
ПРИКЛАДНАЯ ДИСКРЕТНАЯ МАТЕМАТИКА 

2025 Математические основы информатики и программирования № 70 

МАТЕМАТИЧЕСКИЕ ОСНОВЫ 
ИНФОРМАТИКИ И ПРОГРАММИРОВАНИЯ 

УДК 519.681:519.71 DOT 10.17223/20710410/70/5 

ЭФФЕКТИВНЫЕ АЛГОРИТМЫ ПРОВЕРКИ ЭКВИВАЛЕНТНОСТИ 

ПРОПОЗИЦИОНАЛЬНЫХ ПРОГРАММ МИЛИ 

НА УРАВНОВЕШЕННЫХ ШКАЛАХ! 

В. В. Подымов 

МГУ имени M. В. Ломоносова, г. Москва, Россия 

andex.ru 

Предлагается и рассматривается модель программ, называемая далее моделью 
пропозициональных программ Мили (ПИМ) и представляющая собой неболь- 

шое синтаксичес: ое обобщение модели дискретных преобразователей Глушкова 

„Летичевского с «осовремененной» семантикой, основанной на понятиях, исполь- 
зующихся в модели пропозициональных последовательных программ, введённой 
В.А. Захаровым (ПППЗ). Предлагается подход к построению эффективных ал- 

горитмов проверки эквивалентности ППМ, являющийся адаптацией известного 
подхода к проверке эквивалентности ПППЗ, основанного на анализе графа сов- 
местных вычислений программ. Демонстрируется применение этого подхода для 
получения эффективных алгоритмов проверки эквивалентности ППМ для неко- 
торых видов семантик прикладного характера. 

Ключевые слова: проблема эквивалентности, проверка эквивалентности, мо- 

дели программ, дискретные преобразователи, пропозициональные последователь- 

ные программы. 

EFFICIENT EQUIVALENCE-CHECKING ALGORITHMS FOR 

PROPOSITIONAL MEALY PROGRAMS OVER BALANCED FRAMES 

V. V. Podymov 

Lomonosov Moscow State University, Moscow, Russia 

‘We propose and investigate propositional Mealy programs (PMPs), а model that 

15 а slight syntactic generalization ов the discrete processor model studied by 

V.M. Glushkov and А. А. Letichevsky. PMPs employ a “modernized” semanti 

based on notions used in the model of propositional sequential programs proposed 

by V.A. Zakharov (PSPZs). A technique for constructing efficient equivalence check- 

ing algorithms for PMPs is proposed, adapting a known technique for PSPZs based on 

analysis of a graph оЁ consistent program computations. Efficient PMP equivalence- 

checking algorithms based on the proposed technique are obtained for some kinds of 

applied semantics. 

1Исследования поддержаны Московским центром фундаментальной и прикладной математики 

МГУ имени M. В. Ломоносова по соглашению № 075-15-2025-345.



Эффективные алгоритмы проверки эквивалентности программ Мили 73 

Keywords: equivalence problem, equivalence checking, program model 

cessors, propositional sequential programs. 
discrete pro- 

Введение 

Данная работа посвящена исследованию проблемы эквивалентности программ: для 

двух заданных произвольных программ выяснить, имеют ли они одинаковое пове- 

дение. 13 теоремы Райса — Успенского [1], констатирующей неразрешимость любого 

нетривиального свойства частично рекурсивных функций, и алгоритмической пол- 

ноты этого класса функций [2] следует неразрешимость проблемы эквивалентности 

для любого достаточно выразительного (алгоритмически полного) класса програл 

В связи с этим проблема эквивалентности исследуется, в числе прочего, для моделей 

программ с упрощённой семантикой, позволяющей избежать такой неразрешимости, 

с тем чтобы использовать решение этой проблемы в модели в качестве достаточного 

условия эквивалентности программ. Среди таких моделей нас интересуют дискретные 

преобразователи Глушкова — Летичевского (ДПГЛ) [3] и пропозициональные последо- 

вательные программы Захарова [4]. 

Общие черты моделей ДПГЛ и ПППЗ таковы. Программа разделена на синтак- 

сическую и семантическую части. Вычисление программы представляет собой взаи- 

модействие этих двух частей, согласно которому выстраивается последовательность 

состояний управления и состояний данных программы, начиная с заданных входных 

значений и пока не будет достигнуто заданное выходное значение состояния управле- 

ния либо до бесконечности. Результатом конечного вычисления объявляется послед- 

нее состояние данных. Построение вычисления основывается на операторах и логиче- 

ских условиях — символах, обозначающих соответственно способы изменения состоя- 

ния данных программы и способы выбора следующего состояния управления в зависи- 

M. 

мости от текущих состояний управления и данных. Способ преобразования состояний 

данных операторами и выбор логических условий при продолжении вычисления 3a- 

даются семантической частью. Выбор оператора, выполняющегося при продолжении 

вычисления, задаётс. 

Основные результаты, относящиеся K исследованию проблемы эквивалентности 

ДИГЛ [3, 5, 6], представляют собой разделение вариантов этой проблемы на разре- 

шимые и неразрешимые. Но ввиду практической значимости алгоритмов проверки эк- 

вивалентности (подробнее о ней см., например, в [7]) интерес представляет не только 

разрешимость как таковая, но и эффективные решающие алгоритмы — полиномиаль- 

ные достаточно низкой сложности. В [4] введена модель I3, для неё предложе- 

синтаксической частью. 

на техника проектирования таких алгоритмов — техника совместных вычислений — и 

в конце введения KOPOTKO, без деталей и доказательств, отмечается, что модель I3 

является обобщением модели ДПГЛ. В последующих работах, посвящённых пробле- 

ме эквивалентности ПППЗ [7-21] (включая труды, упомянутые в списках литературы 

этих работ), это соотношение между моделями не обсуждается. 

В данной работе обращается особое внимание на TO, что пока ещё строго не уста- 

новлено, имеет ли место включение между структурой или выразительными возмож- 

ностями моделей ПППЗ и ДПГЛ. Синтаксис этих моделей несравним: в модели ДПГЛ 

оператор обязан выполняться на каждом шаге вычисления, а в модели ППИЗ может 

и не выполняться на последнем шаге; в модели ПИППЗ выполняющийся оператор од- 

нозначно задаётся следующим состоянием управления, а в модели ДПГЛ он может 

зависеть также и от выбора логического условия, аналогично TOMY, как выходной сим- 

вол автомата Мура зависит только от состояния, тогда как в автомате Мили может



74 В. В. Подымов 

зависеть и от выбора входного символа [22]. При этом семантика ПППЗ, хотя и более 

«современна» в выборе терминологии по сравнению с семантикой ДПГЛ, но в конеч- 
ном итоге не кажется более широкой, что коротко отмечается в TOM числе и в [23], 
хотя это сравнение требует более развёрнутого обсуждения. 

В связи с обозначенным соотношением ис интакси лантики ДИГЛ и ПЗ 

результаты, полученные для этих моделей, вообще говоря, следует считать незави- 

симыми, пока He будет строго установлена связь между этими моделями. В данной 

работе выполнен первый этап установления этой связи: предложена модель пропо- 

зициональных программ Мили, совмещающая синтаксис ДИГЛ и семантику ПППЗ, 

и к ней, в числе прочего, адаптированы результаты работы [4]: техника совместных 

вычислений и получающиеся с её помощью эффективные алгоритмы проверки эк- 

вивалентности для некоторых видов семантик прикладного характера. Применение 

предложенной техники, то есть эти виды семантик и детали соответствующих алго- 

ритмов, описано в п.7. Кроме того, получены некоторые побочные результаты, свя- 

занные с расширением и структурированием техники совместных вычислений, они 

обсуждаются в заключении. 

Работа имеет следующую структуру. В п. 1 даются используемые понятия и обозна- 

чения общего характера. В п.2 вводятся синтаксис и семантика ППМ, ставится рас- 

сматриваемая проблема эквивалентности и обсуждаются специальные понятия и фак- 

ты, относящиеся к ППМ и требующиеся для формулировки результатов. В п. 3 при- 

водится графовая конструкция, описывающая синхронное выполнение двух ППМ — 

граф совместных вычислений. В п. 4 вводится понятие критериальной системы, пред- 

назначенное для оценки каждой пары состояний данных ППМ характеристикой «уда- 

лённости» этих состояний друг от друга. В п. 5 обсуждается графовая конструкция, по 

сути представляющая собой граф совместных вычислений, снабжённый информацией 

об «удалённости» состояний данных описываемых пар вычислений, — критериальный 

граф. В п. 6 приводится алгоритм проверки эквивалентности ППМ, состоящий B обхо- 

де критериального графа и параметризованный выбором семантики и критериальной 

системы, с обоснованием корректности и оценкой сложности. Наконец, в п. 7 показы- 

вается, как критериальную систему из [4] можно переформулировать в виде критери- 

альной системы данной работы, и обсуждаются алгоритмы проверки эквивалентности 

ПИМ невысокой сложности, основанные на алгоритме п. 6 и критериальных с 

Некоторые утверждения в данной работе представляют собой адаптацию утвер- 

ждений из [4] и смежные не очень сложно обосновываемые свойства рассматриваемых 

понятий. Такие утверждения, строго говоря, являются новыми и требуют обоснования, 

но эта новизна B OCHOBHOM техническая, а He содержательная, и эти утверждения оза- 

главлены словом «Утверждение». Утверждения, полагающиеся 

и нетривиальными, озаглавлены словами «Лемма» и «Теорема». 

стемах 

ущественно новыми 

1. Общие понятия и обозначения 

В связи с обилием областей, из которых далее обширно испол 

зультаты, приведём названия этих понятий, кроме самых общеизвестных, со ссылками 

на работы, в которых можно их найти. Здесь же изложим сопутствующие 0603 

как взятые из упомянутых работ, так и отступающие от них. 

Используемые понятия теории формальных языков [24]: алфавит; буква (символ) 

алфавита; слово в заданном алфавите; пустое слово; длина слова. Обозначения: Л — 

уются понятия и ре- 

начения,



Эффективные алгоритмы проверки эквивалентности программ Мили 75 

пустое слово; L* — множество BCeX слов B алфавите ¥; |5| — ра: 

длина последовательности S, в том числе длина слова. 
Используемые понятия теории графов [25]: ориентированный rpad ¢ петлями и 

кратными дугами (далее — орграф); вершина и дуга орграфа; вершина, U3 которой 
исходит дуга и в которую заходит дуга; полный орграф; подграф; орграф, обратный 
к С; путь; длина пути; простой цикл; кратчайший путь от одной вершины 10 другой; 
достижимость одной вершины из другой. Рассмотрим также пути с вершинами задан- 
ного множества без упоминания графа, имея в виду пути в полном орграфе ¢ этими 
вершинами. Про путь будем говорить, что он исходит из первой своей вершины и 
если он конечен, то он ведёт в последнюю свою вершину. Обозначения: 0] —› vg — 

лер множества S и 

дуга (vr,v2) и часть пути (vr, (гл ), о); 0() = пн " = (по = т —> = о) 
для пути р = Vg —> U1 — ... Б)'ДСМ называть отрезком пути 00 —> U1 — ... всякую 

часть 0; — ее —> UJ‘ этого пути и такой отрезок начальным, если з = 0 KdK H B [23]. 

рассмотрим также орграфы ¢ помеченными вершинами и ду: 

сохраняются при преобразовании графов и рассмотрении и преобразовании путей, и 

использовать в примерах понятие изоморфи: зма таких графов. Дугу 0] — vy, поме- 

ченную значением , будем записывать как U] — 02; ›; кратные дуги U1 — з с разными 

метками 1, . . . , T — как одну помеченную дугу о1 227 1y 

Будем использовать также понятия сужения функции f X — У на множество 

Z C X [26] и частично определённой ф\'пкции [2] и следующие обозначения: /|; — 

сужение функции f на Z; 1 — значение неопределённости, не входящее ни B одно из 

рассматриваемых множеств, кроме случаев, когда это сказано явно; /: Х — YU{Ll} — 

частично определённая функция, в которой f(x) = L означает, что значение f(x) не 

определено; 2X = {У : У C X}; № = №0 {0}. 
При обсуждении алгоритмов следуем терминологии и рекомендациям [27] и ис- 

пользуем известные структуры данных: одномерный и двумерный массивы (далее — 

соответственно векторы и матрицы); односвязный 

ми, считая, что метки 

‘писок; список смежности ориен- 

тированного графа. Под сложностью алгоритма понимаем его сложность по времени 

в худшем случае в модели ВАМ |27, разд. 2.2]. Это означает, в частности, что при 

подсчёте сложности полагаем, что в распоряжении алгоритма есть любое необходимое 

количество пронумерованных ячеек памяти, способных хранить любые целые чи 

и единица сложности отвечает выполнению любой простейшей команды: переход к 

данной команде, безусловный или условный ¢ проверкой значения B заданной ячейке и 

сравнениями (=, #, <, <, >, 2) значений в ячейках; вычисление в заданной ячейке 

MBI, разности, произведения, частного или остатка от деления значений заданных яче- 

ек; копирование значения U3 одной ячейки в другую. Для алгоритма A записью А(г) 

будем обозначать результат выполнения А на входе x. 

Используемые понятия общей алгебры [28, 29]: моноид; образующие (порождаю- 

щие) элементы; определяющие соотношения; подмоноид; конечно порождённый мо- 
ноид; свободный моноид; свободный коммутативный моноид; частично коммутатив- 

ный моноид; прямое произведение моноидов; гомоморфизм моноида А на моноид В 

(сюръективное отображение элементов А в элементы В, сохраняющее нейтральный 

элемент и операцию). Для краткости будем называть моноид с множеством образу- 

ющих Х просто Х-моноидом. Обозначения: M = (М,е, о) — моноид с множеством 

элементов М, нейтральным элементом £ и операцией о; т € M — синоним записи 

т € M; М(а1...а)) = a0 ---0ay, Где ay,...,ay € М; то И = {то в :а € И}; 
И от = {хот: г Е И}; М, х My— прямое произведение моноидов My и М. 



