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Дмитрий Сергеевич Баженов 
 

Московский государственный университет, Москва, Россия, trongsund@yandex.ru 
 

Аннотация. Статья посвящена исследованию свойств градуированных колец с огра-

ниченным градуированным индексом нильпотентности. Показано, что градуиро-

ванный случай существенно отличается от неградуированного, за исключением  

gr-полупервичного случая 

Ключевые слова: градуированные кольца, кольца с ограниченным индексом ниль-

потентности, полупервичные кольца, первичные кольца 
 

Для цитирования: Баженов Д.С. Кольца с ограниченным градуированным индексом 

нильпотентности // Вестник Томского государственного университета. Математика  

и механика. 2025. № 98. С. 5–12. doi: 10.17223/19988621/98/1 
 

 

Original article  
 

Rings with a bounded graded index of nilpotency 
 

Dmitry S. Bazhenov 
 

Moscow State University, Moscow, Russian Federation, trongsund@yandex.ru 

 

Abstract. This article is devoted to exploration of graded rings with a bounded graded 

index of nilpotency. It is shown that the graded case is drastically different from the non-

graded one, except for gr-semiprime rings. 

Graded ring is an algebraical object which is a generalization of such structures as polyno-

mial rings and group algebras, and despite being quite obvious and straightforward, graded 

rings started being explored only in the middle of the 20th century. Construction of this 

object is based on two simple ideas: the first one is that any element of a ring is a sum  

of homogenous components, and the second one is that multiplication of homogenous 

elements induces a group (or a semigroup) structure on homogenous subgroups of the ad-

ditive group of a ring. 

In the theory of graded rings, a lot of graded analogues of classic concepts are introduced. 

For example, an ideal is called a graded ideal if it includes, with any of its elements, its 

homogenous components; a ring is called a gr-division ring (or a gr-field in the commuta-

tive case) if every its nonzero homogenous element is invertible, etc. 
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In this article we consider gr-prime rings (rings without graded nonzero ideals – divisors 

of zero), gr-semiprime rings (rings without graded nonzero nilpotent ideals), gr-reduced 

rings (rings without nonzero homogenous nilpotent elements) and, certainly, rings with 

bounded graded index of nilpotency (rings without nonzero homogenous nilpotent ele-

ments with nilpotency degree more than a certain natural n). 

Keywords: graded rings, rings with bounded index of nilpotency, semiprime rings, prime 

rings 

 

For citation: Bazhenov, D.S. (2025) Rings with a bounded graded index of nilpotency. 
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Введение 

 

В статье кольца всюду предполагаются ассоциативными и с единицей. 

Определение. Кольцо R называется градуированным по группе G или G-граду-

ированным, если его группа по сложению распадается в прямую сумму слагаемых, 

индексированных элементами группы G: 

R+ = ⊕g ∈ G Rg, 

причем ∀g, h ∈ G RgRh ⊂ Rgh. Кольцо называется градуированным, если оно граду-

ировано по некоторой группе G. 

Определение. Элемент r градуированного кольца R называется однородным, 

если ∃g ∈ G r ∈ Rg. Множество всех однородных элементов кольца R обозначается 

как h(R). 

Определение. Кольцо R называется редуцированным, если оно не содержит 

ненулевых нильпотентных элементов. Градуированное кольцо R называется gr-ре-

дуцированным, если в нем нет ненулевых нильпотентных однородных элементов. 

Замечание. Не любое gr-редуцированное кольцо является редуцированным. 

Пример – кольцо R = M2(k) (здесь k – поле, char k ≠ 2) со следующей Z2 ⊕ Z2-

градуировкой: 

R(0,0) = 
0

0

k

k

 
 
 

,  R(0,1) = 
0

0

k

k

 
 

− 
,   R(1,0) = 

0

0

k

k

 
 
 

,   R(1,1) = 
0

0

k

k

 
 
− 

. 

Определение. Градуированное кольцо R называется кольцом с градуирован-

ным индексом нильпотентности n, если в нем существуют однородные нильпо-

тентные элементы r такие, что 1 0,nr −   и для любого однородного нильпотентного 

элемента r ∈ R rn = 0. Если выполняется только последнее условие, говорят, что 

кольцо имеет градуированный индекс нильпотентности ≤ n. 

 

Gr-редуцированные кольца 

 

Определение. Подмножество X градуированного кольца R называется градуи-

рованным, если вместе с любым элементом оно содержит все частичные суммы 

его однородных слагаемых. 

Всюду далее l(X) и r(X) – соответственно левый и правый аннуляторы подмно-

жества X кольца R. Легко заметить, что если X – градуированное подмножество, то 

l(X) и r(X) – соответственно, градуированные левый и правый идеалы кольца R. 
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Теорема. Пусть R — gr-редуцированное кольцо. 

1) Если a1, ..., an ∈ h(R) и a1 ... an = 0, то Ras(1)R ... Ras(n)R = 0 для любой подста-

новки s ∈ Sn. 

2) Если x, y ∈ h(R), то xy = 0 yx = 0 xRy = yRx = 0. 

3) r(a) = r(an) для всех a ∈ h(R) и n ∈ N. 

4) Для любого градуированного B ⊂ R r(B) – градуированный идеал и 

r(B) = l(B) = r(RBR) = l(RBR) = {a ∈ R | RBR ∩ RaR = 0}. 

Доказательство. 1)–3) Произведение as(1) · ... · as(n) можно получить из a1 · ... · an 

перестановками конечного числа соседних множителей. Если x, y ∈ h(R) и xy = 0, 

то ( )r h R   2( ) ( ) 0,yrx yr xy rx= =  откуда по gr-редуцированности ( ) 0,r h R yrx  =  

0,yRx =  yx = 0, 2( )( ) ( ) 0,r h R xry xr yx ry  = =  откуда по gr-редуцированности 

( )r h R   0xry =  и 0.xRy =  Поэтому Ras(1)R ... Ras(n)R = 0. Пусть a ∈ h(R) и  

b ∈ h(r(a)). Тогда anbn = 0, откуда (ab)n = 0, поэтому по gr-редуцированности ab = 0 

и r( ) r( ) r( ).n na a a   

4) Обозначим { ( ) | 0}D a h R RBR RaR=   = . Легко проверить, что D ⊂ r(RBR) ⊂ 

⊂ r(B) и D ⊂ l(RBR) ⊂ l(B). По 1) r(B) = l(B) ⊂ r(RBR). Пусть a ∈ h(r(RBR)). Тогда 
2( )RaR RBR = 0. Так как R gr-редуцировано, то RaR ∩ RBR = 0 и r(RBR) ⊂ D. 

 
Кольца с градуированным ограниченным индексом нильпотентности 

 

В теории колец с ограниченным индексом нильпотентности известны следую-

щие утверждения. 

Теорема [1. Теорема 6.38]. Пусть R – кольцо индекса нильпотентности ≤ n. 

1) Если X1, ..., Xn – такие подмножества R, что XiXj = 0 при i ≥ j, то X1X2...Xn = 0. 

2) Если B – нильподкольцо в R, то 1 1 2( ) 0n nb Bb B− −+ =Z  для всех b ∈ B. 

3) Если B – нильподкольцо в R и b ∈ B, то bn−1 лежит в сумме всех нильпотент-

ных идеалов нилькольца B. 

4) Если B – конечно порожденное нильподкольцо в R, то нилькольцо B нильпо-

тентно. 

5) Если D – нильподкольцо в R, то Dn лежит в сумме всех нильпотентных иде-

алов кольца R, и поэтому Dn лежит в каждом полупервичном идеале кольца R. 

6) Если e1, e2, ..., en+1 – ортогональные идемпотенты в R, то e1Re2R ... enRen+1 = 0. 

7) 1 1( r( )) 0n n nX X + + =  для любого подмножества X кольца R. 

Нам предстоит выяснить справедливость градуированных аналогов этих фактов. 

Теорема. Существует градуированное кольцо с градуированным индексом 

нильпотентности 2, и его градуированные подмножества X1 и X2 такие, что 
2 2

1 2 2 1 0,X X X X= = =  1 2 0.X X   

Доказательство. Рассмотрим некоммутативную ассоциативную алгебру 

  2 2, / ( , , )R x y x y yx= k  с Z2 ⊕ Z2-градуировкой: 

R(0,0) = k,   R(0,1) = kx,   R(1,0) = ky,  R(1,1) = kxy. 

Можно заметить, что она изоморфна подалгебре M3(k), состоящей из матриц, 

представимых в виде суммы скалярной и верхней нильтреугольной, причем эле-

менту a + bx + cy + dxy соответствует матрица 
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0

0 0

a b d

a c

a

 
 
 
 
 

. 

Рассмотрим теперь градуированные подмножества X1 = {x}, X2 = {y}. Тогда 
2 2

1 2 2 1 0,X X X X= = =  но 1 2 { } 0.X X xy=   

Градуированный аналог к утверждению 2 также оказался неверен. 

Теорема. Существуют градуированное кольцо R градуированного индекса 

нильпотентности 2, его gr-нильподкольцо B и его однородный элемент b такие, 

что 2( ) 0.b BbB+ Z  

Доказательство. Рассмотрим некоммутативную ассоциативную алгебру R над 

полем k вида 1 2 3 4, , , / ,x x x x Yk  где Y – идеал, порожденный всеми выражениями 

вида y2, где  

1

,
i

l

k

i

y x
=

=    l ≥ 1,   1 ≤ ki ≤ 4, 

градуированную по группе Z2* Z2* Z2* Z2 = 〈σ1, σ2, σ3, σ4 | σ1
2 = σ2

2 = σ3
2 = σ4

2 = e〉, 
Re = k, 

11
...k k nn

k kR x x  = k . Нетрудно заметить, что если взять в качестве B все много-

члены из R с нулевым свободным членом, а в качестве b взять x1, то (bZ + BbB)2 ≠ 0, 

поскольку, например, x1x2x1x3 ≠ 0. 

Те же самые кольцо и его gr-нильподкольцо оказываются контрпримером  

к аналогам утверждений 3 и 4, как показывает 

Теорема. В кольце R gr-нильподкольцо B конечно порождено, но не нильпо-

тентно и содержит элемент, не лежащий ни в одном нильпотентном градуиро-

ванном идеале кольца B, а следовательно, и в их сумме. 

Доказательство. Назовем слово в произвольном алфавите бесквадратным, 

если ни одно его конечное подслово не содержится в нем два раза подряд. Рас-

смотрим элемент x1 ∈ B. Он не может лежать в сумме нильпотентных градуиро-

ванных идеалов кольца R, поскольку иначе он лежал бы хотя бы в одном из граду-

ированных нильпотентных идеалов, содержащихся в gr-нилькольце B, а значит, 

 и сам идеал Bx1B был бы нильпотентен, что неверно в силу следующего варианта 

теоремы Туэ, доказательство которого можно найти в [2. С. 16]. 

Теорема. Существует бесконечное бесквадратное слово в алфавите {x1, x2, x3, x4}, 

начинающееся с x2, и в котором между любыми двумя символами x1 находится не 

менее двух других символов. 

Заметим, что именно условие бесквадратности для конечного слова (m1, ..., mk), 

1 ≤ mi ≤ 4, является критерием неравенства нулю произведения 
1

k

k

m

i

x
=

 . Легко уви-

деть, что идеал (Bx1B)m содержит моном, равный произведению элементов из 

начального подслова этого слова, заканчивающегося не на x1, но содержащего 

ровно m вхождений x1. Поскольку слово бесквадратное, этот моном не равен нулю; 

значит, ни при каком натуральном m идеал (Bx1B)m не равен 0, то есть идеал Bx1B 

ненильпотентен. 

Контрпримером к градуированным аналогам утверждений 5, 6 и 7 будет граду-

ированное кольцо R = M3(k), градуированное по группе Z2 следующим образом: 
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R(0,0) состоит из диагональных матриц, R(1,0) = kE12, R(0,1) = kE23, R(1,1) = kE13,  

R (−1,0) = kE21, R(0, −1) = kE32, R(−1, −1) = kE31, R(m, n) = 0 для остальных пар (m, n) ∈ Z. 

Нетрудно заметить, что у этого кольца градуированный индекс нильпотентности 

равен 2. 

Теорема. В кольце R существуют ортогональные идемпотенты e1, e2, e3 та-

кие, что e1Re2Re3 ≠ 0. 

Доказательство. Возьмем ei = Eii для i = 1, 2, 3. Тогда e1E12e2E23e3 = E13 ≠ 0. 

Теорема. В кольце R существует градуированное подмножество X, для кото-

рого (X2r(X3))3 ≠ 0. 

Доказательство. X – градуированное подмножество R, состоящее из верхних 

нильтреугольных матриц, которое не удовлетворяет градуированному аналогу 

утверждения (7) п. 1. В самом деле, X2 = kE13, X3 = 0, r(X3) = R, (X2r(X3))3 = (X2R)3 =  

= X2R = {a11E11 + a12E12 + a13E13 | a11, a12, a13 ∈ k} ≠ 0. 

 

Gr-полупервичные кольца с ограниченным градуированным  

индексом нильпотентности 

 

Сначала вспомним некоторые факты из теории полупервичных колец. 

Теорема [1. Теорема 6.39]. Для полупервичного кольца R и любого натураль-

ного n равносильны следующие утверждения: 

1) R – кольцо индекса ≤ n; 

2) X1X2 ... Xn = 0 для любых таких подмножеств X1, ..., Xn ⊂ R, что XiXj = 0 при 

i ≥ j; 

3) r(Xn) = r(Xn+1) для любого подмножества X ⊂ R; 

4) r(xn) = r(xn+1) для любого x ∈ R; 

5) r(Txn) = r(Txn+1) для любого x ⊂ R и для любого идеала T ⊂ R. 

Сформулируем градуированные аналоги данных утверждений. 

1') R – кольцо градуированного индекса ≤ n. 

2') X1X2 ... Xn = 0 для любых таких градуированных подмножеств X1, ..., Xn ⊂ R, 

что XiXj = 0 при i ≥ j; 

3') r(Xn) = r(Xn+1) для любого градуированного подмножества X ⊂ R; 

4') r(xn) = r(xn+1) для любого однородного x ∈ R; 

5') r(Txn) = r(Txn+1) для любого однородного x ⊂ R и для любого градуирован-

ного идеала T ⊂ R. 

Нетрудно проверить, что для gr-полупервичного кольца из 1') не следует 2'), 

контрпримером может послужить все то же самое M3(k) с Z2-градуировкой из 

предыдущего параграфа. Утверждения же 2')–5') для gr-полупервичного кольца 

равносильны, и, более того, имеет место 

Теорема. Для gr-полупервичных колец с градуированным индексом нильпотент-

ности ≤ n выполнено  

(1') ⇐ (2') ⇔ (3') ⇔ (4') ⇔ (5'). 

Доказательство. Докажем сначала 2') ⇒ 3'). Обозначим Xk = r(Xk)Xk, k = 1, ..., n. 

Тогда при k ≥ l r( ) r( ) 0.k k l l l

k lX X X X X X−= =  По предположению 0 = X1X2...Xn =  

= r(X)(Xr(x2)) ... (Xn−1r(Xn))Xn. Поскольку правый градуированный идеал Xnr(Xn+1) 

лежит в r(X) ∩ Xr(x2) ∩ ... ∩ Xn−1r(Xn), имеем (Xnr(xn+1}))n+1 = 0. Но поскольку наше 

кольцо gr-полупервично, выполняется Xnr(Xn+1) = 0, откуда r(Xn+1) ⊂ r(Xn) ⊂ r(Xn+1) 

и r(Xn)= r(Xn+1). 
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3') ⇒ 4') Тривиально. 

4') ⇒ 1') Пусть x – однородный нильпотентный элемент в R. Тогда r(xm) = R для 

некоторого натурального m > n. По 4') r(xn) = r(xn+1) = ... = r(xm) = R, xn = 0. 

2') ⇒ 5') Обозначим Xk = r(Txk)Txk, k = 1, ..., n. Если k ≥ l, то XkXl = r(Txk)Txk−lTxl 

r(Txl) = 0. По 2') 0 = X1X2 ... Xn = TX1X2 ... Xn = (Tr(Tx))(Txr(Tx2)) ... (Txn−1r(Txn))Txn. 

Если k ≥ 0, то 1 1 1 1r( ) r( ), r( ) r( ).n n k n k n n k n nTx Tx Tx x Tx x Tx Tx+ − + − + +=   Поэтому 

Txnr(Txn+1) ⊂ Txkr(Txk+1) для всех k ≥ 0. Тогда (Txnr(Txn+1))n+1 = 0. Отсюда из  

gr-полупервичности R видим Txnr(Txn+1) = 0, а значит, r(Txn+1) ⊂ r(Txn) ⊂ r(Txn+1)  

и r(Txn) = r(Txn+1). 

5') ⇒ 4') следует из того, что r(xn) = r(Rxn) = r(Rxn+1) = r(xn+1). 

 
Gr-первичные кольца с градуированным ограниченным  

индексом нильпотентности 

 
Определение. Кольцо называется ортогонально (gr-)конечным, если в нем не 

существует бесконечного подмножества попарно ортогональных (однородных) 

идемпотентов, и ортогонально (gr-)n-конечным, если в нем максимальное подмно-

жество попарно ортогональных (однородных) идемпотентов состоит ровно из n 

элементов. 

Теорема [1. Теорема 6.41]. Для первичного кольца R индекса n верны следу-

ющие утверждения: 

1) R – ортогонально n-конечное кольцо. 

2) Каждая строго возрастающая цепь правых (левых) аннуляторов имеет не 

более n собственных включений. 

3) R – кольцо с условиями максимальности и минимальности для правых и ле-

вых аннуляторов. 

4) Каждый существенный правый идеал L в R содержит такой элемент s, что 

r(s) = 0. 

5) В R каждый ненулевой идеал содержит неделитель нуля. 

Выпишем градуированные аналоги этих понятий и проверим, верны ли они для 

любого gr-первичного кольца R с градуированным индексом нильпотентности ≤ n. 

1') R – gr-ортогонально n-конечное кольцо. 

2') Каждая строго возрастающая цепь нетривиальных правых (левых) градуи-

рованных аннуляторов имеет не более n собственных включений. 

3') R – кольцо с условиями максимальности и минимальности для правых и ле-

вых градуированных аннуляторов. 

4') Каждый gr-существенный правый идеал L в R содержит такой однородный 

элемент s, что r(s) = 0. 

5') В R каждый ненулевой градуированный идеал содержит однородный неде-

литель нуля. 

Утверждения 1') и 3'), а следовательно, и 2'), оказались неверны, как показывает 

Теорема. Cуществует gr-первичное кольцо с градуированным индексом ниль-

потентности 2, не удовлетворяющее условию ни минимальности, ни максималь-

ности ни для правых, ни для левых градуированных аннуляторов. 

Доказательство. Рассмотрим кольцо R бесконечных вправо и вниз матриц  

с коэффициентами из поля k, представимых в виде суммы скалярной и финитной 
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(т.е. такой, у которой лишь конечное число элементов отлично от нуля), градуиро-

ванное по группе ⊕i ∈ N Z следующим образом: степень диагональной матрицы 

равна нулю, 
1

1

(0, ,1, , 1 ,0, ), ,
deg 

(0, , 1, , 1,0, ), .

j ji

ij j i i

i j
E

i j

−

−




= 
 − − 

 

Очевидно, градуированный индекс нильпотентности кольца равен 2. Это кольцо 

не gr-ортогонально конечно (и тем более не gr-ортогонально 2-конечно), по-

скольку имеется бесконечное множество ортогональных идемпотентов {Enn}n ∈ N. 

Единственным нетривиальным градуированным идеалом этого кольца является 

идеал F, состоящий из финитных матриц из R, и поскольку F2 = F, кольцо R  

gr-первично; но имеется строго возрастающая цепь правых градуированных анну-

ляторов A1 ⊊ A2 ... ⊊ Ak ⊊ ..., где Ak состоит из матриц, в которых ненулевые только 

первые k строк, а также строго убывающая цепь правых градуированных аннуля-

торов B1 ⊋ B2 ... ⊋ Bk ⊋ ..., где Bk состоит из матриц, у которых первые k строк 

нулевые. Аналогично с левыми аннуляторами с заменой строк на столбцы. 

Утверждения 4') и 5') также оказались неверны, как показывает 

Теорема. Существует gr-первичное кольцо с градуированным индексом ниль-

потентности 2, в котором есть gr-существенный правый идеал L, у всех одно-

родных элементов которого правый аннулятор ненулевой, и в котором есть нену-

левой градуированный идеал, в котором все однородные элементы – делители нуля. 

Доказательство. Пусть R – некоммутативная ассоциативная k-алгебра 
2, | 0, 1 ,x z xzx z= =  градуированная по группе 1 2, | , ,D r s rs sr s e−

  = =   

, ,

, ,

, ,

,

n n

n n

n n

n n

x r

zx z r
R

x z r s

zx sr

−



  =


 =
= 

 =
  =

k

k

k

k

 

(во всех четырех случаях n ∈ N ∪ {0}). Рассмотрим правый градуированный идеал 

xR + zxR и заметим, что в нем есть все элементы вида xk, zxk, xkz и zxkz при k > 1, т.е. 

все необратимые однородные элементы; следовательно, этот правый идеал будет 

gr-существенным. Но у любого однородного элемента из этого идеала правый ан-

нулятор будет содержать либо zx (для элементов вида xk и zxk), либо x (для элемен-

тов вида xkz и zxkz). По той же самой причине все однородные элементы любого 

градуированного идеала в R являются делителями нуля. 
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Abstract. This research investigates kinetic characteristics of biocidal effects induced by 

copper(II) oxide nanoparticles on the growth dynamics of Penicillium chrysogenum fungal 

colonies at different temperatures. The influence of varying concentrations of CuO nano-

particles at different temperatures (4°C, 15°C, and 28°C) on colony growth rates was evaluated. 

Mathematical models were developed to accurately predict the dynamics of growth curves 

at different CuO concentration levels and thermal regimes. Key findings include that 

higher concentrations of CuO significantly suppress fungal colony expansion. An optimal 

range of 0.10–0.20% CuO was identified as effective for protecting polymer composites 

against biological corrosion. At lower temperatures, slower growth rates and extended lag 

phases are observed, while elevated temperatures accelerate both growth rates and reduce 

lag times. The logistic growth model exhibited strong correlation with experimental data, 

achieving high coefficients of determination (R2) in all tested scenarios. These results  

provide valuable insights into optimizing bioprotection strategies for polymer composite 

materials exposed to harsh environmental conditions such as permafrost regions. 

Keywords: polymer composite materials, growth kinetics modeling, microbial population, 

biocidal effect, copper(II) oxide nanoparticles, concentration, temperature, logistic growth 

model, R2 determination coefficient 
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Введение 
 

Полимерные композиты представляют собой новый класс перспективных ма-

териалов, значимость которых в технических системах постоянно увеличивается 

благодаря ряду важных преимуществ по сравнению с металлами [1, 2]. Современ-

ное материаловедение сталкивается с проблемой ограниченной изученности физи-

ческих, механических и химических свойств недавно разработанных композитов. 

Острая необходимость в конструкционных полимерах становится причиной быст-

рого внедрения таких материалов в различные области промышленности и граж-

данского строительства, однако их широкое внедрение требует особого подхода  

к защите от негативных воздействий окружающей среды [3–6]. 

При разработке конструкций, рассчитанных на эксплуатацию в сложных при-

родных условиях, крайне важно учитывать совокупное влияние целого ряда кли-

матических факторов: температуры, влажности воздуха, солнечного света, радио-

активного фона, агрессивных сред и биологически активных микроорганизмов, 

негативно влияющих на прочность материала [7–10]. Необходимо также исследо-

вать роль патогенных бактерий [11], способствующих деструкции полимеров и 

ухудшению их эксплуатационных свойств. При разработке современных полимер-

ных композиционных материалов (ПКМ) с улучшенными прочностными характе-

ристиками важно анализировать совместное воздействие бактериальной активности 

и неблагоприятных условий окружающей среды [12, 13]. Для повышения устойчи-

вости композитов к бактериям целесообразно вводить специальные добавки, об-

ладающие комплексом требуемых физико-химических свойств, как способствую-

щих усилению механических свойств, так и обладающих эффектом биоцидного 

воздействия, например наночастиц металлов, таких как серебро, никель, медь и 

цинк [14–16]. Одной из важных задач в ходе таких исследований является разра-

ботка оценочных моделей сохранения свойств и характеристик ПКМ при натур-

ных испытаниях, что позволит прогнозировать срок службы ПКМ в экстремаль-

ных климатических условиях [17]. 

