Имеет место следующее утверждение, которое представляет в некотором роде обратный результат.

Утверждение 2. Пусть $\varepsilon \in \{-1,1\}$ и весовая структура функции F для некоторого $c \in P$ описывается значениями

$$\forall a \in P \setminus \{c\} \quad \left(N_a(F) = q^{n-1} + \varepsilon q^{n/2-1}\right),$$
$$N_c(F) = q^{n-1} - \varepsilon (q-1)q^{n/2-1}.$$

Тогда значение периода функции F делится на величину $q^{n/2} - \varepsilon$.

Представленные утверждения позволяют в ряде случаев указать точные значения весовой структуры q-ичных бент-функций. Однако, как показывает следующее утверждение, область действия данных результатов существенно ограничена.

Утверждение 3. Пусть H — множество всех гомоморфизмов из группы (Q, +) в группу (P, +). Множество функций $\{F + h : h \in H\}$ содержит не более одной функции, период которой строго меньше $q^n - 1$.

Таким образом, среди бент-функций вида F + h (где h—гомоморфизм соответствующих групп) не более одной функции может иметь период, значение которого удовлетворяет условиям теоремы 2.

ЛИТЕРАТУРА

- 1. *Кузъмин А. С., Марков В. Т., Нечаев А. А., Шишкин В. А., Шишков А. Б.* Бент-функции и гипербент-функции над полем из 2^l элементов // Проблемы передачи информации. 2008. Т. 44. Вып. 1. С. 15–37.
- 2. *Токарева Н. Н.* Обобщения бент-функций. Обзор работ // Дискретн. анализ и исслед. операций. 2010. Т. 17. Вып. 1. С. 34–64.
- 3. Солодовников В. И. Бент-функции из конечной абелевой группы // Дискретная математика. 2002. Т. 14. Вып. 1. С. 99–113.
- 4. *Кузъмин А. С.*, *Нечаев А. А.*, *Шишкин В. А.* Бент- и гипербент-функции над конечным полем // Труды по дискретной математике. 2007. Т. 10. С. 86–111.

УДК 621.391: 519.728

О СРАВНЕНИИ НЕДООПРЕДЁЛЕННЫХ АЛФАВИТОВ¹

Л. А. Шоломов

Представлены несколько подходов к сравнению недоопределённых алфавитов по силе и доказана их эквивалентность. Установлено, что введённые соотношения по силе полиномиально проверяемы.

Ключевые слова: недоопределённый алфавит, равносильные алфавиты, энтропия недоопределённых данных, сложность по Колмогорову.

Задан конечный алфавит $A_0 = \{a_i : i \in M\}$ основных символов. Каждому непустому $T \subseteq M$ соответствует недоопределённый символ a_T , доопределением которого считается всякий основной символ a_i , $i \in T$. Выделена система $\mathcal{T} \subseteq 2^M$ некоторых подмножеств $T \subseteq M$ и с ней связан недоопредёленный алфавит $A = \{a_T : T \in \mathcal{T}\}$.

Пусть помимо A_0 и A заданы основной алфавит $B_0 = \{b_j : j \in L\}$, недоопределённый алфавит $B = \{b_U : U \in \mathcal{U} \subseteq 2^L\}$ и соответствие $R_{AB} \subseteq A \times B$, указывающее,

¹Работа поддержана ОНИТ РАН по программе фундаментальных исследований.

каким образом символы алфавитов A и B взаимно сопоставлены друг другу (символам одного алфавита могут соответствовать несколько символов другого). Назовём алфавиты A и B с заданным для них соответствием R_{AB} соответственными алфавитами; последовательности $\mathbf{a} = a_{T_1} \dots a_{T_n}$ и $\mathbf{b} = b_{U_1} \dots b_{U_n}$, для которых $(a_{T_i}, b_{U_i}) \in R_{AB}$, $i = 1, \dots, n$, соответственными последовательностями.

В работе представлено несколько подходов к сравнению соответственных недоопределенных алфавитов по силе. Первый из них — функциональный — основан на функциональной выразимости символов одного алфавита через символы другого. Следующие три подхода терминологически связаны с подходами к введению меры информации, представленными в работе А. Н. Колмогорова [1]. Это комбинаторный, вероятностный (статистический) и алгоритмический подходы. Доказано, что все подходы приводят к одному и тому же соотношению алфавитов по силе.

Функциональный подход. Скажем, что алфавит B функционально выразим через A, если существует функция $F:A_0\to B_0$, такая, что для всех пар $(a_T,b_U)\in R_{AB}$ выполнено $F(a_T)\subseteq b_U$, где $F(a_T)=\{F(a_i):i\in T\},\ b_U=\{b_j:j\in U\}.$ Будем говорить, что алфавит A функционально сильнее B, и записывать $A\succsim_f B$, если B функционально выразим через A. Соотношение $A\succsim_f B$ может быть эквивалентно представлено в терминах соответственных последовательностей, а именно: $A\succsim_f B$ тогда и только тогда, когда существует такая функция $F:A_0\to B_0$, что для всякой пары $\mathbf{a}=a_{T_1}\ldots a_{T_n},\ \mathbf{b}=b_{U_1}\ldots b_{U_n}$ соответственных последовательностей и любого доопределения $\mathbf{a}^0=a_{i_1}\ldots a_{i_n}$ последовательность $F(\mathbf{a}^0)=F(a_{i_1})\ldots F(a_{i_n})$ доопределяет \mathbf{b} . В терминах соответственных последовательность ностей будут даны и последующие определения.