76 В. В. Подымов 

2. Модель программ 

2.1. Синтаксис 

Символами A и € будем обозначать конечные непустые множества операторов и 

логических условий соответственно; эти два множества считаются заданными. Слова 

в алфавите 2A будем называть (операторными) цепочками. 

Пропозициональной программой Мили над A и © (далее — (2, ©)-программой и про- 

сто программмой) будем называть систему л = (5,еп, ЕХ, Т), где: 

— 5— непустое множество состояний; 

— еп Е 5 — вход; 

— EX © 5 — множество вылодов; 

— Т: (5\ ЕХ) х © — (0 х 5) ) { 1 } — частично определённая функция переходов. 

Будем также использовать следующие обозначения: если Т (5, с) = (а, г), то T%(s,c)=a 

и Т®(в, с) = r. Переходом программы т будем называть четвёрку (S, ¢, а, г), для которой 

верно T'(s,¢) = (а,т). Будем считать, что программа л представляет собой размечен- 

ный орграф, B котором S — множество вершин, «вход» и «выход» — метки вершин и 

каждый переход (s, ¢, а, г) представляет собой помеченную дугу 5 o 

Пример 1. На puc. 1 показаны следующие пропозициональные программы Mu- 

ли над множествами A = {a,b} и € = {е|,со}: m = ({51, 52, 83 51}, 51, {s3}. Th). 

то = ({r1, 72, 73,74}, 71, {7з, 4}, Т)), таблицы значений функций переходов Т\ и Т) при- 

ведены на рис. 2. Здесь и далее вход помечается символом *, а выход — двойным конту- 

ром. Содержательное понимание элементов синтаксиса пропозициональных программ 

Мили совпадает с пониманием соответствующих элементов синтаксиса дискретных 

преобразователей Глушкова — Летичевского и может быть почеринуто из |3, разд. 2|. 

В данной работе ограничимся небольшим примером для иллюстрации основных по- 

нятий и результатов. На рис. 3 приведён фрагмент кода на языке C++ [30], которому 

отвечает программа л1, если буквами а и b обозначены соответственно присваивания 

«х = х + 1» и <у = у + 1», а буквами ¢; и со — множества состояний данных, в которых 

соответственно истинно и ложно условие <y < 1». 

Программа‚ л1 Программа ло 

Рис. 1. Пропозициональные программы Мили (пример 1) 

с с х х + 1; 

Ti(s,c) ® [а Ty(s, ©) “ [ а: while (y < 1? { 

х = х + 1 
51 || а, 52 | а, 52 5 1 || а, 7з | В, гэ у=ун ; 

5 | 52 || Р, 53 | а, 54 T L |а, га } 

8а || , 52 | ® 52 у =у т 1; 

Рис. 2. Таблицы значений функций переходов 
Рис. 3. Фрагмент кода на языке 

программ (пример 1) C++ (пример 1)



Эффективные алгоритмы проверки эквивалентности программ Мили 77 

Путь в программе и в других графах будем называть входным, если он исходит 
. Р с/а 

из входа, и выходным, если он конечен и ведёт в выход. Цепочкой nymu p = (50 —— 
cafay 

51 — ... ) будем называть цепочку ааэ... (для бесконечного пути — бесконечную 

последовательность операторов). 
Программу будем называть конечной, если множество её состояний конечно, и пол- 

ной, если её функция переходов всюду определена. Размером || конечной программы 
п = (5,еп, ЕХ, Т) будем называть число |S|. 

2.2. Семантика 

Детерминированной динамической шкалой над A (далее — {-шкалой и просто шка- 

лой) называется система F = (D, @, о), где: 

— —- непустое множество состояний; 

— @ € О — вгод; 

— о: D х ® — Р — операция шкалы. 

Перегодом шкалы F будем называть тройку (4, а, е), удовлетворяющую равенству 

4 оа = е. Считаем, что шкала F представляет собой размеченный орграф, в кото- 

ром D — множество вершин, «вход» — метка вершин и переход (а, а, е) представляет 

собой помеченную дугу @ < e. Цепочкой пути р = (do “ а, ® ...) будем называть 

цепочку a1dy ... (для бесконечного пути — бесконечную последовательность операто- 
ров). Записью F(d,h) для а € D и h € A* будем обозначать последнее состояние пути 

в Л, исходящего из d и имеющего цепочку Л, и записью F(h) — состояние /(@, h). 

Пример 2. На рис. 4 представлен фрагмент шкалы 7% = ({zg, 20 + 1, о + 2, 

.. } х {в0, о-- Lyo+2, ..}, (2о, у) о) над A = {a, b}, где zo, yo € Z, (v,y)oa = (z+1,y) 
и (z,y)ob= (z,y+1). Этой шкалой определяется CEMAHTUKA операторов U3 примера 1 

для (неограниченных) целочисленных переменных , Y, имеющих значения To и Yo 

соответственно в начале выполнения программы. Заметим, что для всех то, 0 € 7 

шкалы 70% изоморфны как размеченные графы. Поэтому далее B примерах B основ- 

ном используем шкалу FOO, 

[го - Г, —[то Е1 + -б о 1, yo + - 
af af а] 

[T, о-— о, yo + L—L—a0, yo + 22 

Рис. 4. Фрагмент детерминированной динамической шкалы (пример 2) 

Графом Я-вычислений программы л = (5,еп, ЕХ, Т) назовём программу л ® F = 

(S х D, (еп, @), ЕХ х D,T), в которой функция переходов 7 задаётся так: если 

T(s,c) = L, 10 T((s,d),¢) = L, иначе T((s,d),c) = (T%(s,¢),(T%(s,c),d о Т"(5, с))). 
Вершины графа л ® F u пути в нём будем называть соответственно Р-конфигурация- 
ми и F-mpaccamu программы л, элементы s и d конфигурации (s, @) — соответственно 
состоянием управления и состоянием данмых этой конфигурации. Путь в программе 
и путь B шкале будем называть парными, если их цепочки одинаковы. Для парных пу- 

с/а сэ/а: 
тсйш:(зощ›зіЩ›.…)ир;:(іоі›щз› ) одинаковой длины в программе 

а/а cafay 
и шкале соответственно записью 1 ® э обозначаем путь (sg,do) — (s1,d1) —— ...; 

пути p1, P2 называем соответственно NYMEM управления и путём данных пути py ® py.



78 В. В. Подымов 

Пример 3. На puc. 5 приведён фрагмент графа вычислений программы л) из 

примера 1 на шкале 7%° из примера 2. Входной путь (51, (0,0)) —— Щ/Ц (s2,(1,0)) — cn/b 

(5з, (1,1)) в этом графе можно представить B виде p1 & po, где путь управления 1 = 

= (щ i} S9 і› 53)7:#10 входной путь B л1 и путь данных Py = ((0,0) N (1,0) — 

(1,1)) — это парный входной путь в 7% 

.<о.0)]№›(е2.<1.0))№›{93.<1.1)) 

a/d] b1 /b b .0 е B ol 55 (2,2)) 

й—%”’ ol 
Рис. 5. Фрагмент графа вычислений (пример 3) 

ЫЕ 

Утверждение 1. Для любых программы л и шкалы 7 входными путями B я®.Л 
являются всевозможные пути /1 ® P2, где ру и з — парные пути B ли Л, и только они. 

Доказательство. Пусть л = (S,en, ЕХ,Т) и F = (D,d’ o). По устройству 

путей вида py ® з и графа @ F, во-первых, все такие пути начинаются со входа этого 
c/a o графа, и, во-вторых, множества переходов (s,d) —> (r,€), исходящих из заданной 

конфигурации (s,d) в таких путях и в этом графе, равны: метка с/а произвольно 
выбирается среди меток переходов, исходящих из s в л; т = Т(5); е = 4оа. m 

Детерминированной динамической моделью над Ф и © (далее — просто моделью) 
называется система Т = (F,L), где F = (0,@,о) — шкала и L : D — ©. Такую 

модель будем также называть Л-моделью и считать графом, получающимся из F 
пометкой каждой вершины @ значением L(d). Будем называть Z-mpaccoli, a также 

. . с/а, . 
трассой, реализующейся в I, F-Tpa для каждого перехода (s,d) —>› o которой 

верно ¢ = L(d). Будем называть Z-Tpaccy т программы полной, если она является самой 

длинной среди всех Т-трасс этой программы, исходящих из 7(0). Полную входную 

Z-tpaccy программы будем называть Т-вычислением, этой программы. 

Пример 4. На рис. 6 приведён фрагмент модели Zy над A = {a,b} и € = {со, c1 }, 

содержащей шкалу 7% из примера 2 и разметку её состояний логическими условиями 

согласно содержательной трактовке из примера 1. Рассмотрим также /°°-модель Zo, 

в которой каждое состояние помечено условием €], и программы л1 и лэ из приме- 

( (0.0)) 85 (s2.(1,0) L5 
(5з, (2,2)). Тэ-вычисление Ty программы л1 бесконеч- 

но и начинается так: (51, (0,0)) — а, (s2,(1,0)) —> а, (54, (2,0)) —> ал (s2,(2,1)) ал 

(s4,(3,1)) СА—/Ь› ... Т-вычисление T3 программы ло устроено так: (rq,(0,0)) Щ 

(r2,(0,1)). 
Утверждение 2. Для любой программы л и любой модели 7 существует ровно 

одно Т-вычисление программы л. 

ра 1. Л-вычисление т программы л1 устроено та 

(50,(2,0) °^ (, (2,1)) ®^ 

Доказательство. Пусть 7 = (F,L). 

Существование. Входной путь длины 0 в графе 76 F существует и является 
входной 7-трассой. Значит, существует и входная Т-трасса наибольшей длины.



Эффективные алгоритмы проверки эквивалентности программ Мили 79 

Y ¢ 4 ¢ Y о 

[T, O} -П 2} L T 31-L 
af ¢ « со af со af ¢y 

[0, 0—2—{0, T {0, 2} 0, 31-L 

Рис. 6. Фрагмент детерминированной динамической модели (пример 4) 

Единственность. Достаточно показать единственность входной Т-трассы т 

программы л заданной длины. Для этого заметим, что 1) первая конфигурация каж- 

дой Я-трассы задана однозначно и 2) для каждого перехода (s,d) Ё› (г, е) значе- 

ниями 5 и d однозначно задаются остальные значения: с = L(d), в л содержится не 

более одного перехода, исходящего из 5 и помеченного условием ¢, и этим переходом 

однозначно задаются а, т и е = F(d,a). @ 

Далее будем без отсылки к утверждению 2 использовать понятие Т-вычисления 

программы для модели Z, имея в виду, что такое вычисление существует и единствен- 

но. Будем называть итогом конечной трассы состояние данных её последней конфигу- 

рации, результатом, выходной трассы — её UTOT, а результатами TPACC, не являющихся 

выходными, — значение L. Результат Т-вычисления программы л обозначим Т(п). Для 

шкалы /` будем называть 7 -вычислением Т-вычисление для любой Я-модели Т. 

Пример 5. Результаты вычислений Ty, Ty и T3, привед 

соответственно (2,2), Lu L. 

2 

Программы л1, my будем называть эквивалентными 6 модели T, а также Т-экви- 

валентными, если Т(п1) = Т(пэ), и эквивалентными на шкале F, а также Р-эквива- 

лентиными, если они эквивалентны в каждой Я-модели. Будем обозначать Р-эквива- 

лентность программ л1 и Ty как л1 >р по. Проблема. эквивалентности программ, на 

шкале F состоит в TOM, чтобы для заданных произвольных конечных программ л1, 7 

проверить соотношение л1 -; Ty. Будем называть программы сильно эквивалентины- 

MU, если они эквивалентны в любой модели (а значит, и на любой шкале). 

“нных в примере 4 равны 

Эквивалентность 

Пример 6. Эквивалентность программ на шкале означает, что результаты вы- 
числений этих программ обязательно равны, если смысл логических условий неизве- 
стен, а относительно операторов известны только свойства, задаваемые этой шкалой. 
В частности, шкала 7% из примера 2 отвечает свойству перестановочности (коммута- 
тивности) операторов а и b: итог трассы не зависит от порядка выполнения операторов. 
Этим свойством обладают присваивания, которым сопоставлены буквы а и b в приме- 
pe 1. Для программ лу и лэ из примера 1 верно Zy(m) # 1 (пэ) (см. примеры 4 и 5), а 

значит, T 7буо,о о. 

2.4. Вспомогательные понятия и свойства 

Будем считать заданной шкалу F = (D,do,o) и BC 

для произвольной такой шкалы. 

Шкалу F будем называть уравновешенной, если для любых цепочек h, g из pa- 

венства F(h) = F(g) следует |h| = |4|. Записями Ry и Br обозначаем соответственно 

множества {F(h) : h € A} и {(F(h),F(g)) : Р,а € A*, |h| = |g|}. 

Пример 7. Шкала FOO из примера 2 уравновешенна, так как для любых k,m € 

€ № все слова Л, для которых FOU(h) = (К, т), имеют одинаковую длину (& + т). 

утверждения сформулируем 



80 В. В. Подымов 

Шкала F = ({d},d, о) над A = {a,b}, B которой 4 оа = dob = а, не уравновешенна: 

Пополнением программы л = (S, en, ЕХ, Т) для значений loop ¢ S u a € 2 будем 

называть программу mOP¢ = (S U {loop}, en, EX, T%°P), где TP отличается от Т 

только тем, что если Т(5,с) = L или s = loop, то T%P(s, ¢) = (a,loop). Состояние s 

программы назовём завершаемым, если из него в этой программе достижим выход, 
иначе — незавершаемым. Весом ||5||; состояния 5 программы т считаем длину крат- 5 

чайшего пути из 5 в какой-либо выход в л (если такого пути HET, то вес бесконечен). 

р.' loop,a й 
Пример 8. Пополнение л) программы лэ из примера 1 приведено на рис. 7. 

Рис. 7. Пополнение программы (пример 8) 

Пример 9. Для программ л из примера 1 и m = 7r12°°p’“ из примера 8 верно сле- 

дующее: ||5з|\к, = з к, = lIrallxy = ©; |5э|к, = ак, = а], = L5 5к = 5а , = 2 
[[loop|lz, = со. Состояние loop незавершаемо, остальные состояния завершаемы. 