Применение кинетического подхода при изучении процессов биологической 

коррозии и климатической деструкции полимерных композиционных материалов 

особенно актуально, например, в условиях вечной мерзлоты ввиду специфических 

особенностей воздействия совокупности биотических и абиотических факторов 

[18–21]. Деструкция указанных материалов под воздействием микроорганизмов 

представляет собой динамический процесс, зависящий от многих переменных, 

среди которых ведущую роль играют условия окружающей среды, физические 

свойства поверхности материалов и химический состав самих биоцидных добавок. 

Использование стандартных методов микробиологических исследований часто 

ограничено только оценкой начальных и конечных результатов процесса воздей-

ствия без учета динамики изменения численности микроорганизмов, что затруд-

няет прогнозирование долгосрочной эффективности защитных покрытий и сроков 

службы изделий [22]. 

Исследование кинетики биоцидного воздействия включает построение зависи-

мостей скорости роста микроорганизмов от концентраций соединений, ингибирую-

щих рост микроорганизмов, продолжительности контакта и условий окружающей 

среды [23, 24]. Кинетический метод обладает существенными преимуществами пе-

ред традиционно используемыми методами микробиологического тестирования, 
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поскольку позволяет количественно определить скорость роста или снижения чис-

ленности колоний микроорганизмов и исследовать динамику биоцидного воздей-

ствия во времени [25]. Моделирование кинетики является важным этапом при  

выборе оптимальной концентрации, химической формы и способа введения био-

цидных компонентов в строительные материалы и конструкции [26–30]. Важней-

шей задачей кинетического анализа является определение наиболее оптимальных 

концентраций и эффективных способов введения биоцидных агентов, обеспечива-

ющих максимальную защиту материала в течение длительного срока эксплуата-

ции. Цель данной работы – создание математической модели, оценка влияния кон-

центрации наночастиц оксида меди (II) на скорость роста и жизнеспособность 

микроорганизмов при различных температурах и выбор оптимальной концентра-

ции биоцидного компонента. 

 

Методика исследования 

 

Приготовление тестовых микроорганизмов и измерение диаметра колоний 

Штамм Penicillium chrysogenum Pn-ПКМ-11 использовали в качестве тестового 

микроорганизма для определения минимальной антимикробной концентрации на-

ночастиц оксида меди при разных температурах. Штамм культивировали на ага-

ризованной среде Чапека–Докса с добавлением наночастиц оксида меди (II) с кон-

центрацией 0.0, 0.05, 0.1, 0.2 и 0.25 мас. %. Cпоры культуры и фрагменты мицелия 

инокулировали в центр чашек Петри. Исследование динамики роста при различ-

ных концентрациях CuO и температурах T = 4, 15, 28°C проводили путем измере-

ния диаметра колоний Di от времени t на протяжении 28 суток. Для усреднения  

в ходе эксперимента по измерению диаметра колоний от времени для каждого  

значения концентрации CuO и фиксированного значения температуры T прово-

дили 6 параллельных опытов. Для определения диаметра колоний использовали 

металлическую линейку с погрешность измерения ±0.05 мм.  

 

Математическое моделирование кривых роста колоний грибов  

Математические модели широко применяются для описания динамки и полу-

чения соответствующих кинетических характеристик роста колоний микроорга-

низмов. Существует множество первичных моделей, описывающих рост клеток 

микробов с количественной точки зрения: модель Бараньи, модель Гомпертца, 

трехфазная линейная модель первичного роста и т.д. [31]. Математическая модель 

отражает ключевые особенности процесса роста, позволяет получить его количе-

ственную оценку и спрогнозировать его в различных условиях. Как правило, эти 

модели основаны на использовании в том или ином виде экспоненциальных функ-

ций в форме  

 ( ) exp expy a b c x=  − −  . (1) 

В качестве примера можно привести уравнение Гомпертца  

 ( ) μ
exp exp λ 1m e

D A t
A

 
=  −  − +  

, (2) 

где x представляет собой время роста, y обозначает степень роста. Cтепень роста y 

можно выразить через диаметр колонии D, мм, в логарифмической форме ln(D), 

отношение диаметров колоний, D/D0, где D0 – начальное значение диаметра 
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колонии, или логарифмическое отношение диаметров колоний ln(D/D0). Выбор 

между этими показателями для определения степени роста y зависит от конкрет-

ных условий роста и физиологических характеристик культивируемых микроор-

ганизмов.  

В уравнении (1) параметры a, b и c не имеют прямой биологической интерпре-

тации. Однако кривую роста микроорганизмов обычно можно описать с помощью 

трех биологически значимых параметров. Это максимальная скорость роста (μm), 

представляющая собой точку перегиба кривой и показывающая максимальную 

скорость увеличения популяции микроорганизмов. Время задержки (λ), или лаг-

фаза, определяется как точка пересечения касательной с осью Ox в точке перегиба 

и отражает период до начала экспоненциального роста численности. Максималь-

ный диаметр (A) соответствует точке пересечения асимптоты и оси Oy, где числен-

ность популяции достигает своего предельного значения и стабилизируется. На 

рис. 1 представлена графическая интерпретация, характеризующая общий ход 

кривой биологического роста.  
 

 

Рис. 1. Общий ход кривой биологического роста 

Fig. 1. General trend of the biological growth curve 

 

Помимо уравнения Гомпертца (2), математическая модель в виде логистиче-

ской функции [31]  

 

( ) 4
1 exp 2m

A
D

t
A

=
 

+   − +
  

, (3) 

где t – время роста, ч; λ – период замедления роста, ч; A – максимальный диаметр 

колонии, мм; μm – максимальная скорость роста, мм/ч; D – средний диаметр в мо-

мент времени t, ч, также является одной из наиболее распространенных для опи-

сания связи между диаметром колонии D и временем роста t. 

В качестве показателя, отражающего относительное изменение численности 

популяции во времени, используются экспериментально измеренные средние зна-

чения диаметра колоний D. Аппроксимация кривых роста и идентификация пара-

метров математической модели были выполнены методом нелинейной регрессии 

в программе OriginPro 8.6 (OriginLab Corporation, Northampton, MA, USA). 
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Результаты экспериментальных исследований и их анализ 

 

При исследовании роста штамма Penicillium chrysogenum Pn-ПКМ-11 колоний 

грибов было найдено среднее значение диаметра колоний D по 6 параллельным 

опытам и приведены зависимости среднего размера диаметра колоний D от вре-

мени роста t при различных значениях температуры: 4, 15, 28°C. В табл. 1 приве-

дены зависимости среднего размера диаметра D от времени роста t колоний грибов 

на примере штамма Penicillium chrysogenum Pn-ПКМ-11 при различных массовых 

концентрациях наночастиц (CuO), %, при указанных температурах.  

Т а б л и ц а  1  

Зависимости диаметра колоний D от времени роста t при различных  

массовых концентрациях наночастиц (CuO) 

Время 

t, ч 

Температура, T = 4°C 

(CuO) = 0.00% 

(контроль) 
(CuO) = 0.05% (CuO) = 0.10% (CuO) = 0.20% (CuO) = 0.25% 

0 0.0 0.0 0.0 0.0 0.0 

72 1.3 0.0 0.0 0.0 0.0 

96 1.5 0.0 0.0 0.0 0.0 

120 2.2 1.3 0.0 0.0 0.0 

144 3.0 2.0 0.0 0.0 0.0 

168 5.0 3.0 0.0 0.0 0.0 

336 19.7 10.2 7.2 3.8 3.0 

504 32.3 12.3 10.0 4.2 5.2 

672 45.3 13.3 10.2 4.2 5.8 

Время 

t, ч 

Температура, T = 15°C 

(CuO) = 0.00% 

(контроль) 
(CuO) = 0.05% (CuO) = 0.10% (CuO) = 0.20% (CuO) = 0.25% 

0 0.0 0.0 0.0 0.0 0.0 

72 1.8 1.0 1.8 0.0 0.0 

96 4.7 3.3 1.8 0.0 0.0 

120 8.8 5.5 2.5 0.0 0.0 

144 12.0 7.3 3.2 0.0 0.0 

168 16.7 9.5 5.0 0.0 0.0 

336 43.2 12.2 9.7 3.8 3.8 

504 65.2 16.7 11.3 6.5 9.3 

672 79.2 20.5 13.3 7.2 11.0 

Время 

t, ч 

Температура, T = 28°C 

(CuO) = 0.00% 

(контроль) 
(CuO) = 0.05% (CuO) = 0.10% (CuO) = 0.20% (CuO) = 0.25% 

0 0.0 0.0 0.0 0.0 0.0 

72 7.0 4.7 2.3 2.5 0.0 

96 11.0 8.3 5.5 3.5 1.0 

120 16.7 12.0 8.0 5.0 1.0 

144 20.2 14.2 10.2 6.5 4.0 

168 24.2 16.7 11.3 7.0 5.0 

336 49.2 29.8 17.3 20.0 16.8 

504 69.5 44.0 23.0 28.5 25.3 

672 76.2 55.8 32.7 31.8 33.0 
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Представленные данные показывают влияние массовой концентрации наноча-

стиц CuO на рост колоний микроорганизмов при T = 4°C. Контрольная группа (без 

добавления наночастиц CuO) демонстрирует самый высокий уровень роста коло-

ний. Это видно по значительному увеличению диаметра колоний с течением вре-

мени, который достигает максимальных значений около 45 мм спустя 672 ч. По мере 

увеличения концентрации наночастиц CuO наблюдается значительное снижение 

скорости роста колоний. Например, при максимальной концентрации (CuO) = 0.25% 

диаметр колоний становится значительно меньше контрольной группы даже спу-

стя длительное время. Приведенные при T = 4°C опытные данные ясно демонстри-

руют зависимость бактерицидного эффекта от концентрации: чем выше концен-

трация наночастиц, тем сильнее торможение роста колоний.  

Экспериментальные данные показывают влияние массовой концентрации на-

ночастиц (CuO) на рост колоний микроорганизмов при температуре T = 15°C. При 

отсутствии наночастиц (CuO) = 0.0% последние растут наиболее интенсивно,  

демонстрируя максимальный диаметр среди всей серии кривых при температуре 

T = 15°C. Начальная стадия роста протекает относительно быстро и продолжается 

равномерно вплоть до максимального значения примерно 79 мм спустя 672 ч. 

Даже добавление небольших концентраций наночастиц, в пределах (0.05−0.10%), 

оказывает заметное влияние на рост колоний микроорганизмов. Эти концентрации 

замедляют рост колоний, однако не останавливают его полностью. Особенно за-

метно замедление на начальной стадии, когда рост колоний протекает в лаг-фазе. 

Максимальный диаметр колоний стабилизируется на уровнях значительно ниже 

контрольного варианта: Dmax =20.5 мм при (CuO) = 0.05%, Dmax = 13.3 мм при  

(CuO) = 0.10%. При средней концентрация (CuO) = 0.20% наблюдается сильное 

ингибирующее воздействие на рост колоний микроорганизмов. До момента вре-

мени 168 ч не было зафиксировано изменения диаметра колоний. При концентра-

ции CuO = 0.25% рост колоний микроорганизмов практически отсутствует вплоть 

до 168 ч наблюдения, что свидетельствует о выраженном бактерицидном действии 

наночастиц CuO. Лишь спустя длительное время (более 336 ч) наблюдается незна-

чительное увеличение диаметра колоний, однако этот показатель значительно 

ниже, чем в контроле и образцах с меньшими концентрациями CuO. Небольшим 

отличием в случае высокой концентрации (CuO) = 0.25% является лишь немного 

больший максимальный диаметр Dmax = 11.0 мм по сравнению с концентрацией 

(CuO) = 0.20%, где максимальный размер колоний достигает значения Dmax = 7.2 мм. 

Полученные в результате проведения исследования экспериментальные дан-

ные также указывают на влияние концентрации наночастиц оксида меди (II) на 

рост колоний микроорганизмов при температуре T = 28°C. По сравнению с образ-

цами, изученными при температурах T = 4 и 15°C, общая картина кинетики роста 

в целом не претерпевает существенных изменений. Наиболее интенсивный рост 

колоний происходит в условиях отсутствия наночастиц (контрольный образец). 

Увеличение концентрации наночастиц приводит к постепенному снижению  

темпов роста вплоть до полной остановки роста при высоких концентрациях.  

Контрольный вариант (CuO) = 0.00% характеризуется интенсивным и равномер-

ным ростом диаметра колоний, который достигает максимального значения при-

мерно 76 мм спустя 672 ч. При низкой концентрации (CuO) = 0.05% рост несколько 

замедляется по сравнению с контролем, но протекает стабильно. Конечная точка 

кривой роста соответствует диаметру порядка 56 мм. При увеличении концен-
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трации до (CuO) = 0.10% отмечается существенное уменьшение скорости роста 

при сопоставлении с контролем. На начальном этапе динамика роста замедляется: 

к моменту времени 168 ч диаметр колоний достигает лишь половины от значения 

в контроле. К концу эксперимента размер колоний составляет лишь треть от кон-

трольного образца. При концентрациях (CuO) = 0.20% и (CuO) = 0.25% проявля-

ется ярко выраженный тормозящий эффект на начальном участке кривой роста. 

Высокая концентрация (CuO) = 0.25% практически полностью подавляет рост коло-

ний на начальном этапе. Тем не менее небольшая активация роста возможна после 

первоначального длительного периода лаг-фазы, вероятно, благодаря адаптации 

колоний микроорганизмов к бактерицидному воздействию.  

Таким образом, полученные результаты подтверждают ярко выраженный бак-

терицидный эффект наночастиц CuO, особенно заметный при средних и высоких 

концентрациях. Ингибирующий эффект может быть обусловлен накоплением на-

ночастиц CuO внутри клеток и нарушением внутриклеточных процессов, что от-

ражается в замедлении скорости роста и наблюдаемом снижении диаметра коло-

ний [32]. 

Т а б л и ц а  2  

Расчетные значения параметров в соответствии с математической моделью  

на основе логистической функции 

Концентрация 

наночастиц (CuO), % 

Температура, T = 4°C 

μm, мм/ч λ, ч A, мм R2 

(CuO) = 0.00 0.11 187 48 0.98869 

(CuO) = 0.05 0.05 135 13 0.99048 

(CuO) = 0.10 0.12 272 10 0.99989 

(CuO) = 0.20 0.12 296 4 0.99999 

(CuO) = 0.25 0.03 243 6 0.99486 

Концентрация 

наночастиц (CuO), % 

Температура, T = 15°C 

μm, мм/ч λ, ч A, мм R2 

(CuO) = 0.00 0.20 128 79 0.98929 

(CuO) = 0.05 0.04 16 20 0.90653 

(CuO) = 0.10 0.04 61 13 0.97896 

(CuO) = 0.20 0.04 248 7 0.99647 

(CuO) = 0.25 0.04 255 11 0.99674 

Концентрация 

наночастиц (CuO), % 

Температура, T=28°C 

μm, мм/ч λ, ч A, мм R2 

(CuO) = 0.00 0.19 62 77 0.98701 

(CuO) = 0.05 0.11 58 59 0.97425 

(CuO) = 0.10 0.06 28 36 0.92982 

(CuO) = 0.20 0.09 99 32 0.99594 

(CuO) = 0.25 0.09 162 33 0.98148 
 

С использованием логистической модели (3) были рассчитаны численные зна-

чения параметров μm, λ и A путем аппроксимации экспериментальных с примене-

нием метода нелинейной регрессии. В табл. 2 приведены основные параметры  

роста, описывавшие влияние концентраций наночастиц CuO на рост колоний микро-

организмов при температуре T = 4°C. Максимальная скорость роста μm характери-

зует наибольшую скорость увеличения численности популяции микроорганизмов. 

Из табл. 2 видно, что максимальная скорость роста варьирует от 0.03  до 0.12 мм/ч. 
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Наибольшие значения μm наблюдается при концентрациях (CuO) = 0.10% и (CuO) =  

= 0.20%, тогда как наименьшая скорость роста зафиксирована при (CuO) = 0.25%. 

Время задержки роста λ показывает временной интервал перед началом фазы экс-

поненциального роста. При температуре T = 4°C значение параметра λ изменяется 

от 134 до 296 ч. Минимальное время задержки отмечается при концентрации 

(CuO) = 0.05%, максимальное – при (CuO) = 0.20%. Максимальный диаметр A от-

ражает средний конечный размер колоний в стационарной фазе роста. При темпе-

ратуре T = 4°C средний диаметр колеблется от 4  до 48 мм, достигая максимума  

при отсутствии наночастиц (CuO) = 0.00% и минимального размера 4 мм при вы-

сокой концентрации наночастиц (CuO) = 0.20%. Представленные расчетные дан-

ные характеризуются высокими значениями коэффициента детерминации R2. 

Анализ зависимости параметров роста от концентрации наночастиц CuO пока-

зывает, что при низкой концентрации (CuO) = 0.05% время задержки роста λ суще-

ственно сокращается относительно контрольного образца. Максимальный диаметр 

колоний также значительно уменьшается по сравнению с контролем (CuO) = 0.00%. 

Это свидетельствует об ингибирующем эффекте даже малых доз наночастиц на 

начальную стадию роста: λ = 187 ч для (CuO) = 0.00% и λ = 135 ч для (CuO) = 0.05%; 

фазу экспоненциального роста: μm = 0.11 мм/ч для (CuO) = 0.00% и μm = 0.05 мм/ч 

для (CuO) = 0.05%; итоговый диаметр колоний: A = 48 мм для (CuO) = 0.00% и  

A = 13 мм для (CuO) = 0.05%. При средней концентрации (CuO) = 0.10% проявля-

ется тенденция к увеличению времени задержки λ и незначительному уменьше-

нию максимального диаметра A по сравнению с образцом (CuO) = 0.05%, что ука-

зывает на постепенное усиление эффекта бактерицидного воздействия: λ = 272 ч и 

A = 10 мм для концентрации (CuO) = 0.10%. В области высоких концентраций 

(CuO) = 0.20 ÷ 0.25% рост максимально замедляется, увеличивается время за-

держки и снижается максимальный диаметр. Несмотря на то, что время задержки 

роста λ для (CuO) = 0.25% несколько уменьшается до 243 ч по сравнению с образ-

цом (CuO) = 0.20%, для которого λ = 296 ч, максимальная скорость роста μm для 

(CuO) = 0.25% составляет всего 0.03 мм/ч, что заметно ниже значений при других 

концентрациях. Это свидетельствует о сильном ингибирующем воздействии вы-

соких доз наночастиц на развитие микроорганизмов. 

Результаты экспериментального исследования по влиянию различной концен-

трации наночастиц CuO на параметры роста микроорганизмов – максимальную 

скорость роста μm, время задержки роста λ и максимальный диаметр колоний A – 

и их изменение при температуре T=15°C представлены в табл. 2. Контрольный об-

разец без добавок наночастиц (CuO)=0.00% демонстрирует самую высокую ско-

рость роста — 0.202 мм/ч. По мере повышения концентрации наночастиц скорость 

роста резко падает вплоть до уровня значений μm = 0.04 мм/ч и находится на этом 

уровне при всех рассматриваемых концентрациях (CuO) ≥ 0.05%. Важно отметить, 

что разница в параметре максимальной скорости роста μm среди образцов с добав-

ками практически отсутствует, несмотря на различия в содержании наночастиц.  

В контроле (CuO) = 0.00% время задержки λ минимально – 128 ч. После введения 

небольших количеств наночастиц (CuO) = 0.05% время задержки λ резко увеличи-

вается почти в два раза, достигая значения 16 ч. При дальнейшем увеличении кон-

центрации (CuO) до 0.10% и выше время задержки λ вновь возрастает до величин 

порядка 248 и 255 ч соответственно. Без добавления наночастиц (CuO) = 0.00% 

колонии достигают наибольшего среднего диаметра – 79 мм. Уже при небольшой 
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концентрации (CuO) = 0.05% диаметр существенно уменьшается до 20 мм. Даль-

нейшее увеличение концентрации (CuO) приводит к снижению диаметра колоний 

до низких значений: около 7 мм при концентрации (CuO) = 0.20% и 11 мм в случае 

(CuO) = 0.25%. 

В табл. 2 рассматривается влияние различных концентраций наночастиц CuO 

на параметры роста микроорганизмов μm, λ и A и их изменение на основе экспери-

ментальных данных при температуре T=28°C. Контрольный образец без наноча-

стиц (CuO) = 0.00% проявляет наибольшую скорость роста – 0.19 мм/ч. Добавле-

ние уже небольших количеств наночастиц CuO в количестве 0.05% вызывает рез-

кое падение скорости роста – до 0.11 мм/ч. Дальнейшее увеличение концентрации 

(CuO) = 0.10% еще сильнее снижает скорость роста вплоть до 0.06 мм/ч. При более 

высоких концентрациях (CuO) = 0.20 и 0.25% скорость роста несколько возрастает 

до значения 0.09 мм/ч для каждого из образцов, хотя и остается значительно ниже 

контрольного значения, зафиксированного для образца (CuO) = 0.00%. В кон-

трольном образце (CuO) = 0.00% время задержки равно 62 ч. Небольшие количе-

ства наночастиц (CuO) = 0.05% несколько снижают время задержки до 58 ч. Повы-

шение концентрации до (CuO) = 0.10% значительно сокращает время задержки до 

28 ч. Но при еще больших концентрациях (CuO) = 0.20% и (CuO) = 0.25% время 

задержки резко возрастает до 99 и 162 ч соответственно. При отсутствии наноча-

стиц (CuO) = 0.00% колонии имеют наибольший диаметр – 77 мм. При низкой кон-

центрации (CuO) = 0.05% диаметр немного снижается до 59 мм. Увеличение кон-

центрации до среднего значения (CuO) = 0.10% приводит к уменьшению среднего 

диаметра колоний до 36 мм. Несмотря на некоторое увеличение скорости роста 

при более высоких концентрациях (CuO) = 0.20% и (CuO) = 0.25%, средний диа-

метр колоний изменяется незначительно: A = 32 мм для (CuO) = 0.20 и A = 33 мм 

для (CuO) = 0.25%. 

Обобщив полученные результаты, можно сделать вывод, что низкотемператур-

ные условия способствуют достижению минимально возможных скоростей роста 

и максимально возможных времен задержки роста. Наличие наночастиц в неболь-

ших количествах улучшает эти показатели, особенно при умеренных температурах. 

Однако дальнейшее увеличение концентрации наночастиц при высокой темпера-

туре не приводит к получению требуемых характеристик роста, что делает необ-

ходимым выбор некоторого оптимума между скоростью роста и временем за-

держки роста. 

 

Заключение 

 

Исследование зависимости скорости роста колоний микроорганизмов Penicillium 

chrysogenum от концентрации наночастиц оксида меди (II) и температуры окружа-

ющей среды проводилось с целью разработки эффективных методов защиты по-

лимерных композиционных материалов от биологической коррозии. Результаты 

экспериментального исследования показали зависимость скорости роста колоний 

микроорганизмов Penicillium chrysogenum от концентрации наночастиц оксида 

меди (II) и температуры окружающей среды. Установлено, что увеличение концен-

трации наночастиц CuO ведет к сильному торможению роста колоний, особенно 

при средних и высоких концентрациях. Оптимизация концентраций наночастиц 

позволила выявить четкую тенденцию: при низких концентрациях (до 0.10%) рост 
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колоний существенно замедлялся, а при высоких концентрациях (более 0.20%) 

наблюдалось практически полное прекращение роста микроорганизмов. Темпера-

турный фактор оказывал существенное влияние на характеристики роста колоний. 

Низкая температура (4°C) приводила к замедлению роста и увеличению времени 

задержки роста, в то время как повышение температуры ускоряло рост и сокра-

щало лаг-фазу. 

