е2))). Если 
@, = а), то по утверждению 8 ¢; = сэ. Значит, в любом случае дуга Ё содсржится 

Переход к бесконечным трассам: пусть т и Ty имеют бьькопьчщю 

длину и утверждение справедливо для любых конечных трасс указанного в условии 

вида. Тогда для каждого n € № в Г7П 7, содержится входной путь /„ = 7" ® 1" и 

Дп-на получается U3 р„ добавлением в конец одного перехода этого графа, обозначим 

этот переход t,. Значит, B Ffmz существует бесконечный путь ) из входа по переходам 

%, t1, ta, и по устройству произведения трасс p=T; ® тэ. @ 

Утверждение 12. Любой входной путь p B Г7П т, представим в виде p = т| ® Ty, 

где т и Ty — совместные входные Я-трассы программ л1, Ty соответственно. 

Доказательство. Докажем утверждение для конечных путей индукцией 1o 

длине, после чего — для бесконечных путей. 

База: римеет длину 0. Тогда р = 7 &7y, где т; состоит из одной вершины (етп;, @), 

i € {1,2}, и по утверждению 8 7| и Ty — совместные входные Л-трассы программ л1, 

Ty соответственно. 

Индуктивный переход: римеет длину n+1l,n € Ny, и существуют совмест- 

ные входные Я-трассы T{, Ty программ л1, T2, удовлетворяющие равенству p|™ = T{ @Th. 

Положим, что ((51, 5) (@1, d)) №› ((r1,72), (€1, €2)) — последняя дуга пути ). 

Для каждого # € {1,2} верно следующее. По определению произведения трасс трас- 

са т; ведёт в конфигурацию (5;, d;). По устройству графа вычислений, программы 

;) fl) (п; ;) входит в граф л; ® F, а зна- m ® ло и шкалы F @ F переход (s;,d, 
‚ Cilai 

чит, T; (17 == (ri,e;)) — входная F-rpacca программы л;. По утверждению 6 и 

уравновешенности шкалы /У состояние данных @; отличается от состояний данных 

остальных конфигураций трасс 7{ и Ty, кроме, быть может, состояния 3_;. По опре- 

делению графа совместных вычислений если @ = dy, то с1 = со. По последнему соот- 
е /ал, 

ношению, утверждению 8 и совместности трасс Ti, Ty трассы 7y = (1] — —> (г1,е1)) и 
сэ/ 

Ty — —> (r2, €2)) совместны. По определению произведения трасс р = т ® T2. 

Пе р еход к бесконечным путям: ) имеет бесконечную длин 

€M, что утверждение справедливо для любых конечных путей указанного в условии 

вида. Тогда для каждого n € № путь p, = p|" представим в виде p, = 71 ® 74, 
где 7{' и т} — совместные входные Л-трассы программ л1, g, и для каждого ¢ € {1,2} 

полага-
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Tpacca Ti"H получается из 7, добавлением B конец одного перехода программы л; (обо- 

значим этот переход ##), значит, бесконечный путь т; из конфигурации (en;, @) по пе- 

реходам #, #1,#,... является бесконечной входной F-rpaccoii программы ;. При этом 

трассы т и T совместны — иначе по утверждению 10 существуют несовместные конеч- 

ные начальные отрезки этих трасс и по утверждению 9 для некоторого п несовместны 

трассы T{' и T3', чего быть не может по полученному выше. @ 

Вершину ((51, 52), (di,dz)) графа Г{…щ назовём достижимой в этом графе, если 

она достижима U3 входа, и опровергапющей, если верно одно из следующих условий: 

1) si€ ЕХ , и з ¢ Е Х); 

2) 51 & ЕХ, и 5о Е ЕХ); 

3) 51 Е ЕХ,, з € ЕХз и а, # й). 

Пример 12. Среди вершин графа совместных вычислений на рис. 11 опровер- 
гающими являются все выходы, кроме ((s3,74),01111), и только они. В этом графе 
содержится бесконечно много неизображённых опровергающих вершин — например, 
недостижимая вершина ((s3, 74), д2002). 

‚ 4а) графа TZ „, верно Утверждение 13. Для любой достижимой вершины (. A 

да € By. 
Доказательство. Следует из утверждений 7 и 12. @ 

Утверждение 14. Соотношение л1 ~F ло верно тогда и только тогда, когда 

ществует достижимая опровергающая вершина. 

Доказательство. 
Необходимость. Пусть л1 7%г о. По утверждению 3 существуют совместные 

Я-вычисления T1, Ty программ л1, ло соответственно, имеющие различные ре: 
Это означает, в частности, что одно U3 этих вычислений конечно. Положим без огра- 
ничения общности, что длина п трассы 7| конечна и не превосходит длину T2 (иначе 
достаточно поменять местами индексы 1 и 2). По утверждению 9 трассы 71 и 75 = тэ|" 
совместны. По утверждению 11 р = т1®7т} — входной путь в ГД. 7y 110 устройству произ- 
ведения трасс этот путь конечен. Положим, что р ведёт в вершину v = ((51, 52), (, d2)). 

Значит, вершина U достижима B Г{…‚?‚ По выбору 71 верно 51 € ЕХ,. По устройству 

произведения трасс и неравенству результатов вычислений T и Ty, если 52 € ЕХ), то 
dy # dy. Значит, в любом случае вершина U является опровергающей. 

Достаточность. Положим, что в ГЛ ‚п‚ По некоторому пути р достижима 
некоторая опровергающая вершина v = ((51, 52), (d1, йэ)). o утверждению 12 и устрой- 

ству произведения трасс существуют конечные совместные входные трассы т\, Ty оди- 
наковой длины (обозначим её п) программ л1, 7y, ведущие в конфигурации (51, @) и 
(52, @э) соответственно. 

Случай 1: 51 € ЕХ, и 5 € EXo Тогда @ и й;— рез) 

Я-вычислений 7, 7y соответственно. Tak как вершина г является опровергающей, Bep- 
но dy # dy. Значит, по утверждению 3 л1 7 по. 

Случай 2: 51 € ЕХ, и sy & ЕХ). По совместности трасс л, Ty существует мо- 

дель Z, в которой реализуются эти трассы. Положим, что 75 — Т-вычисление програм- 
мы ло. Так как 51 € EXy, верно Z(m) = @\|. Так как sy & ЕХ,, длина 7y больше 

длины тэ. Если длина 75 бесконечна, 10 Т(ло) = L # @, = Z(m). Иначе длина 75 конеч- 

на, по утверждению 6 Z(my) = F(hy) и Т(по) = F(ha), где hy и hy — цепочки трасс 7 

и 7), и из этого, неравенства |hy| < |hy| (так как 75 длиннее Ty и длина Ty равна длине T1 ) 

и уравновешенности шкалы F следует Т(л1) # Т(пэ), а значит, л1 ~F T2. 

ультаты. 