Назовём Я-трассы программ совместными (B том числе одну трассу — совмест- 

ной), если существует Я-модель, в которой реализуются все эти трассы. Произведе- 

nuem F-mpace 71 = ((50, @) еч (в1, &) 2/г „) и = ((го, ео) /b ) /b 

2 b 
.) одинаковой длины будем называть путь 71 ® 72 = (((s0,70), (do, о)) ауе 

(c2,62)/(az,b2) 
((s1,71), (dy, 1)) ————= ...), такие трассы л) и T будем называть соответственно 

первой и второй проекциями этого пути. 

Пример 10. Рассмотрим модели Iy, Ty и FOO-rpace 71, Ty, T3 из примера 4. Трас- 

сы ту и T3 совместны, так как обе они реализуются в Д1. Трассы 7 и T3 совместны, так 

как обе они реализуются B Zo. Трассы т и 7 несовместны, так как если они обе реали- 

зуются в некоторой модели Z, то, согласно устройству 71, состояние (2,1) в 7 должно 

быть помечено условием со, а согласно устройству To, — условием c¢p. Путь 7' ® 73 

имеет вид (s1,71), ((0, 0), (0,0))) 0 (5, о), ((1 0). (0 1)))- 
Утвер›кдение 3. ‹П!ОбЫ(‚‘ две программы _}_-ЭКВИВЗЛСПТЦЫ тогда и только тогда, 

когда результаты любых совместных Я-вычислений этих двух программ равны. 

Доказательство. Напрямую следует из соответствующих определений. @ 

Утверждение 4. Любая программа сильно эквивалентна любому своему попол- 

нению. 

Доказательство. Для любой модели Т Т-вычисления программы и её попол- 

нения отличаются только тем, что если вычисление программы конечно и ведёт не 

в выход, то вычисление её пополнения бесконечно. При этом результаты всех конеч- 

ных 7-вычислений, оканчивающихся не B выходе, и бесконечных вычислений равны L. 

Значит, для любой модели 7 результаты Т-вычислений программы и €€ пополнения 

равны. @ 

Утверждение 5. Любая конечная Я-трасса т любой программы имеет итог 

F(d,h), где d— состояние данных конфигурации 7(0) и h — цепочка трассы т.



Эффективные алгоритмы проверки эквивалентности программ Мили 81 

Доказательство. Достаточно применить индукцию 10 длине трассы, заметив, 
с/а. 

что для любого перехода (s, F(d, h)) —> (r, €) трассы т верно е = F(d, ha) (по опреде- 

лению трассы). @ 

Утверждение 6. Итогом любой конечной входной Р-трассы т любой программы 

является значение F(h), где h— цепочка трассы т. 

Доказательство. Следует из утверждения 5 и того, что состояние данных кон- 
фигурации 7(0) есть F(A) (по соответствующим определениям 

Утверждение 7. Для любой вершины (ss, dd) произведения T ® Ty любых вход- 

ных Я-трасс Tj, Ty одинаковой длины любых программ верно dd € В. 

Доказательство. Достаточно показать, что утверждение верно для последней 
вершины (s, dd) каждого конечного начального отрезка р пути 7y ® тэ. Пусть путь р 
имеет длину n. По определению произведения трасс р = 71|" ® т и dd = (dy, @5) для 

состояний данных @, @› конфигураций 71(n), 2(n). По утверждению 6 для некоторых 
цепочек h и g одинаковой длины п верно @ = F(h) и аз = F(g). Значит, (@1, ф) € Br 

по определению этого множества. @ 

Утверждение 8. Любой набор F-Tpacc любых программ совместен в том и толь- 
с1 /а сэ/а: 

/X переходов (51, @\) Ц оу и (52, @) Щ oy 

этого набора из равенства di = @» следует равенство €] = Ca. 

KO в том случае, если для любых дв; 

любых трас: 

Доказательство. 

Необходимость. Если набор Я-трасс совместен, то существует модель 

7 = (F,L), B которой реализуются все трассы этого набора, и для любого состоя- 
с/а cafaz 

ния данных @ и любых переходов (si,d) —— оу и (s2,d) —— ао трасс этого набора 

¢y = L(d) = сэ. 

Достаточность. Пусть свойство переходов, сформ улированное в условии, 
верно. Рассмотрим любую модель Z = (F, L), обладающую таким свойством: если 

. с/а, | 
в какой-либо из трасс содержится переход (s,d) — o, то L(d) = с. Согласно пред- 

. /b, 
полагаемому свойству переходов, для любого перехода (r,d) —› ё рассматрива‹ 

набора трасс верно ¢ = ¢ = L(d). Значит, интерпретация Т задана корректно ( 

ствует). По определению все трассы рассматриваемого набора реализуются в Т. @ 

Утверждение 9. Любые отрезки любых совместных Я-трасс совместны. 

Доказательство. Следует из утверждения 8 и того, что все переходы отрезка 

трассы являются переходами этой трассы. @ 

Утверждение 10. Любые Я-трассы любых программ совместны тогда и только 

тогда, когда совместна каждая пара конечных начальных отрезков этих трасс. 

Доказательство. 

Необходимость следует из утверждения 9. 

Достаточность. Рассмотрим произвольный несовместный набор трасс. 
РУ 

По утверждению 8 в этих трассах существуют переходы t = ((51,й) —=—5 о)) и 
с/а 

® = ((s2,d2) —›2/ = сэ), для которых @1 = @› и с # сэ. Тогда существуют и конечные 

начальные отрезки т{, Ty некоторых трасс этого Habopa, содержащие переходы & и 6 

соответственно. Трассы 7{, 75 несовместны по утверждению 8. @



82 В. В. Подымов 

3. Граф совместных вычислений 

В данном пункте считаем заданными полные программы m = (Si,eny, EXy, Т\) 

и то = (5»,епо, EXy, Т)) и уравновешенную шкалу F = (D,d’ o). Все утверждения 

формулируются для произвольных таких л1, ло и F. 
Произведением программ m и па будем называть (A х A, @ х ©)-программу 

m ® M = (51 х Sy, (eny,eny), (ЕХ, х 5») U (51 х EX,),T), функция переходов 

которой задаётся так: если Т\(5,с) # L и Th(r,0) # L, то Т((5,г),(с,0)) = 

= ((TX(s, ¢), T(r, 0)), (T (s, ¢), Ty*(r, 0))), иначе T((s,r),(¢,€)) = L. Произведением 

шкал Р = (Dl,d(f,ol) и Fy= (Dz,dg,oz) называем (A х A)-mkany Fi ® 75 = (D1 х D2, 

(@, @), о), B которой операция o задабтся равенством (d,e) o (a,b) = (d о1 a,e о» b). 

Для (2 х %)-шкалы F и цепочек h = ay...aqp и g = by...by, где & € № и 

а,. .. @к, 1, ... by © A, используем сокращения F(d, hy, hy) = F(d, (ал, ) ... (ак, by)) 

и F(hy, ha) = F(d°, hy, hy). Графом совместных вычислений программ Ty и Ty на шка- 

ле F назовём подграф Г{…„? графа (л1 ® лэ) ® (F ® F), содержащий все вершины и 

дуги, кроме дуг вида ((s,r), (а, е)) {60768 v, в которых d = e u ¢ # (. 
асс й ‚ — . loopa Пример 11. Рассмотрим программы л1 и Ty = п) и шкалу 7%° из примеров 1, 

2 и 8. Положим ¢;j = (i, ¢5), Ozy = (2,y) и дузьт = ((, ), (К, т)). На рис. 811 приведены 

соответственно программа л1 ® л), фрагмент шкалы 7%° @ 7%0, фрагмент графа (m © 
л)) ® (7°° @ 7°°) и фрагмент графа ГЁ;‚?‚ 

со1/два 
* Cu/fl%a /a, 

бъ т ба B A {s4,loop) 

соо/даа со!/ааь» соо/ аы €00/ @a; €01/ дъа с 10/ да а 
сло/ада | 1/%0 €10/ aba; с 11 / ава 611/ баа 

(G273 (53, 1oop 52, loop 
€00/ @b 
со1 / ава 

Рис. 8. Произведение программ (пример 11) Рис. 9. Фрагмент произведения 

шкал (пример 11) 

((3з, ), ди: )) ((s4,74),02011) ((s4,100p), дго11) 
€01/ ава 

* Ttu/a.m chG/aba-,cGl/aba:ch/aba:cll/aba 

[(51-, ), Doooo)—’[(sz-, ra), дшш] 5./ ба [(52-‚ loop), 1’2121)—{(54; loop), 351 31] 
со1/даь: <10/даа: 

о0/ даа, €00/ ва " |c00/ ба › €01/ да с11/а, (° с11/а, Ы Ы 
€10/ daa н/бь о/ аа со1 /два /а Lm/aba;tu/aba 

[(52-‚%)-‚171010] [(53-‚100[3)-‚171111]] [(53-‚100[3)-‚172231] : 

Рис. 10. Фрагмент графа вычислений произведения программ (пример 11) 

Утверждение 11. Для любых совместных входных JF-Tpacc Ti, T2 одинаковой 

длины программ л1, T2 соответственно путь т & T — это входной путь B Г{‚ „о° 

Доказательство. Докажем утверждение для конечных трасс индукцией 10 
длине, после чего — для бесконечных трасс. 

База: 7 и то имеют длину 0. Тогда т; — это трасса из одной конфигурации (еп;, @), 
зЕ {1,2}, и T ® то — путь из одной вершины ((eny,eny), (@,@)), являющейся входом 

графа Ff‘ „п 1О есть ВХОДНОЙ Путь B Г{А ‚°



Эффективные алгоритмы проверки эквивалентности программ Мили 83 

(Cs3,r4), 00111) со1/дыа ((s4,74),02011) ((94 loop), 172011] 

+ Т‹п/д.ш 7 Есо/ ава со1/ а 0/ ба 11 / ба 
[(91 ), Duouo)—’[(92 ra), 1’1001] €10/ бча [( ‚109р), 172121)—{(54-‚100[3)-‚173131] 

ісоо/д /8 lcou/aba Cuu/abal 11/00 lc /a1 / аа 00/ да €11/ ба 
((s2,73),01010) (Cs3,100p), 01111) (Cs3,100p), 03231) : 

Рис. 11. Фрагмент графа совместных вычислений программ (пример 11) 

Индуктивный переход: 7 и 75 имеют длину п + 1, п € №, и )' = 
Ci/ai 

= 71|"®@T,|" — это входной путь B Г{И„?‚ Положим для ясности, что (5;, @;) ——> / (га ©;) — 

последний переход трассы т;, # € {1,2}. По устройству произведения трасс последней 
вершиной пути )' является ((51, 52), (di, йэ)). o устройству графа (m ® по) ® (F ® F) 

в нём содержится дуга t = (((51,52), (d1.dz)) ее ((r1,72), (е1, е2))). Если 
@, = а), то по утверждению 8 ¢; = сэ. Значит, в любом случае дуга Ё содсржится 

Переход к бесконечным трассам: пусть т и Ty имеют бьькопьчщю 

длину и утверждение справедливо для любых конечных трасс указанного в условии 

вида. Тогда для каждого n € № в Г7П 7, содержится входной путь /„ = 7" ® 1" и 

Дп-на получается U3 р„ добавлением в конец одного перехода этого графа, обозначим 

этот переход t,. Значит, B Ffmz существует бесконечный путь ) из входа по переходам 

%, t1, ta, и по устройству произведения трасс p=T; ® тэ. @ 

Утверждение 12. Любой входной путь p B Г7П т, представим в виде p = т| ® Ty, 

где т и Ty — совместные входные Я-трассы программ л1, Ty соответственно. 

Доказательство. Докажем утверждение для конечных путей индукцией 1o 

длине, после чего — для бесконечных путей. 

База: римеет длину 0. Тогда р = 7 &7y, где т; состоит из одной вершины (етп;, @), 

i € {1,2}, и по утверждению 8 7| и Ty — совместные входные Л-трассы программ л1, 

Ty соответственно. 

Индуктивный переход: римеет длину n+1l,n € Ny, и существуют совмест- 

ные входные Я-трассы T{, Ty программ л1, T2, удовлетворяющие равенству p|™ = T{ @Th. 

Положим, что ((51, 5) (@1, d)) №› ((r1,72), (€1, €2)) — последняя дуга пути ). 

Для каждого # € {1,2} верно следующее. По определению произведения трасс трас- 

са т; ведёт в конфигурацию (5;, d;). По устройству графа вычислений, программы 

;) fl) (п; ;) входит в граф л; ® F, а зна- m ® ло и шкалы F @ F переход (s;,d, 
‚ Cilai 

чит, T; (17 == (ri,e;)) — входная F-rpacca программы л;. По утверждению 6 и 

уравновешенности шкалы /У состояние данных @; отличается от состояний данных 

остальных конфигураций трасс 7{ и Ty, кроме, быть может, состояния 3_;. По опре- 

делению графа совместных вычислений если @ = dy, то с1 = со. По последнему соот- 
е /ал, 

ношению, утверждению 8 и совместности трасс Ti, Ty трассы 7y = (1] — —> (г1,е1)) и 
сэ/ 

Ty — —> (r2, €2)) совместны. По определению произведения трасс р = т ® T2. 

Пе р еход к бесконечным путям: ) имеет бесконечную длин 

€M, что утверждение справедливо для любых конечных путей указанного в условии 

вида. Тогда для каждого n € № путь p, = p|" представим в виде p, = 71 ® 74, 
где 7{' и т} — совместные входные Л-трассы программ л1, g, и для каждого ¢ € {1,2} 

полага-



84 В. В. Подымов 

Tpacca Ti"H получается из 7, добавлением B конец одного перехода программы л; (обо- 

значим этот переход ##), значит, бесконечный путь т; из конфигурации (en;, @) по пе- 

реходам #, #1,#,... является бесконечной входной F-rpaccoii программы ;. При этом 

трассы т и T совместны — иначе по утверждению 10 существуют несовместные конеч- 

ные начальные отрезки этих трасс и по утверждению 9 для некоторого п несовместны 

трассы T{' и T3', чего быть не может по полученному выше. @ 

Вершину ((51, 52), (di,dz)) графа Г{…щ назовём достижимой в этом графе, если 

она достижима U3 входа, и опровергапющей, если верно одно из следующих условий: 

1) si€ ЕХ , и з ¢ Е Х); 

2) 51 & ЕХ, и 5о Е ЕХ); 

3) 51 Е ЕХ,, з € ЕХз и а, # й). 