Анализ экспериментальных данных показал хорошую корреляцию с математи-

ческой моделью роста на основе логистической функции. Коэффициенты детер-

минации (R²) имели высокие значения, подтверждающие точность предложенной 

модели. Установлено, что оптимальная концентрация наночастиц оксида меди(II) 

должна находиться в диапазоне 0.10–0.20%. По всей видимости, выбор значений 

концентрации на таком уровне позволит обеспечить эффективное предотвращение 

роста микроорганизмов и продлить сроки службы полимерных композиционных 

материалов. Проведенное исследование подтверждает целесообразность исполь-

зования наночастиц оксида меди (II) в качестве эффективного биоцидного компо-

нента борьбы с биокоррозией полимерных композитов, особенно в условиях хо-

лодного климата и вечной мерзлоты. 
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Аннотация. В классе аналитических функций, область значений которых содер-

жится в круговой луночке, найдены точные оценки действительной части, модуля 

функции и модуля ее логарифмической производной, обобщающие известные ре-

зультаты, используемые многими авторами на протяжении десятилетий. В качестве 

приложения получен радиус звездообразности класса дважды почти звездообразных 

функций, в частных случаях дающий ряд известных результатов.  

Ключевые слова: оценки аналитических функций, почти звездообразные функции, 

радиусы звездообразности 
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Abstract. The article introduces a class of analytical functions in a unit circle that have 

missing terms in the power series expansion. Their range of values is contained in a circular 

lune located in the right half-plane relative to the imaginary axis and symmetric relative  

to the real axis, one of the vertices of which is located at point 0. In this class of functions, 

the problem of finding the exact upper boundary of the modulus of the logarithmic derivative 
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and the boundaries from below and above the real part and the modulus of the function is 

solved. Such results have always served as the basis for solving a number of extreme prob-

lems on subclasses of functions f(z), analytical in the unit circle and normalized by the 

condition   (0) (0) 1 0f f = − = . Some particular cases, when a circular lune degenerates 

into a circle or angle, yield well-known estimates established by such authors as T.H. Mac-

Gregor, R.M. Goel, D.B. Shaffer, and G.M. Shah and used by many researchers for decades 

to solve extreme problems.  

As an example of applications of the main result, the radius of starlikeness of one wide 

class of doubly close-to-starlike functions is obtained, which in particular cases gives  

a number of well-known results obtained in recent years. 

Keywords: estimates of analytical functions, close-to-starlike functions, radii of starlikeness 
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Введение 

 

Пусть  – класс аналитических в круге { : 1}E z z=   функций  φ , нормиро-

ванных условием  φ(0) 1= , n  – класс функций  φ  с разложением вида 

( ) 1
1φ 1 n n

n nz с z с z +
+= + + + , 1n  , и пусть n  – класс аналитических в E  функций 

 f  вида ( ) 1 2
1 2

n n
n nf z z a z a z+ +
+ += + + + , 1n  . Также будем считать, что если 

n  – некоторый подкласс класса n , то 1:= , и обратно, добавление ниж-

него индекса n у  будет означать, что функции подкласса n  имеют разложе-

ние вида ( ) 1
1φ 1 n n

n nz с z с z +
+= + + + , 1n  . 

Пусть  – класс Каратеодори, т.е.     и Re φ( ) 0z  , z E . 

Хорошо известно, что многие экстремальные задачи для подклассов n  класса 

n  могут быть сведены к задачам минимизации или максимизации при 1z r=   

функционалов 

 Re φ( )z , φ( )z , φ ( )z , 
φ ( )

φ( )

z
z

z


, 

φ ( )
Re μ φ( ) η 

φ( )

z
z z

z

 
+ 

 
, μ,η 0 , 

на некоторых подклассах n  класса n , используемых при построении классов n . 

Впервые в статьях [1–3] границы Re φ( )z , φ( )z , φ ( ) / φ( )z z z  установлены  

в классе n  и его подклассе функций, удовлетворяющих условию φ( ) 1 1z −  .  

Немногим позже обобщение этих результатов на класс функций  φ , удовле-

творяющих условию φ( )z a a−  , 1/ 2a  , z E , были получены в [4], а для слу-

чая, когда  φ n  при   1n   – в [5]. Оценка φ ( ) / φ( )z z z  в подклассе класса n , 

когда Re φ( ) αz  , z E , была получена в [6]. 
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В статье [7] решена задача минимизации при 1z r=   функционала 

( )Re μ φ( ) η  φ ( ) / φ( )z z z z+ , μ,η 0 , а также найдены границы для функционалов 

Re φ( )z  и φ( )z  в классе  

( ) ( ) ( ) 0 0[ , ] φ :  φ φ ,   φ (1 ) / (1 ),   1 1n nA B E E z Az Bz B A=   = + + −    . 

Описанные выше оценки на протяжении полувека, в том числе и в последние 

годы, применялись разными авторами (см., напр.: [8–12]) при решении экстре-

мальных задач. 

В [13] получены оценки Re φ( )z , φ( )z , φ ( ) / φ( )z z z  в классе n  функций φ , 

удовлетворяющих условию ( )2φ 1 1z −  , z E . Обобщение этих результатов,  

а также точная оценка снизу функционала ( )Re μ φ( ) η  φ ( ) / φ( )z z z z+ , μ,η 0 ,  

в классе   n  функций, для которых ( )
1/γ

φ( )z a a−  , 1/ 2a  , 0 γ 1  , z E , 

установлены в статье [14]. 

В настоящей статье вводится класс функций  φ n , множество значений ко-

торых содержится в круговой луночке, расположенной в правой полуплоскости и 

симметричной относительно действительной оси. В данном классе решена задача 

определения точных границ Re φ( )z , φ( )z , φ ( ) / φ( )z z z  и минимизации функ-

ционала ( )Re μ φ( ) η  φ ( ) / φ( )z z z z+ , μ,η 0 , при 1z r=  . Эти результаты могут 

быть применены для решения ряда новых экстремальных задач на подклассах 

класса n . В качестве примера применения данных оценок найден радиус звез-

дообразности одного класса дважды почти звездообразных функций. В некоторых 

частных случаях полученные оценки совпадают с оценками, полученными в вы-

шеперечисленных результатах.  

 
1. Подчиненность, симметризация и внутренний радиус области 

 
Многие классы аналитических функций могут быть определены в терминах 

подчиненности функций. Функция φ  называется подчиненной функции 

0 φ  , если существует функция ω  такая, что ω( ) 1z   в круге E  и ω(0) 0,=  

для которой 0φ( ) φ (ω( ))z z= . Факт подчиненности функций обозначается в виде 

0φ( ) φ ( )z z . В случае когда функция 0 φ  является однолистной в E , факт подчи-

ненности имеет простой геометрический смысл: 0φ( ) φ ( )E E  и 0φ(0) φ (0)= . 

Важное значение для приложений имеет тот факт, что если функция φ  имеет раз-

ложение вида 
1

0 1φ( ) n n
n nz с с z с z +

+= + + + ,   1n  , то из соотношения 0φ( ) φ ( )E E  

следует, что  

 0φ( ) φ ( )nz r z r    при любом r , 0 1r  . (1) 

Используя геометрические характеристики области 0φ ( )z r , на основе соот-

ношения (1) несложно получить точные оценки Re φ( )z , Im φ( )z , φ( )z , argφ( )z . 
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Для нахождения оценок φ ( )z  и φ ( ) / φ( )z z z  эффективно применяется следующее 

утверждение [15], сформулированное в терминах внутреннего радиуса области [16]. 

Лемма 1 [15]. Пусть функция 
1

0 1Φ( ) n n
n nz c c z c z +

+= + + + ,   1n  , является 

аналитической в круге E  и 0Φ( ) Φ ( )z z , где функция 0Φ  однолистна в E . Тогда 

при 1z r=   имеет место точная оценка 

 ( )
1

02
Φ ( ) , Φ( )

1

n

n

nr
z R D z

r

−

 
−

, (2) 

где 0 0Φ ( )D E= , ( )0 , Φ( )R D z  – внутренний радиус области 0D  относительно 

точки Φ( )z . Оценка (2) точная и достигается для функции 
α

0Φ( ) Φ ( )i nz e z= , где 

αR  – произвольная постоянная. 

Как показано в [16], если функция 0Φ ( )w z=  однолистно и конформно отобра-

жает круг E на область 0D , то внутренний радиус ( )0 , R D w  области 0 0Φ ( )D E=  

относительно точки ( )0Φw z=  вычисляется по формуле  

 . (3) 

Кроме этого, воспользуемся некоторыми элементами метода симметризации [17] 
области относительно прямой (симметризации Штейнера). Так как при расшире-
нии или симметризации области ее внутренний радиус не уменьшается, то из этого 
свойства вытекает следующая лемма. 

Лемма 2. Пусть область D  симметрична относительно действительной оси,  

и после осуществления симметризации области D  относительно действительной 

оси получается область 
*D D= . Тогда для любой точки w D  выполняется нера-

венство  

( ) ( ),  , R D w R D u , где Re u w= . 

Из леммы 2 следует, что если область D  не изменяется при ее симметризации 
относительно действительной оси и имеет ограниченный максимальный внутрен-
ний радиус, то его максимальное значение достигается в точке (в точках) области 

D , лежащих на действительной оси. То есть в этом случае для нахождения мак-

симального внутреннего радиуса достаточно исследовать ( ), R D w  в точках дей-

ствительной оси, принадлежащих области D . 
 

2. Класс функций ( , )γn a  и его описание 

 

Определение 1. Будем считать, что аналитическая в E  функция φ  принадлежит 

классу ( , γ)n a  тогда и только тогда, когда  φ n  и выполняется условие 

 ( )1( )arg φ γπ / 2z a− −  , 0 γ 1  , 0 1a  , z E . (4)  

Лемма 3. Функция φ  принадлежит классу ( , γ)n a тогда и только тогда, когда  

 
γ

0 γ γ

(1 )
φ( ) φ ( ) .

(1 )(1 ) (1 )

z
z z

a z a z

+
=

− − + +
 (5) 

( ) ( )2

0 0 0( , Φ ( )) Φ 1R D z z z= −
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При этом область значений φ( )E  содержится в круговой луночке 0φ ( )E , распо-

ложенной в правой полуплоскости относительно мнимой оси и симметричной от-

носительно действительной оси, с угловыми точками 0  и 1/ a  и внутренними 

углами, равными γπ . 

Доказательство. Условие (4) равносильно неравенству  

1φ ( ) γπ
arg 

1 2

z a

a

− −


−
 или 

γ1

0

φ ( ) 1
( )

1 1

z a z
w z

a z

− − − 
=  

− + 
. 

Поэтому существует функция ω , удовлетворяющая условию леммы Шварца и та-

кая, что 

( )
1

0

φ ( )
ω( )

1

z a
w z

a

− −
=

−
 или 0

0

1
φ( ) φ (ω( ))

(1 ) ω(( ))
z z

a w z a
= =

− +
, 

а это равносильно (5). Поскольку ( ) ( )1
0φ ( ) 1 ω( )z a w z a− = − + , то 

1 1
0φ ( ) φ ( )z z− − =

0(1 ) ( )a w z a= − + , причем 
1

0φ ( )E−
 есть угол arg ( ) γπ/2w a−   величины γπ  с вер-

шиной в точке a , симметричный относительно действительной оси. Отсюда по-

лучается второе утверждение леммы 3. 

Лемма 4. Пусть функция 0φ  определена в соотношении (5). Тогда 

 0 0 0max Re φ ( ) max φ ( ) φ ( )
z r z r

z z r
= =

= = , (6) 

 0 0 0min Re φ ( ) min φ ( ) φ ( )
z r z r

z z r
= =

= = − . (7) 

Доказательство. Запишем функцию 0φ  в виде 
( )

0
0

1
φ ( )

1 ( )
z

a w z a
=

− +
, где 

( )
γ

0 ( ) (1 ) / (1 )w z z z= − + . Поскольку ( )
γ

0 0( ) ( ) (1 ) / (1 )w z w r r r = − +  при 1z r=  , 

то с учетом геометрических свойств линейного отображения ( ) 01w a w a= − +  по-

лучаем, что 0 0
0

1
φ ( ) φ ( )

(1 ) ( )
z r

a w r a
 =

− +
, причем знак равенства достигается 

в точке z r= . В силу этого 0 0( )max φ φ ( )
z r

z r
=

= . Равенство 0 0min φ φ( ) ( )
z r

z r
=

= −  до-

казывается аналогично с учетом того, что ( )
γ

0 0( ) ( ) (1 ) / (1 )w z w r r r − = + − . 

Равенство 0 0max Re φ ( ) φ ( )
z r

z r
=

=  следует из того, что 0 0 0(Re φ )( ) φ φ) (z z r   и 

0max Re φ ( )
z r

z
=

 достигается в точке z r= . Чтобы доказать равенство 0 0min Re φ ( ) φ ( ),
z r

z r
=

= −  

предположим противное. То есть предположим, что 0min Re φ ( )
z r

z
=

 достигается не 

в точке z r= − , а в точке 0θiz re= , 0θ (0; )π , и 0 0min Re φ ( ) φ ( )
z r

z r
=

 − . Тогда  

в силу свойства симметрии функции 0φ  относительно действительной оси получим, 

что 0θ
0 0 0min Re φ ( ) Re φ φ (( ) )

i

z r
z re r



=
=  − . Поэтому отрезок, соединяющий точки 



Майер Ф.Ф., Тастанов М.Г., Утемисова А.А. Оценки аналитических функций 

33 

0θ
0 ( )φ

i
re  и 0θ

0 ( )φ
i

re
−

, целиком не будет принадлежать замкнутой области 0φ ( ),z r  

так как не содержит точки 0φ ( )r−  этой области, что противоречит выпуклости об-

ласти 0φ ( )z r  при любом r , 0 1r  . Следовательно, 0 0min Re φ ( ) φ ( )
z r

z r
=

= − . 

 

3. Оценки в классе ( , )γn a  

 

Теорема 1. Если φ ( , γ)n a , то при 1z r=   имеют место оценки 

 
γ γ

γ γ γ γ

(1 (1
Re φ( )

)
φ( )

(1 )(1 (1 (1 )() )1

)

) )(1

n n

n n n n

r r
z z

a r a r a r a r

− +
  

− + + − − − + +
, (8) 

 
φ ( )

( ; , γ)
φ( )

nz
z M r a

z


  (9) 

и для любых μ,η 0   

 
γ

γ γ

φ ( ) (1
μ Re φ( ) η Re  μ η  ( ; , γ)

φ( ) (1 ) 1 (1

)

)( )

n
n

n n

z r
z z M r a

z a r a r

  −
+  − 

− + + − 
, (10) 

где 

 
γ

2 γ γ

2γ(1 ) (1 )
( ; , γ)  

1 (1 )(1 ) (1 )

a nr r
M r a

r a r a r

− +
=

− − + + −
. (11) 

Оценки точные и достигаются для функции 0φ( ) φ ( )nz z= , где функция 0φ  

определена в (5). 

Доказательство. Поскольку φ ( , γ)n a , то в силу леммы 3 имеет место под-

чиненность (5), и с учетом разложения 
1

1φ( ) 1 n n
n nz с z с z +

+= + + + , 1n  , выпол-

няется соотношение (1). Поэтому на основе (6)  
γ

0 0 γ γ

(1
Re φ( ) φ( ) max φ ( ) φ ( )

(1 )(1

)

) )(1n

n
n

n n
z r

r
z z z r

a r a r=

+
  = =

− − + +
, 

т.е. получили правые оценки в (8). Аналогично с учетом (7) получаем левые 

оценки в (8): 
γ

0 0 γ γ

(1 )
φ( ) Re φ( ) min Re φ ( ) φ

(1 )(1 )
(

(
)

1 )n

n
n

n n
z r

r
z z z r

a r a r=

−
  = − =

− + + −
. 

Докажем оценку (9). Поскольку в силу (5) 0 0Φ( ) ln φ( ) Φ ( ) ln φ ( )z z z z= = , то 

при 1z r=   выполняется неравенство (2), в силу которого  

 ( )02

φ ( )
Φ ( ) , Φ( )

φ( ) 1

n

n

z nr
z z z R D z

z r


 

−
, (12) 

где 0 0Φ ( )D E= . Поскольку 

 
γ

0
0 2 γ γ

0

φ ( ) 2γ(1 ) (1 )
Φ ( )  

φ ( ) 1 (1 )(1 ) (1 )

z a z
z

z z a z a z

 − −
 = =

− − − + +
, (13) 
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то по формуле (3) получаем 

 ( ) ( )
γ

2

0 0 γ γ2

2γ(1 ) (1 )
, Φ ( )   1

(1 )(1 ) (1 )1

a z
R D z z

a z a zz

− −
= −

− − + +−
. (14) 

Поскольку в силу леммы 3 область 0φ ( )E  является круговой луночкой, сим-

метричной относительно действительной оси, с углами в угловых точках 0w =  и 

1/w a= , равными γπ ,  0 γ 1  , то пересечением области 0φ ( )E  с любой окруж-

ностью ρw = , 0 ρ 1/ a  , является дуга окружности, симметричная относи-

тельно вещественной оси и содержащая точку вещественной полуоси. 

Поскольку область 0φ ( )E  является выпуклой и симметричной относительно 

действительной оси, то при любом r , 0 1r  , область 0φ ( )rE , где { : },rE z z r=   

 0 1r  , также является выпуклой и симметричной относительно действительной 

оси. Если пересечение ( )  0φ ρrE w =  не пусто, то оно также является дугой 

окружности (связным множеством), симметричной относительно действительной оси 

и содержащейся в дуге окружности ( )  0φ ρE w = . Если предположить противное, 

т.е. что множество ( )  0φ ρrE w =  связным не является, то это приведет к тому, что 

пересечение области 0φ ( )E  с окружностью ρw =  не будет связным множеством. 

Поэтому область 0Φ ( )rE  на плоскости lnu iv w+ =  является симметричной от-

носительно действительной оси, и ее пересечением с любой прямой lnρu = , 

0 ρ 1/ a  , является интервал, симметричный относительно вещественной оси. 

Следовательно, после осуществления симметризации Штейнера [17] области 

0Φ ( )rE  относительно вещественной оси получится область ( )
*

0 0Φ Φ( ) ( )r rE E= . 

Поэтому в силу леммы 2 

 0 0 0 0 0
     

max ( , Φ ) max ( , Φ )( ) ( ) ( )max
z r r t r r t r

R D z R D t R t
 −   −  

= = , (15) 

где 0 0 0( ) ( , Φ ( ))R t R D t= , ( 1;1)t − . Тогда в силу (14)  

γγ

0 0γ γ

(1 ) 1
( ) 2γ(1 ) 2γ(1 ) φ ( )

1(1 )(1 ) (1 )

t t
R t a a t

ta t a t

− − 
= − = −  

+− − + +  
. 

Покажем, что 0 ( ) 0R t   для всех ( 1;1)t − . После вычислений получаем 

γ

0
0 02

0

φ ( )1 2γ
( ) 2γ(1 ) φ ( )

1 φ ( ) 1

tt
R t a t

t t t

 − 
 = − −  

+ −   
. 

Отсюда, учитывая, что в силу (13) при  z t=   

( )

γ
0

02 2 γ γ 2
0

φ ( ) 2γ 2γ (1 )(1 ) 2γ
1 φ ( )

φ ( ) 1 1 1 (1 ) (1 ) 1

t a t a
t

t t t a t a t t

  − −
− = − = − 

 − − − − + + − 

, 

окончательно получаем, что ( )
γ2

2

0 02

4γ (1 ) 1
( ) φ ( )

11

a a t
R t t

tt

− − 
 = −  

+−  
, ( 1;1)t − .  

Поэтому 0 ( ) 0R t   для всех ( 1;1)t − , и внутренний радиус 0 ( )R t  является убыва-

ющей функцией на ( 1;1)− . В силу этого, с учетом (15) 
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 ( )( ) ( )
γ

0 0 0 γ γ 

(1 )
max , Φ 2γ(1 )

(1 )(1 ) (1 )z r

r
R D z R r a

a r a r

+
= − = −

− + + −
. (16) 

Поскольку 0Φ( ) Φ ( )z z  и Φ n , то с учетом разложения функции Φ  в ряд 

получаем, что 0Φ( ) Φ ( )nz r z r    при любом r , 0 1r  . Поэтому 

( ) ( )
( )

γ

0 0 0 γ γ   

(1 )
max , Φ( ) max , Φ ( ) 2γ(1 )

1 (1 ) (1 )n

n

n nz r z r

r
R D z R D z a

a r a r 

+
 = −

− + + −
. 

Следовательно, в силу (12) окончательно получаем оценку (9): 

( )
γ

2 γ γ

φ ( ) 2γ(1 ) (1 )
Φ ( ) ; , γ

φ( ) 1 (1 )(1 ) (1 )

n n
n

n n n

z a nr r
z z z M r a

z r a r a r

 − +
=  =

− − + + −
. 

Оценка (10) вытекает из левой оценки (8) и оценки (9) с учетом неравенства  

( )
φ ( ) φ ( )

Re  ; , γ
φ( ) φ( )

nz z
z z M r a

z z

  
  

 
. 

Точность левой и правой оценок (8) следует из того, что для функции 

0φ( ) φ ( )nz z= , где 0φ  из (5), знаки равенства достигаются соответственно в точках

1 nz r= −  и  z r= . Точность оценок (9)–(10) следует из того, что для функции 

0φ( ) φ ( )nz z=  в силу (13)  

γ

2 γ γ

φ ( ) 2γ(1 ) (1 )
 

φ( ) 1 (1 )(1 ) (1 )

n n

n n n

z a nz z
z

z z a z a z

 − −
=

− − − + +
, 

и в точке 1 nz r= −  имеем φ ( ) / φ( ) ( ; , γ)nz z z M r a = − . 

Терема 1 доказана. 

Следствие 1. Пусть функция φ ( , γ)n a  и удовлетворяет условию 

 
1 1

φ( )
2 2

z
a a

−  , 0 1a  ,    z E . (17) 

Тогда при 1z r=   имеют место оценки 

 
1 1

Re φ( ) φ( )
1 (1 2 ) 1 (1 2 )

n n

n n

r r
z z

a r a r

− +
  

+ − − −
, (18) 

 
φ ( ) 2(1 ) 1

 
φ( ) 1 1 (1 2 )

n

n n

z a nr
z

z r a r

 −


− + −
. (19) 

Оценки точные и достигаются для функции 0φ( ) φ ( )nz z= , где  

( )0 ) /φ ( ) (1 (1 1 2 .)n nz z a z= + − −  

Доказательство. Положим в теореме 1 γ 1= . Тогда условие (4) преобразуется 

в условие 
1Re φ ( )z a−   или (17), а луночка преобразуется в круг с центром в точке 1/ (2 )a  

радиуса 1/ (2 )a . Поэтому все утверждения следствия 1 вытекают из теоремы 1.  

При 1n =  оценки (18)–(19) с учетом обозначений 1/ (2 )c a=  получены в [4], 

 а при 1n   – в статье [5]. Кроме того, случаи 0 a → ( Re φ( ) 0z  ) и 1/ 2 a =   

( φ( ) 1 1z −  ) условия (17) приводят к оценкам из [1–3]. 
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Учитывая, что 
1arg φ ( ) arg  φ( )z z− = − , при 0 a →  из теоремы 1 получаем 

Следствие 2. Пусть функция φ n  и удовлетворяет условию arg  φ( ) γπ / 2.z   

Тогда при 1z r=   имеют место точные оценки  

γ γ
1 1

Re φ( ) φ( )
1 1

n n

n n

r r
z z

r r

   − +
        + −   

,         

Экстремальная функция имеет вид: 
γφ( ) ((1 ( )1) )/n nz z z= + − . 

Наряду с классом ( , γ)n a  введем класс ( , γ)n a  функций φ  с разложением 

вида 
1

1φ( ) 1 n n
n nz с z с z +

+= + + + , 1n  , удовлетворяющих условию 

arg (φ( ) ) γπ/2z a−  , 0 γ 1  , 0 1a  ,    z E . 

Между классами ( , γ)n a  и ( , γ)n a  имеется простая связь, выраженная соот-

ношением 

1
φ( ) ( , γ)      ψ( ) ( , γ)

φ( )
n nz a z a

z
  = 

−
. 