льтаты совместных 
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Случай 3: 51 & EX; и 5) Е ЕХ, — повторяет случай 2 с взаимной заменой 

индексов 1 и 2. @ 

4. Критериальная система 

Для шкалы F = (D, @, о) и (A х 90)-шкалы W = (W, w’, ©) критериальным мор- 

физмом ф :Р — W будем называть функцию ф : В; — W, заданную так: 

— ф#(@, @) = ; 
— если (d,e) € Ву и а,Ь Е ), 10 p(d.e)® (a,b) =p(doa,eob). 

Записью &, будем обозначать множество {¢(d,d) : а € Rr}. Критериальной cucme- 

мой шкалы F = (D, @,о) назовём пару (W, @), где У/ — (A х 91)-шкала, ¢ : F — W и 

для любой пары (d,e) € В; из соотношения p(d, е) € &, следует d = e. Шкалу W си- 

стемы К будем называть критериальной и её состояния — критериями; систему К — 

#-ограниченной, если для любых цепочек hi, hy одинаковой длины существует не бо- 

лее # критериев w, для которых W(w, hy, hy) € ©. 

Пример 13. Рассмотрим шкалу #° с операцией o из примера 2, (A х 9()-шкалу 

W = (2,0,9), где т © (a,a) = т © (b,b) = т, т © (a,b) = т + 1 и т © (6,а) = т — 1, 
и функцию ¢ : Br — Z, заданную равенством ¢((ni,mi), (пэ,тэ)) = т — na. Тогда 

нетрудно убедиться, что (W, ) — 1-ограниченная критериальная система для 7°; 

— #((0.0), (0.0)) = ©; 
— @((n1,m1), (по,тэ)) © ) © (а,а) = ту — па = p((n1,m1) 0 a, (g, та) о а); 
— #((тп1,т), (п;‚т;); © (6,5) = п — па = @((n1,m1) о Ь, (по, тэ) о 5); 

) 
— @((n1,my), (n2,m2)) © (a,b) = (т + 1) — па = ¢((n1,m1) о а, (nz, тэ) о b); 
— @((n1,m1), (n2,m2)) © (, а) = n1 — (па + 1) = #((т, та) 0 b, (n2, тэ) о а); 
— & = {0} и при этом ¢((n,m), (п,т)) = п — п = 0; 

— для любых цепочек Лу и hy, содержащих соответственно п) и пэ букв а, только для 
критерия w = (пэ — ny) верно W(w, hy, hy) = 0. 

Утверждение 15. Для любой критериальной системы (W, @) любой шкалы F 

и для любой пары (d,e) € В; верно следующее: @ = е тогда и только тогда, когда 

$(а е) Е &, 

Доказательство. Необходимость следует из определения множества &y, доста- 

точность — из определения критериальной системы. @ 

При обсуждении алгоритмов, использующих критериальную систему K = (W, ), 
где W = (И/и?, ®), будем полагать зарансе заданной алгоритмическую составляю- 
щую этой системы — представление элементов шкалы W, алгоритмы Af, A, АБ AKX 
и АЕ и функции ff, :Ё‚ K ТЕ : № — Ny следующего вида: 

— АБ( = «; 
— АК(и) = «Да», если ш € E,, и «Нет» иначе; f<(n) — сложность этого алгоритма на 

значениях вида ш = W(hy, hy), где |hi| = |ha| < n; 

— AS(w,a,b) = w © (a,b); f5(n) — сложность этого алгоритма на значениях вида W = 

= W(hy, hy), где |hy| = |ho| < л; 

— AX(w,u) = «Да», если ш = u, и «Нет» иначе; f<(n) — сложность этого алгоритма 
на значениях вида w = W(hi, ha) и и = W(g1, g2), где |hi| = |h2| < n, |91| = |g2| < п: 

— выполнение А (z,w) устанавливает (копирует) в г значение ш; f (п) — сложность 
этого алгоритма на значениях вида w = W(hy, hy), где |hi| = |ha| < n. 

Сложностной характеристикой критериальной системы для такой алгоритмической 

составляющей будем называть функцию € : № — Ny, задающуюся равенством
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7 (п) = max(f&(n), {5 (n), f€(n), < (n)). Далее для наглядности вместо вызовов вспомо- 

гательных алгоритмов будем записывать соответственно значения и соотношения w’, 
we ё ш © (a,b), ш = и и описание установки критерия. 

Пример 14. Для критериальной системы из примера 13 с алгоритмической 

составляющей, естественно отвечающей определению этой критериальной системы, 

сложностная характеристика имеет порядок О(1), так как такой порядок сложности 

имеют все требуемые алгоритмы: проверка равенства числа-критерия нулю, прибав- 

ление или вычитание единицы в зависимости от пары операторов, проверка равенства, 

критериев, копирование числа. 

5. Критериальный граф 

Предположим заданными полные программы л1 = (51,ет, ХТ) и m = 

= (5э, eny, ЕХ), Т›), уравновешенную шкалу F = (D, @, о) иеё критериальную систему 

K=(W,p), где W= (И/, ', ©). Все утверждения формулируются для произвольных 

таких л1, о, Г и K. 

Критериальным графом программ л1, лэ и системы К назовём подграф IS T, графа 

(m @п) ФУ), содержащий все вершины и все дуги, кроме дуг ((51, 52), w) №› v 

в которых ш € &, и €] # сэ. Вершины критериального графа будем называть узла- 

MU, пути в нём — маршрутами, значения 51, 5» и и — соответственно состояниями U 

критерием. узла ((51, 52), ш). Назовём у-образом вершины v = ((s1,s2), (, @э)) гра- 

фа Г{И„? и пути 10 M vy №› ... в этом графе соответственно набор 
1 с3)/(а! а! 2)/(а? а2 

(1) = (51, ). 2(41 )) и путь plug) В, о) <в 
Пример 15. Рассмотрим программы л1, ло и критериальную систему K = (W, ) 

из примеров 11 и 13. На рис. 12 показан фрагмент графа Ffm;' содержащий фу-образы 

всех вершин на рис. 11. 

((s3,74),0) co1/as ((sa,70), 1) ((s1,loop), 1) 

* Ж 6н /o, [соо/ ава ол / аба €10/ аа С11 / ба 

Crer)- 9а Сн 9/ (а Лоор); 07 —( Toop). ) 
оо /аа Н о/ д соолаз[ — ®® оааа 11/ 

[(sz, r3), О] [(53‚ loop), О] [(53‚ lLoop), —1] В 

Рис. 12. Фрагмент критериального графа (пример 15) 

Утверждение 16. Входными путями в ГЁ…‚Ё являются все фу-образы входных 

путей в Ff‘ 725 И ТОЛЬКО ОНИ. 