Пример 12. Среди вершин графа совместных вычислений на рис. 11 опровер- 
гающими являются все выходы, кроме ((s3,74),01111), и только они. В этом графе 
содержится бесконечно много неизображённых опровергающих вершин — например, 
недостижимая вершина ((s3, 74), д2002). 

‚ 4а) графа TZ „, верно Утверждение 13. Для любой достижимой вершины (. A 

да € By. 
Доказательство. Следует из утверждений 7 и 12. @ 

Утверждение 14. Соотношение л1 ~F ло верно тогда и только тогда, когда 

ществует достижимая опровергающая вершина. 

Доказательство. 
Необходимость. Пусть л1 7%г о. По утверждению 3 существуют совместные 

Я-вычисления T1, Ty программ л1, ло соответственно, имеющие различные ре: 
Это означает, в частности, что одно U3 этих вычислений конечно. Положим без огра- 
ничения общности, что длина п трассы 7| конечна и не превосходит длину T2 (иначе 
достаточно поменять местами индексы 1 и 2). По утверждению 9 трассы 71 и 75 = тэ|" 
совместны. По утверждению 11 р = т1®7т} — входной путь в ГД. 7y 110 устройству произ- 
ведения трасс этот путь конечен. Положим, что р ведёт в вершину v = ((51, 52), (, d2)). 

Значит, вершина U достижима B Г{…‚?‚ По выбору 71 верно 51 € ЕХ,. По устройству 

произведения трасс и неравенству результатов вычислений T и Ty, если 52 € ЕХ), то 
dy # dy. Значит, в любом случае вершина U является опровергающей. 

Достаточность. Положим, что в ГЛ ‚п‚ По некоторому пути р достижима 
некоторая опровергающая вершина v = ((51, 52), (d1, йэ)). o утверждению 12 и устрой- 

ству произведения трасс существуют конечные совместные входные трассы т\, Ty оди- 
наковой длины (обозначим её п) программ л1, 7y, ведущие в конфигурации (51, @) и 
(52, @э) соответственно. 

Случай 1: 51 € ЕХ, и 5 € EXo Тогда @ и й;— рез) 

Я-вычислений 7, 7y соответственно. Tak как вершина г является опровергающей, Bep- 
но dy # dy. Значит, по утверждению 3 л1 7 по. 

Случай 2: 51 € ЕХ, и sy & ЕХ). По совместности трасс л, Ty существует мо- 

дель Z, в которой реализуются эти трассы. Положим, что 75 — Т-вычисление програм- 
мы ло. Так как 51 € EXy, верно Z(m) = @\|. Так как sy & ЕХ,, длина 7y больше 

длины тэ. Если длина 75 бесконечна, 10 Т(ло) = L # @, = Z(m). Иначе длина 75 конеч- 

на, по утверждению 6 Z(my) = F(hy) и Т(по) = F(ha), где hy и hy — цепочки трасс 7 

и 7), и из этого, неравенства |hy| < |hy| (так как 75 длиннее Ty и длина Ty равна длине T1 ) 

и уравновешенности шкалы F следует Т(л1) # Т(пэ), а значит, л1 ~F T2. 

ультаты. 

льтаты совместных 



Эффективные алгоритмы проверки эквивалентности программ Мили 85 

Случай 3: 51 & EX; и 5) Е ЕХ, — повторяет случай 2 с взаимной заменой 

индексов 1 и 2. @ 

4. Критериальная система 

Для шкалы F = (D, @, о) и (A х 90)-шкалы W = (W, w’, ©) критериальным мор- 

физмом ф :Р — W будем называть функцию ф : В; — W, заданную так: 

— ф#(@, @) = ; 
— если (d,e) € Ву и а,Ь Е ), 10 p(d.e)® (a,b) =p(doa,eob). 

Записью &, будем обозначать множество {¢(d,d) : а € Rr}. Критериальной cucme- 

мой шкалы F = (D, @,о) назовём пару (W, @), где У/ — (A х 91)-шкала, ¢ : F — W и 

для любой пары (d,e) € В; из соотношения p(d, е) € &, следует d = e. Шкалу W си- 

стемы К будем называть критериальной и её состояния — критериями; систему К — 

#-ограниченной, если для любых цепочек hi, hy одинаковой длины существует не бо- 

лее # критериев w, для которых W(w, hy, hy) € ©. 

Пример 13. Рассмотрим шкалу #° с операцией o из примера 2, (A х 9()-шкалу 

W = (2,0,9), где т © (a,a) = т © (b,b) = т, т © (a,b) = т + 1 и т © (6,а) = т — 1, 
и функцию ¢ : Br — Z, заданную равенством ¢((ni,mi), (пэ,тэ)) = т — na. Тогда 

нетрудно убедиться, что (W, ) — 1-ограниченная критериальная система для 7°; 

— #((0.0), (0.0)) = ©; 
— @((n1,m1), (по,тэ)) © ) © (а,а) = ту — па = p((n1,m1) 0 a, (g, та) о а); 
— #((тп1,т), (п;‚т;); © (6,5) = п — па = @((n1,m1) о Ь, (по, тэ) о 5); 

) 
— @((n1,my), (n2,m2)) © (a,b) = (т + 1) — па = ¢((n1,m1) о а, (nz, тэ) о b); 
— @((n1,m1), (n2,m2)) © (, а) = n1 — (па + 1) = #((т, та) 0 b, (n2, тэ) о а); 
— & = {0} и при этом ¢((n,m), (п,т)) = п — п = 0; 

— для любых цепочек Лу и hy, содержащих соответственно п) и пэ букв а, только для 
критерия w = (пэ — ny) верно W(w, hy, hy) = 0. 

Утверждение 15. Для любой критериальной системы (W, @) любой шкалы F 

и для любой пары (d,e) € В; верно следующее: @ = е тогда и только тогда, когда 

$(а е) Е &, 

Доказательство. Необходимость следует из определения множества &y, доста- 

точность — из определения критериальной системы. @ 

При обсуждении алгоритмов, использующих критериальную систему K = (W, ), 
где W = (И/и?, ®), будем полагать зарансе заданной алгоритмическую составляю- 
щую этой системы — представление элементов шкалы W, алгоритмы Af, A, АБ AKX 
и АЕ и функции ff, :Ё‚ K ТЕ : № — Ny следующего вида: 

— АБ( = «; 
— АК(и) = «Да», если ш € E,, и «Нет» иначе; f<(n) — сложность этого алгоритма на 

значениях вида ш = W(hy, hy), где |hi| = |ha| < n; 

— AS(w,a,b) = w © (a,b); f5(n) — сложность этого алгоритма на значениях вида W = 

= W(hy, hy), где |hy| = |ho| < л; 

— AX(w,u) = «Да», если ш = u, и «Нет» иначе; f<(n) — сложность этого алгоритма 
на значениях вида w = W(hi, ha) и и = W(g1, g2), где |hi| = |h2| < n, |91| = |g2| < п: 

— выполнение А (z,w) устанавливает (копирует) в г значение ш; f (п) — сложность 
этого алгоритма на значениях вида w = W(hy, hy), где |hi| = |ha| < n. 

Сложностной характеристикой критериальной системы для такой алгоритмической 

составляющей будем называть функцию € : № — Ny, задающуюся равенством



86 В. В. Подымов 

7 (п) = max(f&(n), {5 (n), f€(n), < (n)). Далее для наглядности вместо вызовов вспомо- 

гательных алгоритмов будем записывать соответственно значения и соотношения w’, 
we ё ш © (a,b), ш = и и описание установки критерия. 

Пример 14. Для критериальной системы из примера 13 с алгоритмической 

составляющей, естественно отвечающей определению этой критериальной системы, 

сложностная характеристика имеет порядок О(1), так как такой порядок сложности 

имеют все требуемые алгоритмы: проверка равенства числа-критерия нулю, прибав- 

ление или вычитание единицы в зависимости от пары операторов, проверка равенства, 

критериев, копирование числа. 

5. Критериальный граф 

Предположим заданными полные программы л1 = (51,ет, ХТ) и m = 

= (5э, eny, ЕХ), Т›), уравновешенную шкалу F = (D, @, о) иеё критериальную систему 

K=(W,p), где W= (И/, ', ©). Все утверждения формулируются для произвольных 

таких л1, о, Г и K. 

Критериальным графом программ л1, лэ и системы К назовём подграф IS T, графа 

(m @п) ФУ), содержащий все вершины и все дуги, кроме дуг ((51, 52), w) №› v 

в которых ш € &, и €] # сэ. Вершины критериального графа будем называть узла- 

MU, пути в нём — маршрутами, значения 51, 5» и и — соответственно состояниями U 

критерием. узла ((51, 52), ш). Назовём у-образом вершины v = ((s1,s2), (, @э)) гра- 

фа Г{И„? и пути 10 M vy №› ... в этом графе соответственно набор 
1 с3)/(а! а! 2)/(а? а2 

(1) = (51, ). 2(41 )) и путь plug) В, о) <в 
Пример 15. Рассмотрим программы л1, ло и критериальную систему K = (W, ) 

из примеров 11 и 13. На рис. 12 показан фрагмент графа Ffm;' содержащий фу-образы 

всех вершин на рис. 11. 

((s3,74),0) co1/as ((sa,70), 1) ((s1,loop), 1) 

* Ж 6н /o, [соо/ ава ол / аба €10/ аа С11 / ба 

Crer)- 9а Сн 9/ (а Лоор); 07 —( Toop). ) 
оо /аа Н о/ д соолаз[ — ®® оааа 11/ 

[(sz, r3), О] [(53‚ loop), О] [(53‚ lLoop), —1] В 

Рис. 12. Фрагмент критериального графа (пример 15) 

Утверждение 16. Входными путями в ГЁ…‚Ё являются все фу-образы входных 

путей в Ff‘ 725 И ТОЛЬКО ОНИ. 

Доказательство. Достаточно обосновать следующее: 1) -образы всех дости- 
3 афг МЕ - э Р achs К . а- . жимых вершин графа Iy л‚ являются вершинами графа 7 л; 2) у--образом входа 

B Г{…‚? является вход в I а! 3) метки дуг, исходящих 'ЁСГЩ'М из дости;_кимой вер- 

шины ¥, совпадают с метками дуг, исходящих из {(о) в Я, ла; 4) если в T7, л, Дуга из 

достижимой вершины © заходит в 6, то в ГХ „, дуга из ¢(v) с той же меткой заходит 

в (). Всё это следует из определений графов Iy ,› It л‚ и критериальной системы 

и утверждений 13 и 15. @ 

Узел ((51, 52), ш) графа Ff‘ 7, Назовём достижимым B этом графе, если он до- 

стижим из входа, нейтральным, если w € E,, и опровергающим, если верно одно из 

следующих условий:



Эффективные алгоритмы проверки эквивалентности программ Мили 87 

1) 51 Е ЕХ , и5, ¢ EXy; 

2) 51 & EX | и 5) Е ЕХ); 

3) в; Е ЕХ,, 5) Е ЕХ) и ш & ©. 

Пример 16. С учётом изложенного в примере 13 среди узлов критериального 
графа на рис. 12 нейтральными являются все помеченные числом 0, и только они, 
опровергающими — все выходы, кроме ((s3,74),0). В этом графе содержится беско- 
нечно много неизображённых опровергающих узлов — например, недостижимый узел 

((s3,74),2). 
Утверждение 17. Достижимыми опровергающими узлами в ГХ „, ЯВЛЯЮТСЯ 

‹с-образы всех достижимых опровергающих вершин графа ГУ д› и ТОЛЬКО ОНи. 

Доказательство. С учётом утверждения 16 и устройства у-образов путей 
достаточно показать, что достижимая вершина © графа ГУ л, является опроверга- 
ющей тогда и только тогда, когда узел ¢(v) опровергающий. Положим, что v = 
= ((51,52), (d1,dp)). Тогда по утверждению 13 верно (dy,dz) € Br, а значит, p(v) = 

((s1,82), ш), где ш = {(а ‚ d3). Осталось заметить, что состояния программ B v I (V) 

одинаковы и U3 утверждения 15 следует равносильность () = @) < ш € E,). @ 

Утверждение 18. Соотношение л) 9; ло верно тогда и только тогда, когда 

B ГЁ т существует достижимый опровергающий узел. 

Доказательство. Следует из утверждений 17 и 14. @ 

Утверждение 19. Если система К Ё-ограниченная, B Г7П „‚ Достижимы узлы 

V1. e, где о; = ((s1,82),w;), # € {1,...,Ё + 1}, хотя бы одно из состояний 51, 52 

завершаемо и критерии w;, i € {1, £+ 1}, попарно различны, то л 79 . 

Доказательство. — Положим, что ||51|к, < |52|к, (если ||51|к, > ||52|то» 
то далее достаточно поменять местами индексы 1 и 2). Тогда в лу существу- 

- . е /ay с/а ет путь из 51 в выход. Рассмотрим кратчайший такой путь ро —— р| — —> 
сп fan " 
——= Pn, ро = 51, pn € FEXi. Тогда по устройству критсриалыюго графа, 

\ТВ[р)КД[ПИ!О 12 и неравенству в начале доказательства в Г существуют пути 

(c2,2)/(az b2) (cnen)/(anbn) 
T2 

(c1,e1) /(a1 by), i 
о; — ((p1,q0), ) ш›…‹:„› ш), i€ {L,... t+1}, 

b b wh L £+1 L йо = для некоторых (1, ..., Фп b1,. . by w1, .oy, .,Ь и при этом w), = 

W(wi, ay...ap,by...b,). Значит, по Ё—ограпичсшю( ти системы К хотя бы для одного 
Я К й а из ве! И — К зЕ {1,...,Ё + 1} верно ш', & &,. Тогда хотя бы одна из вершин v = ((Pn, gn), ш') явля- 

ется опровергающей, при этом все вершины { достижимы в ГХ „, и из утверждения 18 

следует л1 9; по. @ 
та уэ 

6. Алгоритм проверки эквивалентности программ 

В описании и анализе алгоритма проверки эквивалентности программ (алгорит- 

ма 4) и вспомогательных алгоритмов 1-3 считаем заданными конечные множества опе- 

раторов % и логических условий €, шкалу F = (D, @,о) и её Ё-ограниченную критери- 

альную систему K = (W, у) co шкалой УУ = (W, w’, ©) и некоторой алгоритмической 

составляющей. Для сохранения понятности изложения действия алгоритмов описыва- 

ются «высокоуровнево» с использованием математической терминологии. В коммента- 

риях приводятся «низкоуровневые» детали, необходимые, в числе прочего, для оценки 

сложности алгоритмов. 

