
99

ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА
2014 Управление, вычислительная техника и информатика № 3 (28)

UDK 004.312

Raimund Ubar

FAULT EFFECT REASONING IN DIGITAL SYSTEMS BY TOPOLOGICAL VIEW
ON LOW- AND HIGH-LEVEL DECISION DIAGRAMS

To memory of my opponent Arkadi Zakrevski

In order to cope with complexity of diagnostic reasoning of today's digital systems, hierarchical multi-level
approaches should be used. In this paper, the possibilities of using Decision Diagrams (DD) for uniform
diagnostic modeling of digital systems at different levels of abstraction are discussed. Binary Decision
Diagrams (BDD) have become the state-of-the-art data structure in VLSI CAD. A special class of BDDs is
presented called Structurally Synthesized BDDs (SSBDD). The idea of SSBDDs is to establish one-to-one
mapping between the nodes of SSBDDs and signal paths in gate-level networks, which allows to investigate
and solve with SSBDDs test and diagnosis problems directly associated with structural aspects of circuits, like
fault modeling, fault collapsing, fault masking, delays, hazards. The main concept of SSBDDs lays on
exploiting the topology of graphs for fault reasoning which allows to generalize the methods of test synthesis
and fault analysis from the Boolean level to higher register-transfer or behavior levels of hierarchy by
introducing a novel High-level DDs (HLDD).
Keywords: Binary Decision Diagrams (BDD); structurally synthesized BDD (SSBDD); shared SSBDD
(SSSBDD); high level DD (HLDD); test generation and fault diagnosis.

Within the last two decades BDDs have become the state-of-the-art data structure in VLSI CAD for

representation and manipulation of Boolean functions. BDDs were first introduced for logic simulation in
1959 [1], and for logic level diagnostic modeling in [2, 3]. In 1986, Bryant proposed a new data structure
called reduced ordered BDDs (ROBDDs) [4]. He showed the simplicity of the graph manipulation and
proved the model canonicity that made BDDs one of the most popular representations of Boolean functions
[5, 6]. Different types of BDDs have been proposed and investigated during decades such as shared or multi-
rooted BDDs [7], ternary decision diagrams (TDD), or in more general, multi-valued decision diagrams
(MDD) [8], edge-valued BDDs (EVBDD) [7], functional decision diagrams (FDD) [9], zero-suppressed
BDDS (ZBDD) [10], algebraic decision diagrams (ADD) [11], Kronecker FDDs [12], binary moment
diagrams (BMD) [13], free BDDs [14], multiterminal BDDs (MTBDD) and hybrid BDDs [15], Fibonacci
decision diagrams [16] etc. Overviews about different types of BDDs can be found in [5, 6, 17].

Traditional use of BDDs has been functional, i.e. the target has been to represent and manipulate the
Boolean functions by BDDs as efficiently as possible. Less attention has been devoted to representing with
BDDs the structural aspects of circuits. Such a goal was first set up in [2, 18] and realized by introducing a
possibility for one-to-one mapping between the nodes of BDDs and signal paths in the related circuit.
A special class of BDDs was introduced, called initially alternative graphs (AG) [2]. Later AG was renamed
as structurally synthesized BDD (SSBDD) [18, 19] in accordance to the way how they were synthesized -
directly from the gate-level network structure of logic circuits.

The direct mapping between SSBDDs and circuits allows to model different test related objectives and
relations of gate level networks like signal paths, faults in gates or connections, delays on paths, fault
masking, fault equivalence and dominance, etc. These issues are difficult to model and simulate explicitly
with “classical” BDDs.

Whereas logic level test and diagnosis methods are well developed, this is not the case for higher level
test approaches based on abstract execution graphs, system graphs, instruction set architecture (ISA)

100

descriptions, flowcharts, hardware description languages (HDL, VHDL, Verilog, SystemC), or Petri nets for
complex digital systems. Most of these modeling tools are not well suited for reverse simulation and effect-
cause reasoning in digital systems. They also need specialized and dedicated for the given language fault
proccessing and reasoning algorithms, which makes it difficult to develop hierarchical approaches for test
synthesis, fault analysis and diagnosis. HDL based modeling methods, which are efficient for simulation
purposes, do not support analytical reasoning and analysis that is needed in test generation and fault
diagnosis.

To overcome this gap, High-Level DDs [HLDD] were introduced as extension of BDDs [18,19]. The
topological basis of test algorithms developed for SSBDDs allows to extend these algorithms in a rather
straightforward way from logic level to high level. The class of node variables in DDs was extended from
Boolean to Boolean vectors and to integer variables, whereas the class of Boolean functions was extended to
data manipulation operations typically used in high-level descriptions of digital systems.

The rest of the paper is organized as follows. Section 2 presents the SSBDD as a structural model for
gate-level ciruits. In Section 3, the main ideas of test generation and fault reasoning based on the topological
view on SSBDDs are discussed. Section 4 demonstrates the possibility of using SSBDDs for reasoning
multiple faults and for detection of fault masking. An extension of SSBDD model by introducing shared
SSBDDs is discussed in Section 5. An overview of generalization of logic level DDs for higher abstraction
levels to represent complex digital systems is given in Section 6. Finally, Section 7 discusses the ideas of
using HLDDs for automatization of hierarchical test program synthesis for digital systems at RTL and ISA
levels, and Section 8 concludes the paper.

1. S SBDD – a model for gate-level circuits

Let us have a gate level combinational circuit with fan-outs only at inputs. Consider the maximum fan-

out free region (FFR) of the circuit with inputs at the fan-out branches and fan-out free inputs. Let the
number of the inputs of FFR be n. For such a tree-like sub-circuit we can create by superposition of BDDs of
gates an SSBDD with n nodes [19].

Fig. 1. Combinational circuit and its SSBDD

Example 1. In Fig. 1 we have a circuit with a FFR-module which can be represented by a Boolean
expression:

11 12 12 31 4 13 22 32() ()y x x x x x x x x 

101

and the SSBDD for the FFR part of the circuit. The literals with two indexes in the formula and in the
SSBDD denote the branches of fan-out stems, and represent signal paths in the circuit. In this example, there
are only two branches for each fan-out, the second index 1 is for the upper branch in the circuit, and the
second index 2 is for the lower branch. For instance, the SSBDD node labeled by the variable xu represents
the bold signal path in the circuit. The variables in the nodes of SSBDD, in general, may be inverted. They
are inverted when the number of invertors on the corresponding signal path in the circuit is odd. The two
terminal nodes of the SSBDD are labeled by Boolean constants #1(truth) and #0(false). Let us agree that the
right hand edges are always labeled by value 1, and lower hand edges by 0.

