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Аннотация. Одной из ключевых задач современной морфологии почв явля-
ется объективная количественная оценка неоднородности почв и дешифрирова-
ние почвенной памяти, закодированной в макроморфологических паттернах. 
Цифровые методы анализа изображений открывают новые возможности для её 
решения. В работе предложен подход цифрового морфометрического анализа 
зачисток подзолов (Glossic Stagnic/Folic Albic Podzols) среднетаежной подзоны 
Западной Сибири, сформированных на песчаных отложениях в двух формах 
микрорельефа – гриве и западине. Методология включала обработку фотогра-
фий горизонтальных и вертикальных зачисток, полученных при археологичес-
ких раскопках, в программах Adobe Photoshop и ImageJ с выделением морфонов 
генетических горизонтов (O, E, Eh, BF1, BF2, BC, Box, [AY]) и расчётом их пло-
щадных и геометрических параметров. Установлены статистически значимые 
различия в распределении морфонов между элементами рельефа: в западинах 
выявлены гидрогенно-ожелезнённые (Box) и погребённые серогумусовые 
([AY]) морфоны раннеголоценового возраста (7,8–8,5 тыс. кал. л.н.), а на гри-
вах – псевдофибры. Показано, что формирование сложной морфонной организа-
ции является результатом сочетания процессов заполнения корневых ходов, вет-
ровальных нарушений и последующей элювиально-иллювиальной дифферен-
циации. Подход подтверждает перспективность цифровой морфометрии для ко-
личественной оценки внутрипрофильной неоднородности почв, реконструкции 
их генезиса и уточнения запасов почвенного органического углерода. 
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Summary. This study addresses the fundamental need for a quantitative assess-

ment of soil profile heterogeneity and the interpretation of genetic information encod-
ed in macromorphological patterns. Digital image analysis offers a powerful new me-
thodology for this task, particularly for soils with complex internal organisation, such 
as Podzols. The presented research develops and tests a digital morphometric ap-
proach for analysing soil sections. 

The work was conducted in the middle taiga of Western Siberia on the left-bank 
terrace of the Bolshoy Yugan River (60°24'29.4840" N, 73°56'56.6808" E). The study 
objects were Glossic Stagnic/Folic Albic Podzols (WRB) formed on light alluvial de-
posits within two conjugate microtopographic elements: a ridge and an inter-ridge de-
pression. The methodology utilised high-quality photographic records from large-
scale archaeological excavations. In total, 76 horizontal and vertical soil sections with 
a combined area of 1653 m2 were analysed. 
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The core methodology comprised processing section photographs in Adobe Pho-
toshop CC 2018 for the preliminary delineation of horizons and morphons, followed 
by quantitative analysis in ImageJ 1.45 software. For each identified morphon of the 
genetic horizons (O, E, Eh, BF1, BF2, BC, Box, [AY]), key morphometric parameters 
were calculated: Area (%), Perimeter (cm), Aspect Ratio (AR), Circularity, Solidity, 
and Roundness. Statistical processing was performed using MS Excel 2019 and STA-
TISTICA 12. 

The key results are as follows. Statistically significant differences in the composi-
tion and spatial distribution of morphons between the ridge and the depression were 
established. In the depression soils, hydromorphic iron-enriched (Box) morphons and 
relic buried humus ([AY]) morphons were identified, whereas lamellae (pseudofibers) 
were characteristic of the ridge soils (See Figs. 2 and 3). Radiocarbon dating of char-
coal from the [AY] morphons yielded an Early Holocene age of 7801–8546 cal yr BP 
(See Table 1). 

Quantitative analysis revealed that the maximum number of eluvial (E) horizon 
morphons in the ridge soils is twice as high as in the depression at a depth of 25 cm, 
while their size (perimeter) is larger in the depression (See Fig. 7). The maximum area 
of the illuvial (BF2) horizon in the depression is located 10 cm higher in the profile 
compared to the ridge. This shift is associated with the occurrence of Box morphons 
in the depression, which peak in area at 55-65 cm depth (See Fig. 7). A previously un-
described contact eluvial-illuvial-humus (Eh) morphon, consistently located between 
the E and BF1 horizons, was identified and characterised (See Fig. 3a and Fig. 7e, f). 
Principal component analysis of the morphometric data confirmed the paragenesis of 
most morphons; only the Box morphons formed a distinct cluster due to their different 
genesis (See Fig. 11 in Supplement 2). 

In conclusion, the formation of the complex macromorphological pattern in the 
studied Podzols is conclusively shown to result from three main agents acting in con-
cert: (1) the penetration and die-back of tree root systems, forming deep rounded ton-
gues; (2) windthrow disturbances, creating large elongated or rounded structures; and 
(3) subsequent eluvial-illuvial differentiation of substances along these biogenic path-
ways. The developed digital morphometry approach proves highly promising for the 
objective quantification of intra-profile soil heterogeneity, the reconstruction of pedo-
genesis, and the refinement of soil organic carbon stock estimates. 

The article contains 7 Figures, 2 Tables, 66 References, and 2 Supplements. 
Keywords: Glossic Stagnic Folic Albic Podzol и Glossic Folic Albic Podzol (La-

mellic), windfalls, geoarchaeology, radiocarbon age, soil genesis, residual humus 
morphones 
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Введение 
 
Методы генетического анализа морфологических характеристик почв 

зародились на ранних этапах развития почвоведения и стали самым прос-
тым и очевидным способом получения информации о почвенном теле, его 
истории и функционировании. Значительный прогресс в области микро-
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скопии позволил создать эффективные методы диагностики процессов на 
субмикро- и микроуровнях организации почвенной массы [1, 2]. Однако на 
уровне мезо- и макроморфологии подходы к интерпретации почвенных ри-
сунков (паттернов) на зачистках почвенных профилей и естественных по-
верхностях почвенных отдельностей развивались менее динамично. В ре-
зультате микроморфологические методы стали более популярными и часто 
используемыми по сравнению с макроморфологическими. 