Будем использовать следующие способы представления данных: A = {1,2,...,тпа}, 

© = {1,2,...,п.}; множество состояний S каждой программы имеет вид {1,2,...,ng};



88 В. В. Подымов 

множество вида {1,2,...,п} представляется числом ; одноместная функция 
# : {1,2,...,п} — Х — вектором (f(1), /(2),...,/(п)); множество X © {1,2,...,п} — 
так ke, как функция / : {1,2,...,п} — {0,1}, задающаяся равносильностью 

К(@) =1 = з Е Х. Двухместная функция / : {1,2,....n} х {1,2,...,n3} —> X (B том 

числе функция переходов программы) представляется матрицей, где f(i, j) — значение 
элемента матрицы в й строке и j-M столбце. Последовательность нефиксированной 
длины задаётся списком элементов, за исключением цепочки: она представляется век- 

тором элементов. Для цепочки переменной длины сразу выделяется столько яческ 

памяти, сколько необходимо для хранения любой цепочки длины, равной наиболь- 

шему из размеров рассматриваемых программ. Конечное множество других видов по 

умолчанию представляется списком своих элементов — добавление элемента происхо- 

дит в конец списка, проверка принадлежности элемента множеству 

по списку с проверкой равенства. 

стоит в проходе 

Алгоритм 1. Пополнение программы 

Вход: конечная программа л = (S, en, ЕХ, Т). 

Выход: пополнение л’ программы л. 

1: Произвольно выбрать значения loop ¢ S иа Е A. 

// По выбору представления множества состояний loop = ng + 1. Для опреде- 

лённости выбирается а = 1. 

2: Вернуть (S U {loop}, еп, ЕХ, Т©°Р»), 
// Матрицу T'%°P можно вычислить так: установить во всех строках этой мат- 

рицы, кроме последней, те же значения, что и в T, а B каждой ячейке последней 

строки — значение (1оор, а). Затем заменить каждое значение TP (s, ¢) = 1, где 

в & ЕХ, на T"°°P(s, с) = (loop, a). 

Алгоритм 2. Вычисление завершаемых состояний программы 

Вход: конечная полная программа л = (5,еп, ЕХ, Т). 

Выход: множество 57 всех завершаемых состояний программы TT. 

1: Вычислить орграф G, обратный к орграфу л. Добавить B G произвольный простой 

цикл, содержащий все вершины множества ЕХ и только их. 
// Для определённости выбирается цикл, в котором выходы соединяются ду- 

гами по возрастанию и самый большой выход соединяется с самым маленьким. 

Граф G представляется списком смежности. Вычисление графа С производится 

полным перебором ячеек матрицы Т' ¢ добавлением соответствующих дуг и затем 

добавлением дуг цикла. 

2: Произвольно выбрать вершину s € EX и применить к ней и графу G поиск B ши- 

рину [27], вычисляющий множество Х состояний, достижимых из 5. 

3: Вернуть S/ = Х. 



Эффективные алгоритмы проверки эквивалентности программ Мили 89 

Алгоритм 3. Обход критериального графа 

Вход: конечные полные программы m = (51,ет, EX1,T1) и m = (S2,enz, ЕХэ, Тэ) и 

соответствующие множества S и 5} всех завершаемых состояний этих программ. 

Выход: ответ «Да», если л) -/р по, и «Нет» иначе. 

// В алгоритме используются следующие вспомогательные значения: 

— набор (51, 52, ш) € Sy х Sy х W, в начале выполнения равен (eny, епэ, и°); 

— разметка Ё : S1 х Sy — 2W в начале выполнения все значения F равны & 

(используются только конечные подмножества W ); 

— множество Х C © x €, значение в начале выполнения неважно; 

конечная последовательность Р элементов множества 51 х Sz х И/ х 2ех°, 

в начале выполнения эта последовательность пуста. 

Если 

а) (s1¢ S и 5о & 51) или 
6) ш e F(s1,s2), ТО 

2: — выход, ответ «Да». 
3: Если 

а) (51 € ЕХ, и 5, & ЕХ)) или (51 ¢ ЕХ , и 5 € ЕХ)) или (51 € EXy, s € ЕХ) и 

w ¢ &) или 

6) |F(s1,52)| = & то 
4; — выход, ответ «Нет». 

5: Добавить B множество F'(s1, 5э) критерий w. 

6: Вычислить множество пар Х С € x ©: если w € &, то X = {(с, с) : с € €}, иначе 

Х = ©бх Е. 
// Для проверки w € €, используется ре. 

т: Для всех (с1,сэ) € Х: 
// Значения (е1,сэ) перебираются в порядке расположения в списке и удаля- 

ются из списка при рассмотрении. 
8: — Вычислить значения (ал,71) = Т\(51,с1) и (az,r2) = Т›(52, ¢2). 

9: — Заменить набор (51, 52, w) на (r1,r9,w © (ay, аэ)). 

// Перед заменой набор (51, 52, ш, Х) для текущего значения Х добавляется 
в конец последовательности Р. 

10: — Выполнить тело алгоритма 3 (основной рекурсивный вызов). 
Если ero результат «Her», то выход, ответ «Нет». 

11: — Восстановить значения (51, 52, ш) и Х, которые были B начале выполнения ша- 
га 9. 

// Значения берутся из последнего элемента Р, этот элемент удаляется из Р. 
12: Вернуть «Да». 

‘зультат проверки W & &, с шага 3. 

Лемма 1. Алгоритм 1 имеет сложность О (п), где п— размер программы на входе. 

Доказательство. На шаге 1 выполняется О(1) действий. На шаге 2 перебира- 

ются (п + )пс = О(п) ячеек матрицы Т°°> и для каждой ячейки выполняется О(1) 

действий. Значит, суммарно получаем О(п) действий. @



90 В. В. Подымов 

Лемма 2. Для любой конечной программы л результат выполнения алгоритма 1 

на входе л — это пополнение программы л. 

Доказательство. Пусть л = (S,en, ЕХ,Т). Алгоритм 1 выдаёт программу 

(S U {loop}, en, ЕХ,Т°Р“) для некоторых loop ¢ S на € 2, 10 ecTb, 10 определе- 

нию, пополнение m'°°P программы 7. @ 

Лемма 3. _ Алгоритм 2 имеет сложность О (п), где п — размер программы на входе. 

Доказательство. На шаге 1 просматривается nne = О(п) ячеек матрицы Т и для 

каждой ячейки выполняется О(1) действий, после чего за O(n) действий добавляется 

цикл. Поиск в ширину на шаге 2 имеет сложность О(п), согласно [27| и тому, что 
программа имеет О(п) переходов. Значит, суммарно получаем О(п) действий. @ 

Лемма 4. Для любой конечной полной программы т результат выполнения ал- 

горитма 2 на входе л — это множество BC завершаемых состояний программы л. 

Доказательство. Достижимость вершины # из 5 © EX на шаге 2 равносильна 

достижимости # хотя бы из одного выхода B графе, обратном к 7, а это равносильно 

достижимости хотя бы одного выхода U3 ё в л, то есть завершаемости #. @ 

Пусть задано выполнение € алгоритма 3. Будем называть итерацией выполнения € 
однократное последовательное выполнение шагов 1-12, кроме действий в основных ре- 
курсивных вызовах Ha шаге 10, записью €(i) обозначим #-ю итерацию выполнения ¢ 
при нумерации с единицы с упорядочиванием по времени начала. Узлом итерации J 
назовём значение [3] = ((51,52), w) в начале итерации J. Итерацию 7 будем считать 

ребёнком итерации Э,, если итерация З, начинается основным рекурсивным вызовом 
на шаге 10 итерации Э,, набор значений (с1, ¢z, @1, az,71,72) в начале этого шага будем 
называть перетодным набором итерации 3,. Итерационным путём назовём путь ви- 

( b ( С 
да 20 M} 5 M} ., где Зр — ребёнок итерации J; и ¢, 4, @;, 6; — 

первые четыре элемента переходного набора 2,+1. Итерационный путь будем называть 

входным, если он исходит из итерации €(1). Трасса итерационного пути Р — путь, по- 

лучающийся из Р заменой каждой итерации на её узел; трасса итерации J — Tpacca 

входного итерационного пути, ведущего в J. 

Лемма 5. Для любой итерации J любого выполнения алгоритма 3 верно следу- 

omee: если [J] = ((51,52), ш) и в начале итерации J имеет место и € Р(51,5)), ТО 

существует итерация 3' ¢ меньшим номером, для которой [23/] = ((51, 52), u). 

Доказательство. Получить элемент и в множестве Р'(51, 52) в начале итера- 
ции J можно, только добавив его выполнением шага 5 до начала этой итерации, то 
есть на шаге 5 некоторой итерации 3' с меньшим номером. Для такого добавления и 
необходимо равенство [3'] = ((51, 52), и). @ 

Лемма 6. В начале любой итерации любого выполнения алгоритма 3 верно 
|F(s1,s2)] < *, где 51 и 52 — состояния узла итерации. 

Доказательство. B начале выполнения алгоритма |Р(51,52)| = 0 для всех 
51 Е 51 и 5 € Sy, Значения Р изменяются только на шаге 5. При выполнении это- 
го шага размер значения Р'(51, 52) для состояний 51, S узла итерации увеличивается 
на 1, а остальные значения Р не изменяются. При этом увеличение размера F(sy, 52) 
на шаге 5 возможно только в том случае, если на этой итерации не выполнено усло- 
вие 30, это возможно, только если |Р'(51, 52)| < €, тогда размер этого множества после 
добавления элемента не превосходит €. @ 



Эффективные алгоритмы проверки эквивалентности программ Мили 91 

Лемма 7. Трасса любой итерации J любого выполнения алгоритма 3 является 

входным маршрутом в ГЁ…„?‚ 

Доказательство. Рассмотрим произвольное выполнение @ алгоритма 3 и при- 

меним индукцию по структуре входного итерационного пути, ведущего в J. 

База: если J = €(1), то [J] = ((ет,‚ епэ), и?)‚ трасса итерации J состоит из одного 

зла, и этот узел — вход графа ГХ o 

Индуктивный переход: 2 — ребёнок итерации Jp, и трасса итерации 2 яв- 

ляется входным маршрутом в ГЁ…Ш‚ Пусть [J,) ((51, 52), ) и (е1, Сэ, а1, а2 Т1,72) — 

переходный набор итерации J. По устройству шага 10 и соответствующим определе- 

ниям трасса итерации J получается из трассы итерации Э, продолжением на одну дугу 

# = (((51, 52), w) Lae)/er.ea), ((r1,72),w © (a1, ag))). Значит, достаточно показать, что # 

входит в граф Ff‘ . 

По устройству шага 9 (ал,т1) = Ti(s1,¢1) и (az,m2) = Th(s2, ¢2). Значит, ¢ входит 

в граф (m ® m) ® W по определению этого графа. По устройству множества Х на 

шаге 6 если w € ё то ¢ = сэ. Значит, в любом случае # содержится в графе ГХ ‚ 1О 

определению этого графа. @ 

В леммах 8-10 символом п обозначено значение max(|m|, |то|) для программ л, 

и Ty, подающихся на вход алгоритму 3. 

Лемма 8. В любом выполнении € алгоритма 3 содержится O(n?) итераций. 

Доказательство. Если на итерации J выполняется шаг начения Р, 

кроме Р(з1, 52), где 51 и 59 — cocrognus узла [J], не изменяются, а размер множества 

F(s1,s9) увеличивается на 1 (так как если выполняется шаг 5, TO не верно условие 16, 

т.е. добавляемый критерий не содержится в Р(51, 52)). Из этого и леммы 6 следует, 

что в € шаг 5 выполняется не более Ёёп? раз. На каждой итерации шаги 5 и 7 либо оба 

не выполняются, либо оба выполняются по одному рг На шаге 7 не более |Х| раз, 

т.е. не более 

очередному реб 

такая итерация имеет не более 

+ |6? # п?) = O(n?) итераций. @ 

‚ TO BCE 3 

C\z раз, выполняется основной рекурсивный вызов, отвечающий одному 

‘нку. Следовательно, не более Ёп? итераций имеют детей и каждая 

€2 детей. Значит, всего в € содержится не более (1 -- 

Лемма 9. Критерий w узла любой итерации J любого выполнения € алгоритма 3 

представим в виде w = У/(/1, he), где hi, hy € A* и |h1| = |ha| = O(n?). 

Доказательство. Если J = @(1), то [J] = ((ет,епэ), w’), и° = W(A\A) и 

длины цепочек A равны 0. Если 7 — ребёнок итерации Э,, [3] = ((51, 52), W(g1. 92)) 

и (a1, аэ, ¢y, Сэ, 71, r2) — переходный набор итерации J, 1o [J] = ((п1, то), W(g1a1, 92а2)), И 

если длины цепочек g1 и д› равны &, то длины цепочек д1а) и goap равны (& + 1). Зна- 
чит, критерий w узла любой итерации J представим в виде w = W(hy, hy), где длины 
цепочек hy, hy равны длине входного итерационного пути, ведущего в Т. Длина этого 
пути оценивается как О(п?) по лемме 8 и попарной различности итераций в любом 
итерационном пути. @ 

Лемма 10. Алгоритм 3 имеет сложность О(п?/(п?)) для некоторой функции 

/: № — Ny, удовлетворяющей равенству f(m) = f€(O(m)), где X — сложностная xa- 

рактеристика алгоритмической составляющей системы K, используемой в алгоритме. 