При этом, ( )φ ( ) / φ( ) ζψ (ζ) / ψ ζz z z = , ζ z= − . В силу этого прямым следствием 

теоремы 1 является  

Следствие 3. Пусть φ ( , γ)n a  и ( ; , γ)M r a  определено по формуле (11). То-

гда при 1z r=   имеют место точные оценки 

( ) ( ) ( ) ( )

γ γ
1 1

1 Re φ φ 1
1 1

n n

n n

r r
a a z z a a

r r

   − +
− +    − +      + −   

, 

φ ( )
( ; , γ)

φ( )

nz
z M r a

z


  

и для любых μ,η 0  

( )

γ
φ ( ) 1

μ Re φ( ) η Re  μ 1 η  ( ; , γ)
φ( ) 1

n
n

n

z r
z z a a M r a

z r

    + +  − + +     −    

. 

Экстремальная функция имеет вид 0φ( ) φ ( ),nz z=  где  

( )
γ

0φ ( ) (1 ) (1 ) / (1 ) .z a z z a= − + − +  

При γ 1= , , т.е. для случая, когда Re φ( )z a , 0 1a  , следствие 3 при-

водит к результатам из [6], а при 0a =  – к результатам из [2]. При γ 1= , 1n =  

получаем оценки из [18–20]. 

 
4. Радиусы звездообразности некоторых классов аналитических функций 

 

Пусть *S  – класс функций f  , звездообразных в круге E, и пусть 

* *( , )nS c R S  – класс звездообразных функций nf   Якубовского [21], удовле-

творяющих условию 

2

φ ( ) 2γ
.

φ( ) 1

n

n

z nr
z

z r




−

1n 
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( )

( )

f z
z c R

f z


−  ,    z E , 

причем ,c RR , 1c R c−   . 

Нетрудно установить, что 
*( , )nf S a b  тогда и только тогда, когда nf   и 

выполняется условие 

 
2 2

0

( ) ( )
φ( ) ψ ( )

( ) (1 )

f z R R c c z
z z z

f z R c z

 + − +
= =

+ −
. (20) 

Если αc R const− = −  и R →+ , то получаем класс 
* *(α)S S  функций, удовле-

творяющих условию 
( )

Re  α
( )

f z
z

f z

 
 

 
, 0 α 1  ,    z E , и называемых звездообраз-

ными порядка α . Очевидно, что 
* * *(α) (0)S S S = . 

Если функция 
*g S , то функция f  , связанная с g  некоторым неравен-

ством, содержащим отношение ( ) / ( )f z g z , называется почти звездообразной 

функцией. Если же в отношении ( ) / ( )f z g z  функция g  сама является почти звез-

дообразной, то функцию f  называют дважды почти звездообразной функцией. 

Определение 2. Будем считать, что функция f  из n  принадлежит классу 

( )* , γ, ,δ, ,nCCS a b c R  дважды почти звездообразных функций тогда и только то-

гда, когда выполняется условие 

( )
( )

, γ
( )

n

f z
a

g z
 , ( )

( )
,δ

( )
n

g z
b

h z
 , где функция 

*( , )nh S c R . 

Теорема 2. Пусть функция ( ; , γ)M r a  определена по формуле (11) и 

2 2

1

( )
( ; , )

(1 )

R R c c r
M r c R

R c r

− − +
=

− −
. Тогда радиус звездообразности 

*(α)r  порядка α  

класса ( )* , γ, ,δ, ,nCCS a b c R  определяется как единственный на (0;1) корень уравнения 

 1( ; , ) ( ; , γ) ( ; ,δ) α 0n n nM r c R M r a M r b− − − = . (21) 

Доказательство. Обозначим 
( )

φ( )
( )

f z
z

g z
= , 

( )
ψ( )

( )

g z
z

h z
= . Тогда 

( )

( )

f z
z

f z


=

( ) φ ( ) ψ ( )

( ) φ( ) ψ( )

h z z z
z z z

h z z z

  
= + + . Поэтому в круге z r , 0 1r  , получаем 

( ) ( ) φ ( ) ψ ( )
Re min Re max  max 

( ) ( ) φ( ) ψ( )z r z r z r

f z h z z z
z z z z

f z h z z z  

      
 − −   

   
. 

Поскольку 
*( , )nh S c R , то в силу подчиненности (20) в круге z r  имеет ме-

сто оценка 

0 0 1

( )
Re min  Re ψ ( ) ψ ( ) ( ; , )

( ) n

n n

z r

h z
z z r M r c R

h z 

 
 = − = 

 
. 
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В силу этого и оценки (9), примененной к функциям ( γ)φ ,n a  и ( δ)ψ ,n b , 

находим 

1

( )
Re ( ; , ) ( ; , γ) ( ; ,δ)

( )

n n nf z
z M r c R M r a M r b

f z

 
 − − 

 
. 

Если 
*(α)r r=  является корнем уравнения (21), то из последнего неравенства 

следует, что 
( )

Re α
( )

f z
z

f z

 
 

 
, то есть ( )f z  является звездообразной порядка α   

в круге *(α)z r . 

Средствами дифференциального исчисления нетрудно установить, что функ-

ции ( ; , γ)nM r a , ( ; ,δ)nM r b  возрастают по r  на [0;1) от 0 до + , а функция 

1( ; , )nM r c R  убывает на [0;1] от 1(0; , ) 1M c R =  до 1(1; , ) [0;1]M c R c R= −  . По-

этому уравнение (21) на (0;1) имеет единственный корень 
*(α)r . 

Покажем, что радиус звездообразности 
*(α)r  является точным. Для этого рас-

смотрим функцию 0 0 0 0( ) ( )φ ( )ψ ( )n nf z h z z z= , где  

γ

0 γ γ

(1 )
φ ( )

(1 )(1 ) (1 )

z
z

a z a z

+
=

− − + +
, 

δ

0 δ δ

(1 )
ψ ( )

(1 )(1 ) (1 )

z
z

b z b z

+
=

− − + +
, 

а функция 0h  определяется из уравнения  

2 2
0

0

( ) ( )

( ) (1 )

n

n

h z R R c c z
z

h z R c z

 + − +
=

+ −
. 

Тогда, обозначив 0 0 0( ) ( )ψ ( )ng z h z z= , получаем, что 0
0

0

( )
φ ( ) ( , γ)

( )

n
n

f z
z a

g z
=  , 

0
0

0

( )
  ψ ( ) ( ,δ)

( )

n
n

g z
z b

h z
=  , где 

*
0 ( , )nh S c R . Тогда ( )*

0 , γ, ,δ, ,nf CCS a b c R  и  

2 2
0 0 0

0 0 0

( ) φ ( ) ψ ( )( )

( ) (1 ) φ ( ) ψ ( )

n nn
n n

n n n

f z z zR R c c z
z nz nz

f z R c z z z

  + − +
= + +

+ −
,  

где 
γ

0

2 γ γ
0

φ ( ) 2γ(1 ) (1 )
 

φ ( ) 1 (1 )(1 ) (1 )

n n n
n

n n n n

z a nz z
nz

z z a z a z

 − −
=

− − − + +
, 

δ
0

2 δ δ
0

ψ ( ) 2δ(1 ) (1 )
 

ψ ( ) 1 (1 )(1 ) (1 )

n n n
n

n n n n

z b nz z
nz

z z b z b z

 − −
=

− − − + +
. 

Поэтому в точке 1nz r= − , где 
*(α)r r=  – корень уравнения (21), имеем 

0
1

0 1

( )
Re ( ; , ) ( ; , γ) ( ; ,δ) α.

( ) n

n n n

z r

f z
z M r c R M r a M r b

f z
= −

 
= − − = 

 
 

Следовательно, радиус звездообразности порядка α  увеличить нельзя. Тео-

рема 2 доказана. 
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Отметим, что при δ 0→  условие 
( )

( ,δ)
( )

n

g z
b

h z
  становится тривиальным и 

приводит к тождеству ( ) ( )g z h z . В этом случае класс ( )* , γ, ,δ, ,nCCS a b c R  преоб-

разуется в класс почти звездообразных функций  

( )* *( )
, γ, ,   ( , ),   ( ) ( )

)
: ,

(
n n n n

f z
CS a c R f a h z S c R

h z


 
=    
 

 

и в теореме 2 выражение ( ; ,δ) 0nM r b = .  

Кроме того, при γ 1= , 0a →  условие 
( )

( , γ)
( )

n

f z
a

g z
  преобразуется в неравен-

ство 
( )

Re 0
( )

f z

g z
 , при γ 1= , 1/ 2a =  условие 

( )
( , γ)

( )
n

f z
a

g z
  преобразуется в не-

равенство 
( )

1 1
( )

f z

g z
−  , а при δ 1= , 0b →  условие 

( )
( ,δ)

( )
n

g z
b

h z
  – в неравенство 

( )
Re 0

( )

g z

h z
 . С учетом этого, если в теореме 2 положить: 1) γ 1= , 0a → , δ 1= , 

0b → , или 2) γ 1= , 1/ 2a = , δ 1= , 0b →  или 3) γ 1= , 0a → , δ 0→ , то получаем 

Следствие 4. Пусть nf   и 
*( , )nh S c R . Тогда радиус звездообразности 

*(α)r  порядка α  функции f  определяется как единственный на (0;1) корень урав-

нения: 

1) 
2 2

2

( ) 4
  α 0

(1 ) 1

n n

n n

R R c c r nr

R c r r

− − +
− − =

− − −
, если 

( )
Re 0

( )

f z

g z
  и 

( )
Re 0

( )

g z

h z
 ; 

2) , если 
( )

1 1
( )

f z

g z
−   и 

( )
Re 0

( )

g z

h z
 ; 

3) 
2 2

2

( ) 2
  α 0

(1 ) 1

n n

n n

R R c c r nr

R c r r

− − +
− − =

− − −
, если 

( )
Re 0

( )

f z

h z
 . 

При определенных значениях c и R, т.е. при конкретизации функции 
*( , )nh S c R , 

следствие 4 дает ряд известных классов функций f  , описанным в статьях [3, 

8–11]. 

Пусть 1n = . 

Случай 1. c R= , R → . Тогда 0

1
ψ ( )

1

z
z

z

+
=

−
, 

2
( )

(1 )

z
h z

z
=

−
 и получаем классы 

( )
2

4

1
: Re ( ) 0

z
f f z

z

  − 
 =  
    

 из [9] и 
2

1

( ) (1 )
: Re 0, Re ( ) 0

( )

f z z
П f g z

g z z

  − 
=     
   

, 

2

2

( ) (1 )
:  1 1,  Re ( ) 0

( )

f z z
П f g z

g z z

  − 
= −     
   

 из [8]. 

2 2

2

( ) (3 )
   α 0

(1 ) 1

n n n

n n

R R c c r nr r

R c r r

− − + +
− − =

− − −
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Случай 2. 
1

2
c R− = , R → . Тогда 0

1
ψ ( )

1
z

z
=

−
, ( )

1

z
h z

z
=

−
 и получаем клас-

сы 1

( ) 1
:  Re 0, Re ( ) 0 ,

( )

f z z
f g z

g z z

 − 
=    

  
 2

( ) 1
:   1 1,  Re ( ) 0 ,

( )

f z z
f g z

g z z

 −  
= −    

   
 

3

1
: Re ( ) 0

z
f f z

z

 −  
=   

  
 из [9]. 

Случай 3. 
2 2 2(1 )R c c c− + = − , 0 1c   , т.е. 

2 (1 )(2 ) 0R c c= − −  . Тогда 

0

2(1 )
ψ ( )

(1 )

R c z
z

R c z

+ −
=

+ −
 и 21

( )
c

h z z z
R

−
= + . Пусть 

1 1
0

2

c

R

−
  . Тогда 

0 0
1

( ) 2(1 )
Re min Re ψ ( ) ψ ( 1) 0

( ) (1 )z

h z R c
z z

h z R c

  + −
 = − =  

+ − 
 и поэтому 2 *1

) .(
c

h z z z S
R

−
= +   

Если 
1 1

2

c

R

−
= , то 0

1
ψ ( )

1 / 2

z
z

z

+
=

+
 и 

2

( )
2

z
h z z= + . В этом случае получаем клас-

сы из [10] 1 2

( ) ( )
:  Re 0, Re  0

( )

2

f z g z
f

g z z
z

 
  

=   
 +
  

, 2 2

( ) ( )
:  1 1,  Re 0

( )

2

f z g z
f

g z z
z

 
  

= −   
 +
  

, 

3 2

( )
: Re 0

2

g z
f

z
z

 
  

=  
 +
  

. 

Если 1c = , то 0ψ ( ) 1z   и ( )h z z= . В этом случае получаем классы из [11] 

( )

( )
1

( )
: Re 0,  Re  0

f z g z
f

g z z

  
=   
  

, 3

( ) ( )
:   1 1,  Re  0

( )

f z g z
f

g z z

  
= −   
  

.  

Для каждого из классов, приведенных выше, радиусы звездообразности по-
рядка α , полученные в статьях [3, 8–11], являются частными случаями радиуса 

*(α)r  из следствия 4. 

Пусть 2n = . Положим c R= , R → . Тогда 
2

0 2

1
ψ ( )

1

z
z

z

+
=

−
, 

2
( )

1

z
h z

z
=

−
 и по-

лучаем классы  
2

1

)( ) (1 ( )
: Re 0,Re  0

( )

f z z f z
f

g z z

  − 
=     
   

, 

2

2

)( ) (1 ( )
:   1 1, Re  0

( )

f z z f z
f

g z z

  − 
= −     
   

, 
2

3

(1 ( )
: Re  0

)z f z
f

z

  − 
=    
   

, 

исследованные в [12] для случая, когда f  . При 2n = , c R= , R →  из след-

ствия 4 получаем радиусы звездообразности порядка α  классов 1 , 2 , 3 , уточ-

няющие результаты из [4] на случай, когда (0) 0f  = . То есть если 2f  , то  
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( )

1/2

*
1

2

2(1 α)
α,  

5 21 4α
r

 −
=  
 

+ + 

, ( )

1/2

*
2

2

1 α
α,  

4 17 2α α
r

 −
=  
 

+ − + 

, 

( )

1/2

*
3

2

1 α
α,  

3 8 α
r

 −
=  
 

+ + 

. 
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Аннотация. Изучаются бесконечные группы с условиями конечности для системы 

подгрупп. Доказано, что группа G без инволюций, не имеющая слойно конечной пе-

риодической части, с M-конечным элементом a простого порядка, где M – нормали-

затор максимальной слойно конечной подгруппы, содержащей периодическую 

часть группы NG( a  ), в случае когда нормализатор любой конечной нетривиальной 

подгруппы обладает бесконечной слойно конечной периодической частью, имеет вид: 

G = F ⋋ NG〈a〉, и F ⋋ 〈a〉 = 〈aG〉 – группа Фробениуса с ядром F и дополнением 〈a〉.  
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Abstract. Infinite groups with finiteness conditions traditionally include periodic groups 

and locally finite groups. Later, in the Krasnoyarsk school on infinite groups, new finite-

ness conditions for a system of subgroups appeared: conjugately biprimitive finite groups, 

weakly conjugately biprimitive finite groups, biprimitive finite groups, weakly biprimitive 

finite groups, introduced by V.P. Shunkov, in which subgroups generated by pairs of ele-

ments (pairs of conjugate elements, pairs of elements of the same order, pairs of such  

elements in sections of the group by finite subgroups) were assumed to be finite. Infinite 

groups with finiteness conditions for a system of subgroups include groups with a finite 

element, introduced by A.I. Sozutov. An element a of a group G is called a finite element 

if groups of the form 1,a g ag−  , g G , are finite. It is proved that the group G without 
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involutions, not having a layer-finite periodic part, with M-finite element a of prime order, 

where M is the normalizer of a maximal layer-finite subgroup containing the periodic part 

of the group ( )GN a  , in the case when the normalizer of any finite non-trivial subgroup 

has an infinite layer-finite periodic part, has the form ( )GG F N a=     and GF a a  =    

is a Frobenius group with the kernel F and the complement a  . 
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Введение 
 

Под условием конечности в теории групп понимается любое такое свойство, 
присущее всем конечным группам, что существуют бесконечные группы, которые 
этим свойствам не обладают. К бесконечным группам с условиями конечности 
традиционно относят периодические группы, локально конечные группы, локально 
нормальные группы, группы с конечными классами сопряженных элементов. 
Позднее в Красноярской школе по бесконечным группам появились новые классы 
групп с условиями конечности для системы подгрупп: сопряженно бипримитивно 
конечные группы, слабо сопряженно бипримитивно конечные группы, биприми-
тивно конечные группы, слабо бипримитивно конечные группы, введенные  
В.П. Шунковым [1], в которых конечными полагались подгруппы, порожденные па-
рами элементов (парами сопряженных элементов, парами элементов одного порядка, 
парами таких элементов в сечениях группы по конечным подгруппам). К группам  
с такими условиями конечности относятся изучаемые нами группы с конечным 
элементом. Термин «конечный элемент» введен А.И. Созутовым в работе [2]. 

Напомним некоторые необходимые определения. 
Элемент a группы G называется конечным элементом, если группы вида 

1,a g ag−  , g G , конечны. 

В произвольной периодической группе с инволюциями (элементами второго 
порядка) любая инволюция является конечным элементом, так как в периодиче-
ской группе любые две инволюции порождают конечную подгруппу. 

Элемент a группы G называется H-конечным элементом, если для некоторой 

подгруппы H группы G группы вида 1,a g ag−   для g ∈ G \ H конечны. 

Если рассмотреть группу G, составляющую со своей собственной подгруппой 
H пару Фробениуса (G, H), и выбрать из H элемент a конечного порядка, отличного 

от двух такой, что группы вида 1,a g ag−   конечны для g ∈ G \ H (т.е. a – H-конеч-

ный элемент), то А.И. Созутовым доказано [3. Теорема 2.11], что тогда группа G 

имеет строение G = F ⋋ H, где F – периодическая группа, и F ⋋ a   – группа Фробе-

ниуса с ядром F и дополнением a  .  
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Слойно конечная группа – это группа, множество элементов любого заданного 

порядка которой конечно. 

Слойно конечными группами являются все конечные группы, прямые произве-

дения конечного числа квазициклических примарных групп по одному простому 

числу и прямые произведения бесконечного числа примарных квазициклических 

групп по разным простым числам. Строение слойно конечных групп может быть 

достаточно сложным. Наиболее полное описание свойств таких групп можно 

найти в монографии С.Н. Черникова [4. Глава 3]. 

Почти слойно конечная группа – это расширение слойно конечной группы при 

помощи конечной группы. 

Напомним, что группа называется черниковской, если она является конечным 

расширением абелевой группы, удовлетворяющей условию минимальности. Легко 

указать пример черниковской группы, не являющейся слойно конечной. Почти 

слойно конечные группы имеют существенно более сложное строение, чем слойно 

конечные группы. В таких группах могут быть бесконечные слои элементов од-

ного и того же порядка. В класс почти слойно конечных групп входят все черни-

ковские группы. Примером почти слойно конечной нечерниковской группы слу-

жит расширение прямого произведения бесконечного числа квазициклических 

групп по разным простым числам при помощи циклической группы порядка два, 

инволюция из которой инвертирует все элементы из прямого произведения. В этой 

группе все слои элементов конечны, за исключением слоя элементов, состоящего 

из элементов порядка два. Более подробно свойства почти слойно конечных групп 

представлены в монографии автора [5]. 

Группа G называется группой Фробениуса с дополнением H и ядром F, если  

F и H – такие ее собственные подгруппы, что 

1) 1gH H =  для любого элемента g ∈ G \ H; 

2) F = G \ ∪x∈G (H \ {1})x; 

3) G = F ⋋ H. 

Группа G и ее собственная подгруппа H называются парой Фробениуса (G, H), 

если 1gH H =  для любого элемента g ∈ G \ H. 

Пусть G – группа, H – ее собственная подгруппа, и a – нетривиальный элемент 

из H. Элемент a называется циклически H-фробениусовым элементом группы G, 

если для любого элемента 
ga , где g ∈ G \ H, подгруппа 1,gL a g ag−=    – группа 

Фробениуса с дополнением a  . 

Элемент второго порядка называется инволюцией. 

Под периодической частью группы мы понимаем множество ее элементов ко-

нечного порядка, если последняя является группой [6]. 

В работе доказана следующая теорема. 

Теорема. Пусть G – группа без инволюций, не имеющая слойно конечной перио-

дической части, с M-конечным элементом a простого порядка, где M – нормализа-

тор максимальной слойно конечной подгруппы, содержащей периодическую часть 

группы ( )GN a  . Если нормализатор любой конечной нетривиальной подгруппы 

группы G обладает бесконечной слойно конечной периодической частью, то  

G = F ⋋ NG〈a〉 и F ⋋ 〈a〉 = 〈a〉 – группа Фробениуса с ядром F и дополнением 〈a〉. 
Ранее автор изучал группы Шункова с нормализаторами конечных нетривиаль-

ных подгрупп, обладающими слойно конечной периодической частью. В част-
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ности, доказал, что такая группа обладает слойно конечной периодической частью 

при условии, что любая периодическая локально разрешимая подгруппа слойно 

конечна [7]. 

Напомним, что группа G называется группой Шункова, если для любого про-

стого числа p и для любой конечной подгруппы H из G любые два сопряженных 

элемента порядка p из фактор-группы NG(H)/H порождают конечную подгруппу. 

Группы Шункова ранее назывались сопряженно бипримитивно конечными 

группами. 

Группа G называется слабо сопряженной бипримитивно конечной группой, 

если любая пара сопряженных элементов простого порядка порождает конечную 

подгруппу. 

Очевидно, что группа является слабо сопряженной бипримитивно конечной то-

гда и только тогда, когда все элементы простых порядков в ней конечны. 

 
Доказательство основного результата 

 
Для начала приведем некоторые результаты, используемые при доказательстве 

основного результата, которые мы будем называть предложениями с соответству-

ющим номером. 

1. Теорема В.П. Шункова [8. Теорема 1]. Локально конечная группа G тогда и 

только тогда почти слойно конечна, когда G удовлетворяет условию: нормализа-

тор любой нетривиальной конечной подгруппы группы G является почти слойно 

конечной группой. 

2. Теорема Г. Фробениуса [9]. Если в конечной группе G существует под-

группа H, совпадающая со своим нормализатором и взаимно простая со всеми со-

пряженными подгруппами, за исключением H, то множество элементов из G, не 

принадлежащих H и ни одной из подгрупп, сопряженных с H, вместе с единицей 

является инвариантной подгруппой группы G. 

3. Пусть G F H=   – конечная группа Фробениуса, где F – ядро, а H – допол-

нение. Если , ,G a k a H=    и |a| = |k| = p – простое число, то подгруппы a  , k   

сопряжены в G, причем если H не содержит инволюций, то H a=   и bk a  =  

для некоторого элемента b F  [3. Предложение 1.9]. 

4. Теорема [3. Теорема 3.1]. Пусть H – собственная подгруппа группы G, a – 

циклически H-фробениусовый элемент группы G и 
2 1a  . Тогда G = F ⋋ NG〈a〉  

и F ⋋ 〈a〉 = 〈aG〉 – группа Фробениуса с ядром F и дополнением 〈a〉. 
5. Теорема С.Н. Черникова [10]. Если локально конечная p-группа G содер-

жит лишь конечное множество элементов какого-нибудь порядка, отличного от 

единицы, то она является черниковской p-группой. 

6. В произвольной группе всякая подгруппа конечного индекса в группе обла-

дает нормальной подгруппой в группе и конечного индекса в ней [11. С. 69]. 

7. Теорема В.П. Шункова [12. Предложение 8]. Пусть T – группа, D – ее ло-

кально конечная подгруппа с черниковскими примарными подгруппами; A, C – 

некоторые подгруппы из T. 

Если D обладает такими подгруппами F, R (R ≤ F), что индекс | D : R | конечен 

и A, D < NT(F); C, D < NT(R), то в D существует подгруппа X конечного индекса в 

D и A, C, D < NT(X). 
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Перейдем непосредственно к доказательству теоремы. 

Предположим, что G – группа без инволюций, не имеющая слойно конечной 

периодической части, и для любой нетривиальной конечной подгруппы X группы 

G ее нормализатор NG(X) обладает бесконечной слойно конечной периодической 

частью. 

Любая локально конечная подгруппа группы G является слойно конечной груп-

пой. 