Every combinational circuit can be regarded as a network of modules, where each module represents
an FFR of maximum size. This way of modeling the circuit by

BDDs allows to keep the complexity of the model (the total number of nodes in all graphs) linear to the
number of gates in the circuit. In Table 1, a comparison of numbers of nodes for representing ISCAS'85
circuits by ROBDD [20], FBDD [21], and SSBDD models is presented.

T a b l e 1

Comparison of sizes of different BDDs

As a side effect of the synthesis of SSBDDs, we build up a strict one-to-one mapping between the
nodes in SSBDDs and the signal paths in the modules (FFRs) of the circuit. The algorithm for synthesis of
SSBDDs is presented in [18, 19]. The optimization issues of SSBDDs are discussed in [22]. Different
properties of SSBDD which facilitate efficient processing of SSBDDs for test generation and fault diagnosis
purposes are discussed in [23].

Since all the stuck-at faults (SAF) on the inputs of an FFR form a collapsed fault set of the FFR, and
since all these faults are represented by the faults at the nodes of the related SSBDD, it follows that the
synthesis of an SSBDD, described in [18, 19] is equivalent to the fault collapsing procedure similar to fault
folding [24].

Direct relation of nodes to signal paths allows to handle with SSBDDs easily such problems like fault
modeling, fault collapsing, and fault masking.

2. Fault reasoning using topology of S SBDD

Consider an FFR-module of a circuit which implements a function у = f(X) where X is the set of input

variables of the module, and is represented by SSBDD with a set of nodes M. Let х(т)Х the variable at the
node mM, and let m0 and m1 be the neighbors of the node m for the assignments x(m) = 0 and x(m) = 1,
respectively.

102

Fig. 2. Topological view on testing of nodes on the SSBDD

Activation of SSBDD paths. Let Tt be a pattern applied at the moment t on the inputs X of the

module. The edge (m,me) in SSBDD, where е{0,1}, is called activated by Tt if х(m) = e. A path (m, n) is
called activated by Tt if all the edges which form the path are activated. To activate a path (m, n) means to
assign by Tt proper values to the node variables along this path.

Test generation with SSBDD. A test pattern Tt will detect a single stuck-at-fault (SSAF) х(m)  e,
е{0,1}, if it activates in the SSBDD three paths (Fig.2): a path (m0,m) from the root node to the node under
test, two paths (m0, #0), (m1, #1) for fault-free and faulty cases, and satisfies the fault activation condition
х(m) = e  1.

Assume e = 1. To simulate the test experiment for Tt, generated for the fault x(m)  1, first, the path
(m0,m) will be traced up to the node те which will "serve as a switch". If the fault is missing, the path (m0, #0)
will be traced, and if the fault is present, the path (m1, #1) will be activated.

Note, that a test pattern Tt for a node fault x(m)  e detects single SAFs on all the lines of the signal
path in the circuit, which is represented by the node те in SSBDD.

Example 2. Consider the fault x12  0 in the circuit of Fig.l, represented by the fault x(m) = x12  0 in
the SSBDD. To generate a test pattern Tt for x12  0, we have to activate three paths: (m0,m) = (x11 = l,
x21 = 0), (m1 ,#1) = (x11 = l, x31 = l, x4 = l, #1), and (m0, #0) = (x13 = l, #0). For the node under test we take x12 =
1 which means that the expected value of test will be у = 1. From this, the test pattern X' = (x1, x2, x3, x4)' =
1011 results. If the fault x12  0 will be present, the path (x11,x12,x13,#0) will be activated, and the value #0 in
the terminal node will indicate the presence of the fault.

Fault simulation and diagnosis with SSBDDs. For fault simulation of a test pattern X’ on the SSBDD
first, the path l = l(m0,mT) from the root node m0 to a terminal node mT  {#0, #1}, activated by the pattern
X’, is determined. Then, for each node m  l, whose successor m* does not belong to the path l, the path lm* =
= l(m*,mT*) will be simulated for the pattern X’. If mT*  mT then the fault of the node m is detected by X’,
otherwise not. Special properties called “direction rule” allow to define the nodes m  l, which can be
excluded from analysis to speed up the simulation [25].

Example 3. Consider a test pattern X' = (x1 x2, x3, x4)' = 1011 which activates the path l = (х11, x21, x12, x31
x4, #1) shown bold in Fig. 1. According to the algorithm described, we can find that by the given test pattern
the faults x12  0, x31  0, x4  0 can be detected.

The fault simulation procedure described can be used in fault diagnosis based on the effect-cause fault
location concept to locate the fault candidates.

103

Fig. 3 illustrates average speed-up achieved by using SSBDDs for different simulation algorithms like
logic simulation, fault simulation [26, 27], timing simulation [28] and multi-valued simulation [29]
compared to gate-level simulation algorithms. The fault simulation shows the most noticeable acceleration.
Other simulation algorithms vary in decreasing the runtime by 2,5 up to almost 4 times compared to
algorithms working on the gate-level netlist model. This effect is possible due to shift from lower gate level
to a higher macro level when working with SSBDD model (as macros, the FFRs are considered).

Fig. 3. Logic level simulation speed-up for different algorithms

SSBDDs facilitate well parallel processing of paths. This gave a possibility to develop extremely fast
exact parallel critical path tracing algorithms which exceed the speed of commercial fault simulators, used in
the industry [26, 27].

3. Multiple fault reasoning with SSBDDS

SSBDDs serve as an efficient tool for reasoning masking relationships in the presence of multiple

faults. The basis of such a reasoning is the topological analysis of changes in the activation of paths because
of faults.

A well known concept of test pairs [30–32] has been introduced for test generation which avoids fault
masking in case of possible multiple faults. Let us call two test patterns TP = (T0,T1) a test pair for testing a
node х(m), where T0 is for testing х(m)  0, T1 is for testing х(m)  1, and both patterns differ from each
other only in the value of х(m).