Доказательство. По лемме 8 в любом выполнении © алгоритма 3 содержится 

O(n?) итераций. Следовательно, достаточно показать, что любая итерация J выполне- 

ния © имеет сложность O(f(n?)) для подходящей функции /.



92 В. В. Подымов 

Положим, что [I] = ((51,52), ш). По лемме 9 w = W(hy, hy) для некоторых 

М, hy € A*, удовлетворяющих равенствам |hi| = |ha| = O(n?), и из этого и устройства 

алгоритма 3 и его шага 5 следует, что все элементы множества Р'(1, 52) представимы 

в виде У(а ), тле 91,92 € 9 н [1 = [ga] = O(n2). Положим f(m) = *(/(т)), где 
f(nz) = O(nz) — обозначенная выше оценка длин цепочек hy, Лэ, g1, 92. По лемме 6 на 

каждой итерации проверка условия 36 содержит не более # = О(1) проверок равен- 

ства критериев и при этой проверке вычисляемый размер множества не превосходит 
# = О(1). На этом основываются оценки сложности, изложенные дале 

Условие 1а проверяется за О(1) действий, 16 — за O(f(n?)), За — за O(f(n?)), 36 — 

за О(1) действий. Шаг 5 выполняется за O(f(n?)) действий. На шаге 6 за О(1) действий 

вычисляется множество Х, содержащее О(1) элементов, и для каждого элемента на 
шагах 7-11 итерации выполняется O( f(n?)) действий. Значит, суммарно на всех шагах 
итерации выполняется O(f(n?)) действий. @ 

Лемма 11. Для любых конечных полных программ л) и Ty и множеств их за- 
вершаемых состояний 57 и 5/ выполнение алгоритма 3 на входе (л1,тэ, 5/, 5) имеет 
результат «Нет» тогда и только тогда, когда л1 797 по. 

Доказательство. Обозначим символом ® выполнение алгоритма 3 на входе 

("1‚"215{15{› 

Необходимость. Положим, что выполнение € имеет результат «Нет». Пусть 

© (п) — последняя итерация выполнения © и [E(n)] = ((51, 52), w). U3 ответа «Нет» и 

устройства алгоритма следует, что на итерации @(п) не выполнены условия шага 1 и 
выполнено хотя бы одно из условий шага 3. По лемме 7 в Ff‘ „, достижим узел [€(n)]. 

Если на итерации €(n) выполнено условие 3a, то узел [&(n)] опровергающий и 
соотношение т| о; Ty следует из утверждения 18. Далее полагаем, что на ® (п) выпол- 
нено |Р'(51, 52)| = €. Так как не выполнено условие 16, все элементы Р'(51, 52) ОТЛИЧНЫ 

от ш (1 попарно различны). По лемме 5 существуют итерации выполнения © с узла- 
ми ((51, 52), и) для всех и € Р'(51,52). По лемме 7 все эти узлы достижимы B ГЁ…Ш‚ 

Так как не выполнено условие 1а, хотя бы одно из состояний 51, s завершаемо. Тогда 
соотношение л 9; Ty следует из утверждения 19. 

Достаточность. Положим, что я; ~ 5 по. По устройству алгоритма 3 доста- 
точно показать: а) на шаге 2 итерации ¢(1) не выдаётся ответ «Да»; 6) на шаге 4 

хотя бы одной итерации J выполнения € выдаётся ответ «Нет» — тогда, 
гу 10, на всех итерациях входного итерационного пути в J выдаётся ответ «Нет», в том 
числе на итерации @(1), начинающей этот путь и предоставляющей ответ алгоритма. 
Покажем это: 

а) Условие 1а не выполнено на итерации @(1) — иначе входы обеих программ неза- 
вершаемы и все вычисления этих программ имеют результат |, а значит, программы 
„Я-эквивалентны, что противоречит предположению достаточности. По описанию ал- 
горитма в начале итерации @(1) верно Р'(51, s3) = @. Значит, и условие 16 не выполнено 
на итерации @(1), и ответ «Да» на шаге 1 этой итерации не выдаётся. 

‘огласно ша- 

лТв S афе TK VIECTBV! й Р , — 6) По утверждению 18 в графе I 7, существует входной маршрут р = 

(e1,81)/(ar,b1), (c2,£2)/(az,02) (enstn)/(@n,bn) . . 
(vo vy Un) B некоторый опровергающий 

узел vy, Положим, что v; = ((si, i), wi) и s, € EX| (иначе по определению опровер- 

тающего узла г„ € EXy и B дальнейших рассуждениях достаточно поменять ролями 

(5;, ¢iva;) и (3, €;,b;) и индексы 1 и 2, относящиеся к программам). Возможны два слу- 

чая:



Эффективные алгоритмы проверки эквивалентности программ Мили 93 

Случай 1: v, является узлом какой-либо итерации выполнения €. Рассмотрим 
итерацию @(т) ¢ наименьшим номером 11, узлом которой является v,. Условие 1а не 
выполнено на @ (т), так как s, завершаемо. Условие 16 также не выполнено на @(т) — 
иначе по лемме 5 существовала бы итерация E(m') с номером т’ < т и узлом Up, 
чего не может быть по выбору т. Значит, на итерации @(т) на шаге 2 не выдаётся 
ответ «Да» и выполняется шаг 3. Так как узел v, опровергающий, на итерации @(т) 
выполнено условие За и на шаге 4 выдаётся ответ «Нет». 

Случай 2: v, не является узлом ни одной итерации выполнения ©. Рассмотрим 
наименьший номер A, для которого Upy] не является узлом ни одной итерации вы- 
полнения ©. Так как vg = [€(1)], то & Е {0,1,...,n — 1}. Рассмотрим итерацию @(т) 

с наименьшим номером т, узлом которой является vy. По утверждениям 16, 12 и 1 
в я, существует путь U3 5; в 5,. Значит, состояние в; завершаемо и условие 1а не вы- 
полнено на @(т). Условие 16 не выполнено на E(m) по тем же соображениям, что и 

в случае 1. Значит, на шаге 2 итерации ®(т) не выдаётся ответ «Да». 
Предположим от противного, что на шаге 4 итерации E(m) не выдаётся ответ 

«Her». Тогда на итерации @(т) выполняются шаги 6-11. Согласно устройству ша- 
гов 6-11 и определению графа ГЁ…Ш. верно (скч1, бын1) € Х и у итерации @(т) есть 

ребёнок Je, для которого логическими условиями переходного набора являются ск-1 
и ьна и [2] = ын1. Получено противоречие ¢ тем, что Vg4l по выбору & не является 
узлом ни одной итерации. @ 

Алгоритм 4. Проверка эквивалентности программ 

Вход: конечные программы m = (51,ет, ЕХ\, Т\) и п = (Sa, eng, EXy, Th). 

Выход: ответ «Да», если л -/р по, и «Нет» иначе. 

1: Вычислить значения 74 = Ai(m1), 7 = Ai(m2), S = As(7h) и S§ = As(m), где А, 

и Ay — алгоритмы 1 и 2 соответственно. 
2: Вычислить и вернуть значение Аз(ж!, 74, 51 , 51), где Az — алгоритм 3. 

Теорема 1. Алгоритм 4 имеет сложность O(n?f(n?)) для некоторой функции 

7 : № — №, удовлетворяющей равенству f(m) = /“(О(т)), где n = max(|m|, |ma|) 

для программ л; и ло на входе и /° — сложностная характеристика алгоритмической 
составляющей системы К, используемой в алгоритме 4. 

Доказательство. По леммам 1 и 3, шаг 1 имеет сложность О(п). По устройству 
пополнения программы |7 = |ла| + 1 и 75| = |пэ| + 1. Значит, на шаге 2 алгоритм 3 

выполняется на программах размера не более n+1; по лемме 10 шаг 2 имеет сложность 
O((n+1)2f(n?)) = O(n%f(n?)) для некоторой f, для которой f(m?) = 5(О((т+1)?)) = 
= (0(m?)), а значит, f(m)=f<(O(m)). m 

Teopema 2. Для любых конечных программ 7| и ло выполнение алгоритма 4 на 

входе (л1, лэ) имеет результат «Да» тогда и только тогда, когда Ty ~F П. 

Доказательство. Следует из устройства алгоритма, утверждения 4 и лемм 2, 

4и П. @ 

Пример 17. Рассмотрим программы л1, то из примера 1, шкалу %° из приме- 

ра 2, 1-ограниченную критериальную систему K = (W, у) из примера 13 и алгорит- 

мическую составляющую этой системы со сложностной характеристикой О(1), как 

отмечено в примере 14. Тогда алгоритм проверки эквивалентности (алгоритм 4) вы- 
1оор' 

полняется следующим образом. На шаге 1 вычисляются программы T = 7rlOOP “ и



94 В. В. Подымов 

! 
п) = my ™" и множества S[ = {loop'} и 5'{ = {loop} (программа л) представлена на 

рис. 7). На шаге 2 выполнение алгоритма 3 представляет собой обход графа ГЁ»"З B 

глубину [27] ¢ произвольным выбором порядка исходящих дуг. Состояние loop’ недо- 

стижимо из входа в л1, поэтому обходятся только узлы rpada Ffwré (фрагмент этого 

графа представлен на рис. 12), и условие 1а алгоритма 3 не выполняется ни для од- 

ного посещённого узла. Если узел посещается больше одного раза, то по условию 16 

алгоритма 3 дуги, исходящие из этого узла, не исследуются, что соответствует обходу 

в глубину. Если посещается опровергающий узел (как, например, отмеченные в при- 

мере 16), то 1o условию За алгоритма 3 алгоритм 4 завершается с ответом «Нет». Если 

посещаются узлы вида ((s,r),n1) и ((s,7), n2), где ny # ny (например, узлы ((5з, 100р), 0) 

и ((вз,100р), —1) на рис. 12), 10 по 1-ограниченности системы K и условию 36 алго- 

ритма 3 алгоритм 4 завершается с ответом «Нет». Если обход графа завершается без 

ответа «Нет» 10 указанным причинам, то алгоритм 4 завершается ¢ ответом «Да». В 

данном примере алгоритм обязательно завершается с ответом «Нет» в связи с нали- 

чием отмеченных выше узлов, этим обосновывается соотношение л1 29 0.0 П. 

7. Применение алгоритма проверки эквивалентности программ 

Рассмотрим %!-моноид M = (M, g, о). Записью By обозначим подмоноид моноида 

M х М с множеством элементов {(M(h), M(g)) : h,g € A*, |h| = |g|}; записью Рм — 

шкалу моноида M, получающуюся из M заменой операции o на её сужение на множе- 

ство М х 2. Моноидальной системой для M назовём систему K = (W, U, ш” , и^ ф) 

где УУ = (W,e,®) — конечно порождённый моноид; U — его подмоноид; ш, ш* € )); 

{ — гомоморфизм моноида By на И и для любой пары (тл,тэ) € В справедли- 

ва равносильность My = my < шТ © ¢(my, my) © w* = ©. Такую систему K назовём 

#-ограниченной, если для любого элемента w € U - и* существует не более # элементов 

и € ш* - U, удовлетворяющих равенству и © ш = ©. Производной системой для K 

назовём пару K' = (, ), в которой W' = (W', ш, @), W = ш* © П, v : Br,, —› W' 
задаётся равенством {(ти, тэ) = ш'© ф(пта, тэ) и © : И/’х (AxA) —› W’ — равенством 

ш © (a,b) = ш © p(a,b). 

Пример 18. Шкала 7%° из примера 2 — это шкала свободного коммутативного 
моноида M, порождённого множеством ®( = {a,b}. 1-Ограниченная моноидальная 
система K = (УМ,М, ш* , ш*, @) для M может быть устроена так: W = U = (Z,0,+): 

и = ш* = 0; p(M(h), M(g)) = (п — т), где n и m— количество букв а в словах Л и g 

соответственно. Критериальная система из примера 13 является производной системой 
для К. 

Лемма 12. Пусть /М — 2-моноид, К — его моноидальная система и K/ — система, 

производная для K. Тогда К/ — это критериальная система шкалы Faq, и система K 

#-ограниченна тогда и только тогда, когда &-ограниченна система K. 

Доказательство. Положим, что M, K и К' имеют такой вид, как в определе- 

ниях перед леммой, и Рм = (M, g, -). Заметим, что Ry, = М (так как M порождён 

множеством ®() и множество элементов моноида В есть В. Тогда верно следующее 

(по соответствующим определениям): 

1) +(Е,Е) = шТ © ф(Е,Е) = ш" © Е = * 
2) для любых my,my € M имеет место #(пи,тэ) © (a,b) = ш* © p(my,my) © 

© p(a,b) = ш" © p(my о а, ту о 5) (my : а, тэ - b); 

3) для любых пи,т» € В если ш* © p(my,my) € &, то существует т € M, 
удовлетворяющий равенству ш* © ф(ти, тэ) = ¥(m,m), 1.е. ш" © p(my, my) = 



Эффективные алгоритмы проверки эквивалентности программ Мили 95 

” © = ш © p(m,m), а значит, ш* © ф(та,тэ) © w* = w д„(т т) © w*, при 
этом по опрьдишию моноидальной системы ш* © p(m, т) © w* = €, а значит, 
ш* © p(my, тэ) © ш* = € по тому же определению My = My; 

4) для любых (my, т») € В если ¥(my, my) € Ep, то ш" © ф(ти, тэ) € Ey и по 1.3 

верно My = тэ. 

Из пи. 1, 2 и 4 следует, что К/ — критериальная система для м. 