Действительно, как следует из предложения 1, любая локально конечная под-

группа L группы G является почти слойно конечной. Тогда группа L содержит ко-

нечную нетривиальную нормальную подгруппу, и, следовательно, по условиям, 

наложенным на группу G, группа L является слойно конечной. 

Любая слойно конечная подгруппа C группы G содержится в максимальной 

слойно конечной подгруппе группы G. 

Действительно, пусть 1 nC H H    – цепочка слойно конечных под-

групп группы G, содержащих C. Тогда объединение V этой цепи является локально 

конечной группой, а потому, как мы показали выше, она является слойно конечной 

подгруппой из группы G. Используя лемму Цорна, заключаем, что подгруппа C 

содержится в максимальной слойно конечной подгруппе группы G. 

Пусть F, K – две различные бесконечные максимальные слойно конечные под-

группы группы G. Тогда F, K пересекаются по единичной подгруппе. 

Для доказательства этого утверждения заметим, что в любой локально конеч-

ной подгруппе группы G по предложению 5 примарные подгруппы черниковские.  

Теперь предположим противное. Пусть некоторый неединичный элемент  

b ∈ F ∩ K. Если пересечение F ∩ K имеет конечные индексы в подгруппах F и K, 

то по предложению 6 F ∩ K содержит подгруппу XF, нормальную и конечного ин-

декса в группе F. В свою очередь, группа XF снова по предложению 6 содержит 

подгруппу XK, нормальную и конечного индекса в группе K. 

По предложению 7 локально конечная подгруппа F ∩ K с черниковскими при-

марными подгруппами содержит подгруппу X нормальную конечного индекса  

в F и в K. По условиям теоремы получаем противоречие с максимальностью F  

(по лемме Дицмана в слойно конечной группе X всегда найдется конечная харак-

теристическая подгруппа). 

Пусть тогда для одной из подгрупп, например для K, индекс | K : K ∩ F | беско-

нечен. Ввиду слойной конечности группы K в ней найдется подгруппа B такая, что 

F ∩ K = F ∩ B, | : |B F B   , и B содержит некоторый элемент из K \ F.  

По предложению 6 F ∩ K содержит подгруппу ZF, нормальную и конечного ин-

декса в F. В свою очередь, ZF снова по предложению 6 содержит подгруппу ZB, 

нормальную и конечного индекса в B. 

Снова по предложению 7 в локально конечной подгруппе F ∩ K с черников-

скими примарными подгруппами существует подгруппа Z B F  , в нормализатор 

которой входят подгруппы F и B. Из-за максимальности подгруппы F получаем 

противоречие со слойной конечностью периодической части нормализатора NG(Z). 

Таким образом, доказано, что различные бесконечные максимальные слойно 

конечные подгруппы группы G пересекаются по единичной подгруппе. 

Обозначим через a M-конечный элемент простого порядка из группы G, где M – 

нормализатор максимальной слойно конечной подгруппы H, содержащей перио-
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дическую часть группы ( )GN a  . (Периодическая часть группы ( )GN a   является 

бесконечной слойно конечной группой и, как показано выше, существует макси-

мальная слойно конечная подгруппа H группы G, содержащая эту периодическую 

часть.) Периодическая часть группы ( )GM N H=  является слойно конечной груп-

пой, так как в слойно конечной группе H всегда найдется конечная характеристи-

ческая подгруппа, нормализатор которой по условиям теоремы обладает слойно 

конечной периодической частью. Заметим, что ввиду максимальности группы H 

периодическая часть группы M совпадает с группой H. 

Пусть некоторый элемент g взят из разности G \ M. Поскольку подгруппы 
1,H g Hg−  являются различными максимальными слойно конечными подгруппами 

группы G, то пересечение 1 1H g Hg− = . Следовательно, пересечение 1M g Mg−  

не содержит нетривиальных элементов конечного порядка для любого элемента 

g ∈ G \ M. Тогда в конечной группе , ga a   (она конечна, поскольку a – M-конеч-

ный элемент группы G) собственная подгруппа , ga a H    образует пару Фробе-

ниуса с , ga a  , а сама группа , ga a   является группой Фробениуса по предложе-

нию 2. 

По предложению 3 для любого элемента 
ga , где g ∈ G \ M, подгруппа 

1,gL a g ag−=    является группой Фробениуса с дополнением 〈a〉. 

Таким образом, для собственной подгруппы M группы G элемент a является 

циклически M-фробениусовым элементом группы G. 

Тогда по предложению 4 группа G имеет вид G = F ⋋ NG〈a〉 и F ⋋〈a〉 = 〈aG〉 – 

группа Фробениуса с ядром F и дополнением 〈a〉. 
Теорема доказана. 
 

Список источников 
 

1. Шунков В.П. Об одном классе p-групп // Алгебра и логика. 1970. Т. 9, № 4. С. 484–496. 

2. Созутов А.И. О группах с классом фробениусо-абелевых элементов // Алгебра и логика. 

1995. Т. 34. С. 531–549. 

3. Попов А.М., Созутов А.И., Шунков В.П. Группы с системами фробениусовых подгрупп. 

Красноярск: ИПЦ КГТУ, 2004. 211 с. 

4. Черников С.Н. Группы с заданными свойствами системы подгрупп. М.: Наука, 1980. 384 с. 

5. Сенашов В.И. Почти слойно конечные группы. Saarbrucken: Lap Lambert Academic 

Pablishing, 2013. 106 с. 

6. Курош А.Г. Теория групп. М.: Наука, 1967. 648 с. 

7. Сенашов В.И. Группы со слойно конечной периодической частью // Сибирский матема-

тический журнал. 1997. Т. 38. С. 1374–1386. 

8. Сенашов В.И., Шунков В.П. Почти слойная конечность периодической части группы без 

инволюций // Дискретная математика. 2003. Т. 15. С. 91–104. 

9. Frobenius G. Über auflösbare Gruppen. IV // Sitzungsberichte der Königlich Preussischen Aka-

demie der Wissenschaften zu Berlin. 1901. S. 1216–1230. 

10. Черников С.Н. О специальных p-группах // Математический сборник. 1950. Т. 27.  

С. 185–200. 

11. Шунков В.П. О вложении примарных элементов в группе. Новосибирск: Наука, Сиб. 

изд. фирма, 1992. 133 с. 

12. Шунков В.П. О локально конечных группах конечного ранга // Алгебра и логика. 1971. 

Т. 10. С. 199–225. 



Математика / Mathematics 

50 

References 
 

1. Shunkov V.P. (1970) On a class of p-groups. Algebra and Logic. 9(4). pp. 291–297. 

2. Sozutov A.I. (1995) On groups with a class of Frobenius-Abelian elements. Algebra and Logic. 

34(5). pp. 295–305. 

3. Popov A.M., Sozutov A.I., Shunkov V.P. (2004) Gruppy s sistemami podgrupp Frobeniusa 

[Groups with systems of Frobenius subgroups]. Krasnoyarsk: Krasnoyarsk State Technical 

University. 

4. Chernikov, S.N. (1980) Gruppy s zadannymi svoystvami sistemy podgrupp [Groups with Given 

Properties of a System of Subgroups]. Moscow: Nauka. 

5. Senashov, V.I. (2013) Pochti sloyno konechnyye gruppy [Almost Layer-Finite Groups]. Ger-

many: Lap Lambert Academic Publishing. 

6. Kurosh A.G. (1967) Teoriya grupp [Group Theory]. Moscow: Nauka. 

7. Senashov V.I. (1997) Groups with layer-finite periodic part. Siberian Mathematical Journal. 

38(6). pp. 1196–1205. 

8. Senashov V.I., Shunkov V.P. (2003) Almost layer-finiteness of the periodic part of groups with-

out involutions. Discrete Mathematics and Applications. 13(4). pp. 391–404. 

9. Frobenius G. (1901) Über auflösbare Gruppen, IV. Sitzungsberichte der Königlich Preussischen 

Akademie der Wissenschaften zu Berlin.  pp. 1216–1230. 

10. Chernikov S.N. (1950) On special p-groups. Matematicheskiy Sbornik – Sbornik Mathematics. 

69(2). pp. 185–200. 

11. Shunkov V.P. (1992) O vlozhenii primarnykh elementov v gruppu [On embedding of primary 

elements in a group]. Novosibirsk: Nauka. 

12. Shunkov V.P. (1971) On locally finite groups of finite rank. Algebra and Logic. 10(2).  

pp. 127–142. 

 

Сведения об авторе: 

Сенашов Владимир Иванович – доктор физико-математических наук, профессор, веду-

щий научный сотрудник Института вычислительного моделирования Сибирского отделе-

ния Российской академии наук (Красноярск, Россия). E-mail: sen1112home@mail.ru 

 

Information about the author: 

Senashov Vladimir I. (Professor, Leader Researcher of the Institute of Computing Modelling  

of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation).  

E-mail: sen1112home@mail.ru 
 

Статья поступила в редакцию 24.02.2025; принята к публикации 08.12.2025 

 

The article was submitted 24.02.2025; accepted for publication 08.12.2025 



ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2025                                                 Математика и механика                                                 № 98 
Tomsk State University Journal of Mathematics and Mechanics 

© Д.А. Азаров, 2025 

 
МЕХАНИКА 

 
MECHANICS 

 
Научная статья 

УДК 539.3  

doi: 10.17223/19988621/98/5 

 

Построение определяющих соотношений нелинейно-упругих 

сред с помощью механико-геометрической модели  

с диагональными связями 
 

Даниил Анатольевич Азаров 

 
Донской государственный технический университет,  

Ростов-на-Дону, Россия, danila_az@mail.ru 

 
Аннотация. На основе механико-геометрической модели в виде параллелепипеда 

предлагаются новые определяющие соотношения для высокоэластичного сжимае-

мого материала. Механические свойства сплошной среды обеспечиваются составля-

ющими элементами модели на этапе ее построения. Построены определяющие  

соотношения, связывающие инженерные напряжения с главными кратностями 

удлинений. Выведена функция удельной потенциальной энергии деформации  
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Введение 
 

Построение функции удельной потенциальной энергии деформации сплошной 

среды при больших деформациях – одна из важных задач нелинейной теории упру-

гости.  

Традиционно существует несколько способов построения потенциалов (удель-

ной потенциальной энергии деформирования) нелинейно упругих тел. Начиная  

с середины XX в. основным способом является разложение функции энергии в ряд 

по степеням первого и второго инвариантов тензора деформации Коши-Грина G. 



Азаров Д.А. Построение определяющих соотношений нелинейно-упругих сред 

53 

Такому подходу дали начало работы Муни [1] и Ривлина [2], в которых впервые 

были предложены выражения для функции удельной потенциальной энергии де-

формации резин и каучуков. Впоследствии в этом направлении шли исследования 

Бидермана, Йео [3] и других авторов. Одновременно возникали формы потенциалов, 

основанные на выражении энергии через главные кратности удлинений λ1, λ2, λ3. 

Это обосновано тем, что главные кратности удлинений хорошо определяются по 

результатам простых экспериментов. Таковы, например, потенциалы Бартенева–

Хазановича, Блейтца и Ко [4], Черных–Шубиной, Огдена [5]. Затем появились и 

другие способы построения потенциалов, уже связанные с внутренней структурой 

и строением высокоэластичных тел. Это потенциалы Арруды–Бойс [6], Джента [7] 

и др. Существует также подход, основанный на моделировании эксперименталь-

ной кривой, например одноосного растяжения материала, с попыткой построить 

функцию, наиболее близко описывающую эту кривую. При этом каких бы то ни 

было физических и механических обоснований выбора, как правило, не приво-

дится. В [8, 9] собран обзор основных потенциалов нелинейной теории упругости.  

Вышеперечисленные подходы обладают существенным недостатком: получен-

ные в результате выражения могут не удовлетворять важным свойствам, присущим 

удельной потенциальной энергии, таким как, например, выпуклость или сильная 

эллиптичность.  

Эти свойства приходится доказывать дополнительно, что в большинстве слу-

чаев трудно, если вообще возможно [10]. Невыполнение для функции удельной 

потенциальной энергии таких свойств может привести к определенным проблемам 

при моделировании нелинейных материалов, поскольку эти материалы могут не 

демонстрировать эффекты, возникающие в реальных телах, такие как потеря 

устойчивости, эффект Пойнтинга [11] и т.д. В случае же с механико-геометриче-

ской моделью большинство этих свойств выполняется для нее априори в силу того, 

что они присущи изначально составляющим модель элементам.  

В предлагаемой работе по методике, аналогичной [12, 13], изложен другой воз-

можный вариант геометрической формы модели – в виде прямоугольного парал-

лелепипеда. 

 

Механико-геометрическое моделирование 

 

Построение механико-геометрической модели состоит из нескольких этапов. 

На первом этапе задается геометрия модели. Рассмотрим элементарный объем сплош-

ной среды совместно с механико-геометрической моделью (МГМ) в виде 3D графа, 

вершины которого – узлы модели – прикреплены к граням элементарного объема. 

При деформации элементарного объема под действием приложенной к нему по 

трем ортогональным направлениям системы сил происходит изменение его формы 

и будет изменяться взаимное расположение узлов МГМ. Модель позволяет связать 

изменение расстояний между узлами с приложенными внешними силами. В дан-

ной работе рассматривается расположение узлов в вершинах элементарного па-

раллелепипеда. На рис. 1 узлы МГМ обозначены точками A, B, C, D. В работе [12] 

рассмотрена другая геометрия, когда узлы прикреплены к серединам граней эле-

ментарного объема. 

Ребра графа рис. 1 будем называть связями модели. Связи соединяют узлы мо-

дели, которую можно представлять как стержневую фермоподобную конструкцию. 



Механика / Mechanics 

54 

Сила, приложенная к узлу, передается на другие узлы только по направлениям свя-

зей, исходящих из этого узла. Узел модели может непосредственно взаимодей-

ствовать с другим узлом только при наличии связи между ними. Необходимым 

условием при этом должна быть односвязность (в смысле теории графов) модели. 

С точки зрения механики узлы модели являются шарнирами, через которые кру-

тящий момент не передается. 
 

 

Рис. 1. Геометрия модели  

Fig. 1. Geometry of the model 
 

Пространственный трехмерный характер новой модели является основопола-

гающим. Это дает возможность непосредственно получить зависимости, описыва-

ющие функцию поперечной деформации (зависимость поперечных удлинений от 

продольного – нелинейный аналог коэффициента Пуассона).   

В выбранной геометрии модели имеется 8 узлов, 12 «продольных» связей и  

16 «диагональных» связей. Продольные связи направлены вдоль ребер параллеле-

пипеда, т.е. соединяют противолежащие грани, а диагональные связи соединяют 

остальные грани. 

На втором этапе построения модели каждой связи придается определенное ме-

ханическое свойство (способность деформироваться). Кроме рассмотренного ниже 

линейного закона упругости можно выбирать и нелинейные зависимости напря-

жения и деформации для отдельных связей, а также и неупругие случаи, такие как 

вязкость, пластичность или их сочетания. Потеря устойчивости связей, рассматри-

ваемых как стержни (или пружины), при сжатии не рассматривается.  

Для записи соотношений удобно ввести условные размеры (рис. 2): начальные 

длины связей, которые в определяющие соотношения войдут в виде отношений 

друг к другу. Основными изначально задаваемыми геометрическими параметрами 

являются длины продольных связей 2a, 2b, 2c, через которые выражаются длины 

диагональных связей и все соответствующие углы между связями. 
 

 
 

Рис. 2. Геометрические параметры МГМ: длины связей и углы  

Fig. 2. Geometric parameters of the mechanical–geometric model (MGM):  

lengths of bonds and angles 
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Диагонали граней параллелепипеда равны 2l, 2n и 2p и, а пространственная диа-

гональ – 2d. По ним рассчитываются α, β, γ – углы между диагональю 2d и продоль-

ными связями 2a, 2b, 2c, φ – угол между 2a и 2l, ψ – угол между 2b и 2n, а θ – угол 

между 2a и 2p. Значения длин связей не являются принципиальными, важно лишь их 

соотношение, т.е. углы между ними, задающие основную форму геометрии модели. 

Рассмотрим деформацию элементарного объема с «заключенной» в него кон-

струкцией модели силами разной величины по трем ортогональным направле-

ниям. Силы Fa, Fb и Fc на каждой грани при трехосном растяжении–сжатии рас-

пределяются по узлам соответствующей грани: Fa/4, Fb/4 и Fc/4.  

Составим уравнения равновесия внешних сил и реакций связей модели в каж-

дом узле. Сила реакции каждой связи рассчитывается, исходя из постулируемых 

механических свойств, присущих этой связи. Как уже сказано выше, в данной ра-

боте принимается прямо-пропорциональная зависимость силы реакции связи Ri от 

удлинения этой же связи Δi:  

i i iR k=   

где параметр ki ik  – коэффициент жесткости (упругости) связи, индекс i обозначает 

соответствующую связь i = a, b, c, l, p, n, d. 

 

Построение определяющих соотношений 

 

В уравнениях равновесия перейдем от зависимостей «сила–удлинение» к зави-

симостям в терминах «напряжение–деформация». Вместо абсолютных удлинений 

продольных связей модели Δi используем главные кратности удлинений: 

1

aa

a

+ 
 = , 2

bb

b

+ 
 = , 3

cc

c

+ 
 = . Кроме этого, перейдем от сил к номиналь-

ным (инженерным) напряжениям на гранях элементарного объема 
1

1

aF

s
 = , 

2

2

bF

s
 = , 3

3

cF

s
 = , где si – площадь соответствующей грани параллелепипеда  

в начальном состоянии.  

Получаемые уравнения связывают номинальные (инженерные) напряжения 

1 2 3,  ,      и главные кратности удлинений 1 2 3,  ,     . Количество параметров МГМ 

в этих формулах равно 10, из них семь механических параметров – коэффициенты 

, , , , , ,a b с l n p dk k k k k k k  и три геометрических – начальные размеры модели a, b, c: 

1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 3 1 2 3

2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 2 3 1 2 3

3 3 3

( ) ( ) ,

( ) ( ) ,

( )

pl d

a l p d a

l n d

b l n d b

c n p d

pklk dka
k k k k k

bc a b a c a b c

lk nk dkb
k k k k k

ac a b b c a b c

c
k k k k

ab


 =  + + + − + + −
  +   +   +  +  


 =  + + + − + + −
  +   +   +  +  

 =  + + + −
2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 3 1 3 1 2 3

( ) .
pn d

c

pknk dk
k

b c a c a b c











 
 + + −
  +   +   +  +   
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Такие определяющие соотношения отражают анизотропные свойства среды. 

Традиционно анизотропия достигается выбором различных механических свойств 

(жесткостей) связей по разным направлениям. Но в МГМ анизотропия возникает 

также и из-за выбранной начальной геометрии с разными значениями размеров 

a b c   по трем направлениям (и, следовательно, неравными углами между свя-

зями).  

Таким образом, для описания анизотропных свойств высокоэластичных мате-

риалов в рамках МГМ использовано два механизма, которые приводят к различ-

ным откликам при деформировании по разным направлениям.  

Геометрически изотропная модель определяется условиями равенства всех трех 

продольных связей 1a b c= = =  и тогда, соответственно, 2l p n= = = , 3d = . 

В этом случае первоначальная форма модели будет представлять собой куб. Ме-

ханической изотропии соответствует выбор равных жесткостей трех продольных 

связей a b сk k k= =  и трех диагональных связей граней 
l n pk k k= = . Жесткость 

пространственной диагональной связи модели равна 
dk . 

Если принять одновременно условия геометрической и механической изотро-

пии, то придем к соотношениям  

1 1 1
2 2 2 2 2 2 2

1 2 1 3 1 2 3

2 2 2
2 2 2 2 2 2 2

1 2 2 3 1 2 3

3 3 3
2 2 2 2 2 2 2

2 3 1 3 1 2 3

2 2 3
( 2 ) ,

2 2 3
( 2 ) ,

2 2 3
( 2 )

l l d

a l d a

l l d

a l d a

l l d

a l d a

k k k
k k k k

k k k
k k k k

k k k
k k k k

 
  =  + + − − + +
  +   +   +  +  

 
  =  + + − − + +
  +   +   +  +  

 
  =  + + − − + +
  +   +   +  +  

.














 

Эти выражения являются определяющими соотношениями изотропного сжи-

маемого нелинейно упругого материала. Они связывают напряжения 1 2 3,  ,      

(представляющие собой диагональные компоненты тензора напряжений Пиолы), 

с главными кратностями удлинений 1 2 3,  ,     . Количество параметров МГМ при 

выбранной геометрии равно трем: это коэффициенты упругости (жесткости) трех 

типов связей ,  a lk k  и dk . 

 

Построение функции удельной потенциальной энергии деформации 

 

На основании приведенных выше определяющих соотношений можно полу-

чить явное выражение для удельной потенциальной энергии упругой деформации 

среды, описываемой механико-геометрической моделью. Считая эту удельную 

энергию функцией кратностей удлинений 1 2 3( , , )W    , восстановим ее в явном 

виде аналогично [13]. Напряжения σi являются частными производными от этой 

энергии по соответствующим главным кратностям удлинений. При выводе прове-

рена выполнимость необходимых и достаточных условий существования полного 

дифференциала для функции энергии – попарного равенства смешанных произ-

водных второго порядка.  
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Удельная энергия для анизотропной среды имеет вид: 

2 2 2 2 2 2

1 2 3

0

16
( ( ) ( ) ( )

v
aniz a l p d b l n d c n p dW a k k k k b k k k k c k k k k= + + +  + + + +  + + + +  −

 

2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 1 2 1 3 2 2 2d l pdk a b c lk a b pk a c−  +  +  −  +  −  +  −
 

2 2 2 2 2 2 2

2 3 1 2 3 02 2 2 2 )n a b cnk b c a k b k c k K−  +  −  −  −  +
 

где 0v 8abc=  – элементарный объем до деформации, а константа K0 является по-

стоянной интегрирования и может быть найдена из условия равенства нулю энер-

гии при отсутствии деформации, т.е. при 1 2 3 1 =  =  = :  

2 2 2 2

0

0

2 2 2

16
(1,1,1) 0     (2 2 2 2

v

   ( ) ( ) ( )).

aniz d l p n

a l p d b l n d c n p d

W K d k l k p k n k

a k k k k b k k k k c k k k k

= = = + + + +

+ − − − + − − − + − − −

 

Приняв условия геометрической и механической изотропии, получим упругий 

потенциал для полностью изотропной модели в виде: 

2 2 2 2 2 2

1 2 3 1 2 32( 2 )( ) 4 3a l d dW k k k k= + +  +  +  −  +  +  −

 

2 2 2 2 2 2

1 2 1 3 2 3 1 2 34 2 ( ) 4 ( ) 6( 2 )l a a l dk k k k k−  +  +  +  +  +  −  +  +  + + + . 

Полученное выражение является симметричной функцией кратностей главных 

удлинений. Количество параметров модели равно 3. Это механические параметры 

,  ,  a l dk k k  – жесткости связей. 

Выражение для функции удельной потенциальной энергии деформации изотроп-

ного нелинейно-упругого тела, полученное на основе метода механико-геометри-

ческого моделирования, не встречалось в работах других авторов и является новым.  

 

Графики энергии для некоторых случаев напряженно-деформированных  

состояний (НДС) 

 

Продемонстрируем поведение полученного выражения удельной потенциаль-

ной энергии деформации для некоторых наиболее распространенных типов напря-

женно-деформированных состояний (НДС), которые обычно реализуются при  

испытаниях материалов. 

При описании поведения высокоэластичных материалов чаще всего принима-

ется допущение об их несжимаемости. Графики (рис. 3–5) построены при условии, 

обеспечивающем несжимаемость материала, которое можно записать через третий 

инвариант тензора деформации Коши–Грина как 3 1I = , или в терминах кратно-

стей удлинений 2 2 2

1 2 3 1   = .  

Механические параметры предлагаемой механико-геометрической изотропной 

модели 0,431ak = , 0,445lk = − , 0,626dk =  определены по результатам обработки 

эксперимента на одноосное растяжение ленты из латексной резины. Диаграмма 

«деформация–напряжение» такого материала имеет характерную для высокоэла-

стичных материалов так называемую s-образную форму. Испытания проведены на 

испытательной машине Shimadzu AGS-X на кафедре теории упругости Института 

механики, математики и компьютерных наук им. И.И. Воровича Южного 
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федерального университета. Размеры образца: длина 150 мм, ширина 50 мм, тол-

щина 0.5 мм. Максимальное удлинение 300%. Температура образца комнатная. 