Макроморфологические исследования, включающие анализ срезов почв 
метровой размерности, получили развитие в основном для целей выделе-
ния почвенных горизонтов [3, 4], классификации и диагностики почв. Раз-
витие макроморфологии всегда было ограничено возможностями фототех-
ники, субъективным фактором при описании и зарисовке почвенных про-
филей, а также небольшим размером стандартного почвенного среза, не-
возможностью доставить и хранить крупные почвенные монолиты в лабо-
раториях и депозитариях. Для преодоления этих ограничений предлагалось 
проводить морфологический анализ почв с использованием балльной сис-
темы в поле, а для удобства было введено понятие морфона [5]. 

Появление и совершенствование цифровой фототехники в последние 
два десятилетия явилось тем самым драйвером для развития мезо- и макро-
морфологии почв, как в свое время микроскопия и технологии изготовле-
ния шлифов для микроморфологии. Качественные матрицы высокой свето-
чувствительности, автоматические алгоритмы выбора баланса белого, воз-
можности фотовспышек позволяют в достаточной мере правдиво переда-
вать окраску почвы в условиях естественного освещения, что позволяет 
уйти от субъективизма текстовых описаний, существовавшего в доцифро-
вую эпоху. Современная техника позволила задействовать в исследованиях 
информацию, что несут в себе морфологические рисунки, вскрываемые на 
зачистках почв и трудно поддающиеся описаниям. Достаточно уже одного 
взгляда, чтобы уловить основной мотив строения почвы и, следовательно, 
главный почвообразовательный процесс. Благодаря современным матри-
цам фотоаппаратов можно в пределах одного фотоснимка «путешество-
вать» по нескольким иерархическим уровням сразу – от первых миллимет-
ров (уровень микроагрегатов и элементарных почвенных частиц) до метра 
и более (уровень педона и полипедона), что было невозможно ещё 20 лет 
назад. Это, а также программное обеспечение для обработки цифровых 
изображений вылилось в последние годы в развитие методов цифровой 
морфометрии почв [6–11]. 

Дополнительным драйвером прогресса морфологии почв стала концеп-
ция памяти почв, объединившая в себе подходы к расшифровке носителей 
почвенной памяти всех иерархических уровней структурной организации 
почв [12–15]. Большинство работ по интерпретации морфологического об-
лика почв сосредотачиваются на отдельных факторах, главенствующих 
в формировании морфологических паттернов. Выполнены исследования, 
посвященные оценке роли почвенной фауны [16–18], корневых систем де-
ревьев [19], ветровального морфогенеза [20–25], криогенеза [26–36], в том 
числе и в палеопочвах [37–39]. Реже, в силу большей сложности, про-
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водится комплексный морфогенетический анализ почвенного профиля  
[40–42]. 

Для цифрового макроморфологического анализа необходимы качест-
венные зачистки стенок почвенных выработок в разных проекциях. На 
практике получить фотографические материалы такого качества довольно 
трудозатратно, поэтому полезна кооперация с археологами, проводящими 
разведочные или спасательные работы на фоновых территориях или за 
пределами памятников при установлении их границ. Археологические ма-
териалы удобны для анализа почвенных морфологических паттернов, так 
как исследования памятников выполняются с помощью крупных раскопов, 
выполняемых путём прохождения послойных горизонтальных зачисток, 
сопровождаемых детальным фотографированием горизонтальных срезов, 
стратиграфий и детальной съемкой микрорельефа местности. Работа с ма-
териалами археологов в почвоведении не нова [43, 44], однако цифровые 
подходы к извлечению морфогенетической информации ещё малоразрабо-
таны. Единично встречаются работы, в которых почвенную информацию 
получают с помощью цифровой обработки фотографий почв на археологи-
ческих раскопках, например [45]. 

В работе предложен подход к цифровому анализу изображений почвен-
ных срезов и интерпретации полученной информации. Для этого выбраны 
подзолы, так как они обладают достаточно простым строением почвенного 
профиля, контрастными по цвету горизонтами и морфонами, границы 
между которыми легко определить. Исходные фотоматериалы были полу-
чены во время археологических исследований в средней тайге Западной 
Сибири. 

Цель работы заключалась в применении методов цифрового анализа 
для выявления различий в генезисе подзолов двух форм микрорельефа 
в пределах одной катены. Проведение подобного исследования также ста-
вило задачу расширить существующие весьма неполные представления 
о морфонно-горизонтной организации почв на легких отложениях запад-
носибирской части бореального пояса. 

 
Материалы и методики исследования 

 
Исследования проведены в средней тайге Западной Сибири на левобе-

режной террасе р. Большой Юган (левый приток р. Оби). Терраса сложена 
легкими аллювиальными слоистыми отложениями, перевеянными с по-
верхности. На них сформированы подзолы иллювиально-железистые, ча-
сто глееватые по WRB [46] Glossic Stagnic Folic Albic Podzol и Glossic Folic 
Albic Podzol (Lamellic). Для изучения влияния микрорельефа на морфоло-
гические свойства почвы использованы фотографии последовательных 
горизонтальных срезов подзолов. Фотографии были получены при прове-
дении спасательных археологических раскопок на двух объектах – «сели-
ще Кулунигый 5» (60°24'29,4840" N, 73°56'56,6808" E) и «могильник Кулу-
нигый 73» (60°24'28,8252" N, 73°56'49,8552" E). Кроме селища и могильни-
ка на краю и в глубине террасы имеются другие памятники, датирующиеся 
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в широком временном диапазоне от эпохи неолита до позднего Средневе-
ковья [47]. 

В рамках спасательных археологических работ на памятниках селище 
Кулунигый 5 и могильник Кулунигый 73 были заложены масштабные рас-
копы. В нашем исследовании использованы раскопы, не имеющие призна-
ков антропогенного почвообразования, что позволяет использовать их как 
примеры типичных фоновых подзолов (рис. 1 в Приложении 2). Раскопы 
№№ 1–10 расположены в краевой части могильника Кулунигый 73, кото-
рый находится на гриве (рис. 1B). Раскоп № 4 был заложен на периферии 
селища Кулунигый 5, в межгривном понижении (западине). Этот раскоп 
был разделён на 19 секторов. Перепад высот между формами микрорелье-
фа составляет 2,5–3 метра. 