Положим, что система K’ не Ё-ограниченна. Тогда существуют цепочки h = а1 ... ак, 
by...bp и попарно различные критерии и1,..., шн € W = ш! © U, удовле- 

творяющие соотношению УМ(иш;, h,g) € &; для всех # € {1,...,Ё + 1}. При этом 

W (wi, h,g) = ш;© (a1,01) S ... (ак, by) = ;© 7(а1, b)) О -- -Op(ag, by) = w; ©p(my, тэ) 

для та = M(h) и то = M(g). Соотношение ш; € * © U означает, что ш; 

представим в виде w ©® (mi,mb) для некоторой пары (ml, mb) € Вм. Значит, 

ш; © p(my,me) = ш* © (т т © © p(mi,my) = «' © o(mi о my,mh о тэ) € &, 
по доказанному п.3 т 0 т = m) о my и по определению \шпоид‹шыши системы 
и* © p(mi,my) © 2(та, то) © * = e. То есть существуют ш' = w © w* € U О w* u 

попарно различные ш; € w © U, i € {1,... ,Ё + 1}, для которых ш; © ш' = e. Следова- 

тельно, система К не &-ограниченна. 
Положим, что система K не &ограниченна. Тогда существуют w Е / ©и* и попарно 

различные ил,...,Шна © wT © U, для которых ш; © ш = ©. По устройству классов 
Uow и ш' © U ш = @(my,my) © w* для некоторой пары (my,my) € By и ш; = 

= ш* © p(mi, mb) для некоторой пары (mf,my) € Вм для каждого i € {1,..., ¢+ 1} 
Тогда для каждого такого # всрпо следующее (по соответствующим определениям): 
wt © р(т\ о та, т о тэ) © ш* = ш! © p(mi,mh) © p(mi,ms) © w* = ш; © ш =€ 

mi omy = mb о т» по определению моноидальной системы; (т o my, т о my) € & 
по утверждению 15; my = M(h) и тэ = M(g) для некоторых цепочек Л, д одинаковой 
длины, так как 2 — множество образующих моноида M и (my, тэ) Е В. Положим, 

что А = а|...аки д = М...бу, где & € Nouay,...,aby,....bp €2; u(mloml,mzomz) 

= w®p(miomy, mhoms) = wtoep(mi, mh) Op(ay, b)®...Op(ak,br) = w;S(ay,b)o. ..o 
© (ag, b)) = W(wi, h, g). Значит, W (w;, h,g) € £, и так как это верно для всех 1 € 

e {1,..., + 1}, 10 система K’ не является #-ограниченной. @ 

Моноидом_условной эквивалентности. относительно множества / C A х 2A х A 

назовём A-MOHOMJL с определяющими соотношениями {са = ¢b : (а, , с) € J}. Из ле 

мы 12, устройства и свойств моноидальных систем, описанных в [4, разд. 5| (там они 

называются критериальными системами), и устройства соответствующих производ- 

ных систем следуют приведённые далее леммы 13-16. 

Лемма 13. Для свободного %!-моноида M существуют 1-ограниченная критери- 

альная система К шкалы Ям и её алгоритмическая составляющая со сложностной 

характеристикой }“(п) = О(1). 

Лемма 14. Для свободного коммутативного Ф-моноида M существуют 1-огра- 

ниченная критериальная система К шкалы Ям и её алгоритмическая составляющая 
o сложностной характеристикой {^ (п) = О(1). 

Лемма 15. Для любого частично коммутативного Ф-моноида ЛМ существуют 
1-ограниченная критериальная система K шкалы Лм и её алгоритмическая состав- 
ляющая со сложностной характеристикой f<(n) = О(п). 

Лемма 16. Для любого моноида условной эквивалентности М существуют 
2-ограниченная критериальная система K шкалы Ям и её алгоритмическая состав- 
ляющая со сложностной характеристикой f<(n) = О(1). 



96 В. В. Подымов 

На основании этих лемм и алгоритма 4 можно получить соответствующие резуль- 

таты о проверке эквивалентности программ, приведённые далее в теоремах 3-6. При- 

кладные причины рассмотрения шкал, для которых сформулированы эти теоремы, 

можно подробно изучить, например, в [4]. 

Теорема 3. Существует алгоритм проверки сильной эквивалентности пропози- 

циональных программ Мили, имеющий сложность O(n?). 

Доказательство. Заметим, что сильная эквивалентность программ равносиль- 

на их эквивалентности на шкале свободного моноида: необходимость — по определению 

сильной эквивалентности, достаточность сформулирована в [4, следствие 3]. Справед- 

ливость теоремы 3 следует из этого, теорем 1 и 2 и леммы 13. @ 

Теорема 4. Для любого свободного коммутативного %-моноида существует алго- 

ритм проверки эквивалентности пропозициональных программ Мили на шкале этого 

моноида, имеющий сложность O(n?). 

Доказательство. Следует из теорем 1 и 2 и леммы 14. @ 

Теорема 5. Для любого частично коммутативного 2A-MOHOHJIA существует алго- 

ритм проверки эквивалентности пропозидиональных программ Мили на шкале этого 

моноида, имеющий сложность O(nt). 

Доказательство. Следует из теорем 1 и 2 и леммы 15. @ 

Теорема 6. Для любого моноида условной эквивалентности существует алго- 

ритм проверки эквивалентности пропозидиональных программ Мили на шкале этого 

моноида, имеющий сложность O(n?). 

Доказательство. Следует из теорем 1 и 2 и леммы 16. @ 

Заключение 

Как отмечалось во введении, соотношение между ПППЗ и ППМ схоже с соотно- 

шением между автоматами Мура и Мили, 10 есть модель ППМ можно считать в неко- 

тором роде более общей по сравнению с I3, Но всё ke эти модели, вообще говоря, 

несравнимы по тем же причинам, отмеченным BO введении, по которым несравнимы 

модели ПИПЗ и дискретных преобразователей Глушкова — Летичевского. Исследова- 

ние соотношения между этими моделями оставлено на будущее. 

Ключевые результаты данной работы — это переложение результатов [4] ¢ ПППЗ на 

ППМ: техники совместных вычислений (понятие критериального графа, алгоритм 4 и 

теоремы 1 и 2) и эффективных алгоритмов проверки эквивалентности ППМ на некото- 

рых полезных шкалах, получающихся применением этой техники (теоремы 3-6). Ещё 

один результат, представляющий интерес, — ма 12, позволяющая при получе- 

нии алгоритмов проверки эквивалентности ПППЗ на основе техники из [4] немедленно 

в качестве следствия получать настолько же эффективные аналогичные алгоритмы 

проверки эквивалентности ППМ. Кроме Toro, можно выделить ещё несколько особен- 

ностей полученных результатов, показывающих их ценность. 

В работах, использующих технику совместных вычислений с критериальными си- 

стемами [4, 8-11, 14, 20, 21, 31-37], рассматриваются только шкалы 2A-MOHOH/IOB, име- 

лющие критериальные системы, основывающиеся на конечно порождённых моноидах 

аналогично тому, как в данной работе задание моноидальной системы начинается с та- 

кого моноида. В работе показано, что можно применять эту технику и K шкалам, He 

базирующимся на моноидах (согласно теоремам 1 и 2), и не основывать понятие кри- 

териальной системы на моноидах. В лемме 12 показано, что понятие критериальной 



Эффективные алгоритмы проверки эквивалентности программ Мили 97 

системы из [4], опирающееся на моноиды, является частным случаем понятия крите- 

риальной системы, введённого в данной работе. 

Техника совместных вычислений в данной работе по сравнению с [4] заметно при- 

ближена к технике проверки эквивалентности конечных автоматов с помощью их де- 

картова произведения [22, 38|, что выражается, в числе прочего, в использовании 

в ключевых определениях операций ® и ®, являющихся по сути разновидностями 

декартова произведения вычислителей автоматного типа. 

Кроме того, в работе исправлен ряд огрехов, содержащихся в |4| и проявляющихся 

в остальных работах, посвящённых ПППЗ и технике совместных вычислений: 

1. Явно указан способ подсчёта сложности алгоритмов, включая модель сложно- 

сти и способы представления данных. Для результатов, констатирующих или 

опровергающих полиномиальную разрешимость, это было бы неважно, но когда 

речь идёт о более точных оценках сложности, это становится важным. 

2. Рассуждения о сравнении преобразователей за логарифмическое BpeMs в до- 

казательстве теоремы 7 работы [4] склоняют к тому, что в [4] для подсчёта 

сложности используется модель машин Тьюринга или родственная ей. В дан- 

ной работе вместо неё используется более широко применяющаяся на практике 

модель В.АМ-машин и в связи с этим получаются оценки сложности, более близ- 

кие к практике. 

3. Алгоритмы снабжены всеми подробностями, необходимыми для анализа и под- 

счёта сложности, и не содержат существенных недосказанностей, которые в [4] 

приводят, например, K TOMY, что: 

— в формулировке теоремы 7 используется сложность <, а следовало бы 

использовать X (если применить обозначения данной работы по анало- 

гии); 
— после изучения доказательства теоремы 7 остаётся сомнение, не потерян 

ли в оценке сложности какой-либо дополнительный множитель, происте- 

кающий из копирования данных и особенностей работы со структурами 

данных (достоверный вывод, что не потерян, можно сделать только после 

дополнительного не очень тривиального анализа обоснования); 

— в теореме 10 без достаточных пояснений приводится оценка O(n®logn), 

тогда как, согласно лемме 15 данной работы, разумно было бы предпо- 

ложить оценку не лучше чем O(n?) (найти, откуда следовала бы оценка 

O(n®logn), не удалось). 

В будущем планируется: а) обосновать, что модель ППМ можно считать обоб- 

щением модели ПППЗ; 6) усовершенствовать технику совместных вычислений для 
получения более низкого порядка сложности соответствующих алгоритмов проверки 

эквивалентности; в) применить полученные наработки для аналогичного усовершен- 

ствования известных смежных результатов и затем для установления новых фактов 

об эффективной разрешимости проблемы эквивалентности в моделях программ. 

ЛИТЕРАТУРА 

1. Rice Н. G. Classes of recursively enumerable sets and their decision problems // Trans. AMS. 

1953. V. 74. P. 358-366. 

2. Kaunu С. K. Введение B метал атематику. M.: ИЛ, 1957. 

3. Глушков В. M., Летичевский А. А. Теория дискретных преобразователей // Избранные 

вопросы алгебры и логики. Новосибирск: Наука, Сибирское отделение, 1973. С. 5-39.



98 В. В. Подымов 

<
 

10. 

11. 

12. 

13. 

14. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

Захаров В. А. Быстрые алгоритмы разрешения эквивалентности операторных программ 

на уравновешенных шкалах // Матем. вопр. кибернетики. 1998. Вып. 7. С. 303-324. 

Летичевский А. А. Функциональная эквивалентность дискретных преобразователей 

1Ш // Кибернетика. 1972. №1. C.1-4. 

Летичевский А. А., Смикун Л. Б. Об одном классе групп с разрешимой проблемой эк- 

вивалентности // Докл. АН СССР. 1976. Т. 227. №1. C.36-38. 

Захаров В. А., Подымов В. В. Применение алгоритмов проверки эквивалентности для оп- 

тимизации программ // Труды ИСП РАН. 2015. Т. 27. Вып. 4. С. 145-174. 

Zakharov V. А. An efficient and unified approach to the decidability оЁ equivalence оЁ 

propositional programs // LNCS. 1998. V. 1443. Р. 247-258. 

Захаров В. А. Быстрые алгоритмы разрешения эквивалентности пропозициональных 

операторных программ на упорядоченных полугрупповых шкалах / / Вестн. Моск. ун-та. 
Сер. 15. Вычислительная математика и кибернетика. 1999. № 3. С. 29-35. 

Захаров В. А. O проблеме эквивалентности операторных программ на уравновешенных 

однородных обратимых шкалах // Матем. вопр. кибернетики. 2001. Вып. 10. С. 155-166. 

Zakharov V. А. The equivalence problem for computational models: Decidable апа 

undecidable cases // LNCS. 2001. V. 2055. P. 133-152. 

Zakharyaschev I. M. ата Zakharov V.A. On the equivalence-checking problem for 

polysemantic models оЁ sequential programs // Труды ИСП PAH. 2004. Т. 6. C.179-198. 

Podlovchenko В. 1., Rusakov D. M., ата Zakharov V. А. The equivalence problem for programs 

with mode switching 15 PSPACE-complete // Труды ИСП PAH. 2006. T.11. C.109-128. 

Щербина В. Л., 3azapos В. А. Эффективные алгоритмы проверки эквивалентности про- 

грамм B моделях, связанных с обработкой прерываний // Вестн. Моск. ун-та. Cep. 15. 

Вычислительная математика и кибернетика. 2008. №2. С. 33-41. 

Подловченко P. И., Кузюрин Н. H., Щербимна В. Л., 3azapos В. А. Использование алгебра- 

ических моделей программ для обнаружения метаморфного вредоносного кода // Фун- 
дамент. и прикл. матем. 2009. Т. 15. №5. С. 181-198. 

Zakharov V. А. Program equivalence checking by two-tape automata // Cybernetics and 

Systems Analysis. 2010. У. 46. No. 4. P.554-562. 

Подымов В. B., Затаров В. А. О двухленточных машинах, описывающих полугруппы 

с сокращением // Проблемы теоретической кибернетики. Материалы XVI Междунар. 

конф. (Нижний Новгород, 20-25 июня 2011 г.). Н. Новгород: Изд-во Нижегор. ун-та, 

2011. C.372-375. 

Захаров В. А. Модели и алгоритмы в задаче проверки эквивалентности программ // Ма- 

териалы Х1 Междунар. семинара «Дискретная математика и ее приложения», посвящен- 

ного 80-летию со дня рождения академика О.Б. Лупанова (Москва, МГУ, 18-23 июня 

2012 г.), М.: Изд-во механико-математического факультета МГУ, 2012. С. 53-62. 

Подловченко P. H., Захаров В. А. О двух методах распознавания эквивалентности в ал- 

гебраических моделях программ // Интеллектуальные системы. 2013. Т.17. №1-4. 

С. 366-370. 

Подымов В. B., Затаров В. А. Полиномиальный алгоритм проверки эквивалентности B 

модели программ с перестановочными и подавляемыми операторами // Труды ИСП 

РАН. 2014. Т. 26. Вып. 3. С. 145-166. 