Скорость деформации 1 000 мм/мин.  

Для полученных параметров механико-геометрической модели построен гра-

фик удельной потенциальной энергии деформации сплошной среды при одноос-

ном (uniaxial) растяжении–сжатии в области деформаций 0,4 3    (см. рис. 3). 

Значение кратности удлинения λ = 1 соответствуют отсутствию деформации. 
 

  

Рис. 3. Удельная потенциальная энергия  

при одноосном растяжении 

Fig. 3. Strain energy density under  

uniaxial tension 

Рис. 4. Удельная потенциальная энергия  

при двухосном равномерном растяжении 

Fig. 4. Strain energy density  

under uniform biaxial tension 
 

В той же области деформаций и с теми же параметрами модели построен гра-

фик функции потенциала при двухосном равномерном (equibiaxial) растяжении–

сжатии (см. рис. 4). Полученная форма графика является характерной для такого 

вида НДС. Как известно, удельная потенциальная энергия деформации при двух-

осной деформации возрастает быстрее, чем при одноосной, что подтверждается на 

приведенных графиках.  

Также получен трехмерный график и для двухосного (biaxial) растяжения–сжа-

тия в том же диапазоне изменения деформаций по каждому направлению (см. рис. 5).  
 

 

Рис. 5. Удельная потенциальная энергия при двухосном растяжении 

Fig. 5. Strain energy density under biaxial tension 
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Все приведенные графики имеют характерную для потенциалов высокоэла-

стичных нелинейно-упругих материалов форму. Они подтверждают физичность 

модели и соответствие полученного выражения для упругого потенциала требова-

ниям механики сплошных сред. Графики являются выпуклыми функциями своих 

аргументов в приведенной области их изменения. Выражения для энергии явля-

ются неотрицательными функциями и единственное нулевое значение принимают 

при отсутствии деформации. Это является следствием соответствующих свойств 

одномерных элементов, составляющих трехмерную модель. 
 

Перспективы развития метода 
 

Метод механико-механического моделирования имеет широкие возможности 

для развития. Особый интерес представляет введение в свойства связей модели 

более сложных, нелинейных зависимостей для описания реакции связей на растя-

гивающие и сжимающие нагрузки ( )i iR f=  . В работе [14] была построена мо-

дель с кубической зависимостью сил реакции связей от удлинения, которая проде-

монстрировала большую гибкость при описании деформаций нелинейных тел.   

На этапе построения модели можно задавать широкий спектр требуемых пара-

метров материала, которые влияют на поведение трехмерной структуры модели  

в целом и формируют свойства моделируемой среды. При этом механические пара-

метры МГМ не обязательно должны быть только упругими. В работе [15] с помо-

щью МГМ было проведено моделирование вязкоупругого материала, где в качестве 

механических характеристик связей выбрано вязкоупругое стандартное линейное 

тело Зинера. Gоказано, что полученная таким образом модель демонстрирует все 

присущие вязкоупругим средам свойства: ползучесть, релаксацию, гистерезис. 
 

Заключение 
 

Предложенная механико-геометрическая модель позволила получить новую 

форму потенциальной энергии деформации для нелинейно-упругих сред. Осо-

бенно интересны в смысле новизны полученных соотношений присутствующие  

в функции энергии квадратные корни из попарных сумм квадратов кратностей 

удлинений. Такие выражения в функциях нелинейно-упругих потенциалов в рабо-

тах других авторов не встречались.  

Полученные определяющие соотношения и функция упругой энергии адекватно 

отражают свойства нелинейно-упругих тел, а механические параметры модели  

однозначно идентифицируются по результатам основных опытов на одноосное 

растяжение, двухосное растяжение и простой сдвиг. Графики функции удельной 

потенциальной энергии деформации при разных типах НДС демонстрируют ха-

рактерное для нелинейно-упругих потенциалов поведение и подобны аналогич-

ным диаграммам для распространенных высокоэластичных материалов, например 

Муни–Ривлина и Йео [16]. 
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Аннотация. Представлен полуэмпирический метод определения коэффициента теп-

ловых потерь в цилиндрической камере сгорания твердотопливной двигательной 

установки. Для подтверждения адекватности метода проведена его эксперименталь-

ная апробация для модельного твердотопливного ракетного двигателя (РДТТ)  

с вкладным зарядом трубчато-канальной формы. По измеренным зависимостям дав-

ления в камере от времени при адиабатическом истечении продуктов сгорания опре-

делены значения коэффициента расхода сопла и коэффициента тепловых потерь  

в камере сгорания. 
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Abstract. A semi-empirical method is proposed for determining one of the key perfor-

mance characteristics of a solid-propellant rocket motor, i.e., the heat loss coefficient in  

a combustion chamber. Computational and theoretical determination of the heat loss coef-

ficient typically requires three-dimensional modeling of the gas dynamics of combustion 

products within the engine flow passage with a charge of complex configuration, as well 

as the use of several empirical constants, which does not always ensure sufficient accuracy 

of calculations. The presented method is based on measuring the pressure–time dependence 

during the adiabatic gas outflow from the chamber after the propellant charge has burned out. 

The advantage of the method lies in the determination of the heat loss coefficient without 

thermocouple measurements, which are limited both in the range of measurable tempera-

tures and in their operating time in a high-temperature environment. The relations are ob-

tained for selecting the relaxation time of the free volume of the combustion chamber and 

the diameter of the nozzle throat that ensure the adiabaticity of the outflow.  

The method was tested on a model solid-propellant rocket motor with a non-insulated cylin-

drical steel combustion chamber and an inserted tubular-channel charge of the N-type ballis-

tite propellant. The obtained values of the discharge coefficient of a cylindrical nozzle with  

a sudden contraction (φ = 0.85 ± 0.03) and the heat loss coefficient in the combustion cham-

ber (χ = 0.61 ± 0.02) are consistent with known empirical formulas reported by other authors. 

Keywords: model SPR, combustion chamber, nozzle assembly, heat-insulating coating, 

solid-propellant charge, coefficient of thermal losses, nozzle discharge coefficient 
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Введение 
 

Исследование процессов тепломассообмена в твердотопливных, ракетно-пря-

моточных и гибридных ракетных двигателях играет важную роль в их проектиро-

вании и оптимизации. Одним из ключевых параметров, определяющих расходно-

тяговые характеристики РДТТ, является коэффициент тепловых потерь в камере 

сгорания [1]: 
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( )

1

стS

стT T dS

Q G+ +

 −

 = −


, 

где Sст – площадь внутренней поверхности стенок камеры сгорания; α – коэффи-
циент теплоотдачи; T0 – температура газа в камере сгорания; Tст – температура 
внутренней поверхности стенок камеры сгорания, соприкасающихся с газами; Q+ – 
теплота сгорания твердого топлива; G+ – массовый секундный газоприход при го-
рении заряда. 

Коэффициент χ учитывает потери энергии горения твердотопливного заряда  
в камере за счет двух основных факторов – неполноты сгорания топлива и тепло-
вых потерь в стенки камеры сгорания [2]. Расчетно-теоретическое определение  
коэффициента тепловых потерь связано с необходимостью трехмерного модели-
рования газодинамики продуктов сгорания в проточном тракте двигателя с заря-
дом сложной конфигурации [3, 4] и использования ряда эмпирических констант, 
что не всегда обеспечивает достаточную точность расчетов. Экспериментальное 
определение χ путем измерения температуры продуктов сгорания в камере затруд-
нено из-за ограниченного ресурса работоспособности термопар при высоких тем-
пературах (более 2 500°С) и зашлаковывания спая термопары, что ведет к повы-
шению погрешности измерений [5].  

В настоящей работе представлены полуэмпирический метод и результаты экс-
периментального определения коэффициента тепловых потерь в цилиндрической 
камере сгорания твердотопливной двигательной установки. 

 

Полуэмпирический метод определения коэффициента тепловых потерь 
 

Для определения коэффициента тепловых потерь использовалась система урав-
нений адиабатического истечения продуктов сгорания в осредненных по объему 
камеры переменных [2]: 

 

Г(k)
,

const,

,

кр

k

d
V S p

dt RT

p

p RT


= −




=

 = 



, (1) 

где V – свободный объем камеры сгорания; ρ, p – плотность и давление газа в ка-
мере сгорания; t – время; Sкр – площадь критического сечения сопла; k, R, T – по-
казатель адиабаты, газовая постоянная и температура продуктов сгорания;  

1

2(k 1)2
Г(k)

1

k

k
k

+

− 
=  

+ 
. 

Из системы уравнений (1) следует зависимость для определения изменения без-
размерного давления π(τ) = p(t)/p0 от безразмерного времени τ = t/tk в процессе 
адиабатического сброса давления: 

 

2

11
( ) 1
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, (2) 
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где p(t) – зависимость давления в камере сгорания от времени в период свободного 

истечения продуктов сгорания; p0, T0 – давление и температура в камере сгорания 

перед сбросом давления; ( )0Г(k)крkt V S RT=  – время релаксации свободного 

объема камеры сгорания; φ – коэффициент расхода сопла. 

Из (2) получены соотношения для определения среднего значения коэффици-

ента тепловых потерь: 

 ( )
1

1 n

i i

in =

 =   ,               

( )( )
( )

2
1 2

2 1

1

k k

i

i
ik

−  −
 

 =  −  
 
 

, (3) 

где n – количество экспериментальных точек χi (τi), равномерно распределенных на 

участке сброса давления. 

В соотношения (3) входит коэффициент расхода сопла φ. Для его определения 

проводится отдельный эксперимент по сбросу давления из камеры сгорания с теп-

лоизолирующим покрытием и определением зависимости безразмерного давления 

x(τ) = p(t)/p0 от безразмерного времени τ. По результатам измерения x(τ) получены 

соотношения для определения среднего значения коэффициента расхода сопла: 

 ( )
1

1 n

i i

in =

 =   ,             
( )( )1 22

1
( 1)

k k

i i
i

x
k

−
 =  −

−  
. (4) 

Соотношения (3) и (4) получены применительно к адиабатичности процесса 

истечения после сгорания твердотопливного заряда. Для обеспечения адиабатич-

ности процесса необходимо выполнение условия 

 c стQ Q , (5) 

где Qc, Qст – количество теплоты, уходящей из камеры при истечении продуктов 

сгорания через сопло и через стенки камеры сгорания за время tk соответственно. 

Из условия (5) следует соотношение для выбора необходимого времени релак-

сации свободного объема камеры сгорания tк и, соответственно, для определения 

площади критического сечения сопла Sкр, полученные при допущении T0 >> Tст: 

 0

0

П

( 1)
k

p k
t

T k −
,          0

0

( 1)

Г(k)

ст
кр

S Tk
S

k p R

−
   , (6) 

где П = V/Sст – приведенная длина камеры сгорания [2]. 
 

Экспериментальная установка  
 

Для подтверждения адекватности метода проведена его экспериментальная 

апробация для модельного РДТТ с вкладным зарядом трубчато-канальной формы. 

Экспериментальное исследование осуществлялось в два этапа. На первом этапе 

проводилось определение коэффициента расхода сопла в камере сгорания с тепло-

изолирующим покрытием, схема которой приведена на рис. 1, а. Камера сгорания 

состоит из корпуса 1 с внутренним диаметром 53 мм и длиной 200 мм, изготовлен-

ного из стали 45, свободный объем камеры сгорания 441 см3, площадь внутренней 

поверхности стенок 377 см2. По внутренней поверхности камеры сгорания уста-

новлено теплоизолирующее покрытие 2. На торцевой стенке корпуса установлен 

сопловой блок 3 в виде цилиндрического сопла с внезапным сужением диаметром 

Dкр = 7.6 мм. Внезапное вскрытие сопла для реализации адиабатического процесса 
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истечения осуществлялось за счет вылета размещенной в сопле грибообразной 

пробки 4, изготовленной из пороха Н, после ее сгорания. В штуцерах, размещенных 

на боковой поверхности камеры 1, установлены датчики давления 5 (тензометри-

ческий датчик ЛХ-415) и температуры 6 (вольфрам–рениевая термопара ИС-470). 

В процессе эксперимента измерялась зависимость x(τ), с использованием которой 

определялся коэффициент расхода сопла по соотношению (4). 
 

    
  а                                                                              b 

Рис. 1. Схема камеры сгорания с теплоизолирующим покрытием (а) и с вкладным твердо-

топливным зарядом (b): 1 – корпус; 2 – теплоизолирующее покрытие; 3 – сопловой блок;  

4 – пробка; 5 – датчик давления; 6 – датчик температуры; 7 – трубчато-канальный заряд;  

8 – бронировка 

Fig. 1. Diagram of a combustion chamber with (a) a heat-insulating coating and (b) an insert 

solid-propellant charge: 1, casing; 2, heat-insulating coating; 3, nozzle; 4, stopper; 5, pressure 

sensor; 6, temperature sensor; 7, tubular-channel charge; and 8, armor 
 

На втором этапе проводилось определение коэффициента тепловых потерь в иден-

тичной камере сгорания, но без теплоизолирующего покрытия (рис. 1, b). В каче-

стве твердого топлива использовался трубчато-канальный заряд 7 длиной 90 мм  

с наружным и внутренним диаметрами 40 и 10 мм, изготовленный из пороха Н, и 

с забронированными негорючим составом торцевыми поверхностями 8. Данный заряд 

обеспечивает постоянную поверхность горения за все время функционирования. 
 

Результаты экспериментального исследования  
 

Для определения коэффициента тепловых потерь по представленному методу 

использовались следующие теплофизические характеристики твердого топлива 

(порох Н): R = 297 Дж/(кг·К); k = 1.25; T0 = 2372 К [6]. Время релаксации свобод-

ного объема камеры сгорания, используемое для обезразмеривания переменных, 

рассчитывалось по соотношению  

( )0Г(k)k крt V S RT=  

и составляло tk = 0.0176 c ≈18 мс. 

По результатам обработки экспериментов, проведенных в камере сгорания с 

теплоизолирующим покрытием, по соотношениям (4) получено среднее значение 

коэффициента расхода сопла 

φ = 0.85± 0.03. 

Полученное значение хорошо согласуется с расчетом по эмпирической фор-

муле [7] для цилиндрического сопла с внезапным сужением (φрас = 0.86). 
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Результаты измерения зависимости πi(τi) и рассчитанные по соотношениям (3) 

значения коэффициента тепловых потерь χi(τi) приведены в таблице. 

Результаты измерения зависимости πi(τi) и расчета значения  

коэффициента тепловых потерь χi(τi) 

n 1 2 3 4 5 6 7 8 9 10 11 12 

τi 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 

πi 0.81 0.67 0.54 0.44 0.38 0.32 0.25 0.21 0.19 0.15 0.13 0.11 

χi 0.64 0.59 0.64 0.65 0.59 0.57 0.64 0.63 0.57 0.62 0.60 0.60 
 

Среднее значение коэффициента тепловых потерь по всему времени сброса со-

ставило 

χ =0.61 ± 0.02. 

На рис. 2 представлена измеренная зависимость π(τ), где точки – эксперимен-

тальные данные, линия 1 – расчет π(τ) по соотношению (2) для значений φ = 0.85, 

χ = 0.61. Для сравнения на рис. 2 приведена расчетная зависимость π(τ) (линия 2) 

для значений φ = 0.85, χ = 1. 

Требуемые значения времени релаксации свободного объема камеры сгорания 

и диаметра критического сечения сопла для условий проведенных экспериментов, 

рассчитанные по соотношениям (6), составляют 

tk <<236 мс,  Sкр >> 3.8 мм2  (Dкр >> 2.2 мм). 

В расчетах учитывались значение давления в камере сгорания для проведенных 

экспериментов p0 = 4.2 МПа и типичное значение коэффициента теплоотдачи в ка-

мерах сгорания двигательных установок α = 500 Вт/(м2 К) [8]. 
 

 

Рис. 2. Зависимость π(τ) при свободном истечении газа после сгорания твердотопливного 

заряда в камере без теплоизолирующего покрытия:  – экспериментальные данные;  

1 – расчетная зависимость π(τ) при φ = 0.85, χ = 0.61;  

2 – расчетная зависимость π(τ) при φ = 0.85, χ = 1 

Fig. 2. π(τ) dependence for a free outflow of gas after combustion of a solid-propellant charge  

in a chamber without heat-insulating coating:  – experimental data;  

calculated results at (1) φ = 0.85, χ = 0.61 and (2) φ = 0.85, χ = 1 
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Заключение 

 

1. Предложен полуэмпирический метод определения коэффициента тепловых 

потерь и коэффициента расхода сопла в камере сгорания энергоустановок с твер-

дотопливным зарядом, основанный на измерении зависимости давления от вре-

мени при адиабатическом истечении газа из камеры после сгорания заряда. 

2. Представлены соотношения для выбора параметров эксперимента (времени 

релаксации свободного объема камеры сгорания и диаметра критического сечения 

сопла), обеспечивающих адиабатичность процесса истечения. 

3. Проведена экспериментальная апробация метода для модельного РДТТ с вклад-

ным зарядом трубчато-канальной формы, изготовленным из пороха Н. 

4. Получены значения коэффициента расхода для сопла с внезапным сужением 

(φ = 0.85 ± 0.03) и коэффициента тепловых потерь для стальной цилиндрической 

нетеплоизолированной камеры сгорания с вкладным трубчато-канальным зарядом 

(χ =0.61 ± 0.02), хорошо согласующиеся с эмпирическими формулами Я.М. Ша-

пиро [1] и А.А. Шишкова [7]. 

5. Рассмотренный метод позволяет определить коэффициент тепловых потерь 

без использования термопарных измерений и может быть рекомендован для иссле-

дования процессов тепломассообмена в твердотопливных, ракетно-прямоточных 

и гибридных ракетных двигателях. 
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Аннотация. Проведено численное моделирование течения неньютоновской жидко-

сти в смесительном аппарате лопастного типа. В основе численного решения задачи 

лежат метод контрольного объема и корректирующая процедура SIMPLE. Проде-

монстрирована кинематика потока в аппаратах с одно-, двух- и четырехлопастной 

мешалкой. Дополнительно решена задача о перераспределении ансамбля маркерных 

частиц с течением времени. Количественно смешение исследовалось с помощью 

числа мощности и оригинальной характеристики неоднородности. Выполнены па-

раметрические исследования зависимости рассматриваемого течения от основных 

безразмерных параметров задачи.  

Ключевые слова: смешение, модель Шведова–Бингама, неньютоновская жидкость, 

анализ качества смешения 
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Abstract. A numerical simulation of the non-Newtonian fluid flow in a paddle-type mixer 

is performed in a two-dimensional approximation. The rheological behavior of the medium 

is described using the Shvedov-Bingham model. The numerical solution is based on the 

finite volume method and the SIMPLE correction procedure implemented on an orthogo-

nal grid. The singularity of the rheological law associated with the infinite viscosity in the 

regions with zero strain rates is eliminated using Papanastasiou regularization. The flow 

kinematics in mixers with one, two, and four blades is demonstrated, characterized by the 

formation of unyielded regions and stagnant zones near the mixer boundaries and the  

vessel walls. In addition, the problem of marker-particle redistribution over time is solved, 

allowing for a qualitative assessment of the mixing dynamics. The characteristic mixing 

modes of the markers are determined. The mixing process is quantitatively analyzed using 

the power number and a unique heterogeneity characteristics. Parametric studies of the 

flow are performed with respect to the main dimensionless parameters of the problem. 
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Введение 

 

Смесительные аппараты играют большую роль в различных технологических 

процессах в химической, пищевой, строительной и других индустриях [1] на этапах 

смешения исходных компонентов и диспергирования твердых частиц и газовых 

пузырьков, при этом жидкие среды часто демонстрируют сложное реологическое 

поведение. Вязкопластичные жидкости характеризуются формированием в потоке 

квазитвердых ядер или застойных зон в областях малых скоростей деформации [2], 

которые существенно влияют на качество и скорость процесса смешения. 

В литературе существует достаточно большое число экспериментальных ис-

следований течений вязкопластичных жидкостей в аппаратах с мешалками, напри-

мер [3–5]. Однако такой подход зачастую является дорогостоящим и сложным  

в реализации и не позволяет получать полную информацию о распределении изу-

чаемых характеристик по объему. Теоретические методы исследования с использо-

ванием аппарата вычислительной гидродинамики, наоборот, дают эту информацию, 

но при этом требуют экспериментальной верификации. Характерной особенностью 

большинства численных методов является регуляризация реологического закона 

[6, 7], связанная с преодолением особенности бесконечных значений вязкости  

в квазитвердых ядрах. Численное моделирование процесса течения жидкости в сме-

сителях якорного типа выполнено в работах [8–10] с использованием коммерче-

ских пакетов, а процесс смешения оценивается с использованием числа мощности. 

https://rscf.ru/project/22-79-10028/
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Исследования процесса перемешивания неньютоновской среды с пределом текуче-

сти и высокой вязкостью с использованием якорных мешалок представлены в [10, 11]. 

Цель настоящей работы – численное моделирование двумерного течения вяз-

копластичной жидкости в смесительном аппарате лопастного типа и исследование 

кинематики потока, распределения областей квазитвердого движения и застойных 

зон, а также анализ структуры течения посредством решения задачи о перераспре-

делении ансамбля маркерных частиц со временем. 

 

Постановка задачи 

 

Движение высоковязких сред в смесительных аппаратах можно разложить на 

три составляющие: радиальную, тангенциальную и осевую, количественное соот-

ношение которых зависит от геометрических, реологических и технологических 

параметров. При низких значениях числа Рейнольдса в исследуемой области пре-

валируют радиальная и тангенциальная составляющие [12, 13], что оправдывает 

допущение о двумерной постановке. Рассматривается плоское течение Бингамов-

ской жидкости в смесительном аппарате, имеющем форму круга радиуса R (м), на 

оси которого расположена вращающаяся с постоянной угловой скоростью ω (с–1) 

одно-, двух- или четырехлопастная мешалка (рис. 1).  
 

 

   
a b c 

Рис. 1. Область течения и расчетная сетка: однолопастной (a), двухлопастной (b),  

четырехлопастной (c) смеситель 

Fig. 1. Flow area and calculation grid: single-bladed (a), two-bladed (b), four-bladed (c) mixer 
 

Математическая постановка задачи включает уравнения движения и неразрыв-

ности, записанные в безразмерном виде, с использованием следующих масштабов: 

длины R, времени ω–1, скорости ωR, давления ρω2R, вязкости µ0. Здесь µ0 (Па с) – 

параметр реологической модели, ρ (кг/м3) – плотность жидкости. Для упрощения 

реализации численной методики выполняется переход в систему отсчета, связан-

ную с мешалкой, который обеспечивает неподвижность границ области решения. 

В итоге система уравнений записывается в виде: 

 

( ) 2 0 0 0

2
( ) 2 ,

Re

0.

p I
t

  
+  =  − +  −  −   

  

  =

V
V V I E ω V ω ω r

V

 (1)

 

Здесь V – вектор скорости, p – гидродинамическое давление, t – время, I – единич-

ный тензор, E – тензор скоростей деформаций, ω0 – безразмерный вектор угловой 

ε

r
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скорости, Re = ρωR2/µ0 – число Рейнольдса. Последние два слагаемых в уравнении 

движения связаны с неинерциальностью используемой системы отсчета. 

Система замыкается реологическим уравнением Шведова–Бингама, согласно 

которому безразмерная эффективная вязкость μ определяется формулой 

 

2

2

Bn
,

I

I

+
 =  (2)

 
где I2 – второй инвариант тензора скоростей деформации, Bn = τ0/µ0ω – число  

Бингама, τ0 (Па) – предел текучести. В качестве граничных условий на твердых 

стенках используются условия прилипания. При реализации численной методики 

уравнения (1) проектируются на оси полярной системы координат (r, ε), представ-

ленные на рис. 1, b. 