Все раскопы пройдены горизонтальными зачистками, а поуровневые 
планы фиксировались через каждые 5–10 см, вплоть до глубины в 75 см. 
Каждый уровень был сфотографирован общим планом с помощью квадро-
коптера, а иногда дополнительно – фотоаппаратом по фрагментам с после-
дующим сшиванием в Agisoft PhotoScan 1.4.3. Также фотографировались 
стратиграфические срезы стенок раскопов. 

Для проведения морфометрического анализа были использованы четы-
ре сектора селища Кулунигый 5 и четыре траншеи могильника Кулуни-
гый 73. Общая площадь раскопок составила 158 м2. Было проанализирова-
но 76 горизонтальных срезов, общая площадь которых достигла 1653 м2. 
Объём выработки составил 126 м3, что эквивалентно 196 почвенным разре-
зам глубиной и шириной по 80 см. Площадь вертикальных срезов состави-
ла 119 м2, что сопоставимо с площадью 186 рабочих стенок почвенных 
разрезов. 

Первый этап работы заключался в обработке фотографий путём выде-
ления контуров следующих горизонтов и морфонов: (1) О – органогенных, 
(2) Е – подзолистых, (3) Еh – контактно-иллювиально-гумусовых, (4) BF1 и 
(5) BF2 – иллювиально-железистых, (6) BC – переходных к почвообразу-
ющей породе, (7) Box – гидрогенно-ожелезненных, (8) [AY] – погребенных 
серогумусовых. Отметим, что на горизонтальных срезах горизонты обычно 
выглядят как крупные морфоны. 

Предварительно для отработки методики в программе ImageJ были 
опробованы 4 метода выделения границ перечисленных горизонтов: (1) руч-
ное выделение морфонов инструментом «свободное выделение»; (2) авто-
матическое выделение функцией Trashold; (3) предварительная подготовка 
изображения в программе Adobe Photoshop с последующим использова-
нием функции Trashold; (4) выделение функцией Color Threshold.  

Выявлено, что площадь ВС горизонта можно вычислить только косвен-
но по разнице общей и суммарной площади BF и E, что обусловлено слож-
ностью определения границ между E и BC горизонтами. Обработка изоб-
ражений перечисленными методами позволила получить следующие пло-
щади горизонтов в % для методов 1, 2, 3, 4 соответственно: BF – 
19/15/32/43, BC – 52/65/45/37, E – 27/20/23/20.  
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Рис. 1. Расположение объектов исследования: А – вид на место проведения  
археологических раскопок с дрона; B – расположение изученных археологических  
раскопов (красным) в микрорельефе с указанием абсолютных высотных отметок 
[Fig. 1. Location of the study objects: A - view of the archaeological excavation site from a drone;  

B - microtopographic location of the studied soil sections (red) indicating the altitude above sea level] 
 
В методах 1 и 2 площадь неучтенных участков фотографии среза оказа-

лась наибольшей, в связи с этим и завышенные результаты площади ВС го-
ризонта. При использовании методов 3 и 4 классификации поддаётся боль-
шая часть изображения среза. 

В случае использования в ImageJ функции автоматического выделения 
по цветовому диапазону (метод 4) возникает проблема невозможности 
применения одинаковых настроек ко всем фотографиям, так как условия 
освещения в момент фотографирования всегда разные. Также остаётся 
проблемой разделение E и BC горизонтов в связи со слабой контрастно-
стью. Метод 3 по сравнению с предыдущим более трудоемкий, так как за-
ключается в подготовке 5–6 вариантов одной фотографии с выделенными 
на них горизонтами в Adobe Photoshop для дальнейшего подсчета в ImageJ. 
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Длительность обработки компенсируется качеством, появляется возмож-
ность точнее обработать участки с тенью или бликами, непосредственно 
оценить площадь каждого горизонта, не прибегая к вычислению по разни-
це. В связи с этим был выбран метод 3, включавший предварительную 
подготовку фотографий в программе Adobe Photoshop СС 2018. 

Второй этап работы включал анализ полученных изображений. Для 
каждого морфона создавался отдельный файл, в котором искомый морфон 
окрашивался в белый, а фон – в черный цвет. Далее это бинаризованное 
изображение открывалось в программе ImageJ 1.45 и с помощью функции 
Threshold производилось выделение морфонов и их дальнейший анализ. 
Морфоны размером менее 4 см2 игнорировали. Для каждого среза рассчи-
тывали следующие показатели. (1) Количество всех морфонов в шт./м2 по 
глубинам срезов. (2) Количество морфонов каждого типа по глубинам сре-
зов. (3) Area, площадь в % от анализируемого среза. (4) Perimetr, периметр 
морфона в см. (5) AR, отношение большой оси к меньшей. (6) Circularity 
(Circ), изометричность формы (значение 1,0 говорит о том, что выделенная 
область является кругом; чем ближе значение к 0, тем более плоскую фор-
му имеет контур). Этот параметр чувствителен к пустотам в морфоне и 
неровностям границы. Параметр рассчитан по формуле  

4 areaCirc .
perimetr
π ⋅

=  

(7) Solidity, схож с Circ (R2
 = 0,84), но в отличие от него он игнорирует 

форму и волнистость границы, реагирует на наличие лопастей и пустот 
в морфоне. Параметр рассчитан по формуле  

area
Solidity .

perimetr (2 )
π

=
π

 

(8) Roundness (Round), показатель округлости внешнего контура, игно-
рирует пустоты в морфоне и форму границы контура. Параметр рассчитан 
по формуле  

4 areaRound .
major axis
⋅

=
π ⋅

 

Статистическая и графическая обработка проведена в программах MS 
Excel 2019, STATISTICA 12, Grapher 15. Три образца углей были датирова-
ны в Познанской радиоуглеродной лаборатории (Poz) Университета имени 
Адама Мицкевича (Познань, Польша). Калибровка радиоуглеродного воз-
раста проводилась с помощью онлайн-версии OxCal 4.4 на основе калиб-
ровочной кривой IntCal20 для Северного полушария [48]. 

