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Изучается генерическая сложность двух вариантов проблемы решения уравнений 

без констант над конечными предикатными алгебраическими системами: распо- 

знавания разрешимости и поиска решения. Для обеих проблем во многих случа- 

ях неизвестно эффективных полиномиальных алгоритмов. Предлагается полино- 

миальный генерический алгоритм для проблемы распознавания разрешимости. 

С другой стороны, для проблемы поиска решения доказывается, что если для 

неё нет полиномиального вероятностного алгоритма, то существует подпробле- 

ма этой проблемы, для которой нет полиномиального генерического алгоритма. 

Полученный результат является теоретическим обоснованием возможных прило- 

жений проблемы поиска решения в криптографии, где нужно, чтобы проблема 

взлома криптоалгоритма была трудной для почти всех входов. 
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In this paper, we study the generic complexity of two variants of the problem of sol- 

ving equations without constants over finite predicate algebraic systems: the solvabil- 

ity recognition problem and the solution search problem. For both problems, efficient 

polynomial algorithms are not known in many cases. We propose a polynomial generic 

algorithm for the solvability recognition problem. On the other hand, for the solution 

search problem, we prove that if there is no polynomial probabilistic algorithm for it, 

then there is a subproblem of this problem for which there is no polynomial generic 

algorithm. The obtained result is a theoretical justification for possible applications of 

the solution search problem in cryptography, where the problem of breaking a crypto- 

graphic algorithm is required to be hard for almost all inputs. To prove this theorem, 

we use the method of generic amplification, which allows to construct generically hard 

problems from the problems hard in the classical sense. The main ingredient of this 

method is a technique of cloning, which unites inputs of the problem together in the 

large enough sets of equivalent inputs. Equivalence is understood in the sense that 

the problem is solved similarly for them. 
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Введение 

Решение уравнений и систем уравнений над вещественными, комплексными, раци- 

ональными, целыми числами является классической темой исследований B различных 

областях математики в течение тысяч лет. В последние десятилетия фокус исследова- 

ний перемещается на неклассические области, такие, как группы 1], полугруппы [2 

графы [6], частичные порядки [7]. Потребность решения уравнений в этих системах 

возникает при рассмотрении различных практических проблем информатики, крип- 

тографии, теории языков программирования. Например, свободные полугруппы яв- 

ляются базисом для описания важнейших классов формальных языков и грамматик: 

регулярных, контекстно свободных. Часто при этом изучаемый формальный язык 

задаётся некоторым набором уравнений, множество решений которых даёт нужный 

язык. К необходимости решения уравнений над графами приводят задачи проверки 

вложимости (совместимости) одной коммуникационной сети в другую. 

Особый интерес представляет изучение вычислительной сложности проблемы ре- 

шения уравнений над конечными алгебраическими системами. Очень часто здесь воз- 

никает так называемая дихотомия: для каких-то конечных систем данного класса эта 

проблема, разрешима за полиномиальное время, для всех других является МР-полной. 

Это явление характерно для классов конечных групп [8], конечных полугрупи [9], ко- 

нечных графов [6] (для систем уравнений без констант). Например, для конечных 

графов дихотомия зависит от хроматического числа графа, над которым решаются 

уравнения: если оно не превосходит двух, то проблема разрешима за полиномиальное 

время, иначе — №Р-полна. Напомним, что хроматическое число графа — это минималь- 

ное число цветов, B которые можно раскрасить вершины так, чтобы любые вершины, 

соединённые ребром, были покрашены в разные цвета. Этот результат |6| был полу- 

чен для систем уравнений без констант, однако аналогичный результат для систем 

с константами легко следует из работ [6, 10]. 

МР-полнота позволяет эффективно сводить другие практически важные №Р-пол- 

ные проблемы к проблеме решения уравнений и использовать мощные алгебраиче- 

ские методы для разработки более эффективных алгоритмов их решения. Кроме того, 

в случае №-полноты проблемы решения уравнений актуальным является изучение её 

генерической сложности [11]. В рамках генерического подхода алгоритмическая про- 

блема рассматривается не на всём множестве входов, а Ha некотором подмножестве 

«почти всех» входов. С одной стороны, положительные результаты о возможности 

эффективного решения каких-либо трудных задач для почти всех входов полезны для 

практики. С другой стороны, негативные результаты о генерической трудности неко- 

торых проблем дают надежду на возможное их использование B криптографии, где 

как раз важно, чтобы проблема взлома криптосистемы была трудной для почти всех 

входов. Генерическая сложность проблем решения уравнений над конечными полями 

и полугруппами рассмотрена в [12]. 

В данной работе изучается генерическая сложность двух вариантов проблемы ре- 

шения уравнений без констант в конечных предикатных алгебраических системах. 