Consider a topology of an SSBDD in Fig.4a with the highlighted root node m0, two terminal nodes #0,
#1, and two faulty nodes a  0, c  1. The dotted lines represent activated paths during a test pair TP =
{T0,T1}which has the goal to test the node a. T0 is for activating the correct path L1 = (m0, a, #1) for detecting
the fault a  0 with expected test result #1. If the fault is present, instead of L1, a “faulty” path L0 = (m0,
a  0, c, #0) should be activated with faulty result #0. Thus, the fault a  0 should be detected.

In case of the masking fault с  1 on L0, a masking path LM = (m0, a  0, c  1, #1) will be
activated, and the fault under test a  0 will not be detected by T0. The role of the second pattern T1,
according to the test pair concept, is to activate the path L0 = (m0, a, #0) with two goals: (1) to detect a  1
(in the single fault case), or (2) to detect the masking fault с  1 (if the masking took place at T0). At T1 the
path LM should remain activated because of the masking fault c  1, and the wrong test result #1 will indicate
the presence of a fault in the circuit.

104

The added value of a test pair is that if both patterns will pass then the wire under test (and the whole
related signal path in the circuit) is proved to be correct at any present multiple fault.

Unfortunately, the described properties of the test pair will not always be sufficient for detecting
multiple faults. The topological view on SSBDDs allows to develop efficient algorithms to avoid fault
masking in multiple fault cases.

Fig. 4. Topological view on testing of nodes on the SSBDD

First, we show by simple reasoning of the topology of activated paths in SSBDDs why the test pairs
are not always working as expected. Consider once more in Fig.4b the same test pair case TP = {T0,Tt} in the
presence of the multiple fault {a  0, с  1}. Compared to Fig.4a, we have now additional node a on the
masking path LM, labeled by the same variable as the node under test a  0 (in grey). T0 will again show the
correct value #1 because of fault masking. At T1 the value of a was changed from 1 to 0 compared to T0.
Because of this change, instead of the masking path LM = (m0, a  0, c  1, #1), a new “demasking” path
L'M = (m0, a  0, c  1, a, #0) will be activated. Hence, both patterns will pass, and the multiple fault
remains undetected.

The main idea of the test pair concept is to keep the activation of the masking path stable during both
patterns. In Fig.4b, this condition is not fulfilled, since all the three paths, L1 for correct case, L0 for single fault
case (a  0), and LM for the multiple fault case (a  0, с v 1), involve the variable a under test, and the
changing value of a will make the activation of the masking path LM unstable.

In [33], a new method of test groups was developed and discussed which extends the method of test
pairs and removes its drawbacks. The method of test groups essentially is based on the topological analysis
of SSBDDs.

Example 4. Let us add, as an example, to TP a third pattern T2 for testing the node b (for b  1) on
L1. The goal of T2 is to keep the masking path LM= (m0, a = 1, b = 0, c 1, a=1, #1) again activated. The three
patterns T0 (for testing a  0 and b  0), T2 (for testing a  1) and T3 (for testing b  1) can be regarded
as a test group for testing two nodes a and b. In this example, the first two patterns will pass, however, the
pattern T2 will not pass, and detect the given multiple fault.

The test groups are targeting not a single SSBDD node, rather a selected subset of SSBDD nodes [33]
which represent a subcircuit of the given gate-level network. The main property and the main importance of
test groups is that they are robust with respect to multiple faults. In other words, from passing of a given test
group the correctness of the related subcircuit results. The test pair can be considered as a special case of the
test group which works in “special” cases.

4. Shared SSBDDS

In [34], a new type of SSBDDs called Structurally Synthesized Multiple Input BDDs or Shared SSBDDs
(SSSBDD) was introduced. The goal was to further compress the SSBDD model by exploiting the effect of
superposition of SSBDDs.

105

Fig. 5. Digital circuit c17 and its SSSBDD

Example 5. An example of a combinational circuit and its SSSBDD is presented in Fig.5. For
simplicity we omit the terminal nodes, and agree that leaving the graph to the right (down) means entering
the terminal node #1 (#0). The graph with 7 nodes represents only 14 collapsed stuck-at faults as targets for
test generation instead of 32 faults in the lines of the original gate-level circuit. The graph joins three
subgraphs for outputs yx and y2, and for internal node z2 with the shared subgraph with nodes x32 and x4.
The nodes x1 and x5 represent signal paths in the circuit from x1 to у1 and from x5 to y2, respectively. The node
x31 represents the path from the lower input of gi to yx. The node x2 represents the path from the upper input of
g1 to y1. The nodes x32 and x4 represent the paths from the inputs of g2 to both outputs у1 and y2. And, finally,
the node x22 represents the path from the upper input of g6 to y2. By bold lines in SSSBDD a path is shown,
which leads to assignments x1 = 0 and x3 = 0 for testing the bold path in the circuit from x2 to y1. More
detailed discussion of using SSSBDDs where the graphs for different output functions are merged into the
same graph can be found in [34].

Fig. 6. Comparison of complexities of SSBDDs and SSSBDDs

A comparison of the reduction of complexities for gate-level circuits, SSBDDs and SSSBDDs in terms

of fault collapsing was carried out for ISCAS'89 circuits. The differences in the number of nodes are shown

106

in Fig. 6. The average minimization gained for SSSBDDs in the number of nodes (and also in the size of
collapsed fault sets) is up to 2.4 times compared to the gate level, and up to 1.4 times compared to the
SSBDD model. The results prove that the SSSBDD model is more compact than the previously discussed
SSBDD or gate level models, and as the result allows better fault collapsing which in its turn has the
influence on the efficiency and speed of test generation and fault simulation.

5. Overview of high level DDS

The most important impact of the high-level DDs (HLDD) is the possibility of generalization and

extension of the methods for test generation, fault simulation and diagnosis, developed for logic level
circuits, to higher abstraction levels of digital systems using the uniform graph topology based formalism. For
this purpose, the class of variables was extended from Boolean ones to Boolean vectors or integer variables,
and the class of Boolean functions was extended to the data manipulation operations typically used in high-
level descriptions of digital systems.

Example 6. In Fig. 7, an example of a RTL data-path and its HLDD is presented. The variables R1 and
R2 represent registers, IN denotes the input bus, the integer variables y1, y2, y3, y4 represent control signals,
M1, M2, M3 are multiplexers, and the functions R1+R2 and R1*R2 represent the adder and multiplier,
respectively. Each node in the DD represents a subcircuit of the system (e.g. the nodes y1, y2, у3, y4 represent
multiplexers and decoders). The whole DD describes the behavior of the input logic of the register R2. To test
a node in the DD means to test the corresponding to the node component or subcircuit.