Доказательство. Достаточно обосновать следующее: 1) -образы всех дости- 
3 афг МЕ - э Р achs К . а- . жимых вершин графа Iy л‚ являются вершинами графа 7 л; 2) у--образом входа 

B Г{…‚? является вход в I а! 3) метки дуг, исходящих 'ЁСГЩ'М из дости;_кимой вер- 

шины ¥, совпадают с метками дуг, исходящих из {(о) в Я, ла; 4) если в T7, л, Дуга из 

достижимой вершины © заходит в 6, то в ГХ „, дуга из ¢(v) с той же меткой заходит 

в (). Всё это следует из определений графов Iy ,› It л‚ и критериальной системы 

и утверждений 13 и 15. @ 

Узел ((51, 52), ш) графа Ff‘ 7, Назовём достижимым B этом графе, если он до- 

стижим из входа, нейтральным, если w € E,, и опровергающим, если верно одно из 

следующих условий:
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1) 51 Е ЕХ , и5, ¢ EXy; 

2) 51 & EX | и 5) Е ЕХ); 

3) в; Е ЕХ,, 5) Е ЕХ) и ш & ©. 

Пример 16. С учётом изложенного в примере 13 среди узлов критериального 
графа на рис. 12 нейтральными являются все помеченные числом 0, и только они, 
опровергающими — все выходы, кроме ((s3,74),0). В этом графе содержится беско- 
нечно много неизображённых опровергающих узлов — например, недостижимый узел 

((s3,74),2). 
Утверждение 17. Достижимыми опровергающими узлами в ГХ „, ЯВЛЯЮТСЯ 

‹с-образы всех достижимых опровергающих вершин графа ГУ д› и ТОЛЬКО ОНи. 

Доказательство. С учётом утверждения 16 и устройства у-образов путей 
достаточно показать, что достижимая вершина © графа ГУ л, является опроверга- 
ющей тогда и только тогда, когда узел ¢(v) опровергающий. Положим, что v = 
= ((51,52), (d1,dp)). Тогда по утверждению 13 верно (dy,dz) € Br, а значит, p(v) = 

((s1,82), ш), где ш = {(а ‚ d3). Осталось заметить, что состояния программ B v I (V) 

одинаковы и U3 утверждения 15 следует равносильность () = @) < ш € E,). @ 

Утверждение 18. Соотношение л) 9; ло верно тогда и только тогда, когда 

B ГЁ т существует достижимый опровергающий узел. 

Доказательство. Следует из утверждений 17 и 14. @ 

Утверждение 19. Если система К Ё-ограниченная, B Г7П „‚ Достижимы узлы 

V1. e, где о; = ((s1,82),w;), # € {1,...,Ё + 1}, хотя бы одно из состояний 51, 52 

завершаемо и критерии w;, i € {1, £+ 1}, попарно различны, то л 79 . 

Доказательство. — Положим, что ||51|к, < |52|к, (если ||51|к, > ||52|то» 
то далее достаточно поменять местами индексы 1 и 2). Тогда в лу существу- 

- . е /ay с/а ет путь из 51 в выход. Рассмотрим кратчайший такой путь ро —— р| — —> 
сп fan " 
——= Pn, ро = 51, pn € FEXi. Тогда по устройству критсриалыюго графа, 

\ТВ[р)КД[ПИ!О 12 и неравенству в начале доказательства в Г существуют пути 

(c2,2)/(az b2) (cnen)/(anbn) 
T2 

(c1,e1) /(a1 by), i 
о; — ((p1,q0), ) ш›…‹:„› ш), i€ {L,... t+1}, 

b b wh L £+1 L йо = для некоторых (1, ..., Фп b1,. . by w1, .oy, .,Ь и при этом w), = 

W(wi, ay...ap,by...b,). Значит, по Ё—ограпичсшю( ти системы К хотя бы для одного 
Я К й а из ве! И — К зЕ {1,...,Ё + 1} верно ш', & &,. Тогда хотя бы одна из вершин v = ((Pn, gn), ш') явля- 

ется опровергающей, при этом все вершины { достижимы в ГХ „, и из утверждения 18 

следует л1 9; по. @ 
та уэ 

6. Алгоритм проверки эквивалентности программ 

В описании и анализе алгоритма проверки эквивалентности программ (алгорит- 

ма 4) и вспомогательных алгоритмов 1-3 считаем заданными конечные множества опе- 

раторов % и логических условий €, шкалу F = (D, @,о) и её Ё-ограниченную критери- 

альную систему K = (W, у) co шкалой УУ = (W, w’, ©) и некоторой алгоритмической 

составляющей. Для сохранения понятности изложения действия алгоритмов описыва- 

ются «высокоуровнево» с использованием математической терминологии. В коммента- 

риях приводятся «низкоуровневые» детали, необходимые, в числе прочего, для оценки 

сложности алгоритмов. 

Будем использовать следующие способы представления данных: A = {1,2,...,тпа}, 

© = {1,2,...,п.}; множество состояний S каждой программы имеет вид {1,2,...,ng};
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множество вида {1,2,...,п} представляется числом ; одноместная функция 
# : {1,2,...,п} — Х — вектором (f(1), /(2),...,/(п)); множество X © {1,2,...,п} — 
так ke, как функция / : {1,2,...,п} — {0,1}, задающаяся равносильностью 

К(@) =1 = з Е Х. Двухместная функция / : {1,2,....n} х {1,2,...,n3} —> X (B том 

числе функция переходов программы) представляется матрицей, где f(i, j) — значение 
элемента матрицы в й строке и j-M столбце. Последовательность нефиксированной 
длины задаётся списком элементов, за исключением цепочки: она представляется век- 

тором элементов. Для цепочки переменной длины сразу выделяется столько яческ 

памяти, сколько необходимо для хранения любой цепочки длины, равной наиболь- 

шему из размеров рассматриваемых программ. Конечное множество других видов по 

умолчанию представляется списком своих элементов — добавление элемента происхо- 

дит в конец списка, проверка принадлежности элемента множеству 

по списку с проверкой равенства. 

стоит в проходе 

Алгоритм 1. Пополнение программы 

Вход: конечная программа л = (S, en, ЕХ, Т). 

Выход: пополнение л’ программы л. 

1: Произвольно выбрать значения loop ¢ S иа Е A. 

// По выбору представления множества состояний loop = ng + 1. Для опреде- 

лённости выбирается а = 1. 

2: Вернуть (S U {loop}, еп, ЕХ, Т©°Р»), 
// Матрицу T'%°P можно вычислить так: установить во всех строках этой мат- 

рицы, кроме последней, те же значения, что и в T, а B каждой ячейке последней 

строки — значение (1оор, а). Затем заменить каждое значение TP (s, ¢) = 1, где 

в & ЕХ, на T"°°P(s, с) = (loop, a). 

Алгоритм 2. Вычисление завершаемых состояний программы 

Вход: конечная полная программа л = (5,еп, ЕХ, Т). 

Выход: множество 57 всех завершаемых состояний программы TT. 

1: Вычислить орграф G, обратный к орграфу л. Добавить B G произвольный простой 

цикл, содержащий все вершины множества ЕХ и только их. 
// Для определённости выбирается цикл, в котором выходы соединяются ду- 

гами по возрастанию и самый большой выход соединяется с самым маленьким. 