Первый вариант — проблема распознавания разрешимости систем уравнений. Здесь 

входом является произвольная система уравнений без KOHCTAHT, необходимо опреде- 

лить, существует ли у неё решение. Второй вариант — проблема поиска решения си- 

стемы уравнений. Для этой проблемы входом является система уравнений без кон- 

стант, для которой заведомо существует решение, нужно найти хотя бы одно её ре- 

шение. Проблемы поиска, в отличие от проблем распознавания, находят применения 

в криптографии, где всегда. известно, что решение есть и надо его найти. В работе 



104 А. Н. Рыбалов 

предлагается полиномиальный генерический алгоритм для проблемы распознавания 

разрешимости систем уравнений. С другой стороны, для проблемы поиска решения 

доказывается, что если для неё не существует полиномиального вероятностного алго- 

ритма, то существует подпроблема этой проблемы, для которой нет полиномиального 

тенерического алгоритма. Вероятностные алгоритмы в процессе своей работы могут 

использовать датчик случайных чисел, что позволяет ускорять вычисления. Однако 

считается, что любой полиномиальный вероятностный алгоритм можно эффективно 

дерандомизировать, построив полиномиальный алгоритм, не использующий генератор 

случайных чисел и решающий ту же самую проблему. Хотя этот факт до сих пор не 

доказан, имеются веские основания в пользу него [13]. 

1. Предварительные сведения 

На протяжении всей работы будем рассматривать системы уравнений без констант. 

Пусть A = (A, о) — алгебраическая система с предикатной сигнатурой о {Pi(k‘) : 

т}. Уравпением над 2 называется формула одного из двух типов: 

1) (i = )); 
2) Pi(xy,...,ap), Peo,i=1,...,m. 

Системой_уравнений над A называется конечный набор уравнений. Решение cu- 

стемы уравнений S от переменных X1, ..., T — это такой набор ai,...,a; элементов 

из A, который при подстановке в каждое уравнение системы S даёт истинную над ®( 

формулу. Легко видеть, что для любой системы S над ® существует эквивалентная 

ей система 5', в которой отсутствуют уравнения вида (z; = x;). Действительно, для 

удаления таких уравнений достаточно во всех остальных уравнениях заменить пере- 

менную г) на переменную ;. Поэтому в дальнейшем будем рассматривать системы, 

в которых все уравнения имеют тип 2, то есть являются предикатами от переменных. 

Проблема распознавания. разрешимости систем уравнений над 20 формулируется 

следующим образом. По произвольной заданной системе уравнений S определить, су- 

ществует ли у неё решение в 2. Проблема поиска решения систем уравнений над A 
формулируется немного иначе. По произвольной заданной разрешимой системе урав- 

нений 5 найти хотя бы одно её решение в 2A. 

Напомним основные определения генерического подхода [11]. Пусть / — некоторое 

множество входов, а [, — подмножество входов размера n. Для подмножества S, C I 

определим последовательность 

|5»| 
” 

= 1,2,3 pn(S) = 

где 5„ = SN I, — множество входов из 5 размера n. Асимптотической плотмостью S 

назовём предел 

p(S) = lim py(S). n—o0 

Множество S называется пренебрежимым, если его асимптотическая плотность 

р(5) = 0. 

Алгоритм А с множеством входов Г и множеством выходов /ЛО {0} (O & /) назы- 

вается геперическим, если 

1) А останавливается на всех входах из [; 

2) множество {z € I : A(x) = O} является пренебрежимым.
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Здесь символ O обозначает неопределённый ответ. Генерический алгоритм А вычис- 

ляет функцию f Г — N, если для всех т € Г выполнено 

(A(z) #0) = (f(z) = А(г)). 

Проблема распознавания множества A С I генерически разрешима за полиномиальное 

время, если существует полиномиальный генерический алгоритм, вычисляющий ха- 

рактеристическую функцию множества А. Напомним, что характеристической функ- 

цией множества А С I называется функция x4 : Г — {0, 1}, определённая следующим 

образом: 

1 

0 

@ ‚ если г €A 
х 

^ ‚ если @ & А. 

Напомним также некоторые понятия классической теории сложности вычислений [14]. 
Время работы ty(x) машины Тьюринга М на входе х € Г — это число шагов машины 

от начала работы до остановки. Машина Тъюринга М полиномиальна, если существует 
полином p(n), такой, что для любого т € I имеет место ty(z) < p(size(x)). 

Вероятностная машина Тьюринга— это машина Тьюринга, в программе которой 
допускаются пары недетерминированных правил, которые одновременно применимы 
в данной ситуации. В процессе работы такой машины с вероятностью 1/2 выбирается 
первое правило и с вероятностью 1 /2 — второе. Время работы Ём(г, т) вероятностной 
машины Тьюринга на входе T зависит от вычислительного пути (последовательно- 
сти выполненных команд) т. Вероятностная машина Тьюринга М называется поли- 
номиальной, если существует полином p(n), такой, что для любого т и для любого 
вычислительного пути т машины М на г имеет место ty(x, т) < p(size(z)). 