Depending on the class of the system (or its representation level), we may have various HLDDs where
the nodes have different interpretations and relationships to the system structure. In the RTL descriptions, we
usually partition the system into control and data paths. In this case, the non-terminal nodes in the HLDDs
correspond to the control path, and they are labeled by state or output variables of the control part, interpreted
as addresses or instruction words. On the other hand, the terminal nodes in the HLDDs correspond to the data
path, and they are labeled by the data words or functions of data words, which correspond to buses, registers, or
data manipulation blocks. The state transfer and output functions of control circuits are represented as well by
HLDDs. When using HLDDs for describing complex digital systems, we have to represent the system by a
suitable set of interconnected components (combinational or sequential subcircuits). Thereafter, we have to
describe the components by their functions which can be represented as HLDDs.

Fig. 7. Representing a register transfer level data path by a HLDD

Two methods for synthesis of HLDDs for representing digital systems were described in [19, 35]. The
first one is based on symbolic execution of procedural descriptions, which corresponds to the functional
representation of systems. The method can be used in cases when the system is given functionally as a

107

procedure in a hardware description language. The second method is based on iterative superposition of
HLDDs, and the created model corresponds to the high-level structural representation of the system. The
method can be used in cases when the system is given structurally as a network of components (subsystems),
and for each component its HLDD is already given. The second method can be regarded as a generalization
of the superposition procedure for BDDs [19].

Fig. 8. HLDDs for a hypothetical microprocessor on the ISA level

Example 7. An example of behavior level HLDDs is shown in Fig. 8 for representing a hypothetical
microprocessor given at the Instruction Set Architecture (ISA) level by its instruction set list. The model
consists of three DDs: OUT, A, and R for representing the processor's output behavior, accumulator A, and
register R, respectively.

6. Diagnostic modeling of digital systems with HLDDs

The methods for test generation and fault simulation developed for SSBDDs can be easily generalized

for using at higher abstraction levels of systems [36]. The possibility of generalization results from the
topological similarity of DDs at lower and higher levels (Fig. 9). In case of SSBDDs, each node has two
output edges, and the graph has two terminal nodes mT,0 and mT,1 with constants 0 and 1, respectively. HLDDs
differ from SSBDDs in having more edges from nodes and more terminal nodes mT,1, mT,2, ..., mT,n, whereas the
terminal nodes in general case may be labeled by constants, register variables or functional expressions. Both
graphs represent a mapping into the structure of the system they describe.

Fig. 9. Topological similarities of SSBDDs and HLDDs

In both cases, the faults in the system can be modeled similarly by errors at the nodes, and for both types
of graphs, test generation for a given node те is carried out by activating a path from the root node to те and

108

from all successor nodes of те to correponding terminal nodes. It is easy to see that the SSBDD can be regarded
as a special case of HLDD. Similarly, as we defined the operations of logic simulation and path activation
for SSBDDs we can do the same for HLDDs.

Example 8. In test pattern simulation, a path is traced in the graph, guided by the values of system
variables until a terminal node is reached, similarly as in the case of SSBDDs. For example, in Fig.7, the
result of simulating the vector X’ = (y1, y2, y3, y4, R1, R2, IN) = -,0,3,2,10,6,- is R2 = R1*R2 = 60 (here "-" means
don't care, the bold arrows in Fig.7 highlight the simulated path, and the grey node R1*R2 is reached by
simulation).

The advantage of HLDDs compared to the traditional methods of simulation of systems, lays in the
fact that instead of processing of all the components in the RTL network for the given input pattern, in the
HLDD only 3 control variables y4, y3, y2, were visited in this particular case during simulation, and only a
single data manipulation operation R2 = R1*R2 was carried out.

Fault model on HLDDs. Each path in the HLDD describes the behavior of the system in a specific
working mode. The faults having effect on the behavior can be associated with nodes along the path. A fault
causes incorrect leaving the path activated by a test. From this point of view the following abstract fault model
for nodes те with node variables x(m) in HLDDs can be defined:

Dl: the output edge for x(m) = i of a node m is always activated, x(m) = i (analog to logic level stuck-at-1);
D2: the output edge for x(m) = i of a node m is broken (analog to logic level stuck-at-0);
D3: instead of the given edge for x(m) = i of a node m, another edge for x(m) = j, or a set of edges {j} is

activated (analog to logic level multiple stuck-at-fault).
The fault model is directly related to the nodes m , and is an abstract one. It will have a semantic

meaning only when the node has a particular physical interpretation. As an example, in Table 2 the
correspondence of the HLDD-based fault model to different microprocessor fault classes [37], and RTL fault
classes [38, 39] is shown.

T a b l e 2

Comparison of High-Level fault models

Test generation. Without going into details regarding fault handling, consider the following simplified
idea of test generation for the nodes of HLDD.

To generate a test pattern for testing an internal node те in HLDD, (n + 1) paths are to be activated:
first, a path (m0,m), and second, n paths le = (me, mT,e) for all values e of the variable x(m), so that

х(тT,1)  х(тT,2)  ...  х(тT,п).

All paths should be activated consistently by the same test pattern (or sequence) T'. The test T'
includes as well the data found by solving the inequality.

109

The test program for an internal node m (conformity test of the control part), consists of n experiments
to excercise all the possible n values of x(m) [40].

To test a terminal node mT,i a path (m0, mT,i) is activated. The test program (scanning test) generated for
mT,1 will be repeated for all local test patterns for testing the module with function x(mT,i). The local test
patterns may be generated at lower level using for instance SSBDDs [40].

Example 9. As an example, consider test generation for testing the multiplexer M3 represented by the
node y3 in the HLDD in Fig. 7. We activate, first, the path from the root node y4 to the node y3 under test by
assigning y4 = 2. Second, we activate 4 paths from the successors of y3, for each value e = 0,1,2,3 of y3. Two
of the paths, l1, l2, for values e = 1 and e= 2, respectively, are activated “without action”, since the successors
of y3 for these values are terminal nodes. Other two paths l0 and l3 may be activated, for example, by y1 = 0
and y2 = 0, respectively. The test data R1 = D1, R2 = D2, IN = D3 are found by satisfying the inequality
R1+ R2  IN  R1  R1* R2.