Комбинаторный подход. Для последовательности **a** в алфавите A введём класс $\mathcal{K}(\mathbf{a})$ всех последовательностей в алфавите A, в которых каждый символ $a_T \in A$ встречается такое же, как в **a** число раз. Обозначим через $N(\mathbf{a})$ минимальную мощность множества последовательностей в основном алфавите A_0 , среди которых имеются доопределения всех последовательностей из $\mathcal{K}(\mathbf{a})$. Аналогично, паре последовательностей $\mathbf{a} = a_{T_1} \dots a_{T_n}$ и $\mathbf{b} = b_{U_1} \dots b_{U_n}$ сопоставим класс $\mathcal{K}(\mathbf{a}, \mathbf{b})$ всех пар последовательностей с теми же кратностями появления пар $(a_T, b_U) \in A \times B$, что и в (\mathbf{a}, \mathbf{b}) , и минимальную мощность $N(\mathbf{a}, \mathbf{b})$ доопределяющего $\mathcal{K}(\mathbf{a}, \mathbf{b})$ множества пар. Будем считать, что алфавит A комбинаторно сильнее алфавита B, и записывать $A \succsim_c B$, если для любых соответственных последовательностей \mathbf{a} и \mathbf{b} выполнено $N(\mathbf{a}, \mathbf{b}) = N(\mathbf{a})$.

Статистический подход. Будем рассматривать недоопределённые источники X в алфавите A, порождающие независимо символы $a_T \in A$ с некоторыми вероятностями p_T . Определим энтропию $\mathcal{H}(X)$ источника X, положив

$$\mathcal{H}(X) = \min_{Q} \left\{ -\sum_{T \in \mathcal{T}} p_T \log_2 \sum_{i \in T} q_i \right\},\,$$

где минимум берётся по наборам $Q = (q_i, i \in M)$ вероятностей символов a_i основного алфавита A_0 . О свойствах и роли этой энтропии см. в [2]. Источники X и Y в алфавитах A и B, заданные совместным распределением $p(a_T, b_U)$, $a_T \in A$, $b_U \in B$, назовём соответственными, если $p(a_T, b_U) > 0$ лишь в случае $(a_T, b_U) \in R_{AB}$. Будем говорить, что алфавит A статистически сильнее алфавита B, и записывать $A \succeq_s B$, если для любых пар соответственных источников X и Y выполнено $\mathcal{H}(XY) = \mathcal{H}(X)$.

Алгоритмический подход. Модифицируя применительно к недоопределённым данным систему понятий из [1], назовём колмогоровской сложсностью $K(\mathbf{x})$ недоопределённого слова \mathbf{x} минимальную длину двоичной программы для произвольно

фиксированного оптимального алгоритма, порождающей какое-либо доопределение слова \mathbf{x} . Эта величина задана с точностью до аддитивной константы: сложности $K(\mathbf{x})$ и $K'(\mathbf{x})$ по различным оптимальным алгоритмам удовлетворяют соотношению $K(\mathbf{x}) \approx K'(\mathbf{x})$, где $f \approx g$ означает, что разность f - g ограничена [1]. Будем говорить, что алфавит A алгоритмически сильнее алфавита B, и записывать $A \succsim_a B$, если для любых соответственных последовательностей \mathbf{a} и \mathbf{b} выполнено $K(\mathbf{ab}) \approx K(\mathbf{a})$.

Теорема 1. Введенные соотношения недоопределенных алфавитов по силе эквивалентны, т. е.

$$A \succsim_f B \Leftrightarrow A \succsim_c B \Leftrightarrow A \succsim_s B \Leftrightarrow A \succsim_a B.$$

С учётом теоремы будем применять запись $A \succeq B$ без уточнения смысла, в каком она понимается. Будем алфавиты A и B называть paenocuльными и записывать $A \eqsim B$, если $A \succeq B$ и $B \succsim A$.

Теорема 2. Для соответственных алфавитов A и B существуют полиномиальные алгоритмы проверки соотношений $A \succsim B$ и $A \eqsim B$.

Задача сжатия недоопределённых последовательностей ставится как задача такого их кодирования, которое обеспечивает для каждой из них возможность восстановления какого-либо доопределения [2]. Если ${\bf a}$ и ${\bf b}$ — соответственные последовательности в равносильных алфавитах A и B, то кодирование для ${\bf a}$ может рассматриваться и как кодирование для ${\bf b}$, поскольку доопределение ${\bf a}^0$, найденное по коду для ${\bf a}$, позволяет получить доопределение для ${\bf b}$ в виде $F({\bf a}^0)$ (см. функциональный подход). Если кодирование для ${\bf a}$ оптимально, оно оптимально и для ${\bf b}$. За счёт перехода к равносильному алфавиту иногда удаётся упростить процедуру оптимального кодирования.

ЛИТЕРАТУРА

- 1. *Колмогоров А. Н.* Три подхода к определению понятия «количество информации» // Проблемы передачи информации. 1965. Т. 1. № 1. С. 3—11.
- 2. Шоломов Л. А. Элементы теории недоопределенной информации // Прикладная дискретная математика. Приложение. 2009. № 2. С. 18–42.

УДК 519.7

ВЕКТОРНЫЕ БУЛЕВЫ ФУНКЦИИ НА РАССТОЯНИИ ОДИН ОТ АРN-ФУНКЦИЙ

Г.И. Шушуев

Доказано, что на расстоянии один от произвольной АРN-функции все функции являются дифференциально 4-равномерными.

Ключевые слова: векторная булева функция, дифференциально δ -равномерная функция, APN-функция.

В работе исследуются метрические свойства класса векторных булевых функций, а именно APN-функций. Знание метрических свойств позволяет получать конструкции таких функций, а также сокращать перебор при поиске функций, обладающих определённым свойством. Например, метрические свойства класса бент-функций исследовались в работах [1, 2].

В 1994 г. К. Nyberg [3] было введено понятие дифференциально δ -равномерных векторных булевых функций (differentially δ -uniform). Векторная булева функция