 
Результаты исследования 

 
Морфоаналитическая характеристика почв гривы и западины. Морфо-

логический анализ горизонтальных и вертикальных срезов почв позволил 
выявить следующие почвенные морфологические элементы (горизонты) 
(рис. 2, 3): 
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О – органогенные морфоны, смесь белесо-серого песка, углей и детрита 
разной степени разложения. На горизонтальных срезах имеют вид неболь-
ших пятен. 

Е – подзолистый горизонт, белесый песок в верхней части профиля на 
вертикальном сечении имеет сплошное простирание, относительно ровную 
верхнюю границу, за исключением случаев с механическим нарушением 
строения профиля. Нижняя граница горизонта волнистая, часто формирует 
разнообразные карманистые и языковатые структуры. 

Eh – контактный подзоло-иллювиально-гумусовый морфон. На верти-
кальном срезе выглядит как серая или темно-серая полоска шириной 2–
6 см на контакте горизонтов E–BF1 или E–BF2. На горизонтальном срезе 
выглядит как кайма вокруг E морфонов. 

BF1 (иллювиально-железистый горизонт) – 5–6 см полоса, ниже Eh, E и 
реже O горизонтов. Имеет интенсивную темно-охристую окраску, часто по 
нижней границы встречаются железисто-марганцевые микроконкреции. 

 

 

Рис. 2. Горизонты и морфоны профилей изученных почв:  
a – подзол иллювиально-железистый языковатый на гриве;  

b – подзол иллювиально-железистый языковатый глееватый в западине 
[Fig. 2. Horizons and morphons of the studied soil profiles: a - Glossic Albic Podzol (Lamellic)  

on the ridge; b - Glossic Stagnic Albic Podzol in the depression] 
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Рис. 3. Горизонты и морфоны профилей изученных почв: а – горизонтальный срез 
с морфонами О, E, Eh, BF1, BF2, BC; b – горизонтальный срез с морфонами E, [AY], 

BF1, Box, BC; c – профиль траншеи с морфонами O, E, BF1, BF2, [AY], BC;  
d – профиль с псевдофибрами; e – горизонтальный срез с морфонами  

[AY], BF1, Box, BC 
[Fig. 3. Horizons and morphons of the studied soil profiles: a - horizontal section of morphons O, E,  

Eh, BF1, BF2, BC; b - horizontal section of morphons E, [AY], BF1, Box, BC; c - trench profile  
demonstrating the configuration of morphons O, E, BF1, BF2, [AY], BC; d - profile showing  

the distribution of lamellae; e - horizontal section of morphons [AY], BF1, Box, BC] 
 
BF2 – морфоны светло-охристой окраски имеют крупные размеры. На 

стратиграфическом срезе всегда находится под BF1 горизонтом. Данный 
тип морфонов обладает слабоконтрастными границами по отношению к 
BF1 и BC морфонам. 
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Box – гидрогенно-ожелезненные ржаво-охристые морфоны описаны в 
почвах западин (см. рис. 2b, 3b, 3e) в почвенном профиле имеют вид круп-
ных пятен яркого-ржавого охристого цвета. Обычно они приурочены к BC 
горизонту реже к BF1 и BF2, в этом случае имеют плохо различимые грани-
цы. 

BC – светло-палевый песок, в некоторых случаях он может иметь слои-
стую структуру, слабый охристый оттенок, псевдофибры. 

[AY] – погребенные серогумусовые морфоны сохранившиеся от серогу-
мусовой стадии почвообразования. В горизонтальном и вертикальном се-
чении представляют собой крупные песчаные морфоны серого цвета, если 
они находятся в BC горизонте. Часто на данный тип может накладываться 
более позднее гидрогенное или иллювиальное ожелезнение, что приводит 
к усилению интенсивности окраски обоих типов морфонов. Из этих мор-
фонов были отобраны образцы древесного угля для радиоуглеродного ана-
лиза. Полученные результаты показали раннеголоценовый возраст: 7801 ± 

60, 8346 ± 59, 8546 ± 64 кал. л. н. (табл. 1). Значит, эти морфоны унаследова-
ны от почв первой половины голоцена. 

Псевдофибры – полосы, к которым в большинстве случаев приурочена 
смена гранулометрического состава. Имеют светло- и темно-охристую 
окраску и толщину, варьирующуюся в пределах 0,5–3 см. Ламели приуро-
чены к BC горизонту. 

E, BF1, BF2 и BC горизонты присутствуют в почвах двух изученных 
форм рельефа, но имеют разную глубину нижней границы (табл. 1 в При-
ложении 1; рис. 4). Глубина нижней границы этих горизонтов статистиче-
ски не различается. 

В каждой форме рельефа имеются топоприуроченные типы морфонов. 
Псевдофибры характерны только для почв гривы, в основном они присут-
ствуют в BC горизонте, имеют различную интенсивность окрашивания и 
толщину. Иногда они могут находиться и в BF2 горизонте, однако в этом 
случае они или проявляются очень слабо, или сильно нарушены ветровала-
ми и корнями (см. рис. 3d). 

 
Таблица 1 [Table 1] 

Результаты радиоуглеродного датирования углей из горизонтов [AY] 
[Results of radiocarbon dating of coals from horizon [AY]] 

 

Лаб. 
шифр 
[Lab 
code] 

Разрез 
[Soil 

profile] 

Глубина, 
см 

[Depth, 
cm] 

Радиоуглеродный 
возраст, л. н. 