Note, by the described procedure, a test pattern is created for earring out the test for a selected HLDD
node (a structural unit of a system) at the given state of the system (i.e. content of the system registers). In the
full test sequence, the needed load operations as well as the operations for reading out the test result should be
included. These operations can be formally generated as well from the HLDD model of the system [19].

From above, the following test program results:
Test program for control part:
Fore = 1,2,3,4
BEGIN
 Load the data registers:
 R1 = D1, R2 = D2;
 Carry out the tested working mode at:
 y3 = e, y1 = 0, y2 = 0, y4 = 2 and IN = D3;
 Read the test response R2:e

END.
Example 10. As another example, consider test generation for testing the multiplier M3 represented by

the node R1*R2 in Fig. 7. By activating the path to this node (shown in bold in Fig. 7) we generate a control
word (y2, у3, y4) = (0, 3, 2). To find the proper values of R1 and R2 we need to descend to the lower
abstraction level of hierarchy (e.g. to the gate level) and generate test patterns by a low level ATPG for the
low level implementation of the multiplier. Let us have got a low level test set of n data patterns (D1,1, D2,1;
D1,2, D2,2; D1,1, …, D1,n, D2,n,) generated for the multiplier with input registers R1 and R2.

From above, the following test program results:
Test program for data part:
For all the values of t = 1,2,..., n
BEGIN
 Load the data registers:
 R1 = D1,t , R2 = D2,t ,
 Carry out the tested working mode at the
 control values (у2, у2, y4) = (0,3,2);
 Read the test response of R2:t

END.

HLDDs have been used in different fields of high-level and hierarchical test and verification. As the

result, new promising algorithms, techniques and prototype tools have been developed, which allowed to
improve the efficiency of RTL cycle based simulation [41, 42], hierarchical test program automated synthesis
[40, 43], hierarchical fault simulation [44], high-level verification [46], fault diagnosis [47, 48], and
automated design error correction [48, 49].

110

Conclusion

An overview was given about two types of Decision Diagrams - SSBDDs and HLDDs for diagnostic
modeling of digital systems, particularly for fault simulation and test generation. The main focus of both
models is on the topological view on the graphs and on representing in DDs besides the functions the
implementation details of the structure of the system as well.

Acknowledgment: The work has been supported by FP7 1ST project DIAMOND, and Research
Centre СЕВЕ funded by EU Structural Funds.

REFERENCES

1. Lee C.Y. Representation of Switching Circuits by Binary Decision Programs // The Bell System Technical Journal. 1959. P. 985-

999.
2. Ubar R. Test Generation for Digital Circuits with Alternative Graphs // Proceedings of Tallinn Technical University. 1976.

No. 409. P. 75-81.
3. Akers S.B. Functional Testing with Binary Decision Diagrams // J. of Design Automation and Fault-Tolerant Computing. 1978.

V. 2. P. 311-331.
4. Bryant R.E. Graph-based algorithms for Boolean function manipulation // IEEE Trans on Соmр. 1986. V. C-35, No. 8. P. 667-690.
5. Sasao T., Fujita M. (eds.). Representations of Discrete Functions. Kluwer Academic Publishers. 1996.
6. Drechsler R., Becker B. Binary Decision Diagrams. Kluwer Academic Publ., 1998.
7. Minato S., Ishiura N. Shared binary decision diagrams with attributed edges for efficient Boolean function manipulation // Proc.

27th IEEE/ACM ICCAD. 1990. P. 52-57.
8. Srinivasan A., Kam T., Malik S., Bryant R.E. Algorithms for discrete function manipulation // Proc. of Informations Conference on

CAD –ICCAD. 1990. P. 92-95.
9. Kebschull U., Schubert E., Rosenstiel W. Multilevel logic synthesis based on functional decision diagrams. IEEE EDAC, 1992.
10. Minato S. Zero-suppressed BDDs for set manipulation in combinational problems // Proc. 30th DAC. 1995. P. 272-277.
11. Bahar R., Frohm E., Gaona C., Hachtel G., Macii E., Pardo A., Somenzi F. Algebraic decision diagrams and their applications //

Int. Conf. on CAD. 1993. P. 188-191.
12. Drechsler R., Sarabi A., Theobald M., Becker B., Perkowski M.A. Efficient representation and manipulation of switching

functions based on Ordered Kronecker Functional Decision Diagrams // Proc. DAC. 1994.
13. Bryant R.E., Chen Y.-A. Verification of arithmetic functions with binary moment diagrams // 32nd ACM/IEEE DAC. 1995.
14. Bern J., Meinel C., Slobodova A. Efficient OBDD-based manipulation in CAD beyond current limits // 32-nd DAC. 1995. P. 408-

413.
15. Clarke E., Fujita N., Zhao X. Multi-terminal binary decision diagrams and hybrid decision diagrams, In: T. Sasao, M. Fujita

(eds.), Representations of Discrete Functions. Kluwer Academic Publishers, 1996. P. 93-108.
16. Stankovic R., Astola J., Stankovic M., Egiazarjan K. Circuit synthesis from Fibonacci decision diagrams // VLSI Design, Special

Issue on Spectral Techniques and Decision Diagrams. 2002. V. 14. P. 23-34.
17. Karpovsky M.G., Stankovic R.S., Astola J.T. Spectral Logic and Its Applications for the Design of Digital Devices. Wiley-

Interscience, 2008.
18. Ubar R. Test Synthesis with Alternative Graphs // IEEE Design&Test of Computers. Spring, 1996. P. 48-57.
19. Ubar R., Raik J., AJutman, Jenihhin M. Diagnostic Modeling of Digital Systems with Multi-Level DDs // Design and Test

Technology for Dependable SoC, R. Ubar, J. Raik, H.Th. Vierhaus (Eds.). 2011. P. 92-118.
20. Brace K.S., Rudell R.L., Bryant R.E. Efficient Implementation of a BDD Package // Proc. of the 27th DAC. June 1990. P. 40-45.
21. Giinther W., Drechsler R. Minimization of Free BDDs // Proc. of Asia and South Pacific Design Automation Conf. Hong Kong,