Граф G представляется списком смежности. Вычисление графа С производится 

полным перебором ячеек матрицы Т' ¢ добавлением соответствующих дуг и затем 

добавлением дуг цикла. 

2: Произвольно выбрать вершину s € EX и применить к ней и графу G поиск B ши- 

рину [27], вычисляющий множество Х состояний, достижимых из 5. 

3: Вернуть S/ = Х. 
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Алгоритм 3. Обход критериального графа 

Вход: конечные полные программы m = (51,ет, EX1,T1) и m = (S2,enz, ЕХэ, Тэ) и 

соответствующие множества S и 5} всех завершаемых состояний этих программ. 

Выход: ответ «Да», если л) -/р по, и «Нет» иначе. 

// В алгоритме используются следующие вспомогательные значения: 

— набор (51, 52, ш) € Sy х Sy х W, в начале выполнения равен (eny, епэ, и°); 

— разметка Ё : S1 х Sy — 2W в начале выполнения все значения F равны & 

(используются только конечные подмножества W ); 

— множество Х C © x €, значение в начале выполнения неважно; 

конечная последовательность Р элементов множества 51 х Sz х И/ х 2ех°, 

в начале выполнения эта последовательность пуста. 

Если 

а) (s1¢ S и 5о & 51) или 
6) ш e F(s1,s2), ТО 

2: — выход, ответ «Да». 
3: Если 

а) (51 € ЕХ, и 5, & ЕХ)) или (51 ¢ ЕХ , и 5 € ЕХ)) или (51 € EXy, s € ЕХ) и 

w ¢ &) или 

6) |F(s1,52)| = & то 
4; — выход, ответ «Нет». 

5: Добавить B множество F'(s1, 5э) критерий w. 

6: Вычислить множество пар Х С € x ©: если w € &, то X = {(с, с) : с € €}, иначе 

Х = ©бх Е. 
// Для проверки w € €, используется ре. 

т: Для всех (с1,сэ) € Х: 
// Значения (е1,сэ) перебираются в порядке расположения в списке и удаля- 

ются из списка при рассмотрении. 
8: — Вычислить значения (ал,71) = Т\(51,с1) и (az,r2) = Т›(52, ¢2). 

9: — Заменить набор (51, 52, w) на (r1,r9,w © (ay, аэ)). 

// Перед заменой набор (51, 52, ш, Х) для текущего значения Х добавляется 
в конец последовательности Р. 

10: — Выполнить тело алгоритма 3 (основной рекурсивный вызов). 
Если ero результат «Her», то выход, ответ «Нет». 

11: — Восстановить значения (51, 52, ш) и Х, которые были B начале выполнения ша- 
га 9. 

// Значения берутся из последнего элемента Р, этот элемент удаляется из Р. 
12: Вернуть «Да». 

‘зультат проверки W & &, с шага 3. 

Лемма 1. Алгоритм 1 имеет сложность О (п), где п— размер программы на входе. 

Доказательство. На шаге 1 выполняется О(1) действий. На шаге 2 перебира- 

ются (п + )пс = О(п) ячеек матрицы Т°°> и для каждой ячейки выполняется О(1) 

действий. Значит, суммарно получаем О(п) действий. @
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Лемма 2. Для любой конечной программы л результат выполнения алгоритма 1 

на входе л — это пополнение программы л. 

Доказательство. Пусть л = (S,en, ЕХ,Т). Алгоритм 1 выдаёт программу 

(S U {loop}, en, ЕХ,Т°Р“) для некоторых loop ¢ S на € 2, 10 ecTb, 10 определе- 

нию, пополнение m'°°P программы 7. @ 

Лемма 3. _ Алгоритм 2 имеет сложность О (п), где п — размер программы на входе. 

Доказательство. На шаге 1 просматривается nne = О(п) ячеек матрицы Т и для 

каждой ячейки выполняется О(1) действий, после чего за O(n) действий добавляется 

цикл. Поиск в ширину на шаге 2 имеет сложность О(п), согласно [27| и тому, что 
программа имеет О(п) переходов. Значит, суммарно получаем О(п) действий. @ 

Лемма 4. Для любой конечной полной программы т результат выполнения ал- 

горитма 2 на входе л — это множество BC завершаемых состояний программы л. 

Доказательство. Достижимость вершины # из 5 © EX на шаге 2 равносильна 

достижимости # хотя бы из одного выхода B графе, обратном к 7, а это равносильно 

достижимости хотя бы одного выхода U3 ё в л, то есть завершаемости #. @ 

Пусть задано выполнение € алгоритма 3. Будем называть итерацией выполнения € 
однократное последовательное выполнение шагов 1-12, кроме действий в основных ре- 
курсивных вызовах Ha шаге 10, записью €(i) обозначим #-ю итерацию выполнения ¢ 
при нумерации с единицы с упорядочиванием по времени начала. Узлом итерации J 
назовём значение [3] = ((51,52), w) в начале итерации J. Итерацию 7 будем считать 

ребёнком итерации Э,, если итерация З, начинается основным рекурсивным вызовом 
на шаге 10 итерации Э,, набор значений (с1, ¢z, @1, az,71,72) в начале этого шага будем 
называть перетодным набором итерации 3,. Итерационным путём назовём путь ви- 

( b ( С 
да 20 M} 5 M} ., где Зр — ребёнок итерации J; и ¢, 4, @;, 6; — 

первые четыре элемента переходного набора 2,+1. Итерационный путь будем называть 

входным, если он исходит из итерации €(1). Трасса итерационного пути Р — путь, по- 

лучающийся из Р заменой каждой итерации на её узел; трасса итерации J — Tpacca 

входного итерационного пути, ведущего в J. 

Лемма 5. Для любой итерации J любого выполнения алгоритма 3 верно следу- 

omee: если [J] = ((51,52), ш) и в начале итерации J имеет место и € Р(51,5)), ТО 

существует итерация 3' ¢ меньшим номером, для которой [23/] = ((51, 52), u). 

Доказательство. Получить элемент и в множестве Р'(51, 52) в начале итера- 
ции J можно, только добавив его выполнением шага 5 до начала этой итерации, то 
есть на шаге 5 некоторой итерации 3' с меньшим номером. Для такого добавления и 
необходимо равенство [3'] = ((51, 52), и). @ 

Лемма 6. В начале любой итерации любого выполнения алгоритма 3 верно 
|F(s1,s2)] < *, где 51 и 52 — состояния узла итерации. 