[Radiocarbon age, 
BP] 

Калиброванный радиоуглерод-
ный возраст, кал. лет назад 

[Calibrated radiocarbon age,  
cal. yr. BP] 

Среднее 
[Average] 

От 
[From] 

До 
[To] % 

Poz-
145308 Ку20-2 57 7780 ± 50 8546 ± 64 8645 8420 95,4 

Poz-
145310 Ку20-2 65 7550 ± 50 8346 ± 59 8424 8200 95,4 

Poz-
145311 Ку20-3 75 6970 ± 40 7801 ± 60 7926 7692 95,4 
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Рис. 4. Глубины нижних границ горизонтов. По оси х – глубины, по оси y – горизонты 
(медиана, нижние верхние квартили, минимум, максимум) 

[Fig. 4. Depths of lower boundaries of horizons. Оn the x-axis depths are shown, and on the y-axis  
horizons are shown (median, lower and upper quartiles, minimum, maximum)] 

 
В почвах западины встречаются Box и [AY]. Первые встречаются в поч-

венных профилях в виде пятен в диапазоне глубин 20–70 см, максимальное 
их количество приурочено к 50 см. Вторые, погребенные серогумусовые, 
встречаются в диапазоне глубин 20–75 см и глубже (рис. 5). 

Почвы западин характеризуются повышенными концентрациями угле-
рода, железа и алюминия, демонстрируя элювиально-иллювиальный харак-
тер распределения (табл. 2). В горизонтах E и Eh содержание Сорг варьиру-
ется от 0,12% до 0,43% в почвах западин, тогда как в почвах грив этот по-
казатель не превышает 0,28% в горизонте Eh. Горизонты BF1 (0,50–0,57%) 
и BF2 (0,11–0,16%) имеют близкие значения. Наиболее низкие показатели 
характерны для горизонтов Е, [AY], BC, не превышающие 0,12%. Содер-
жание аморфного железа достигает максимума в горизонте BF1, причем в 
почвах грив концентрация этого элемента в 1,5 раза превышает значения, 
характерные для почв западин. Распределение алюминия имеет обратную 
тенденцию: наибольшие концентрации наблюдаются в почвах западин, где 
его содержание достигает 0,83%.  

 

 
 

Рис. 5. Морфоны [AY] в изученных почвах западин на вертикальном  
и горизонтальном срезах 

[Fig. 5. Morphons [AY] in the studied soils of depressions on vertical and horizontal sections] 
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Характеристика морфонов на горизонтальных срезах. В почвах обеих 
форм рельефа наибольшее количество морфонов приурочено к средней 
части профиля, рис. 6a. Крупные и редкие морфоны расположены на верх-
них срезах до глубины 20 см, рис. 6b. Суммарная площадь морфонов с 
наименьшей педогенной переработкой материала (BC, BF2, Box) посте-
пенно увеличивается к нижней части профиля, рис. 6c (табл. 2 в Приложе-
нии 1). 

Грива и западина не имеют достоверных различий между средними раз-
мерами всех морфонов и площадями морфонов с наименьшей педогенной 
переработкой материала, однако достоверно различаются по количеству 
морфонов (табл. 3 в Приложении 1). 

Крупные и многочисленные морфоны органогенного горизонта сосре-
доточены в верхней части профиля (рис. 7a, 7b), проникая вплоть до глу-
бин 50 см. Морфоны О между почвами гривы и западины по площади и 
количеству не различаются (табл. 7 в Приложении 1). E горизонт (рис. 7c, 
7d) в верхней части профиля имеет крупные единичные морфоны. С глу-
биной количество E морфонов увеличивается (максимум на 25 см), а пло-
щадь уменьшается. По площади E морфонов грива и западина не различа-
ются, за исключением глубины 15 см (p = 0,03, U = 0,0). По количеству 
морфонов грива и западина разделились, однако при сравнении по глуби-
нам различая только на 35 см (p = 0,06, U = 1). Eh морфоны (рис. 7e, 7f) на 
гриве не отличаются от западины ни по площади, ни по количеству мор-
фонов. 

 

 
 

Рис. 6. Изменение по глубине в подзолах гривы (1) и западины (2): a – среднего  
количества морфонов всех типов на м2 среза (штук/м2); b – средней площади  

единичного морфона от площади среза в % на основе усреднения морфонов всех типов; 
c – сумма площадей (в % от площади изученного среза) наименее переработанных  

почвообразованием горизонтов BC, BF2 на гриве и BC, BF2, Box в западине 
[Fig. 6. Variation with depth in Podzols ridge (1) and depression (2): a - average number of all morphons 

per m2 of section (pieces/m2); b - average area of a single morphon from the section area in % based  
on averaging of morphons of all types; c - sum of areas (in % of the area of the studied section) of the 

least transformed by soil processes horizons BC, BF2 on the ridge and in BC, BF2, Box in the depression] 
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Рис. 7. Распределение по глубинам средних площадей горизонтов (%) и среднего коли-
чества морфонов (шт./м2) горизонтов O (a, b), E (с, d), Eh (e, f), BF1 (g, h), BF2 (i, j), BC 

(k, l) на гриве (1) и в западине (2). Распределение по глубина средних площадей (m)  
и среднего количества морфонов на м2 (n) Box (3) и [AY] (4) в западине 

[Fig. 7. Distribution by depth of average areas (in %) and average number of morphons (pieces/m2)  
of horizons O (a, b), E (c, d), Eh (e, f), BF1 (g, h), BF2 (i, j), BC (k, l) on the ridge (1)  

and in the depression (2). Distribution by depth of average areas (m) and average number  
of morphons per m2 (n) for Box (3) and [AY] (4) in the depression] 
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Наибольшую площадь Eh занимает на 25 см (табл. 4 в Приложении 1), 
максимальное количество этих морфонов в западине приурочено к 25 см, а 
на гриве – к 45–55 см (табл. 5 в Приложении 1). По средней площади и ко-
личеству BF1 морфонов (см. рис. 7g, 7h) между гривой и западиной нет 
различий. По BF2 морфонам (см. рис. 7i, 7j) почвы гривы и западины не 
различаются, а площадь максимальна на 35 и 45 см соответственно (табл. 4 
в Приложении 1). Сравнение по глубинам BC морфонов выявило разницу 
средней площади морфона на глубине 45 и 55 см (p = 0,03, U = 0 и p = 0,06, 
U = 1). В отличие от почв гривы в западине BC морфоны начинают появ-
ляться уже в верхней части профиля (см. рис. 7k, 7l). 