Jan 1999. P. 323-326.
22. Ubar R., Vassiljeva T., Raik J., AJutman, Tombak M., Peder A. Optimization of Structurally Synthesized BDDs // IASTED Conf.

on Modelling, Simulation and Optimization, Kauai, Hawaii, USA, August 17-19. 2004. P. 234-240.
23. Peder A., Nestra H., Raik J., Tombak M., Ubar R. Linear algorithms for testing and parsing superpositional graphs // Facta

Universitatis (Nis) Ser.: Elec. Energ. 2011. V. 24, No. 3. P. 325-339.
24. To K. Fault Folding for Irredundant and Redundant Combinational Circuits // IEEE Trans, on Computers. 1973. No. 11. P. 1008-

1015.
25. Ubar R. Overview about Low-Level and High-Level Decision Diagrams for Diagnostic Modeling of Digital Systems // Facta

Universitatis (Nis) Ser.: Elec. Energ. 2011. V. 24, No. 3. P. 303-324.
26. Ubar R., Devadze S., Raik J., AJutman. Fast Fault Simulation in Digital Circuits with Scan Path // IEEE Proc. of 13th Asia and

South Pacific Design Automation Conference - ASP-DAC. 2008. P. 667-672.
27. Ubar R., Devadze S., Raik J., AJutman. Parallel X-Fault Simulation with Critical Path Tracing Technique // IEEE Conf. Design,

Automation & Test in Europe – DATE. 2010. P. 1-6.
28. AJutman, Ubar R., Peng Z. Algorithms for Speeding-Up Timing Simulation of Digital Circuits // DATE. 2001. P. 460-465.

111

29. Ubar R. Multi-Valued Simulation of Digital Circuits with Structurally Synthesized Binary Decision Diagrams. OPA, N.V. Gordon
and Breach Publishers, Multiple Valued Logic. 1998. V. 4. P. 141-157.

30. Cox H., Rajski J. A Method of Fault Analysis for Test Generation and Fault Diagnosis // IEEE Trans. on CAD. 1988. V. 7. No. 7.
P. 813-833.

31. Kajihara S., Nishigaya R., Sumioka T., Kinoshita K. Efficient Techniques for Multiple Fault Test Generation // 3rd ATS. 1994.
P. 52-56.

32. Agrawal A., Saldanha A., Lavagno L. Compact and Complete Test Set Generation for Multiple Stuck-at Faults // ICCAD'93.
1996. P. 212-219.

33. Ubar R., Kostin S., Raik J. Multiple Stuck-at-Fault Detection Theorem // The 15th IEEE Symposium on Design and Diagnostics of
Electronic Circuits and Systems – DDECS. Tallinn, Estonia, April 18-20. 2012.

34. Ubar R., Mironov D., Raik J., AJutman. Structural Fault Collapsing by Superposition of BDDs for Test Generation // ISQED.
2010. P. 250-257.

35. Ubar R., Raik J., Karputkin A., Tombak A. Synthesis of High-Level Decision Diagrams for Functional Test Pattern Generation //
16th Int. Conference MIXDES. 2009. P. 519-524.

36. Raik J., Ubar R. Fast Test Pattern Generation for Sequential Circuits Using Decision Diagram Representations. Journal of
Electronic Testing: Theory and Applications. Kluwer Academic Publishers. 2000. V. 16, No. 3. P. 213-226.

37. Thatte S.M., Abraham J.A. Test Generation for Microprocessors // IEEE Trans. On Сотр. 1980. V. C-29, No. 6. P. 429-441.
38. Gupta A.K., Armstrong J.R. Functional Fault modelling and Simulation for VLSI Devices // 22nd Design Automation

Conference. 1985. P. 720-726.
39. Ubar R., Raik J., AJutman, Instenberg M., Wuttke H.-D. Modeling Microprocessor Faults on High-Level Decision Diagrams.

International Conference on Dependable Systems & Networks: Anchorage, USA, Alaska, June 24-27. 2008. P. 17-22.
40. Jervan G., Ubar R., Peng Z., Eles P. Test Generation: A Hierarchical Approach // System-level Test and Validation of HW/SW

Systems. by M.Sonza Reorda, Z.Peng, M.Violante. Springer Series in Advanced Microelectronics. 2005. V. 17. P. 63-77.
41. Xeveugle R., Ubar R. Modeling VHDL Clock-Driven Multi-Processes by Decision Diagrams // J. of Electron Technology. 1999.

V. 32, No. 3. P. 282-287.
42. Ubar R., Morawiec A., Raik J. Cycle-Based Simulation Algorithms for Digital Systems Using High-Level Decision Diagrams //

DATE. 2000. P. 743.
43. Raik J., Ubar R. Fast Test Pattern Generation for Sequential Circuits Using Decision Diagram Representations. Journal of

Electronic Testing: Theory and Applications. Kluwer Academic Publishers. 2000. V. 16, No. 3. P. 213-226.
44. Ubar R., Devadze S., Jenihhin M., Raik J., Jervan G., Ellervee P. Hierarchical Calculation of Malicious Faults for Evaluating the

Fault-Tolerance // 4th IEEE DELTA. 2008. P. 222-227.
45. Jenihhin M., Raik J., Fujiwara H., Ubar R., Viilukas T. An Approach for Verification Assertions Reuse in RTL Test Pattern

Generation // Proc. of the IEEE 11th Workshop on RTL and High Level Testing -WRTLT'10. 2010. P. l-6.
46. Raik J., Repinski U., Ubar R., Jenihhin M., Chepurov A. High-Level Design Error Diagnosis Using Backtrace on Decision

Diagrams // The 28th IEEE NORCHIP Conference, Tampere. Nov. 15-16. 2010.
47. Raik J., Repinski U., Ubar R., Jenihhin M., Chepurov A. High-Level Design Error Diagnosis Using Backtrace on Decision

Diagrams // The 28th IEEE NORCHIP Conference, Tampere. Nov. 15-16. 2010.
48. Guarnieri V., DiGuglielmo G., Bombieri N., Pravadelli G., Fummi F., Hantson H., Raik J., Jenihhin M., Ubar R. On the Reuse of

TLM Mutation Analysis at RTL // J. Electron Test, DOI 10.1007/sl0836-012-5303-6. 2012.
49. Karputkin A., Ubar R., Tombak M., Raik J. Automated Correction of Design Errors by Edge Redirection on High-Level Decision

Diagrams // IEEE International Symposium on Quality Electronic Design - ISQED, Santa Clara, CA USA, 2012.