Доказательство. B начале выполнения алгоритма |Р(51,52)| = 0 для всех 
51 Е 51 и 5 € Sy, Значения Р изменяются только на шаге 5. При выполнении это- 
го шага размер значения Р'(51, 52) для состояний 51, S узла итерации увеличивается 
на 1, а остальные значения Р не изменяются. При этом увеличение размера F(sy, 52) 
на шаге 5 возможно только в том случае, если на этой итерации не выполнено усло- 
вие 30, это возможно, только если |Р'(51, 52)| < €, тогда размер этого множества после 
добавления элемента не превосходит €. @ 
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Лемма 7. Трасса любой итерации J любого выполнения алгоритма 3 является 

входным маршрутом в ГЁ…„?‚ 

Доказательство. Рассмотрим произвольное выполнение @ алгоритма 3 и при- 

меним индукцию по структуре входного итерационного пути, ведущего в J. 

База: если J = €(1), то [J] = ((ет,‚ епэ), и?)‚ трасса итерации J состоит из одного 

зла, и этот узел — вход графа ГХ o 

Индуктивный переход: 2 — ребёнок итерации Jp, и трасса итерации 2 яв- 

ляется входным маршрутом в ГЁ…Ш‚ Пусть [J,) ((51, 52), ) и (е1, Сэ, а1, а2 Т1,72) — 

переходный набор итерации J. По устройству шага 10 и соответствующим определе- 

ниям трасса итерации J получается из трассы итерации Э, продолжением на одну дугу 

# = (((51, 52), w) Lae)/er.ea), ((r1,72),w © (a1, ag))). Значит, достаточно показать, что # 

входит в граф Ff‘ . 

По устройству шага 9 (ал,т1) = Ti(s1,¢1) и (az,m2) = Th(s2, ¢2). Значит, ¢ входит 

в граф (m ® m) ® W по определению этого графа. По устройству множества Х на 

шаге 6 если w € ё то ¢ = сэ. Значит, в любом случае # содержится в графе ГХ ‚ 1О 

определению этого графа. @ 

В леммах 8-10 символом п обозначено значение max(|m|, |то|) для программ л, 

и Ty, подающихся на вход алгоритму 3. 

Лемма 8. В любом выполнении € алгоритма 3 содержится O(n?) итераций. 

Доказательство. Если на итерации J выполняется шаг начения Р, 

кроме Р(з1, 52), где 51 и 59 — cocrognus узла [J], не изменяются, а размер множества 

F(s1,s9) увеличивается на 1 (так как если выполняется шаг 5, TO не верно условие 16, 

т.е. добавляемый критерий не содержится в Р(51, 52)). Из этого и леммы 6 следует, 

что в € шаг 5 выполняется не более Ёёп? раз. На каждой итерации шаги 5 и 7 либо оба 

не выполняются, либо оба выполняются по одному рг На шаге 7 не более |Х| раз, 

т.е. не более 

очередному реб 

такая итерация имеет не более 

+ |6? # п?) = O(n?) итераций. @ 

‚ TO BCE 3 

C\z раз, выполняется основной рекурсивный вызов, отвечающий одному 

‘нку. Следовательно, не более Ёп? итераций имеют детей и каждая 

€2 детей. Значит, всего в € содержится не более (1 -- 

Лемма 9. Критерий w узла любой итерации J любого выполнения € алгоритма 3 

представим в виде w = У/(/1, he), где hi, hy € A* и |h1| = |ha| = O(n?). 

Доказательство. Если J = @(1), то [J] = ((ет,епэ), w’), и° = W(A\A) и 

длины цепочек A равны 0. Если 7 — ребёнок итерации Э,, [3] = ((51, 52), W(g1. 92)) 

и (a1, аэ, ¢y, Сэ, 71, r2) — переходный набор итерации J, 1o [J] = ((п1, то), W(g1a1, 92а2)), И 

если длины цепочек g1 и д› равны &, то длины цепочек д1а) и goap равны (& + 1). Зна- 
чит, критерий w узла любой итерации J представим в виде w = W(hy, hy), где длины 
цепочек hy, hy равны длине входного итерационного пути, ведущего в Т. Длина этого 
пути оценивается как О(п?) по лемме 8 и попарной различности итераций в любом 
итерационном пути. @ 

Лемма 10. Алгоритм 3 имеет сложность О(п?/(п?)) для некоторой функции 

/: № — Ny, удовлетворяющей равенству f(m) = f€(O(m)), где X — сложностная xa- 

рактеристика алгоритмической составляющей системы K, используемой в алгоритме. 

Доказательство. По лемме 8 в любом выполнении © алгоритма 3 содержится 

O(n?) итераций. Следовательно, достаточно показать, что любая итерация J выполне- 

ния © имеет сложность O(f(n?)) для подходящей функции /.
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Положим, что [I] = ((51,52), ш). По лемме 9 w = W(hy, hy) для некоторых 

М, hy € A*, удовлетворяющих равенствам |hi| = |ha| = O(n?), и из этого и устройства 

алгоритма 3 и его шага 5 следует, что все элементы множества Р'(1, 52) представимы 

в виде У(а ), тле 91,92 € 9 н [1 = [ga] = O(n2). Положим f(m) = *(/(т)), где 
f(nz) = O(nz) — обозначенная выше оценка длин цепочек hy, Лэ, g1, 92. По лемме 6 на 

каждой итерации проверка условия 36 содержит не более # = О(1) проверок равен- 

ства критериев и при этой проверке вычисляемый размер множества не превосходит 
# = О(1). На этом основываются оценки сложности, изложенные дале 

Условие 1а проверяется за О(1) действий, 16 — за O(f(n?)), За — за O(f(n?)), 36 — 

за О(1) действий. Шаг 5 выполняется за O(f(n?)) действий. На шаге 6 за О(1) действий 

вычисляется множество Х, содержащее О(1) элементов, и для каждого элемента на 
шагах 7-11 итерации выполняется O( f(n?)) действий. Значит, суммарно на всех шагах 
итерации выполняется O(f(n?)) действий. @ 

Лемма 11. Для любых конечных полных программ л) и Ty и множеств их за- 
вершаемых состояний 57 и 5/ выполнение алгоритма 3 на входе (л1,тэ, 5/, 5) имеет 
результат «Нет» тогда и только тогда, когда л1 797 по. 

Доказательство. Обозначим символом ® выполнение алгоритма 3 на входе 

("1‚"215{15{› 

Необходимость. Положим, что выполнение € имеет результат «Нет». Пусть 

© (п) — последняя итерация выполнения © и [E(n)] = ((51, 52), w). U3 ответа «Нет» и 

устройства алгоритма следует, что на итерации @(п) не выполнены условия шага 1 и 
выполнено хотя бы одно из условий шага 3. По лемме 7 в Ff‘ „, достижим узел [€(n)]. 

Если на итерации €(n) выполнено условие 3a, то узел [&(n)] опровергающий и 
соотношение т| о; Ty следует из утверждения 18. Далее полагаем, что на ® (п) выпол- 
нено |Р'(51, 52)| = €. Так как не выполнено условие 16, все элементы Р'(51, 52) ОТЛИЧНЫ 

от ш (1 попарно различны). По лемме 5 существуют итерации выполнения © с узла- 
ми ((51, 52), и) для всех и € Р'(51,52). По лемме 7 все эти узлы достижимы B ГЁ…Ш‚ 

Так как не выполнено условие 1а, хотя бы одно из состояний 51, s завершаемо. Тогда 
соотношение л 9; Ty следует из утверждения 19. 