Подымов В. В. Улучшение алгоритмов проверки эквивалентности операторных про- 

грамм при помощи анализа весов вершин // Ломоносовские чтения-2021. Секция Вы- 

числительной математики и кибернетики. М.: Изд-во Моск. ун-та, 2021. С. 124-125. 

Карпов Ю. Г. Теория автоматов. СПб.: Питер, 2003.



Эффективные алгоритмы проверки эквивалентности программ Мили 99 

23. 

24. 

26. 

27. 

28. 

29. 

30. 

3L 

32. 

33. 

34. 

36. 

37. 

38. 

o
 
Zakharov V. A. and Zakharyaschev I. M. On the equivalence checking problem for a model of 

programs related with muti-tape automata // LNCS. 2005. V. 3317. P.293-305. 

ЛПентус А. E., Пентус М. P. Теория формальных языков: учеб. пособие. M.: Изд-во ЦПИ 

при механико-математическом факультете МГ`У, 2004. 

Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике: учеб. 

пособие. 3-e изд., перераб. M.: Физматлит, 2005. 

Зорич В. А. Математический анализ. Ч.1. 4-e изд., испр. M.: МЦНМО, 2002. 

Кормен T., Лейзерсон Ч., Ривест Р., Штайн K. Алгоритмы: построение и анализ. 

3-e изд. М.: ООО «И. Д. Вильямс», 2013. 

Лаллеман Ж. Полугруппы и комбинаторные приложения. М.: Мир, 1985. 

Клиффорд А., Престон Г. Алгебраическая теория полугрупп. Т.1. М.: Мир, 1972. 

Страуструп B. Язык программирования С---+. Краткий курс. 2-е изд. СПб.: ООО «Диа- 

лектика», 2019. 

Захаров В. А. Об эффективной разрешимости проблемы эквивалентности линейных 

унарных рекурсивных программ // Матем. вопр. кибернетики. 1999. Т. 8. С. 255-273. 

Захаров В. А. Об эквивалентности потоковых программ // Материалы Х1 Междунар. 

семинара «Дискретная математика и ее приложения», посвященного 80-летию со дня 
рождения академика О.Б. Лупанова (Москва, МГУ, 18-23 июня 2012 r.), М.: Изд-во 

механико-математического факультета МГУ, 2012. C.119-122. 

Подымов В. В. Алгоритм проверки эквивалентности линейных унарных рекурсивных 
программ на упорядоченных полугрупповых шкалах // Вестн. Моск. ун-та. Cep. 15. Вы- 

числительная математика и кибернетика. 2012. № 4. С. 37-43. 

Захаров B.A. OO0 эквивалентности ограниченно недетерминированных автоматов- 

преобразователей над полугруппами // Проблемы теоретической кибернетики. Мате- 

риалы ХУП Междунар. конф. (Казань, 16-20 июня 2014 г.). Казань: Отечество, 2014. 

C.100-102. 

Захаров В. А. Моделирование и анализ поведения последовательных реагирующих про- 

грамм // Труды ИСП РАН. 2015. Т. 27. № 2. С. 221-250. 

Подымов В. В. Алгоритмы проверки эквивалентности программ с процедурами в про- 
грессивных полугрупповых перегородчатых моделях // Вестн. Моск. ун-та. Cep. 15. Вы- 

числительная математика и кибернетика. 2019. № 4. С. 37-44. 

Подымов В. В. О сложности проверки эквивалентности линейных унарных рекурсивных 

Ломоносовские чтения-2024. Секция 

Вычислительной математики и кибернетики. М.: МАКС Пресс, 2024. С. 53-55. 

Котов В. E., Сабельфельд В. K. Теория схем программ. М.: Наука, 1991. 

REFERENCES 

Rice H. G. Classes of recursively enumerable sets and their decision problems. Trans. AMS, 

1953, vol. 74, pp. 358-366. 

Kleene 5. С. Introduction to Metamathematics. N.Y., Toronto, Nostrand Company, 1952. 

Glushkov V.M. апа Letichevskiy А. А. Teoriya diskretnykh preobrazovateley [Theory оЁ 

discrete processors|. Izbrannye Voprosy Algebry i Logiki, Novosibirsk, Nauka, 1973, 

pp-5-39. (in Russian) 

программ над уравновешенными полугруппами // 

Zakharov V. А. Bystrye algoritmy razresheniya ekvivalentnosti operatornykh programm па 

uravnoveshennykh shkalakh [Fast equivalence-checking algorithms for operator programs over 

balanced frames|. Matematicheskie Voprosy Kibernetiki, 1998, iss. 7, pp. 303-324. (in Russian) 

Letichevskiy А. А. Funktsional'naya ekvivalentnost’ diskretnykh preobrazovateley 1 [Func- 

tional equivalence оё discrete processors Ш]. Kibernetika, 1972, по. 1, pp.1-4. (in Russian) 



100 В. В. Подымов 

10. 

11. 

12. 

13. 

14. 

16. 

17. 

18. 

19. 

20. 

21. 

Letichevskiy А. А. and Smikun L. B. ОЬ odnom klasse grupp s razreshimoy problemoy 

ekvivalentnosti [On а class оё groups with solvable problem of automata equivalence|. Doklady 

AN SSSR, 1976, vol. 227, no. 1, pp. 36-38. (in Russian) 

Zakharov V. А. апа Podymov V. V. Primenenie algoritmov proverki ekvivalentnosti dlya 

optimizatsii programm |Оп the application оё equivalence checking algorithms for program 

minimization]. Proc. ISP RAS, 2015, vol. 27, iss. 4, pp. 145-174. (in Russian) 

Zakharov V. А. An efficient and unified approach to the decidability оЁ equivalence оЁ 

propositional programs. LNCS, 1998, vol. 1443, pp. 247-258. 

Zakharov V. А. Bystrye algoritmy razresheniya ekvivalentnosti propozitsional’nykh operator- 

nykh programm na uporyadochennykh polugruppovykh shkalakh [Fast equivalence-checking 

algorithms for operator programs over ordered frames|. Vestnik Moskovskogo Universiteta. 

Ser. 15. Vychislitel'naya matematika i kibernetika, 1999, no. 3, pp.29-35. (in Russian) 

Zakharov V. А. O probleme ekvivalentnosti operatornykh programm па uravnoveshennykh 

odnorodnykh obratimykh shkalakh [On the equivalence problem for operator programs over 

balanced homogenous invertible frames|. Matematicheskie Voprosy Kibernetiki, 2001, iss. 10, 

рр. 155-166. (in Russian) 

Zakharov V. А. The equivalence problem for computational models: Decidable апа 

undecidable cases. LNCS, 2001, vol. 2055, pp. 133-152. 

Zakharyaschev I. M. ата Zakharov V.A. On the equivalence-checking problem for 

polysemantic models о sequential programs. Proc. ISP RAS, 2004, vol. 6, pp. 179-198. 

Podlovchenko В. 1., Rusakov D. M., ата Zakharov V. А. The equivalence problem for programs 

with mode switching 15 PSPACE-complete. Proc. ISP RAS, 2006, vol. 11, рр. 109-128. 

Shcherbina V. L. апа Zakharov V. А. Effektivnye algoritmy proverki ekvivalentnosti prog- 

ramm у modelyakh, svyazannykh s obrabotkoy preryvaniy |Efficient equivalence-checking 

algorithms for program models related to interrupt handling]. Vestnik Moskovskogo 

Universiteta. Ser.15. Vychislitel'naya matematika i kibernetika, 2008, no.2, pp.33-41. 

(in Russian) 

Podlovchenko R.I., Kuzyurin N.N., Shcherbina V. L., апа Zakharov V. А. Using algebraic 

models of programs for detecting metamorphic malwares. J. Math. Sci., 2011, vol. 172, no. 5, 

pp. 740-750. 

Zakharov V. А. Program equivalence checking by two-tape automata. Cybernetics and 

Systems Analysis, 2010, vol. 46, no. 4, pp. 554-562. 

Podymov V. V. апа Zakharov V. А. O dvukhlentochnykh mashinakh, opisyvayushchikh 

polugruppy s sokrashcheniem [On two-tape machines used for description оЁ cancellative 

semigroups|. Proc. XVI Intern. Conf. “Problemy Teoreticheskoy Kibernetiki” (Nizhny 

Novgorod, June 20-25, 2011), Nizhniy Novgorod, UNN Publ., 2011, pp. 372-375. (in Russian) 

Zakharov V. A. Modeli i algoritmy v zadache proverki ekvivalentnosti programm [Models and 

algorithms related to program equivalence checking]. Proc. Х1 Intern. Conf. “Diskretnaya 

Matematika i ee Prilozheniya” (Moscow, MSU, June 18-23, 2012), Moscow, MSU Faculty of 

Mechanics апа Mathematics Publ., 2012, рр. 53-62. (in Russian) 

Podlovchenko В. 1. апа Zakharov V. А. O dvukh metodakh raspoznavaniya ekvivalentnosti v 

algebraicheskikh modelyakh programm [On two equivalence-checking techniques for algebraic 

program models|. Intellektual'nye Sistemy, 2013, vol. 17, по. 1-4, pp. 366-370. (in Russian) 

Podymov V. V. апа Zakharov V. А. Polinomial’'nyy algoritm proverki ekvivalentnosti v modeli 

programm s perestanovochnymi i podavlyaemymi operatorami [A polynomial algorithm for 

checking the equivalence in models of programs with commutation ап vast operators|. Proc. 

ISP RAS, 2014, vol. 26, iss. 3, pp. 145-166. (in Russian) 

Podymov V. V. Uluchshenie algoritmov proverki ekvivalentnosti operatornykh programm pri 

pomoshchi analiza vesov vershin [Improving equivalence-checking algorithms for operator 



Эффективные алгоритмы проверки эквивалентности программ Мили 101 

22. 

23. 

24. 

26. 

27. 

28. 

29. 

30. 

3L 

32. 

33. 

34. 

36. 

37. 

38. 

programs with node weight analysis]. Lomonosovskie Chteniya-2021, Moscow, MSU Publ., 

2021, рр. 124-125. (in Russian) 

Karpov Yu. С. Teoriya avtomatov [Automata Theory]. Saint Petersburg, Piter, 2003. 

(in Russian) 

Zakharov V. A. and Zakharyaschev I. M. On the equivalence checking problem for a model of 

programs related with muti-tape automata. LNCS, 2005, vol. 3317, pp. 293-305. 

Pentus А. Е. апа Pentus M. В. Teoriya formal'nykh yazykov [Formal Language Theory]. 

Moscow, MSU Faculty of Mechanics and Mathematics Publ., 2004. (in Russian) 

Gawrilov С. P. ата Sapozhenko A. A. Zadachi i uprazhneniya po diskretnoy matematike 

|Discrete Mathematics Problems апа Exercises|. Moscow, Fizmatlit Publ., 2005. (т Russian) 

Zorich V. А. Matematicheskiy analiz [Mathematical Analysis]. Part 1. Moscow, MCCME 

Publ., 2002. (т Russian) 

Cormen Т. H., Leiserson С. E., Rivest R. L., апа Stein С. Introduction to Algorithms. Зга ed. 

Cambridge, Massachusetts, London, England, MIT Press, 2009. 

Lalleman С. Semigroups and Combinatorial Applications. N.Y., Chichester, Brisbane, 

Toronto, John Wiley & Sons, 1979. 

Clifford А. H. апа Preston С. В. The Algebraic Theory оЁ Semigroups, хо!.1. Providence, 

Rhode Island, АМ5, 1964. 

Stroustrup В. A Tour оё C++. 2nd ed. Boston, МА, USA, Addison-Wesley, 2018. 

Zakharov V. А. Ob effektivnoy razreshimosti problemy ekvivalentnosti lineynykh unarnykh 

rekursivnykh programm [On efficient decidability оЁ ап equivalence problem ог 

linear monadic recursive programs|. Matematicheskie Vopposy Kibepnetiki, 1999, vol.8, 

pp-255-273. (in Russian) 

Zakharov V. А. Ob ekvivalentnosti potokovykh programm [On equivalence оЁ streaming 

programs|. Proc. XI Intern. Conf. “Diskretnaya Matematika i ее Prilozheniya” (Moscow, June 

18-23, 2012), Moscow, MSU Faculty оё Mechanics and Mathematics Publ., 2012, pp. 119-122. 

(in Russian) 

Podymov V. V. Algoritm proverki ekvivalentnosti lineynykh wunarnykh rekursivnykh 

programm па uporyadochennykh polugruppovykh shkalakh [An equivalence-checking 

algorithm for linear monadic recursive programs over ordered semigroup frames|. Vestnik 

Moskovskogo universiteta. Ser.15. Vychislitel'naya Matematika i Kibernetika, 2012, no.4, 

pp-37-43. (in Russian) 

Zakharov V. А. ОЬ  ekvivalentnosti ogranichenno nedeterminirovannykh avtomatov-pre- 

obrazovateley nad polugruppami [On equivalence оЁ finite-valued transducers over 

semigroups|. Proc. XVII Intern. Conf. “Problemy Teoreticheskoy Kibernetiki” (Kazan, June 

16-20, 2014), Kazan, Otechestvo Publ., 2014, pp.100-102. (in Russian) 

Zakharov V. А. Modelirovanie i analiz povedeniya posledovatel'nykh reagiruyushchikh 

programm |[Modeling and analysis оё the behavior оЁ successive reactive programs|. Proc. 

ISP RAS, 2015, vol. 27, no. 2, pp.221-250. (in Russian) 

Podymov V. V. Efficient equivalence-checking algorithms for procedural programs in prog- 

ressive semigroup gateway models. Moscow Univ. Comput. Math. Cybern., 2019, vol.43, 

по.4, pp. 181-187. 

Podymov V. V. O slozhnosti proverki ekvivalentnosti lineynykh unarnykh rekursivnykh 

programm nad uravnoveshennymi polugruppami [On complexity of equivalence checking for 

linear monadic recursive programs over balanced semigroups|. Lomonosovskie Chteniya-2024, 

Moscow, MAKS Press, 2024, pp.53-55. (in Russian) 

Kotov V. Е. апа Sabelfeld V. K. Teoriya skhem programm [Theory оЁ Program Schemes|. 

Moscow, Nauka, 1991. (in Russian)