Убар Раймонд, д-р техн. наук, профессор. E-mail: raiub@pld.ttu.ee
Таллиннский технический университет (Эстония)
 Поступила в редакцию 3 февраля 2014 г.

Убар Раймонд. (Таллиннский технический университет, Эстония)
Влияние неисправностей цифровых систем на топологию решающих диаграмм низкого и высокого уровней.
Ключевые слова: решающие диаграммы; генерация тестов; диагностика неисправностей.

Для тестирования сложных цифровых систем необходимо исследовать их иерархические многоуровневые
представления. Рассматриваются Structurally Synthesized Binary Decision Diagram (SSBDD) решающие диаграммы,
обеспечивающие соответствие между полюсами таких диаграмм и вентилями цифровых систем. Методы синтеза тестов и
диагностики неисправностей, разработанные на основе использования SSBDD решающих диаграмм, развиваются для
описаний цифровых систем на более высоком уровне абстракции. Речь идет об использовании High Level Decision Diagram
(HLDD) решающих диаграмм для автоматической генерации тестов и диагностики неисправностей сложных цифровых
систем.

REFERENCES

1. Lee C.Y. Representation of switching circuits by binary decision programs. The Bell System Technical Journal, 1959, pp. 985-999.
DOI: 10.1002/j.1538-7305.1959.tb01585.x.

112

2. Ubar R. Test generation for digital circuits with alternative graphs. Proceedings of Tallinn Technical University, 1976, no. 409,
pp.75-81. DOI: 10.1007/3-540-58426-9_129.

3. Akers S.B. Functional testing with binary decision diagrams. J. of Design Automation and Fault-Tolerant Computing, 1978, vol. 2,
pp. 311-331. DOI: 10.1109/TC.1986.1676774.

4. Bryant R.E. Graph-based algorithms for Boolean function manipulation. IEEE Trans on Соmр, 1986, vol. C-35, no. 8, pp. 667-
690. DOI: 10.1109/TC.1986.1676819.

5. Sasao T., Fujita M. (eds.). Representations of discrete functions. Kluwer Academic Publ., 1996. 331 p.
6. Drechsler R., Becker B. Binary decision diagrams. Kluwer Academic Publ., 1998. 200 p.
7. Minato S., Ishiura N. Shared binary decision diagrams with attributed edges for efficient Boolean function manipulation. Proc.

27th IEEE/ACM ICCAD, 1990, pp. 52-57. DOI: 10.1145/123186.123225.
8. Srinivasan A., Kam T., Malik S., Bryant R.E. Algorithms for discrete function manipulation. Proc. of Informations Conference on

CAD -ICCAD, 1990, pp. 92-95. DOI: 10.1109/ICCAD.1990.129849.
9. Kebschull U., Schubert E., Rosenstiel W. Multilevel logic synthesis based on functional decision diagrams. IEEE EDAC, 1992.
10. Minato S. Zero-suppressed BDDs for set manipulation in combinational problems. Proc. 30th DAC, 1995, pp. 272-277. DOI:

10.1145/157485.164890.
11. Bahar R., Frohm E., Gaona C., Hachtel G., Macii E., Pardo A., Somenzi F. Algebraic decision diagrams and their applications.

Int. Conf. on CAD, 1993, pp. 188-191. DOI: 10.1109/ICCAD.1993.580054.
12. Drechsler R., Sarabi A., Theobald M., Becker B., Perkowski M.A. Efficient representation and manipulation of switching

functions based on Ordered Kronecker Functional Decision Diagrams. Proc. DAC, 1994. DOI: 10.1145/196244.196444.
13. Bryant R.E., Chen Y.-A. Verification of arithmetic functions with binary moment diagrams. 32nd ACM/IEEE DAC, 1995. DOI:

10.1145/217474.217583.
14. Bern J., Meinel C., Slobodova A. Efficient OBDD-based manipulation in CAD beyond current limits. 32-nd DAC, 1995, pp. 408-

413. DOI: 10.1145/217474.217563.
15. Clarke E., Fujita N., Zhao X. Multi-terminal binary decision diagrams and hybrid decision diagrams. In: Sasao T., Fujita M.

(eds.) Representations of discrete functions. Kluwer Academic Publishers, 1996, pp. 93-108.
16. Stankovic R., Astola J., Stankovic M., Egiazarjan K. Circuit synthesis from Fibonacci decision diagrams. VLSI Design, Special

Issue on Spectral Techniques and Decision Diagrams, 2002, vol.14, pp. 23-34. DOI: 10.1080/10655140290009783.
17. Karpovsky M.G., Stankovic R.S., Astola J.T. Spectral logic and its applications for the design of digital devices. Wiley-

Interscience, 2008. 500 p.
18. Ubar R. Test synthesis with alternative graphs. IEEE Design&Test of Computers, Spring, 1996, pp. 48-57. DOI:

10.1109/54.485782.
19. Ubar R., Raik J., Jutman A., Jenihhin M. Diagnostic Modeling of Digital Systems with Multi-Level DDs. In: Ubar R., Raik J.,

Vierhaus H.Th. (eds.) Design and test technology for dependable SoC. 2011, pp. 92-118.
20. Brace K.S., Rudell R.L., Bryant R.E. Efficient implementation of a BDD Package. Proc. of the 27th DAC, June 1990, pp. 40-45.