Обозначим через Рг[М (г) = y] вероятность того, что машина М на входе & выдаёт 
ответ у. Вероятностная машина М вычисляет функцию f : Г — J, если для любого 

x € I имеет место 
(f(x) =y) = Pr[M(z) =y >2/3. 

Вероятностные машины Тьюринга формализуют понятие алгоритма, использующего 
генератор случайных чисел. 

2. Генерический алгоритм распознавания разрешимости систем уравнений 

Пусть A = (A, 0) — конечная алгебраическая система с предикатной сигнатурой 

о = {Pi(k‘) 10 1,...,m}. Будем представлять системы уравнений над 2 следую- 

щим образом. Во-первых, зафиксируем переменные си мы 21,..., Фп Число пере- 

менных п— размер системы. По каждому предикату Pi(k‘). i 1,...,m, из сигнату- 

ры о рассмотрим так называемую mafifluuy бключения — это ]Сі-М(‚‘рЦЫЙ К)'б с n no3u- 

циямИи 10 Ka)K,IUfi размерности. Итого получается nk‘ мест. На месте ¢ координатами 

(л...- ‚]‚С‘) записываем 1, если в системе есть уравнение Pi(zj“ BN zjk‘). и 0, если нет. 

Првд(тта‹мтшгм системы уравпспий является пабор ТабЛИЦ включения для каждого 

предиката сигнатуры, встречающегося в этой системе. ОБОЗЦЗЧИМ через S множество 

систем уравпспий над ‹4’1. представленных таким образом‚ 

Лемма 1. Число систем размера n над 2 равно 

m k 
5 =TT 2"". 

ér. @ Доказательство. Прямой подс:
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Назовём алгебраическую систему 2A нетривиальной, если существует система урав- 

нений, которая не имеет решения над 2. B противном случае A тривиальная. Очевид- 

HO, что для тривиальных алгебраических систем проблема распознавания разрешимо- 

сти систем уравнений разрешима за полиномиальное время. 

Теорема 1. Проблема распознавания разрешимости систем уравнений над ко- 

нечной нетривиальной алгебраической системой 2 генерически разрешима‚ 3a полино- 

миальное время. 

Доказательство. Пусть 5' — какая-то фиксированная система уравнений раз- 

мера #, неразрешимая над %(. Полиномиальный генерический алгоритм для распо- 

знавания разрешимости систем уравнений над %{ работает на системе S размера п 

следующим образом: 

1) Ищет в системе S подсис эквивалентную S’ перебирает все выборки 

10 # переменных из п переменных системы 5; для каждой выборки ищет в S все 

предикаты из системы S’ с учётом замены переменных 5' соответствующими 

переменными 13 выборки. Число таких выборок С, = О(п’) полиномиально, и 

проверка каждой выборки делается за полиномиальное от л время. 

2) Если эквивалентная подсистема нашлась, то выдаёт ответ «НЕТ». 

3) Если нет, выдаёт ответ «НЕ ЗНАЮ». 

Для доказательства генеричности этого алгоритма покажем, что множество систем 
равнений, не содержащих подсистемы, эквивалентной © (обозначим это множе- 

ство А), является пренебрежимым. Рассмотрим множество систем В, в которых на 
переменных {2y, . .., T, } запрещена подсистема 5' для переменных {21, . . ., Ty}, для пе- 
ременных {2ин1,...,2э}, .. ., для переменных {Ty([n/f]-1)4+1;- - - Фнн }- Здесь через [z] 

обозначена целая часть числа . Так как для систем из В запретов меньше, чем для 
систем из A, то А С В. 

Обозначим через Г множество индексов тех предикатов из Py, # = 1,... ‚ т, сигна- 
туры 0, которые встречаются в системе уравнений 5'. Можно подсчитать, что 

|Bal = П2° П 2/t (2t — ), 
ГЕ1 

Это следует из того, что в таблицах включения для каждого предиката с индексом из [ 

для систем из множества В «запрещены» [n/t] подтаблиц размера #, соответствующих 

предикатам из системы 5'. Эти подтаблицы имеют по 2°° мест для расстановки нулей 

и единиц. 