Окисленно-глеевые морфоны редкие, появляются только в нижней ча-
сти профиля (см. рис. 7m, 7n и табл. 6 в Приложении 1). Погребенные се-
рогумусовые морфоны [AY] (см. рис. 7m, 7n) залегают глубже 40 см, до-
стигая максимальной площади на срезе 55 см, а максимального количества 
на 45 см (табл. 6 в Приложении 1). 

Морфометрическая характеристика отдельных типов морфонов. 
Морфометрические показатели органогенного горизонта гривы и западины 
(рис. 3в в Приложении 2) статистических различий не имеют (табл. 8 в 
Приложении 1). Solidity (рис. 3d в Приложении 2) имеет схожее распреде-
ление по профилю. Морфоны на гриве имеют более округлую форму 
(рис. 3a в Приложении 2). Эллипсоидность или вытянутость морфонов ва-
рьируется в широких пределах (рис. 3b в Приложении 2). Периметр морфо-
нов (рис. 3e в Приложении 2) уменьшается к нижней части профиля. 

Геометрия E морфонов (рис. 4 в Приложении 2) между гривой и запади-
ной не различается (табл. 8 в Приложении 1). AR (рис. 4b в Приложе-
нии 2), Roundness (рис. 4c в Приложении 2) незначительно меняются по 
профилю. На гриве встречаются достаточно вытянутые морфоны на глуби-
не 65 см (рис. 4b в Приложении 2). Контур элювиальных морфонов на гри-
ве более волнистый (рис. 4a в Приложении 2). Периметр морфонов умень-
шается с глубиной (рис. 4e в Приложении 2). 

Морфоны BF1 имеют овальную форму (рис. 5b, 5c в Приложении 2), по 
профилю AR (рис. 5b в Приложении 2) и Roundness (рис. 5c в Приложе-
нии 2) распределены равномерно. В западине морфоны более округлые, 
чем на гриве (табл. 8 в Приложении 1, рис. 5a в Приложении 2). Высокие 
значения Solidity указывают на отсутствие «дыр» в морфонах обеих форм 
рельефа (рис. 5d в Приложении 2). Периметр (рис. 5e в Приложении 2) от-
личается сильной вариативностью. 

BF2 горизонт обладает таким же распределением и значением морфо-
метрических показателей, как и BF1 за исключением нескольких отличий 
(табл. 8 в Приложении 1, рис. 6 в Приложении 2). Circularity (рис. 6a в 
Приложении 2) в западине больше, чем на гриве на всех глубинах. На сре-
зах 45 см в почвах гривы морфоны более вытянутые (рис. 6b в Приложе-
нии 2). Периметр BF2 (рис. 6e в Приложении 2) меняется на гриве в более 
широком диапазоне. В основном представляет собой изометричные фор-
мы, которые не имеют большого количества лопастей и пустот (рис. 6d в 
Приложении 2). 
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ВС морфоны между почвами гривы и западины отличаются по двум па-
раметрам Circularity и Solidity (табл. 8 в Приложении 1). Форма морфонов 
в западине по сравнению с гривой ближе к кругу (рис. 7a в Приложении 2) 
по всему профилю, за исключением 35 см, там кривые пересекаются. 
В почвах гривы и западины ВС представлен сложными морфонами изомет-
ричной формы (рис. 7с в Приложении 2), которые имеют плавные границы 
(рис. 7d в Приложении 2) и небольшое количество полостей (рис. 7с, 7b в 
Приложении 2). 

Морфометрические показатели Eh горизонта (табл. 8 в Приложении 1, 
рис. 8 в Приложении 2) достоверно различаются только по Roundness 
(рис. 8с в Приложении 2). Округлость внешнего контура морфонов на гри-
ве выше, чем в западине. Низкие значения Circularity (рис. 8a в Приложе-
нии 2) и Solidity (рис. 8d в Приложении 2) обусловлены наличием крупных 
полостей. На гриве округлость постепенно снижается к нижней части про-
филя, в то время как в западине этот показатель дифференциации не имеет. 
Вытянутость морфонов меняется незначительно (рис. 8b в Приложении 2). 
Периметр морфонов к нижней части профиля уменьшается, максимальные 
значения на гриве и в западине приходятся на разные глубины (рис. 8e в 
Приложении 2). 

В средней части профиля Box морфоны более округлые (рис. 9a в При-
ложении 2). Box морфоны имеют плавные очертания (рис. 9d в Приложе-
нии 2), изометричную вытянутую форму (рис. 9b, 9c в Приложении 2). 
[AY] морфоны имеют вытянутую (рис. 9a в Приложении 2) овальную 
форму (рис. 9b в Приложении 2) с плавными ровными границами (рис. 9d в 
Приложении 2), не имеют пустот (рис. 9c в Приложении 2). 

В табл. 9–15 (Приложение 2) для всех горизонтов приведены морфо-
метрические параметры изученных морфонов по двум формам рельефа. 

Анализ морфометрических данных методом главных компонент был 
проведён для двух выборок. Первая выборка представляла собой морфо-
метрические параметры и глубины залегания для 23 137 морфонов гривы и 
западины (рис. 10a, 10с в Приложении 2). Её анализ позволил выделить 
три кластера: параметры (Rnd, Sld, Cr), положительно скоррелированные с 
первым и вторым фактором; положительно – с первым и отрицательно со 
вторым фактором (Ar, ArT, P); отрицательно – с двумя факторами (D, AR). 
Видно, что большая часть морфонов в почвах гривы и западины в этих 
факторах распределена одинаково (рис. 10a в Приложении 2). Выделяется 
небольшая группа морфонов западины, отличающаяся размерами и слож-
ностью формы. Наиболее круглые морфоны залегают глубже по почвен-
ному профилю и имеют небольшой размер. Крупные морфоны имеют бо-
лее вытянутую форму. Вторая выборка состояла из средних значений мор-
фонов для каждого среза всех индивидуальных секторов и траншей раско-
пов. Кластеризация параметров оказалась менее выраженной (рис. 10b, 10d 
в Приложении 2). 