DOI: 10.1145/123186.123222.
21. Giinther W., Drechsler R. Minimization of Free BDDs. Proc. of Asia and South Pacific Design Automation Conf, Hong Kong,

Jan 1999, pp. 323-326. DOI: 10.1016/S0167-9260(02)00041-X.
22. Ubar R., Vassiljeva T., Raik J., Jutman A., Tombak M., Peder A. Optimization of structurally synthesized BDDs. IASTED Conf.

on Modelling, Simulation and Optimization, Kauai, Hawaii, USA, August 17-19, 2004, pp. 234-240.
23. Peder A., Nestra H., Raik J., Tombak M., Ubar R. Linear algorithms for testing and parsing superpositional graphs. Facta

Universitatis (Nis) Ser.: Elec. Energ, 2011, vol. 24, no. 3, pp. 325-339. DOI: 10.2298/FUEE1103325P.
24. To K. Fault folding for irredundant and redundant combinational circuits. IEEE Transactions on Computers, 1973, no.11,

pp. 1008-1015. DOI: 10.1109/T-C.1973.223637.
25. Ubar R. Overview about low-level and high-level decision diagrams for diagnostic modeling of digital systems. Facta

Universitatis (Nis) Ser.: Elec. Energ., 2011, vol. 24, no. 3, pp. 303-324. DOI: 10.2298/FUEE1103303U.
26. Ubar R., Devadze S., Raik J., Jutman A. Fast fault simulation in digital circuits with scan path. IEEE Proc. of 13th Asia and

South Pacific Design Automation Conference - ASP-DAC, 2008, pp. 667-672.
27. Ubar R., Devadze S., Raik J., Jutman A. Parallel X-fault simulation with critical path tracing technique. IEEE Conf. Design,

Automation & Test in Europe - DATE, 2010, pp. 1-6. DOI: 10.1109/DATE.2010.5456929.
28. Jutman A., Ubar R., Peng Z. Algorithms for speeding-up timing simulation of digital circuits. DATE, 2001, pp. 460-465.
29. Ubar R. Multi-valued simulation of digital circuits with structurally synthesized binary decision diagrams. OPA, N.V. Gordon and

Breach Publishers, Multiple Valued Logic, 1998, vol. 4, pp. 141-157.
30. Cox H., Rajski J. A method of fault analysis for test generation and fault diagnosis. IEEE Transactions on CAD, 1988, vol. 7,

no. 7, pp. 813-833. DOI: 10.1109/43.3952.
31. Kajihara S., Nishigaya R., Sumioka T., Kinoshita K. Efficient techniques for multiple fault test generation. 3rd ATS, 1994,

pp. 52-56. DOI: 10.1109/ATS.1994.367254.
32. Agrawal A., Saldanha A., Lavagno L. Compact and complete test set generation for multiple stuck-at faults. ICCAD'93, 1996,

pp. 212-219.
33. Ubar R., Kostin S., Raik J. Multiple stuck-at-fault detection theorem. The 15th IEEE Symposium on Design and Diagnostics of

Electronic Circuits and Systems - DDECS, Tallinn, Estonia, April 18-20, 2012. DOI: 10.1109/DDECS.2012.6219064

113

34. Ubar R., Mironov D., Raik J., Jutman A. Structural fault collapsing by superposition of BDDs for test generation. ISQED, 2010,
pp. 250-257. DOI: 10.1109/ISQED.2010.5450451

35. Ubar R., Raik J., Karputkin A., Tombak A. Synthesis of high-level decision diagrams for functional test pattern generation. 16th
Int. Conference MIXDES, 2009, pp. 519-524.

36. Raik J., Ubar R. Fast test pattern generation for sequential circuits using decision diagram representations. Journal of Electronic
Testing: Theory and Applications, 2000, vol. 16, no. 3, pp. 213-226. DOI: 10.1023/A:1008335130158.

37. Thatte S.M., Abraham J.A. Test generation for microprocessors. IEEE Transactions On Сотр., 1980, vol. C-29, no. 6, pp. 429-
441. DOI: 10.1109/TC.1980.1675602.

38. Gupta A.K., Armstrong J.R. Functional fault modelling and simulation for VLSI Devices. 22nd Design Automation Conference,
1985. pp.720-726. DOI: 10.1109/DAC.1985.1586022

39. Ubar R., Raik J., Jutman A., Instenberg M., Wuttke H.-D. Modeling microprocessor faults on high-level decision diagrams.
International Conference on Dependable Systems & Networks: Anchorage, USA, Alaska, June 24-27, 2008, pp. 17-22.

40. Jervan G., Ubar R., Peng Z., Eles P. Test generation: A hierarchical approach. In: Sonza Reorda M., Peng Z., Violante M. (eds.)
System-level test and validation of HW/SW systems. Springer Series in Advanced Microelectronics, 2005, vol. 17, pp. 63-77. DOI:
10.1007/1-84628-145-8_5.

41. Xeveugle R., Ubar R. Modeling VHDL clock-driven multi-processes by decision diagrams. Journal of Electron Technology,
1999, vol. 32, no. 3, pp. 282-287.

42. Ubar R., Morawiec A., Raik J. Cycle-based simulation algorithms for digital systems using high-level decision diagrams. DATE,
2000, pp. 743.

43. Raik J., Ubar R. Fast test pattern generation for sequential circuits using decision diagram representations. Journal of Electronic
Testing: Theory and Applications, 2000, vol. 16, no. 3, pp. 213-226. DOI: 10.1023/A:1008335130158.

44. Ubar R., Devadze S., Jenihhin M., Raik J., Jervan G., Ellervee P. Hierarchical calculation of malicious faults for evaluating the
fault-tolerance. 4th IEEE DELTA, 2008, pp. 222-227. DOI: 10.1109/DELTA.2008.60.

45. Jenihhin M., Raik J., Fujiwara H., Ubar R., Viilukas T. An approach for verification assertions Reuse in RTL test pattern
generation. Proc. of the IEEE 11th Workshop on RTL and High Level Testing -WRTLT'10, 2010, pp. l-6.

46. Raik J., Repinski U., Ubar R., Jenihhin M., Chepurov A. High-level design error diagnosis using backtrace on decision diagrams.
The 28th IEEE NORCHIP Conference, Tampere. November 15-16, 2010. DOI: 10.1109/NORCHIP.2010.5669486.

47. Raik J., Repinski U., Ubar R., Jenihhin M., Chepurov A. High-level design error diagnosis using backtrace on decision diagrams.
The 28th IEEE NORCHIP Conference, Tampere. November 15-16. 2010. DOI: 10.1109/NORCHIP.2010.5669486.

48. Guarnieri V., DiGuglielmo G., Bombieri N., Pravadelli G., Fummi F., Hantson H., Raik J., Jenihhin M., Ubar R. On the Reuse of
TLM mutation analysis at RTL. Journal of Electronic Testing, 2012. DOI 10.1007/sl0836-012-5303-6.

49. Karputkin A., Ubar R., Tombak M., Raik J. Automated correction of design errors by edge redirection on high-level decision
diagrams. IEEE International Symposium on Quality Electronic Design - ISQED, Santa Clara, CA USA, 2012. DOI:
10.1109/ISQED.2012.6187566.