Теперь запишем: 

П 2п*‹ П 2„*‹_% [n/t] (Zth — 1)[п/г] 
B, Е : 

p(B) = lim |5n = lim # ! л. = а [Sa] — оо Й2 
=1 

Ztk( — 1)/t 

=i B 0T Пва (1-27)" = 
Tl П2 T et = 

зЕ1 

Это доказывает, что множество В является пренебрежимым, а значит, его подмноже- 

ство А тем более пренебрежимо. @
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3. Проблема поиска решения систем уравнений 

Напомним, что проблема поиска решения систем уравнений над алгебраической 

системой 2 состоит в TOM, что по заданной произвольной разрешимой над %( системе 

уравнений требуется найти любое её решение. Обозначим эту проблему SEPy. Для неё 

также не известно полиномиальных алгоритмов. 

Рассмотрим бесконечную последовательность систем уравнений 

}, 

такую, что S, имеет размер п для п = 1,2,3,... Для каждой последовательности си- 

стем 0 определим подпроблему поиска решения систем уравнений SEPy (o) как огра- 

ничение исходной проблемы SEPy на множество входов 

о ={S1,52,..., б 

{5:5 ® 5,8, со,пЕМ}. 

Здесь 51 & Sy означает, что системы 51 и 55 — это системы от одного множества пере- 

менных {21, ..., 2,} и 51 получена из Sy некоторой перестановкой переменных. 

Лемма 2. Если не существует полиномиального вероятностного алгоритма для 

решения проблемы SEPy, то найдётся последовательность систем O, такая, что 

не существует полиномиального вероятностного алгоритма для решения пробле- 

мы SEPy(0). 

Доказательство. Пусть Р, Ps,... — все полиномиальные вероятностные алго- 

ритмы. Если не существует полиномиального вероятностного алгоритма для пробле- 

мы SEPy, то для любого вероятностного полиномиального алгоритма P, найдётся 

бесконечно много систем, для которых алгоритм P, не может решить SEPy. Поэтому 

можно выбрать такую последовательность систем о’ = {S1,52,..., 5y, ...}, что алго- 

ритм Р, не может решить SEPy для Sy для всех п. Более того, можно считать, что 

0’ упорядочена 10 возрастанию размеров. Теперь можно расширить последователь- 

ность о’ до последовательности 0 с системами Sy, для всех размеров n. Из построения o 

следует, что не существует полиномиального вероятностного алгоритма для решения 

проблемы SEPy (o). @ 

Из определения видно, что множество всех входов размера п для пробле- 
мы 5ёРа(с) выглядит так: 

1, = {5:5 ® 5,, 5, с о). 

Лемма 3. Пусть o — произвольная последовательность систем уравнений. Если 

существует генерический полиномиальный алгоритм, решающий проблему SEPy(o), 
то существует вероятностный полиномиальный алгоритм, решающий эту проблему Ha 

1 множестве входов. 

Доказательство. Допустим, что существует генерический полиномиальный ал- 

горитм A, решающий проблему поиска решения систем уравнений SEPy (o). Построим 

вероятностный полиномиальный алгоритм В, решающий эту проблему на вс 

жестве входов. На системе S размера n алгоритм В работает следующим образом: 

1 MHO- 

1) Запускает алгоритм А на 5. 

2) Если A(S) # O, то В выдаёт ответ A(S) и останавливается, иначе идёт на шаг 3. 

3) Генерирует случайно и равномерно перестановку л на множестве номеров пере- 
менных {@y, ..., 2, } и вычисляет систему 5' = д(5).
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4) Зацускает алгоритм А на S’ 

5) Если А(5') = O, 10 выдаёт ответ (а,... , а), где а € A, — возможно, неправиль- 

ный. 

6) Если А(5') = {ay,...,a,} — решение системы S', то 

я` (а),...‚ @а) = (1) G () 

является решением системы S = л” !(5'). 

Для доказательства корректности работы вероятностного алгоритма надо показать, 
что вероятность того, что А(5') = O, меньше 1/3. Заметим, что л (5) при варьировании 

перестановки л пробегает всё множество входов размера п. Множество {5 : A(S) = O} 

пренебрежимо, поэтому вероятность того, что А(5') = [, стремится к нулю при уве- 
личении п. @ 

Теорема 2. Если для проблемы поиска решения систем уравнений над алгеб- 

раической системой 2 не существует вероятностного полиномиального алгоритма, то 

существует последовательность систем уравнений 0, такая, что для решения пробле- 

мы SEPy(0) не существует генерического полиномиального алгоритма. 

Доказательство. Пусть для проблемы SEPgy нет вероятностного полиноми- 

ального алгоритма. По лемме 2 найдётся такая последовательность систем O, что и 

для SEPy(0) нет полиномиального вероятностного алгоритма. Теперь если допустить, 

что для SEPy(0) существует полиномиальный генерический алгоритм, то 1o лемме 3 

для SEPy(0) найдётся полиномиальный вероятностный алгоритм. Полученное проти- 

воречие доказывает теорему. @ 
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