Далее проанализировали распределение отдельных горизонтов в про-
странстве двух выявленных факторов. При рассмотрении индивидуальных 
морфонов видно их схожее распределение, копирующее групповой общий 
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паттерн. Выбиваются только морфоны Box горизонта (рис. 11 в Приложе-
нии 2). Однако различия в распределении морфонов в пространстве факто-
ров, полученном по выборке средних значений параметров на единичный, 
выражены сильнее (рис. 12 в Приложении 2). Особенно это заметно у E и 
BC, формирующих очень крупные контуры сложной формы. 

 
Обсуждение результатов 

 
Выполненная работа продолжает серию морфоаналитических исследо-

ваний песчаного почвообразования в континентальных условиях Западной 
Сибири [49–53]. Данное исследование сосредоточено на макроморфологи-
ческом уровне изучения результатов педогенеза в условиях хорошо филь-
трующих древнеэоловых песчаных отложений под бореальной раститель-
ностью в пределах речных среднетаёжных террас, имеющих довольно 
сложную климатическую историю почвообразования [54], осложненную 
антропогенными воздействиями древних обществ [47, 55], что нашло от-
ражение в пирогенных архивах района исследования [51]. Как отмечал 
В.Д. Тонконогов [56], при сильном колебании свойств почв на небольшом 
пространстве, как это наблюдается для подзолов, характер пространствен-
ных закономерностей изменения свойств почв и причин, их обуславлива-
ющих, может быть установлен достаточно достоверно только количе-
ственными методами исследования. 

Микротопография является важным фактором, контролирующим фор-
мирование катен на песчаных почвообразующих породах. В таких катенах 
в условиях гумидного климата при движении от верхних частей склонов 
к их подножьям происходит уменьшение мощности подзолистого горизон-
та и увеличение мощности иллювиального, одновременно с ростом содер-
жания в нём органического вещества. Такие закономерности расположения 
подзолистых катен характерны для разных континентов и климатических 
условий [57, 58]. Главную роль в формировании подобных катенарных 
сочетаний отводят латеральной подзолизации [59], в ходе которой вдоль 
склона мигрируют алюмо-железо-органические коллоиды. 

Рассмотренное сопряжение подзолов по микрорельефу развивается на 
перепаде высот 3,1 м в условиях коротких склонов от гривы к центру запа-
дины. Это небольшой перепад, поэтому латеральная подзолизация прояви-
лась в изученном сопряжении не столь ярко, как это описывается в литера-
туре для длинных склонов. В почве гривы площадь морфонов E горизонта 
была больше до глубины 35 см, ниже площадь этих морфонов больше уже 
в западине до глубины 55 см, после чего они сравниваются (см. рис. 7; 
табл. 4 в Приложении 1). Такое изменение можно объяснить большим про-
никновением по языкам водных растворов в условиях западины. Хотя в 
приповерхностной части условия складываются для оподзоливания лучше 
на гриве, как это и бывает наиболее часто [29, 50, 57–59]. Если рассматри-
вать глубину нижней границы горизонтов E и BF1 как показатель степени 
оподзоливания, то заметна лишь тенденция к более близкому расположе-
нию этих границ к поверхности почвы (см. рис. 4). 
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Неожиданным результатом оказалось глубокое проникновение морфо-
нов О горизонта, который является поверхностным. Он фиксировался 
вплоть до глубины в 65 см, хотя его площадь и упала ниже 1% с глубины 
35 см. Такое расположение этого горизонта связано с корневыми ходами и 
западинами ветровалов, в которые погружены эти морфоны. 

Самые яркие и характерные морфоны, осложняющие горизонтное стро-
ение подзолов средней тайги Западной Сибири – языки и карманы [30]. 
В средней тайге языки в основном биогенного и фильтрационного элюви-
ально-иллювиального происхождения [51], севернее широко распростра-
нены языки криогенного происхождения [60]. Полученные данные в пол-
ной мере отражают эту особенность строения. Так, если в среднем глубина 
нижней границы горизонта E укладывается в 20–25 см (см. рис. 4, 7с), по-
сле чего площадь Е морфонов резко уменьшается. То количество этих 
морфонов, наоборот, возрастает, имея максимум на глубине 25 см. На гри-
ве их количество на этой глубине больше в 2 раза, чем в западине. Ниже 
происходит плавное падение их числа. На глубине 75 см в почвах гривы 
встречаемость языков составляет в среднем 1,7 ± 0,2 шт./м2, а в западине 
0,5 ± 0,8 шт./м2. При этом размер, если его оценивать по периметру, больше 
у языков западины, что также подтверждает большее количество мигри-
рующих вод по этим преимущественным путям миграции влаги. 

Впервые для подзолов описан контактный подзоло-иллювиально-гуму-
совый Eh морфон, залегающий всегда между горизонтами E и BF1 (см. 
рис. 3a и рис. 7e, 7f). Толщина его на вертикальном срезе превышает 2 см 
только лишь в языках, где он достигает мощности нескольких см. При ана-
лизе литературы не удалось найти описание данного морфона. Его анали-
тические свойства показывают накопление в нём в основном углерода ор-
ганических соединений, в отличие от горизонта BF1, где резко увеличено 
содержание оксалатно-растворимого железа, в сравнении с E горизонтом. 
Отмечено, что этот морфон отсутствует в местах недавних ветровальных 
нарушений. Возможно, его формирование связано с адсорбцией органиче-
ских коллоидов на контакте с BF1 горизонтом [61], песчаные зерна кото-
рого покрыты железистыми пленками. 