Достаточность. Положим, что я; ~ 5 по. По устройству алгоритма 3 доста- 
точно показать: а) на шаге 2 итерации ¢(1) не выдаётся ответ «Да»; 6) на шаге 4 

хотя бы одной итерации J выполнения € выдаётся ответ «Нет» — тогда, 
гу 10, на всех итерациях входного итерационного пути в J выдаётся ответ «Нет», в том 
числе на итерации @(1), начинающей этот путь и предоставляющей ответ алгоритма. 
Покажем это: 

а) Условие 1а не выполнено на итерации @(1) — иначе входы обеих программ неза- 
вершаемы и все вычисления этих программ имеют результат |, а значит, программы 
„Я-эквивалентны, что противоречит предположению достаточности. По описанию ал- 
горитма в начале итерации @(1) верно Р'(51, s3) = @. Значит, и условие 16 не выполнено 
на итерации @(1), и ответ «Да» на шаге 1 этой итерации не выдаётся. 

‘огласно ша- 

лТв S афе TK VIECTBV! й Р , — 6) По утверждению 18 в графе I 7, существует входной маршрут р = 

(e1,81)/(ar,b1), (c2,£2)/(az,02) (enstn)/(@n,bn) . . 
(vo vy Un) B некоторый опровергающий 

узел vy, Положим, что v; = ((si, i), wi) и s, € EX| (иначе по определению опровер- 

тающего узла г„ € EXy и B дальнейших рассуждениях достаточно поменять ролями 

(5;, ¢iva;) и (3, €;,b;) и индексы 1 и 2, относящиеся к программам). Возможны два слу- 

чая:
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Случай 1: v, является узлом какой-либо итерации выполнения €. Рассмотрим 
итерацию @(т) ¢ наименьшим номером 11, узлом которой является v,. Условие 1а не 
выполнено на @ (т), так как s, завершаемо. Условие 16 также не выполнено на @(т) — 
иначе по лемме 5 существовала бы итерация E(m') с номером т’ < т и узлом Up, 
чего не может быть по выбору т. Значит, на итерации @(т) на шаге 2 не выдаётся 
ответ «Да» и выполняется шаг 3. Так как узел v, опровергающий, на итерации @(т) 
выполнено условие За и на шаге 4 выдаётся ответ «Нет». 

Случай 2: v, не является узлом ни одной итерации выполнения ©. Рассмотрим 
наименьший номер A, для которого Upy] не является узлом ни одной итерации вы- 
полнения ©. Так как vg = [€(1)], то & Е {0,1,...,n — 1}. Рассмотрим итерацию @(т) 

с наименьшим номером т, узлом которой является vy. По утверждениям 16, 12 и 1 
в я, существует путь U3 5; в 5,. Значит, состояние в; завершаемо и условие 1а не вы- 
полнено на @(т). Условие 16 не выполнено на E(m) по тем же соображениям, что и 

в случае 1. Значит, на шаге 2 итерации ®(т) не выдаётся ответ «Да». 
Предположим от противного, что на шаге 4 итерации E(m) не выдаётся ответ 

«Her». Тогда на итерации @(т) выполняются шаги 6-11. Согласно устройству ша- 
гов 6-11 и определению графа ГЁ…Ш. верно (скч1, бын1) € Х и у итерации @(т) есть 

ребёнок Je, для которого логическими условиями переходного набора являются ск-1 
и ьна и [2] = ын1. Получено противоречие ¢ тем, что Vg4l по выбору & не является 
узлом ни одной итерации. @ 

Алгоритм 4. Проверка эквивалентности программ 

Вход: конечные программы m = (51,ет, ЕХ\, Т\) и п = (Sa, eng, EXy, Th). 

Выход: ответ «Да», если л -/р по, и «Нет» иначе. 

1: Вычислить значения 74 = Ai(m1), 7 = Ai(m2), S = As(7h) и S§ = As(m), где А, 

и Ay — алгоритмы 1 и 2 соответственно. 
2: Вычислить и вернуть значение Аз(ж!, 74, 51 , 51), где Az — алгоритм 3. 

Теорема 1. Алгоритм 4 имеет сложность O(n?f(n?)) для некоторой функции 

7 : № — №, удовлетворяющей равенству f(m) = /“(О(т)), где n = max(|m|, |ma|) 

для программ л; и ло на входе и /° — сложностная характеристика алгоритмической 
составляющей системы К, используемой в алгоритме 4. 

Доказательство. По леммам 1 и 3, шаг 1 имеет сложность О(п). По устройству 
пополнения программы |7 = |ла| + 1 и 75| = |пэ| + 1. Значит, на шаге 2 алгоритм 3 

выполняется на программах размера не более n+1; по лемме 10 шаг 2 имеет сложность 
O((n+1)2f(n?)) = O(n%f(n?)) для некоторой f, для которой f(m?) = 5(О((т+1)?)) = 
= (0(m?)), а значит, f(m)=f<(O(m)). m 

Teopema 2. Для любых конечных программ 7| и ло выполнение алгоритма 4 на 

входе (л1, лэ) имеет результат «Да» тогда и только тогда, когда Ty ~F П. 

Доказательство. Следует из устройства алгоритма, утверждения 4 и лемм 2, 

4и П. @ 

Пример 17. Рассмотрим программы л1, то из примера 1, шкалу %° из приме- 

ра 2, 1-ограниченную критериальную систему K = (W, у) из примера 13 и алгорит- 

мическую составляющую этой системы со сложностной характеристикой О(1), как 

отмечено в примере 14. Тогда алгоритм проверки эквивалентности (алгоритм 4) вы- 
1оор' 

полняется следующим образом. На шаге 1 вычисляются программы T = 7rlOOP “ и
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! 
п) = my ™" и множества S[ = {loop'} и 5'{ = {loop} (программа л) представлена на 

рис. 7). На шаге 2 выполнение алгоритма 3 представляет собой обход графа ГЁ»"З B 

глубину [27] ¢ произвольным выбором порядка исходящих дуг. Состояние loop’ недо- 

стижимо из входа в л1, поэтому обходятся только узлы rpada Ffwré (фрагмент этого 

графа представлен на рис. 12), и условие 1а алгоритма 3 не выполняется ни для од- 

ного посещённого узла. Если узел посещается больше одного раза, то по условию 16 

алгоритма 3 дуги, исходящие из этого узла, не исследуются, что соответствует обходу 

в глубину. Если посещается опровергающий узел (как, например, отмеченные в при- 

мере 16), то 1o условию За алгоритма 3 алгоритм 4 завершается с ответом «Нет». Если 

посещаются узлы вида ((s,r),n1) и ((s,7), n2), где ny # ny (например, узлы ((5з, 100р), 0) 

и ((вз,100р), —1) на рис. 12), 10 по 1-ограниченности системы K и условию 36 алго- 

ритма 3 алгоритм 4 завершается с ответом «Нет». Если обход графа завершается без 

ответа «Нет» 10 указанным причинам, то алгоритм 4 завершается ¢ ответом «Да». В 

данном примере алгоритм обязательно завершается с ответом «Нет» в связи с нали- 

чием отмеченных выше узлов, этим обосновывается соотношение л1 29 0.0 П. 