Процесс смешения анализируется с помощью ансамбля маркерных частиц двух 

сортов (отмечены красным и зеленым цветом на рис. 1, a), которые в начальный 

момент времени располагаются в выделенной области ( / 2 / 2     ) случайным 

образом. Число частиц в ансамбле бралось равным 5 000. Уравнения движения 

маркеров записаны с учетом предположения, что их скорость совпадает со скоро-

стью жидкости, и частицы не оказывают на течение никакого влияния и не взаи-

модействуют друг с другом: 

 

( ) ( ), , , ,
p p

p p p p p

dr d
V r r U r

dt dt


=  =   (3)

 
где rp, εp – полярные координаты маркерной частицы, V, U – радиальная и танген-

циальная составляющие вектора скорости. В начальный момент времени скорости 

как для красных, так и для зеленных частиц задавались равными скорости жидко-

сти в данной точке пространства. Данное предположение адекватно описывает 

процесс диспергирования твердых частиц субмиллиметровых размеров с неболь-

шими значениями объемной концентрации [14]. 

Используемые в работе значения безразмерных критериев Re и Bn соответ-

ствуют случаям ламинарных течений полимерных жидкостей в промышленных и 

лабораторных смесительных аппаратах с умеренными скоростями вращения ме-

шалки.  

Решение задачи заключается в отыскании установившихся полей скорости и 

давления, а также построении областей квазитвердого движения, в которых уро-

вень напряжений не превышает предела текучести. Оценка качества смешения вы-

полняется по картине перераспределения маркеров по всей области течения. 

 

Метод решения 

 

Поставленная задача решается численно. Область решения дискретизируется  

с помощью ортогональной разнесенной сетки с неравномерным шагом по радиусу 

и равномерным шагом по углу для сохранения пропорциональных размеров кон-

трольного объема по мере роста радиальной координаты (см. рис. 1). В данной ра-

боте используется сетка, состоящая из 12 500 контрольных объемов. Дифференци-

альные уравнения (1) дискретизируются с помощью метода контрольного объема. 

Уравнение неразрывности удовлетворяется с использованием корректирующей про-

цедуры SIMPLE [15]. Для определения стационарных полей скорости и давления 

применяется метод установления. С целью устранения сингулярных значений 
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эффективной вязкости в областях малой интенсивности используется регуляриза-

ция, заключающаяся в введении в реологическое уравнение малого параметра . 

Данная методика позволяет организовать сквозной счет без явного выделения гра-

ницы квазитвердого движения. В настоящей работе используется следующая ре-

гуляризация [7]: 

( )( )2

2

Bn
1 1 exp / ,I

I
 = + − − 

 
Интегрирование уравнений (3) выполнялось с использованием схемы Рунге–

Кутты второго порядка точности. 

Проверка апроксимационной сходимости разработанной программы расчета 

производилась на последовательности сеток для тестовой задачи о течении в сме-

сительном аппарате без лопастей с внутренним радиусом r0 (коаксиальный зазор).  

Дополнительно сформулирована задача об одномерном течении в коаксиаль-

ном зазоре: 

 ( )
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2
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0,

( ) 0, 1 1,

d dU U
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dr dr rr

U r U

  
 − =  
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которая имеет следующее аналитическое решение: 
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Здесь r1 – координата границы квазитвердого ядра, примыкающего к внешней стенке, 

значение которой находится из решения следующего нелинейного уравнения: 

 

2

1 1

0 0

Bn Bn
Bn ln 1 0

2 2

r r

r r

 
−  − − = 

 
. (6)

 
В качестве характеристики оценки сходимости использовалось значение рас-

хода через поперечное сечение (табл. 1). Порядок сходимости можно оценить по 

формуле 

 

40 20

2

80 40

log 1.572
Q Q

Q Q

 −
=  − 

.

  
Здесь Q20, Q40 и Q80 – расход, полученный на сетке с 20, 40 и 80 контрольными 

объемами на ширину зазора соответственно. 

Т а б л и ц а  1   

Расход через радиальное сечение в зависимости  

от количества узлов сетки (Bn = 5,  = 0.01) 

N 20 × 78 40 × 156 80 × 313 Одномерная задача 

Q 0.474751 0.473981 0.473722 0.473589 

r1 0.291275 0.296053 0.297578 0.295212 
 

На рис. 2 представлены результаты расчета безлопастной и однолопастной ме-

шалок при различных значениях параметра регуляризации на сетке 80 × 313, за 

контрольный параметр выбрана тангенциальная составляющая скорости U. Видно, 
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что кривые, полученные при  = 0.01 и 0.005, практически совпадают. Последую-

щее уменьшение параметра регуляризации приводит к ухудшению устойчивости 

счета. Все дальнейшие расчеты получены при  = 0.01 на сетках с 80 контрольными 

объемами на ширину зазора. Сравнение численных результатов, полученных с по-

мощью предложенной методики, с данными других авторов представлено в [16]. 
 

  
а b 

Рис. 2. Распределение угловой компоненты вектора скорости: a – для коаксиального  

зазора при Bn = 5; b – для однолопастного смесителя в сечении ε = 45°  

при Bn = 20 и Re = 1 

Fig. 2. Distribution of the angular component of the velocity vector (a) for the coaxial gap 

at Bn = 5, (b) for a single–bladed mixer in section ε = 45 at Bn = 20 and Re = 1 

 

Результаты 
 

Характерным для Бингамовских жидкостей является формирование областей, 

в которых уровень напряжений не превышает предела текучести, и жидкость ведет 

себя как твердое тело. Эти зоны, называемые квазитвердыми ядрами, оказывают 

существенное влияние на структуру потока и качество смешения. Применительно 

к данной задаче геометрия границ ядер существенно зависит от конфигурации сме-

сителя и безразмерных чисел Бингама и Рейнольдса. Количественное условие выде-

ления квазитвердых ядер в безразмерной форме записывается следующим образом: 

 

2 Bn,I   (7)

 и является аналогом условия выделение областей с уровнем напряжения, мень-

шим предела текучести. 

Распределения квазитвердых ядер и полей эффективной вязкости для устано-

вившегося случая течения с ростом Бингама представлены на рис 3. Штриховкой 

выделены области квазитвердого движения. Сплошными линиями показаны ли-

нии тока. Видно, что при малых значениях числа Бингама (Bn = 1) формируются 

одно внутреннее ядро вокруг лопасти и три локальных ядра, два из которых рас-

положены симметрично на внешней стенке и еще одно – на некотором удалении 

над кромкой лопасти. При увеличении числа Бингама происходит симметричный 

рост ядер на внешних стенках, и при Bn = 10 они смыкаются вдоль стенки. При этом 

во всех случаях наблюдается небольшая зона квазитвердого течения над лопастью. 
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Дальнейшее увеличение числа Бингама сопровождается ростом ядер. Область ми-

нимальной вязкости, соответствующая области высокоинтенсивного течения, с ро-

стом числа Бингама локализуется в окрестности верхней кромки лопасти.  
 

    
a b с d 

Рис. 3. Эволюция ядер и поля эффективной вязкости с ростом числа Бингама  

при Re = 1 и Bn = 1, 5, 10, 20 (a–d) 

Fig. 3 Evolution of core and effective viscosity fields with increasing Bingham  

at Re = 1 and (a), (b), (c), (d) – Bn = 1, 5, 10, 20 
 

С ростом числа Рейнольдса нарушается симметрия в расположении ядер наряду 

с уменьшением их размеров (рис. 4). При Re = 100 ядро вокруг внешней стенки 

уже не сплошное, «надлопастное» ядро полностью разрушается.  
 

   
a b c 

Рис. 4. Эволюция ядер и поля эффективной вязкости с ростом числа Рейнольдса  

при Bn = 10 и Re = 10, 40, 100 (a–c) 

Fig. 4. Evolution of core and effective viscosity fields with increasing Reynolds  

at Bn = 10 and (a), (b), (c) – Re = 10, 40, 100 
 

Влияние конфигурации смесителя на структуру потока показано на рис. 5 для 

Bn = 5. Характерным отличием двух- и четырехлопастных смесителей от одноло-

пастого является образование единого ядра над лопастями. При этом для четырех-

лопастного смесителя наблюдается образование сплошного ядра вдоль внешней 

стенки. Отметим, что образование такого же ядра для однолопастного смесителя 

происходит только при Bn = 10. В областях сдвигового течения значения эффек-

тивной вязкости меньше для двух- и четырехлопастных мешалок, что говорит  

о более интенсивном течении по сравнению с однолопастной. Однако так как пе-

ремешивания внутри квазитвердых ядер не происходит, использование четырех-

лопастного смесителя менее эффективно из-за больших ядер.  
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a b 

Рис. 5. Ядра для двухлопастного (a) и четырехлопастного (b) смесителя  

при Bn = 5 и Re = 1 

Fig. 5. Cores for (a) – two-bladed and (b) – four-bladed mixer at Bn = 5 and Re = 1 
 

Параметрические исследования показали, что процесс перемешивания марке-

ров по объему существенно зависит от геометрии ядер. Так, для Bn = 10 в одноло-

пастном смесителе (рис. 6) маркеры, находящиеся во внутреннем ядре, в процессе 

движения практически не перераспределяются по объему, образуется локальная 

неоднородность. Картина распределения маркеров вне области внутреннего ядра 

характеризуется слоистой структурой, масштаб которой уменьшается с течением 

времени. В зоне внешнего ядра маркеры перемещаются, только когда под ними 

проходит лопасть, это происходит благодаря области текучести над лопастью. Как 

следствие, в слое, примыкающем к внешней стенке, формируется структура с вы-

сокой неоднородностью. Таким образом, структуру потока можно условно разде-

лить на три зоны: зона неоднородности в квазитвердом ядре, примыкающая к ло-

пасти; зона неоднородности вдоль твердой стенки, в которой можно добиться  

равномерного распределения маркеров при достаточно высоком числе оборотов; 

зона сдвигового потока, расположенная между двумя предыдущими, с однород-

ным распределением маркеров. Анализ показывает, что в рамках используемых 

конфигураций мешалок перемешивания маркеров различных сортов (красного и 

зеленого) друг с другом не происходит. 
 

      
a b c d e f 

Рис. 6. Эволюция распределения маркерных частиц при Bn = 10, Re = 1  

и (a) – 0, (b) – 1, (c) – 5, (d) – 10, (e) – 40, (f) – 80 оборотах 

Fig. 6. Evolution of the distribution of marker particles in Bn = 10, Re = 1  

and (a) – 0, (b) – 1, (c) – 5, (d) – 10, (e) – 40, (f) - 80 revolutions 
 

Картина распределения маркеров после 80 оборотов мешалки для разных чисел 

Бингама демонстрируется на рис. 7. Так как для Bn = 1 размеры внешнего ядра 

малы, то течение во внешней области носит сдвиговой характер, соответственно, 
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маркеры в этой области формируют слоистую структуру, которая к концу смеше-

ния размывается. При Bn = 5 влияние внешнего ядра уже присутствует, благодаря 

чему к 80 оборотам еще наблюдается небольшая неоднородность в тонком слое на 

внешней стенке. При Bn = 20 из-за большего внешнего ядра слоистая маркерная 

структура вдоль стенки сохраняется после 80 оборотов, и на ее размывание требу-

ется дополнительное время. 

 

   
a b c 

Рис. 7. Эволюция распределения частиц после 80 оборотов для Re = 1  

и (a), (b), (c) – Bn = 1, 5, 20 

Fig. 7. Evolution of the marker particle distribution after 80 revolutions  

for Re = 1 and (a), (b), (c) – Bn = 1, 5, 20 
 

С увеличением числа лопастей изменяется структура потока. Для двух- или  

четырехлопастной мешалки зона примыкающего к ней квазитвердого ядра значи-

тельно увеличивается в размерах, что приводит к формированию больших обла-

стей неоднородности (рис. 8, 9). Картина перераспределения маркеров в пристен-

ном слое аналогична рассмотренному ранее случаю однолопастной мешалки. При 

этом время для достижения однородности распределения маркеров в зоне сдвиго-

вого потока уменьшается с ростом числа лопастей. 

 

   
a b c 

Рис. 8. Эволюция распределения маркерных частиц для двухлопастного смесителя  

при Bn = 10, Re = 1 и (a) – 10, (b) – 40, (c) – 80 оборотах 

Fig. 8. Evolution of the marker particle distribution for a two-blade mixer  

at Bn = 10, Re = 1 and (a) – 10, (b) – 40, (c) – 80 revolutions 
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a b c 

Рис. 9. Эволюция распределения маркерных частиц для четырехлопастного смесителя 

 при Bn = 10, Re = 1 и (a) – 10, (b) – 40, (c) – 80 оборотах 

Fig. 9. Evolution of the marker particle distribution for a four-bladed mixer  

at Bn = 10, Re = 1 and (a) – 10, (b) – 40, (c) – 80 revolutions 
 

Дальнейшие исследования были посвящены количественному анализу смешения. 

В качестве характеристики процесса смешения используется безразмерное число 

мощности [17], которое широко применяют на практике в технических приложениях: 

 ( )
53 32Re2

P

P
N

R


= =


, (8)

 
где P и Ф – размерное и безразмерное значения интеграла от диссипативной функ-

ции по области течения Ω: 
2 2 2

2

2

1 1
( ) 2 2

V U V V U U
I rdrd

r r r r r r


          
 =  + + + + −       

          
 . (9)

 
Величина NP в стационарном режиме показывает потери на вязкое трение и ха-

рактеризует энергетические затраты на организацию течения. В табл. 2 приведены 

значения NP в зависимости от числа Бингама и числа Рейнольдса для случая уста-

новившегося течения в однолопастном смесителе. Видно, что наибольшее значе-

ние числа мощности реализуется при высоких числах Бингама. Однако структура 

течения при больших Bn характеризуется формированием больших зон неодно-

родности распределения маркеров, и использование данной характеристики для 

оценки качества неадекватно. 

Т а б л и ц а  2   

Число мощности для различных Bn и Re 

Np Bn = 1 Bn = 5 Bn = 10 Bn = 20 

Re = 1 4 577.2 11 831.9 20 475.8 37 021.9 

Re = 40 116.1 296.8 512.8 926.0 

Re = 100 48.2 120.1 206.3 371.8 
 

На основе процесса распределения маркеров был рассчитан оригинальный па-

раметр неоднородности, который позволяет оценить качество смешения с тече-

нием времени: 

 

1 2

1 2

N N

N N

−
 =

+
 (10) 
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Здесь N1 и N2 – количество маркерных частиц в I и III четвертях области смешения 

в текущий момент времени (см. рис. 6, a), M – количество оборотов, пройденных 

мешалкой. Поведение характеристик ν в зависимости от числа оборотов для одно-

лопастного смесителя при Bn = 1, 10, 20 и Re = 1 проиллюстрировано на рис. 10. 

Во всех случаях наблюдается колебательная составляющая с частотой, соответ-

ствующей частоте вращения мешалки, вызванная движением маркеров, находя-

щихся во внутреннем ядре. Для Bn = 1 амплитуда колебаний слабо меняется с те-

чением времени. C ростом Bn появляется еще одна низкочастотная мода, ампли-

туда которой затухает в процессе смешения. При этом чем больше Bn, тем выше 

частота этой составляющей. Появление этой моды связано с медленным перерас-

пределением маркеров вдоль внешней стенки. 
 

   
a b c 

Рис. 10. Характеристики неоднородности при Re = 1 и Bn = 1, 10, 20 (a–c)  

Fig. 10. Characteristics of heterogeneity at Re = 1 and (a), (b), (c) – Bn = 1, 10, 20 
 

При Re = 100 (рис. 11) низкочастотная мода образуется при больших Бингамах, 

так как увеличение Re препятствует образованию внешнего ядра. При этом ее ча-

стота уменьшается по сравнению с меньшим Рейнольдсом при одинаковых Bn. 
 

   
a b c 

Рис. 11. Характеристики неоднородности при Re = 100 и Bn = 1, 10, 20 (a–c)  

Fig. 11. Characteristics of heterogeneity at Re = 100 and (a), (b), (c) – Bn = 1, 10, 20 
 

Сравнение графиков характеристики неоднородности для разных конфигура-

ций смесителя (рис. 12), показывает низкую эффективность перемешивания для 

смесителя с более чем одной лопастью, это отражается на значительном росте ам-

плитуды за счет увеличившейся внутренней неоднородности. 
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a b c 

Рис. 12. Характеристики неоднородности при Re = 1 и Bn = 5  

для (a), (b), (c) – однолопастного, двухлопастного и четырехлопастного смесителя 

Fig. 12. Characteristics of heterogeneity at Re = 1 and Bn = 5  

for (a), (b), (c) – single-bladed, two-bladed and four-bladed mixer 

 
Заключение 

 

Выполнены параметрические исследования плоских течений Бингамовской 

жидкости для различных конфигураций мешалок, отличающихся количеством ло-

пастей, для чисел Bn и Re, изменяющихся в диапазоне от 1 до 20 и от 1 до 100 

соответственно. Проанализировано изменение геометрии ядер в зависимости от 

конфигурации мешалки и безразмерных чисел. Для иллюстрации и анализа каче-

ства смешения решена задача о движении ансамбля маркерных частиц. Выявлено 

три характерных режима поведения маркерных частиц. Первый режим, реализую-

щийся во внутреннем ядре, соответствует отсутствию движения маркеров относи-

тельно лопасти. Второй осуществляется в зоне между ядрами, для него характерна 

слоистая структура потока маркеров. Наконец, третий реализуется во внешнем 

ядре, где маркеры образуют сильно неоднородную структуру. Количественно 

оценка процесса перемешивания осуществлялась с помощью характеристик неод-

нородности распределения маркерных частиц и интеграла диссипативной функ-

ции. Проведенный сравнительный анализ показал более качественное перемеши-

вание для однолопастных мешалок.  
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Аннотация. Рассматриваются процессы влияния электромагнитного поля на филь-

трационные характеристики пористой среды. Обнаружено, что вязкость нефти по-

сле электромагнитного воздействия при малых мощностях поля возрастает из-за 

структурных преобразований. Замечено, что при поперечном расположении элек-

тродов эффективная проницаемость по нефти снижается более чем на 20%, в отли-

чие от продольного расположения электродов, когда проницаемость практически не 

меняется. Это объясняется возникновением эффекта запирания на локальных участ-

ках, наиболее приближенных к электродам, где формируется наибольший градиент 

напряженности ЭМП. 

Ключевые слова: фильтрация, эффективная проницаемость, коэффициент динами-

ческой вязкости, переменное электромагнитное поле 
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Abstract. A number of studies have examined the influence of electromagnetic fields 

(EMFs) on petroleum liquids. An interesting problem is to investigate the behavior of these 

liquids in porous media due to the presence of complex hydrocarbons. This paper investi-

gates the features of the viscous oil flow in porous-medium models under EMF exposure. 

The main component of the experimental setup was a cell with electrodes positioned both 

across and along the flow direction. It was found that the maximum value of the dielectric 

loss tangent was reached at a frequency of 5 MHz. The dynamic viscosity coefficient in-

creased after EMF exposure, indicating structural changes in the oil. The fluid flow rate 

was measured as a function of temperature at different pressure levels. The application  

of the field led to a decrease in the flow rate compared to filtration without exposure. Con-

sidering the design features of the micromodel and the measured dynamic viscosity coef-

ficient, it was assumed that the effect was caused by the dielectrophoretic forces acting on 

the polar components of the oil and their structural transformation. Such a reduction of the flow 

rate can be explained by the increased dynamic viscosity and deterioration of the filtration 

characteristics of the porous medium, which results in a blocking effect in the local areas 

closest to the electrodes, where the highest electric-field-strength gradient is formed. 

Keywords: filtration, permeability, dynamic viscosity coefficient, alternating electromag-

netic field 
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Введение 

 

В настоящее время нефть является одним из важнейших источников энергии. 

Добыча высоковязкой нефти – важная практическая задача, поскольку запасы та-

ких месторождений значительны, а их роль в общих запасах органического сырья 

постоянно возрастает. Такая нефть представляет собой суспензию асфальтеновых 
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коллоидов, стабилизированных смолами [1–3], что приводит к необычному пове-

дению тяжелой нефти, протекающей по трубам и пористым средам [4–7], а при 

изменении внешних условий зачастую демонстрирует аномальное изменение 

свойств [8]. Как правило, тяжелая нефть представляет собой разновидность ненью-

тоновской жидкости и относится к бингамовской жидкости. Это мнение подтвер-

ждено многими экспериментальными данными [9]. Но реологические характери-

стики тяжелой нефти зависят от температуры окружающей среды, – это может 

быть ньютоновская жидкость с более высокой температурой [10]. 

Из-за высокой вязкости нефти, а также из-за частого засорения призабойной 

зоны скважины отложениями коллоидных поверхностно-активных компонентов 

добыча нефти становится возможной только после предварительной термической 

обработки пласта. Так, в статье [11] с помощью экспериментов были изучены ха-

рактеристики протекания через капиллярную и пористую среду различных видов 

тяжелой нефти при различных температурах. Показано, что тяжелая нефть, содер-

жащая асфальтеновые коллоиды, обладает реологическими свойствами предела 

текучести (жидкости Бингама). Но обработка горячим паром или горячей жидко-

стью не всегда эффективна. Более того, их широкое применение может привести 

к серьезным экологическим последствиям в виде нарушений гидрогеологической 

обстановки. Одним из перспективных методов термической обработки является 

электромагнитный нагрев продуктивных пластов [12]. Благодаря глубокому про-

никновению и объемному тепловыделению, а также отсутствию теплоносителя 

электромагнитное излучение может обеспечить по сравнению с традиционными 

методами высокую скорость и равномерность нагрева, возможность оптимального 

управления и автоматизации технологических процессов, практически исключить 

вредное воздействие на окружающую среду [13]. 

В [14] обнаружено, что основные изменения в микроструктуре эмульсии про-

исходят за доли секунды, независимо от частоты и напряжения приложенного 

поля. Увеличение напряжения и частоты приложенного электрического поля уси-

ливает эффект коалесценции, а концентрация капель приводит к повышению эф-

фективности соединения капель эмульсии. В работе [15] рассматривается влияние 

высокочастотных электромагнитных полей и электрического нагрева на процессы 

массо- и теплопередачи в многокомпонентной углеводородной системе, протека-

ющей в пористых средах. Были выявлены критические параметры, такие как сни-

жение вязкости, которые влияют на извлечение тяжелой нефти под воздействием 

этих вариантов нагрева. Замечено, что высокочастотное электромагнитное поле 

воздействует на полярные компоненты нефти, десорбируя их с поверхности по-

роды и увеличивая добычу. Эта важнейшая роль высокочастотного поля в про-

цессе адсорбции при вытеснении высоковязких нефтей в конечном итоге привела 

к меньшему осаждению асфальтенов и закупориванию пор. 

В сырой нефти содержатся различные углеводородные соединения, такие как 

асфальтены, смолы, ароматические вещества и воски; самым тяжелым компонен-

том сырой нефти со сложной структурой молекул являются асфальтены, поэтому 

их молекулярная структура до конца не изучена [16, 17]. Отложение асфальтенов 

на поверхности пород-коллекторов пагубно сказывается на продуктивности угле-

водородов. Это объясняется тем, что молекулы асфальтенов имеют тенденцию  

к образованию огромных скоплений. Асфальтены накапливаются на границах  

раздела твердое вещество–жидкость или жидкость–жидкость–жидкость в процессе 
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химического заводнения, в результате чего из-за уменьшения межфазного натяжения 

и изменения смачиваемости твердой поверхности образуются микроэмульсии [18]. 

Несмотря на то, что изучение взаимодействия асфальтенов с солевым раствором, 

который закачивают в пласт для увеличения нефтеотдачи, все еще продолжается, 

в некоторых исследованиях были высказаны разные мнения, согласно которым 

одни исследователи утверждали, что присутствие водных микроэмульсий не ока-

зывает существенного влияния на осаждение асфальтенов [19, 20], в то время как 

другие, наоборот, высказывались о негативном влиянии [21, 22]. В [23] подтвержден 

механизм адсорбции анионных поверхностно-активных веществ на поверхности 

слюды в присутствии катионов в растворе. Сравнение изображений адсорбирован-

ного вещества, полученных при контакте с микроэмульсией из разных областей 

фазовой диаграммы, показало корреляцию между морфологическими характери-

стиками изображений и структурными особенностями микроэмульсий. 