В поведении иллювиально-железистых горизонтов прослеживают об-
щие черты для обеих форм рельефа. На гриве заметно большее количество 
BF1 морфонов (см. рис. 7g, 7h), как и E морфонов, связанных с языками. 
Их максимум в почвах гривы смещен вглубь относительно максимума в 
западине. Число языков в почвах гривы больше, а размер их меньше. Чис-
ло BF2 морфонов в почвах гривы и западины схоже, а вот размер уже 
больше в почвах гривы. Максимум площади BF2 горизонта в западине 
расположен на 10 см выше, чем в почве гривы. Это связано с появлением 
морфонов Box в почве западины, с максимумом площади в диапазоне глу-
бин 55–65 см. 

Кроме Box, вторым топоприуроченным морфоном является погружен-
ный серогумусовый [AY] материал реликтового горизонта первой полови-
ны голоцена, о чём свидетельствует возраст древесных углей, извлеченных 
из этих морфонов (см. табл. 1). И хотя в средней тайге Западной Сибири 
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гумусовые голоценовые реликты только начали изучаться [62], учитывая 
общий контекст распространения вторых гумусовых горизонтов на Во-
сточно-Европейской равнине и в Западной Сибири [63], предсказуемым 
является и их встречаемость в среднетаёжных почвах, что демонстрируют 
полученные данные. Площадь реликтов [AY] достигает 10,4 ± 1,9% на го-
ризонтальном срезе на глубине 55 см (см. рис. 7m). Полученные результа-
ты свидетельствуют, что дальнейшие поиски гумусовых реликтов целесо-
образнее всего проводить в микропонижениях, где они лучше сохраняют-
ся, будучи защищенными капиллярной каймой. 

Полученные геометрические параметры почвенных морфонов свиде-
тельствуют об их парагенезисе, что наглядно показал метод главных ком-
понент (рис. 11 в Приложении 2). Лишь в западине выделена группа мор-
фонов, отличающаяся размерами и сложностью формы. Это морфоны Box 
горизонта, имеющего иной генезис. Остальные морфоны имеют не только 
близкие геометрические параметры, но и размеры, совпадающие с разме-
ром корневых систем деревьев. 

В формировании морфологических паттернов в подзолах иных регио-
нов мира основное участие принимают процессы, связанные с жизнью кор-
невых систем деревьев, их отмиранием и движением воды по сформиро-
ванным преимущественным путям миграции влаги [19, 64, 65]. Ранее для 
ключевого участка мы описали основные фитогенные морфологические 
структуры подзолов [51], а для более северных районов показали глубокие 
ветровальные нарушения почв сосной обыкновенной [66]. 

Проведенная работа подтвердила, что в распределении морфонов по 
профилю, изменении их формы с глубиной принимают участие три основ-
ных агента, связанных с биомеханикой и параллельной гидролого-биогео-
химической дифференциацией. 

Первый – это проникновение корневых систем вглубь. Благодаря этому 
формируются многочисленные глубокие языки округлой формы в горизон-
тальном сечении. Второй – ветровальные нарушения почв, приводящие к 
формированию крупных вытянутых или округлых, эллипсовидных струк-
тур. Эти два агента отвечают и за проникновение морфонов O горизонта 
вплоть до глубин 60 см. Морфоны горизонта BC благодаря ветровалам 
встречаются уже на глубине 15 см. Можно предположить большую актив-
ность ветровального морфогенеза в западинах, так как площадь BC морфо-
нов выше в верхней части почв западин в сравнении с аналогичными глу-
бинами почв на гриве. Все геометрические параметры показали заметную 
изометричность, округлость описанных морфонов. Третий – это элювиаль-
но-иллювиальная дифференциация по корневым ходам и ветровальным 
почвенным комплексам. Благодаря этим процессам происходят расшире-
ние исходных нарушений, а также их углубление, в том числе и ниже 50 см 
горизонтов E, BF1 и BF2. 

Проведенный морфоаналитический анализ подзолов демонстрирует пер-
спективность данного подхода для оценки внутрипочвенной неоднородно-
сти, в том числе и связанной с содержанием углерода. Выполненная работа 
расширяет представление о генезисе западносибирских среднетаежных 
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подзолов. Дополнительно данный подход можно применять и для более 
точных референсных расчётов запасов почвенного органического углерода 
и сопряженных с ним химических элементов. Предложенный подход мог 
бы быть применен и в иных природных зонах. Однако в представленной 
методологии работа является весьма трудоемкой, и на современном техно-
логическом этапе её вполне можно автоматизировать благодаря алгорит-
мам искусственного интеллекта.  

 
Заключение 

 
На основе материалов археологических раскопов разработан и успешно 

апробирован метод цифрового макроморфометрического анализа почвен-
ных срезов с использованием программ Adobe Photoshop и ImageJ. Полу-
чены количественные данные о распределении и геометрических парамет-
рах (площадь, периметр, форма) морфонов генетических горизонтов (O, E, 
Eh, BF, BC, Box, [AY]) в подзолах западносибирской средней тайги. Уста-
новлены статистически значимые различия в составе и строении почв двух 
сопряженных форм микрорельефа (грива, западина). В почвах западин ди-
агностированы гидрогенно-ожелезнённые (Box) и реликтовые погребён-
ные серогумусовые ([AY]) морфоны раннеголоценового возраста, а на гри-
вах – псевдофибры. Показано, что формирование сложной морфонной ор-
ганизации подзолов является результатом совместного воздействия трёх 
основных агентов: проникновения корневых систем деревьев, ветроваль-
ных нарушений почвы и последующей элювиально-иллювиальной диффе-
ренциации вещества по созданным биогенным проводящим путям. Под-
тверждена перспективность цифрового морфометрического подхода для 
объективной количественной оценки пространственной неоднородности 
почвенного профиля, что открывает новые возможности для реконструкции 
генезиса почв и уточнения запасов почвенного органического углерода. 

 
Приложения 1, 2 доступны по ссылке https://doi.org/10.17223/19988591/72/1 
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