7. Применение алгоритма проверки эквивалентности программ 

Рассмотрим %!-моноид M = (M, g, о). Записью By обозначим подмоноид моноида 

M х М с множеством элементов {(M(h), M(g)) : h,g € A*, |h| = |g|}; записью Рм — 

шкалу моноида M, получающуюся из M заменой операции o на её сужение на множе- 

ство М х 2. Моноидальной системой для M назовём систему K = (W, U, ш” , и^ ф) 

где УУ = (W,e,®) — конечно порождённый моноид; U — его подмоноид; ш, ш* € )); 

{ — гомоморфизм моноида By на И и для любой пары (тл,тэ) € В справедли- 

ва равносильность My = my < шТ © ¢(my, my) © w* = ©. Такую систему K назовём 

#-ограниченной, если для любого элемента w € U - и* существует не более # элементов 

и € ш* - U, удовлетворяющих равенству и © ш = ©. Производной системой для K 

назовём пару K' = (, ), в которой W' = (W', ш, @), W = ш* © П, v : Br,, —› W' 
задаётся равенством {(ти, тэ) = ш'© ф(пта, тэ) и © : И/’х (AxA) —› W’ — равенством 

ш © (a,b) = ш © p(a,b). 

Пример 18. Шкала 7%° из примера 2 — это шкала свободного коммутативного 
моноида M, порождённого множеством ®( = {a,b}. 1-Ограниченная моноидальная 
система K = (УМ,М, ш* , ш*, @) для M может быть устроена так: W = U = (Z,0,+): 

и = ш* = 0; p(M(h), M(g)) = (п — т), где n и m— количество букв а в словах Л и g 

соответственно. Критериальная система из примера 13 является производной системой 
для К. 

Лемма 12. Пусть /М — 2-моноид, К — его моноидальная система и K/ — система, 

производная для K. Тогда К/ — это критериальная система шкалы Faq, и система K 

#-ограниченна тогда и только тогда, когда &-ограниченна система K. 

Доказательство. Положим, что M, K и К' имеют такой вид, как в определе- 

ниях перед леммой, и Рм = (M, g, -). Заметим, что Ry, = М (так как M порождён 

множеством ®() и множество элементов моноида В есть В. Тогда верно следующее 

(по соответствующим определениям): 

1) +(Е,Е) = шТ © ф(Е,Е) = ш" © Е = * 
2) для любых my,my € M имеет место #(пи,тэ) © (a,b) = ш* © p(my,my) © 

© p(a,b) = ш" © p(my о а, ту о 5) (my : а, тэ - b); 

3) для любых пи,т» € В если ш* © p(my,my) € &, то существует т € M, 
удовлетворяющий равенству ш* © ф(ти, тэ) = ¥(m,m), 1.е. ш" © p(my, my) = 
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” © = ш © p(m,m), а значит, ш* © ф(та,тэ) © w* = w д„(т т) © w*, при 
этом по опрьдишию моноидальной системы ш* © p(m, т) © w* = €, а значит, 
ш* © p(my, тэ) © ш* = € по тому же определению My = My; 

4) для любых (my, т») € В если ¥(my, my) € Ep, то ш" © ф(ти, тэ) € Ey и по 1.3 

верно My = тэ. 

Из пи. 1, 2 и 4 следует, что К/ — критериальная система для м. 

Положим, что система K’ не Ё-ограниченна. Тогда существуют цепочки h = а1 ... ак, 
by...bp и попарно различные критерии и1,..., шн € W = ш! © U, удовле- 

творяющие соотношению УМ(иш;, h,g) € &; для всех # € {1,...,Ё + 1}. При этом 

W (wi, h,g) = ш;© (a1,01) S ... (ак, by) = ;© 7(а1, b)) О -- -Op(ag, by) = w; ©p(my, тэ) 

для та = M(h) и то = M(g). Соотношение ш; € * © U означает, что ш; 

представим в виде w ©® (mi,mb) для некоторой пары (ml, mb) € Вм. Значит, 

ш; © p(my,me) = ш* © (т т © © p(mi,my) = «' © o(mi о my,mh о тэ) € &, 
по доказанному п.3 т 0 т = m) о my и по определению \шпоид‹шыши системы 
и* © p(mi,my) © 2(та, то) © * = e. То есть существуют ш' = w © w* € U О w* u 

попарно различные ш; € w © U, i € {1,... ,Ё + 1}, для которых ш; © ш' = e. Следова- 

тельно, система К не &-ограниченна. 
Положим, что система K не &ограниченна. Тогда существуют w Е / ©и* и попарно 

различные ил,...,Шна © wT © U, для которых ш; © ш = ©. По устройству классов 
Uow и ш' © U ш = @(my,my) © w* для некоторой пары (my,my) € By и ш; = 

= ш* © p(mi, mb) для некоторой пары (mf,my) € Вм для каждого i € {1,..., ¢+ 1} 
Тогда для каждого такого # всрпо следующее (по соответствующим определениям): 
wt © р(т\ о та, т о тэ) © ш* = ш! © p(mi,mh) © p(mi,ms) © w* = ш; © ш =€ 

mi omy = mb о т» по определению моноидальной системы; (т o my, т о my) € & 
по утверждению 15; my = M(h) и тэ = M(g) для некоторых цепочек Л, д одинаковой 
длины, так как 2 — множество образующих моноида M и (my, тэ) Е В. Положим, 

что А = а|...аки д = М...бу, где & € Nouay,...,aby,....bp €2; u(mloml,mzomz) 

= w®p(miomy, mhoms) = wtoep(mi, mh) Op(ay, b)®...Op(ak,br) = w;S(ay,b)o. ..o 
© (ag, b)) = W(wi, h, g). Значит, W (w;, h,g) € £, и так как это верно для всех 1 € 

e {1,..., + 1}, 10 система K’ не является #-ограниченной. @ 

Моноидом_условной эквивалентности. относительно множества / C A х 2A х A 

назовём A-MOHOMJL с определяющими соотношениями {са = ¢b : (а, , с) € J}. Из ле 

мы 12, устройства и свойств моноидальных систем, описанных в [4, разд. 5| (там они 

называются критериальными системами), и устройства соответствующих производ- 

ных систем следуют приведённые далее леммы 13-16. 

Лемма 13. Для свободного %!-моноида M существуют 1-ограниченная критери- 

альная система К шкалы Ям и её алгоритмическая составляющая со сложностной 

характеристикой }“(п) = О(1). 

Лемма 14. Для свободного коммутативного Ф-моноида M существуют 1-огра- 

ниченная критериальная система К шкалы Ям и её алгоритмическая составляющая 
o сложностной характеристикой {^ (п) = О(1). 

Лемма 15. Для любого частично коммутативного Ф-моноида ЛМ существуют 
1-ограниченная критериальная система K шкалы Лм и её алгоритмическая состав- 
ляющая со сложностной характеристикой f<(n) = О(п). 

Лемма 16. Для любого моноида условной эквивалентности М существуют 
2-ограниченная критериальная система K шкалы Ям и её алгоритмическая состав- 
ляющая со сложностной характеристикой f<(n) = О(1). 
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На основании этих лемм и алгоритма 4 можно получить соответствующие резуль- 

таты о проверке эквивалентности программ, приведённые далее в теоремах 3-6. При- 

кладные причины рассмотрения шкал, для которых сформулированы эти теоремы, 

можно подробно изучить, например, в [4]. 

Теорема 3. Существует алгоритм проверки сильной эквивалентности пропози- 

циональных программ Мили, имеющий сложность O(n?). 

Доказательство. Заметим, что сильная эквивалентность программ равносиль- 

на их эквивалентности на шкале свободного моноида: необходимость — по определению 

сильной эквивалентности, достаточность сформулирована в [4, следствие 3]. Справед- 

ливость теоремы 3 следует из этого, теорем 1 и 2 и леммы 13. @ 

Теорема 4. Для любого свободного коммутативного %-моноида существует алго- 

ритм проверки эквивалентности пропозициональных программ Мили на шкале этого 

моноида, имеющий сложность O(n?). 

Доказательство. Следует из теорем 1 и 2 и леммы 14. @ 

Теорема 5. Для любого частично коммутативного 2A-MOHOHJIA существует алго- 

ритм проверки эквивалентности пропозидиональных программ Мили на шкале этого 

моноида, имеющий сложность O(nt). 

Доказательство. Следует из теорем 1 и 2 и леммы 15. @ 

Теорема 6. Для любого моноида условной эквивалентности существует алго- 

ритм проверки эквивалентности пропозидиональных программ Мили на шкале этого 

моноида, имеющий сложность O(n?). 

Доказательство. Следует из теорем 1 и 2 и леммы 16. @ 

Заключение 

Как отмечалось во введении, соотношение между ПППЗ и ППМ схоже с соотно- 

шением между автоматами Мура и Мили, 10 есть модель ППМ можно считать в неко- 

тором роде более общей по сравнению с I3, Но всё ke эти модели, вообще говоря, 

несравнимы по тем же причинам, отмеченным BO введении, по которым несравнимы 

модели ПИПЗ и дискретных преобразователей Глушкова — Летичевского. Исследова- 

ние соотношения между этими моделями оставлено на будущее. 

Ключевые результаты данной работы — это переложение результатов [4] ¢ ПППЗ на 

ППМ: техники совместных вычислений (понятие критериального графа, алгоритм 4 и 

теоремы 1 и 2) и эффективных алгоритмов проверки эквивалентности ППМ на некото- 

рых полезных шкалах, получающихся применением этой техники (теоремы 3-6). Ещё 

один результат, представляющий интерес, — ма 12, позволяющая при получе- 

нии алгоритмов проверки эквивалентности ПППЗ на основе техники из [4] немедленно 

в качестве следствия получать настолько же эффективные аналогичные алгоритмы 

проверки эквивалентности ППМ. Кроме Toro, можно выделить ещё несколько особен- 

ностей полученных результатов, показывающих их ценность. 

В работах, использующих технику совместных вычислений с критериальными си- 

стемами [4, 8-11, 14, 20, 21, 31-37], рассматриваются только шкалы 2A-MOHOH/IOB, име- 

лющие критериальные системы, основывающиеся на конечно порождённых моноидах 

аналогично тому, как в данной работе задание моноидальной системы начинается с та- 

кого моноида. В работе показано, что можно применять эту технику и K шкалам, He 

базирующимся на моноидах (согласно теоремам 1 и 2), и не основывать понятие кри- 

териальной системы на моноидах. В лемме 12 показано, что понятие критериальной 
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системы из [4], опирающееся на моноиды, является частным случаем понятия крите- 

риальной системы, введённого в данной работе. 

Техника совместных вычислений в данной работе по сравнению с [4] заметно при- 

ближена к технике проверки эквивалентности конечных автоматов с помощью их де- 

картова произведения [22, 38|, что выражается, в числе прочего, в использовании 

в ключевых определениях операций ® и ®, являющихся по сути разновидностями 

декартова произведения вычислителей автоматного типа. 

Кроме того, в работе исправлен ряд огрехов, содержащихся в |4| и проявляющихся 

в остальных работах, посвящённых ПППЗ и технике совместных вычислений: 

1. Явно указан способ подсчёта сложности алгоритмов, включая модель сложно- 

сти и способы представления данных. Для результатов, констатирующих или 

опровергающих полиномиальную разрешимость, это было бы неважно, но когда 

речь идёт о более точных оценках сложности, это становится важным. 

2. Рассуждения о сравнении преобразователей за логарифмическое BpeMs в до- 

казательстве теоремы 7 работы [4] склоняют к тому, что в [4] для подсчёта 

сложности используется модель машин Тьюринга или родственная ей. В дан- 

ной работе вместо неё используется более широко применяющаяся на практике 

модель В.АМ-машин и в связи с этим получаются оценки сложности, более близ- 

кие к практике. 

3. Алгоритмы снабжены всеми подробностями, необходимыми для анализа и под- 

счёта сложности, и не содержат существенных недосказанностей, которые в [4] 

приводят, например, K TOMY, что: 

— в формулировке теоремы 7 используется сложность <, а следовало бы 

использовать X (если применить обозначения данной работы по анало- 

гии); 
— после изучения доказательства теоремы 7 остаётся сомнение, не потерян 

ли в оценке сложности какой-либо дополнительный множитель, происте- 

кающий из копирования данных и особенностей работы со структурами 

данных (достоверный вывод, что не потерян, можно сделать только после 

дополнительного не очень тривиального анализа обоснования); 

— в теореме 10 без достаточных пояснений приводится оценка O(n®logn), 

тогда как, согласно лемме 15 данной работы, разумно было бы предпо- 

ложить оценку не лучше чем O(n?) (найти, откуда следовала бы оценка 

O(n®logn), не удалось). 

В будущем планируется: а) обосновать, что модель ППМ можно считать обоб- 

щением модели ПППЗ; 6) усовершенствовать технику совместных вычислений для 
получения более низкого порядка сложности соответствующих алгоритмов проверки 

эквивалентности; в) применить полученные наработки для аналогичного усовершен- 

ствования известных смежных результатов и затем для установления новых фактов 

об эффективной разрешимости проблемы эквивалентности в моделях программ. 
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