Существует ряд исследований, посвященных изучению влияния электромаг-

нитных полей различного диапазона частот на физико-химические свойства 

нефтяных жидкостей. Так, в работе [24] обнаружено, что электромагнитная обра-

ботка демонстрирует свою максимальную эффективность сразу после воздействия 

электромагнитного поля. То есть после воздействия электромагнитного поля (ЭМП) 

на нефть ее вязкость снижается, но через определенный промежуток времени свой-

ства нефти возвращаются к изначальным, как до воздействия. В статье [25] повы-

шение вязкости было вызвано образованием цепочечных микроструктур диспер-

гированных капель. Между тем снижение вязкости тесно связано с вращением 

диспергированных капель, вызванным электрическим полем, что подтверждено 

электрогидродинамикой отдельной проводящей капли в более проводящей окру-

жающей жидкости. Были рассмотрены реологические характеристики модельных 

эмульсий при динамическом колебательном сдвиге малой амплитуды в сочетании 

с эволюцией морфологии под действием электрического поля и поля течения. Ре-

зультаты показали, что вклад поверхности раздела в реологический отклик прояв-

ляется совершенно по-разному в зависимости от соотношения электропроводно-

сти двух соприкасающихся жидкостей. 

Цель настоящей работы – исследование особенностей фильтрации нефти, вяз-

кость которой зависит от температуры, в модели пористой среды при наличии 

электромагнитного воздействия для выявления степени изменения эффективной 

проницаемости по нефти под действием ЭМП. 

 

Методика экспериментального исследования фильтрации нефти  

при воздействии ЭМП 

 

Объектом исследования являлась модель пористой среды, насыщенная нефтью. 

В табл. 1 приведено содержание в ней асфальтенов, смол и парафинов (АСП). 

Т а б л и ц а  1  

Содержание АСП в используемой нефти 

Наименование параметра Содержание, % 

Асфальтены 0.67 

Смолы 6.2 

Парафины 5.1 
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Предварительно перед началом эксперимента были проведены исследования 

частотных зависимостей тангенса угла диэлектрических потерь tgδ нефти для 

определения частоты воздействия из области поляризации полярных компонент 

нефти (рис. 1). 

При воздействии на нефть электромагнитным излучением частотой из области 

диэлектрической поляризации полярных компонент нефти происходит ориентаци-

онная поляризация этих компонент, приводящая к структурным изменениям  

асфальто-смоло-парафиновых соединений. Область поляризации определяется 

индивидуально для каждой нефти по частотным зависимостям тангенса угла ди-

электрических потер tgδ. Измерения tgδ нефти проводились на измерителе доброт-

ности ВМ-560 в диапазоне частот 50 кГц – 35 МГц и при температуре 22°C.  

Из рис. 1 видно, что при частоте f = 5 MГц достигается максимум потерь, и при 

такой частоте электромагнитного поля следует ожидать максимального эффекта 

от действия поля, поэтому данная частота была использована как рабочая. 
 

 

Рис. 1. Зависимость тангенса угла диэлектрических потерь нефти от частоты ЭМП 

Fig. 1. Dependence of the dielectric loss tangent of oil on the EMF frequency 
 

Экспериментальная установка состояла из: компрессора Fubag OL231/24, со-

здающего давление воздуха, подключенного к нему контроллера давления Parker 

для поддержания постоянного давления в емкости с исследуемой жидкостью, экс-

периментальной ячейки, дренажной емкости, аналитических весов AND GR-200  

с выводом информации и графиков на ПК, генератора высокочастотного поля 

Tabor 9100 amplifier (Tabor Electronics Ltd.) и термостата LIOP LT-117b, в который 

помещались экспериментальная ячейка и емкость с исследуемой жидкостью для под-

держания определенной температуры во время проведения эксперимента (рис. 2). 

Основным элементом установки была экспериментальная ячейка, которая пред-

ставляла собой насыпную модель пористой среды (рис. 3). Она была изготовлена 

из оргстекла. Было изготовлено две ячейки с разным расположением электродов:  

– электроды расположены поперек фильтрации жидкости (см. рис. 3, a), при 

этом вектор напряженности электрического поля направлен вдоль вектора скоро-

сти фильтрации жидкости;  

– электроды расположены вдоль потока фильтрации жидкости (см. рис. 3, b), 

вектор напряженности электрического поля направлен перпендикулярно вектору 

скорости фильтрации. 
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Рис. 2. Схема экспериментальной установки: 1 – компрессор; 2 – контроллер давления;  

3 – емкость для исследуемой жидкости; 4 – экспериментальная ячейка; 5 – термостат;  

6 – аналитические весы; 7 – дренажная емкость; 8 – генератор ВЧ-сигналов; 9 – ПК 

Fig. 2. Scheme of the experimental installation: 1, compressor; 2, pressure controller;  

3, tank for liquid; 4, experimental cell; 5, thermostat; 6, analytical scales; 7, drainage tank;  

8, RF signal generator; and 9, PC 

 

     
  a                                                                              b 

Рис. 3. Схема расположения электродов в модели пористой среды вдоль (a)  

и поперек потока (b) 

Fig. 3. Arrangement of the electrodes in a porous medium model (a) along  

and (b) across the flow 
 

Размер исследуемой области составил 50 × 50 × 5 мм в обоих случаях. Рассмат-

ривается среда, которая моделирует терригенную породу. Для создания насыпной 

модели были использованы стеклянные сферы. Проведен анализ дисперсности 

стеклянных сфер посредством цифровой обработки фотографий, снятых через мик-

роскоп Olympus IX71. Разброс размеров стеклянных сфер составил от 55 до 85 мкм, 

а среднечисленное значение равно 69.8 мкм. Пористость модели (а) составила 20%, 

модели (b) – 22%. Проницаемости моделей определялись по керосину и равны со-

ответственно для модели (а) 58 Д, для модели (b) – 73 Д. 

Методика проведения экспериментов была следующей. В емкость для жидко-

сти 3 (см. рис. 2) заливалась исследуемая нефть, затем емкость 3 погружалась вме-

сте с экспериментальной ячейкой 4 в термостат 5. Эксперимент проводился при 

температурах t = 20 ÷ 60°C с шагом 10°C. В емкость 3 от компрессора 1 через ре-

гулятор давления 2 подавался воздух. Эксперименты проводились при трех пере-

падах давления ∆p = 5, 10 и 15 кПа. Воздух вытеснял жидкость из емкости 3, и она 

фильтровалась через ячейку 4 в дренажный стакан 7, который был установлен на 
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весы 6. В момент начала эксперимента также включался генератор частот 8 на ча-

стоте f = 5 кГц, который был подключен к электродам ячейки. Напряженность 

электрического поля составила 1 В/мм. 
 

Результаты 
 

В ходе эксперимента были определены температурные зависимости коэффици-

ента динамической вязкости исходной нефти и проб нефти, полученной после 

электромагнитного воздействия (рис. 4). 
 

 

Рис. 4. Зависимость коэффициента динамической вязкости нефти  

от температуры до и после воздействия ЭМП 

Fig. 4. Dependence of the dynamic viscosity coefficient of oil  

on temperature before and after EMF exposure  
 

Эксперименты по определению вязкости были проведены на ротационном вис-

козиметре Brookfield DV II+Pro. Коэффициент динамической вязкости опреде-

лялся по экспериментальным зависимостям напряжения сдвига от скорости сдвига 

в диапазоне температур 20 ÷ 60°C. В табл. 2 приведены значения изменения 

коэффициента динамической вязкости при разных температурах. 

Т а б л и ц а  2  

Изменение коэффициента динамической вязкости после обработки ЭМП 

t, °C µ до обработки, мПа·с µ после обработки, мПа·с ∆µ, % 

20 7.24 ± 0.554 8.56 ± 0.356 18 

30 5.41 ± 0.627 6.5 ± 0.487 20 

40 4 ± 0.5129 5.21 ± 0.5421 30 

50 3.13 ± 0.441 4.16 ± 0.4385 33 

60 2.67 ± 0.3978 3.54 ± 0.387 35 
 

Зависимость вязкости нефти от температуры описывается следующей экспо-

ненциальной кривой: 

 
( )0

0 e
T T− −

 =  , (1) 

где µ – динамическая вязкость нефти при температуре T; µ0 – динамическая 

вязкость нефти при температуре T0; γ – температурный коэффициент вязкости;  

T, T0 – текущая и начальная температуры нефти. 



Валиуллина В.И., Галеев Р.Р., Зиннатуллин Р.Р. и др. Влияние электромагнитного поля 

91 

Получено, что до вездействия ЭМП µ0 = 6.9 Па·с, γ = 0.025, а после воздействия 

µ0 = 8.2 Па·с, γ = 0.022, т.е. коэффициент µ0 после воздействия увеличился на 18%. 

Результаты исследования коэффициента динамической вязкости нефти до и по-

сле ЭМ-воздействия малой мощности показали, что вязкость после воздействия 

повышается. Увеличение вязкости может быть следствием взаимодействия ассо-

циатов с образованием более крупных структур как было показано в работе [26].  

При заданных перепадах давления (∆p = 5, 10, 15 кПа) была проведена филь-

трация жидкости через каждую из ячеек. Выбор рабочего диапазона перепадов 

давлений обоснован техническими параметрами контроллера давления, что обес-

печивает необходимые скорости фильтрации и достаточные времена обработки 

нефти электромагнитным полем для исследования эффектов действия поля на 

фильтрационные процессы нефтей. В процессе экспериментов замерялся расход 

жидкости в зависимости от температуры в термостате при различных давлениях 

нагнетания. Проанализировано также влияние высокочастотного поля (RF; распо-

ложение электродов поперек и вдоль фильтрации) на изменение фильтрационных 

характеристик пористой среды (эффективный коэффициент проницаемости) до и 

после фильтрации через нее нефти с содержанием асфальтенов. На рис. 5 приве-

дены кривые зависимости расхода жидкости от температуры, полученные при 

фильтрации жидкости без внешнего воздействия (сплошные линии) и под дей-

ствием ЭМП (пунктирные линии) при разных конфигурациях электродов. Оценка 

эффективной проницаемости проводилась согласно закону Дарси по формуле  

 
( )T Lq

k
pS


=

 
 (2) 

где L – длина фильтрационной области в модели пористой среды; S – площадь по-

перечного сечения фильтрационной области; ρ – плотность жидкости; q – массо-

вый расход жидкости. Результаты приведены в табл. 3. 
 

     
  а                                                                              b 

Рис. 5. Изменение расхода жидкости от температуры: сплошные линии – без воздействия; 

пунктирные линии – в присутствии ЭМП при расположении электродов поперек (а)  

и вдоль фильтрации (b) 

Fig. 5. Variation of liquid flow rate with temperature: without exposure (solid lines) and in the 

presence of EMF (dashed lines) when the electrodes are positioned (a) across  

and (b) along filtration 
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Т а б л и ц а  3  

Изменение эффективной проницаемости после обработки ЭМП 

t, °C k (при q = 15 кПа), 10–11 м2 k (при q = 15 кПа + RF), 10–11 м2 ∆k, % 

20 5.04 ± 0.005 3.38 ± 0.022 32 

30 4.83 ± 0.119 3.75 ± 0.117 22 

40 4.56 ± 0.040 3.19 ± 0.075 30 

50 4.23 ± 0.011 2.95 ± 0.05 30 

60 4.11 ± 0.079 2.91 ± 0.076 29 
 

Из рис. 5, а видно, что воздействие поля привело к снижению расхода жидкости 

в сравнении с фильтрацией без поля. Принимая во внимание конструктивные осо-

бенности микромодели и результаты измерения коэффициента динамической вяз-

кости (см. рис. 4), можно предположить, что причинами стали действие диэлектро-

форетических сил на полярные компоненты нефти и изменение структуры АСП. 

Также можно увидеть, что при увеличении перепада давления в диапазоне темпе-

ратур от 40 до 60°C значения расхода под воздействием поля значительно умень-

шаются по сравнению с расходом без воздействия поля. Снижение расхода объяс-

няется увеличением динамической вязкости и ухудшением фильтрационных  

характеристик пористой среды вплоть до возникновения эффекта запирания на  

локальных участках, наиболее приближенных к электродам, где формируется 

наибольший градиент напряженности электрического поля. Оценка изменения эф-

фективной проницаемости после обработки ЭМП (см. табл. 3) показала, что при 

расположении электродов поперек фильтрации эффективная проницаемость сни-

жается более чем на 20%, тогда как при продольном расположении электродов эф-

фективная проницаемость не меняется. 
 

Заключение 
 

В ходе эксперимента фильтрации нефти с содержанием АСП через модель по-

ристой среды при наличии электромагнитного поля обнаружено, что при располо-

жении электродов, когда вектор напряженности электрического поля направлен 

вдоль направления вектора скорости фильтрации, наблюдается снижение расхода 

относительно фильтрации без ЭМП. Этот факт объясняется увеличением коэффи-

циента динамической вязкости и возникновением диэлектрофоретических сил, 

приводящих к снижению эффективной проницаемости по нефти. При этом на ло-

кальных участках, наиболее приближенных к электродам, могут проявляться эф-

фекты запирания. 

Также при перепадах давления свыше 10 кПа и температурах 40–60°C наблю-

дается увеличение роста фильтрационного сопротивления, что объясняется изме-

нением структуры АСП под действием ЭМП. Помимо этого, установлено, что при 

расположении электродов поперек фильтрации эффективная проницаемость сни-

жается более чем на 20%, чего не наблюдается при расположении электродов 

вдоль фильтрации. 
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Аннотация. Исследование посвящено повышению прочностных свойств литейного 

алюминиевого сплава АК12 (Al–Si–Mg) путем армирования его базальтовыми во-

локнами. Введение 1 мас. % волокон с последующей ультразвуковой обработкой 

(18–22 кГц) и вибрационным литьем (50 Гц) обеспечило равномерное распределение 

армирующих частиц и измельчение структуры. Микроструктурный анализ выявил 

уменьшение размера дендритных ячеек и снижение содержания β-Al5FeSi. Компо-

зиционный сплав показал увеличение твердости и предела прочности за счет арми-

рования и измельчения зерна. 

Ключевые слова: композиционный материал, алюминиевый сплав, базальтовое во-

локно, АК12, упрочнение 
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Abstract. In this paper, a study of the effect of basalt fibers on the structure and mechanical 

properties of AK12 (Al–Si–Mg) cast aluminum alloy is performed. The main purpose  

is to increase the strength characteristics of the alloy using dispersed reinforcement and 

intensification of crystallization. The composite material was obtained by introducing  

1 wt.% of basalt fibers followed by ultrasonic treatment of the melt (17–22 kHz) and  

vibration casting (60 Hz), which ensured the uniform distribution of the reinforcing  

particles and modification of the microstructure. 

Metallographic analysis showed a decrease of defectiveness and variation in the morphology 

of the intermetallic phases, as well as the formation of the hexagonal phase Al₁₂(Fe,Mn)₃Si 

instead of the skeletal Al₁₅(Fe,Mn)₃Si₂ due to the presence of calcium in the composition 

of the fibers. At the same time, the average size of dendritic cells was 38 ± 3 μm. Mechanical 

tests revealed an increase in tensile strength from 186 to 232 MPa and in elongation from 

2.8 to 3.5 %, as well as an increase in Brinell hardness and Vickers microhardness by 15–

20 %. 

Fractographic analysis confirmed the transition from a purely brittle to a quasi-brittle-plas-

tic fracture mechanism. The obtained results indicated the efficiency of basalt fibers as  

a strengthening additive and their promise for the development of aluminum composite 

materials with improved performance properties. 
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Введение 

 

Алюминиевые сплавы эвтектического типа, в частности силумины, широко 

применяются в автомобилестроении, авиации и других отраслях благодаря высо-

кому соотношению прочности к массе, хорошей литейной способности и коррози-

онной стойкости [1]. Одним из типичных представителей является сплав АК12, 

содержащий 10–13% кремния, а также примесные элементы Fe и Mn, образующие 

интерметаллидные фазы типа Al₅FeSi и Al₁₅(Fe,Mn)₃Si₂. Однако наличие хрупких 

игольчатых интерметаллидов и пористости в структуре ограничивает пластич-

ность и надежность изделий. Повышение прочностных характеристик таких спла-

вов без ущерба для литейных свойств остается актуальной задачей. 

Один из перспективных путей модификации алюминиевых сплавов – дисперс-

ное армирование неметаллическими волокнами. В последние годы растет интерес 

к базальтовым волокнам, отличающимся высокой жесткостью, термостойкостью 

и химической инертностью при сравнительно низкой стоимости [2]. Известно, что 

введение базальтовых волокон в алюминиевую матрицу улучшает механические 

свойства композитов, однако взаимодействие волокон с расплавом и их влияние 

на структуру в сплавах типа АК12 изучены недостаточно. 
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Настоящая работа направлена на изучение влияния 1 мас. % базальтовых воло-

кон на структуру и механические свойства сплава АК12. Проведены комплексные 

металлографические, фрактографические и механические исследования, а также 

применены методы интенсификации кристаллизации – ультразвуковая и вибраци-

онная обработка расплава. Полученные результаты показывают, что введение ба-

зальтовых волокон способствует модификации микроструктуры и увеличению 

прочности, микротвердости и пластичности композита. Исследование демонстри-

рует потенциал базальтового армирования как эффективного подхода к управлению 

фазовым составом и улучшению эксплуатационных характеристик силуминов. 

 

Материалы и методы 

 

Подготовка алюминиевого сплава марки АК12 осуществлялась следующим об-

разом: слиток нарезался на куски размером 50 × 30 мм, обезжиривался от остатков 

смазывающе-охлаждающей жидкости, просушивался. После полного высыхания 

куски алюминия складывались в графитовый тигель, который помещался в печь  

и нагревался до температуры 800℃ до полного расплавления алюминия (рис. 1). 
 

 

Рис. 1. Принципиальная схема литья 

Fig. 1. Casting scheme 

 

Базальтовые волокна в количестве 1 мас. % упаковывались в алюминиевый кон-

тейнер из алюминиевой фольги. Полученный контейнер помещался в печь и нагре-

вался до 200℃ для избегания чрезмерного переохлаждения расплава алюминия. 

Расплавленный алюминиевый сплав помещался нагретую до 780℃ открытую 

печь, после чего осуществлялось перемешивание расплава алюминия механиче-

ским смесителем, изготовленным из стали марки Ст3, который покрывался ко-

кильной краской СТАВРОЛ-700 марки К (ТУ 4191-005-21168034–2005) во избе-

жание насыщения расплава железом. Смеситель состоит из трех пластин, каждая 

из которых выполнена в форме четырехлопастной конструкции, неподвижно за-

фиксированных на штифте таким образом, что расстояние между ними одинаково 

и составляет угол 90° относительно друг друга. Конец каждой лопасти оснащен 

двумя жестко закрепленными соосными цилиндрическими стержнями, располо-

женными перпендикулярно плоскости самой лопасти [3]. Предварительно нагре-

тый контейнер с измельченными базальтовыми волокнами вводился зону механи-

ческого перемешивания, после чего перемешивание осуществлялось в течение 20 с. 

Скорость вращения смесителя составляла 500 об./мин. После окончания переме-

шивания производился замер температуры расплава. 
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Обработка расплава ультразвуком осуществлялась путем опускания предвари-

тельно прогретого волновода из ниобия в объем расплава. Частота ультразвуковых 

колебаний была равна 17 кГц. Время обработки ультразвуком составляло 2 мин. 

Разливка расплава производилась в цилиндрический стальной кокиль, обрабо-

танный кокильной краской и прогретый до температуры 200℃. За несколько се-

кунд до разливки расплава производилось включение вибрационного стола, на ко-

тором был жестко закреплен кокиль. Выключение вибрационного стола произво-

дилось после заполнения кокиля и усадки расплава в течение 5 с. Частота работы 

вибрационного стола составляла 60 Гц. 

Исходный сплав АК12 был получен в аналогичных условиях без добавления 

базальтовых волокон, а также без использования ультразвуковой обработки рас-

плава. 

Образцы для металлографических исследований вырезались из центра цилин-

дрической отливки. Подготовка металлографических шлифов осуществлялась  

с использованием карбид-кремниевой шлифовальной бумаги. Полировка металло-

графических шлифов производилась с применением алмазных водно-гликолевых 

суспензий. Исследование структуры сплава методом оптической микроскопии 

осуществлялось с применением инвертированного оптического микроскопа Axio-

Vert 40 MAT (Carl Zeiss, Германия). 

Исследование поверхности образцов сплавов и фрактография осуществлялись 

методом растровой электронной микроскопии с применением электронного мик-

роскопа Axia ChemiSEM Thermo Scientific (FEI, США) с использованием BSD ана-

лизатора. 

Исследование механических свойств образцов производилось на универсаль-

ной испытательной электромеханической машине Tinius Olsen 50 ST (Tinius Olsen, 

Великобритания). Образцы на растяжение вырезались из центральной части от-

ливки по направлению вдоль отливки методом электроэрозионной резки со следу-

ющими размерами (Ш × Т × Д) – 6 × 3 × 25 мм. Испытания производились со ско-

ростью подвижной траверсы 0.2 мм/мин согласно ГОСТ 1497–2023. 

Твердость по Бринеллю образцов измерялась на универсальном твердомере 

Метолаб 703 с нагрузкой 62.5 кг на индентор в виде твердосплавного шарика диа-

метром 2.5 мм в течение 20 с. Микротвердость по Виккерсу измерялась на микро-

твердомере Метолаб 502 с нагрузкой на алмазный индентор 50 г в течение 20 с. 

Для каждого испытания производилось 10 замеров. 

 

Результаты 

 

Микроструктура сплава АК12 без базальтовых волокон, полученного в резуль-

тате исследования, представляет собой характерную для эвтектических силуминов 

макро- и микроструктуру. На рис. 2, демонстрирующем общий план, видны основ-

ные фазы: первичные дендриты твердого раствора алюминия (светлые области)  

и темные (междендритные) области – эвтектика и интерметаллидные включения. 

Анализ среднего размера дендритной ячейки (SDAS), имеющего прямую зависи-

мость с механическими свойствами, был проведен прямым измерением характерных 

срезов дендритов алюминия. Выборка составляла не менее 100 измерений ячеек. 

Средний размер дендритной ячейки составил 32 ± 3 мкм, что сопоставимо с разме-

ром дендритных ячеек для сплавов с естественной скоростью кристаллизации [4]. 
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Рис. 2. Микроструктура сплава АК12 без базальтовых волокон 

Fig. 2. Microstructure of AK12 alloy without basalt fibers 
 

Результаты исследования поверхности методом электронной микроскопии в сово-

купности с элементным анализом методом энергодисперсионной спектроскопии 

свидетельствуют, что эвтектика в междендритных областях состоит тонких обра-

зований кремния и алюминиевой матрицы. Кремний представлен удлиненной 

игольчатой, иногда пластинчатой нерегулярной формой, что характерно для немо-

дифицированного сплава. Множество образований кремния пересекаются или 

имеют взаимосвязи. Интерметаллидные фазы в микроструктуре сплава представ-

лены на рис. 3. 
 

 

Рис. 3. ЭДС-анализ поверхности сплава АК12 

Fig. 3. EDS-analysis of AK12 alloy surface 
 

Основными интерметаллидными фазами являются железистомарганцевистая 

фаза Al15(Fe, Mn)3Si2 в виде скелетообразных образований и сфероидальная Al2Cu. 

Негативной особенностью микроструктуры полученного сплава АК12 являются 

дефекты в виде мелких пор по всей площади шлифа. 
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На рис. 4 представлено оптическое изображение микроструктуры композици-

онного сплава АК12 + 1 мас. % базальтовых волокон. 
 

 

Рис. 4. Микроструктура композита АК12 + 1 мас. % базальтовых волокон 

Fig. 4. Microstructure of the composite AK12 + 1 wt.% basalt fibers 
 

Композиционный материал на основе силумина АК12 с добавлением базальто-

вых волокон обладает схожими структурными элементами по сравнению с полу-

ченным сплавом без волокон (см. рис. 2): микроструктура материала представлена 

светлыми областями твердого раствора алюминия, темными вытянутыми или 

плоскими пластинчатыми включениями кремния, а также интерметаллидными фа-

зами (см. рис. 3). Анализ среднего размера дендритной ячейки композиционного 

материала на основе АК12 показал, что средний размер зерна дендритной ячейки 

составляет 38 ± 3 мкм. 

Интерметаллидные фазы представлены игольчатой Al5FeSi, скелетообразной 

Al15(Fe, Mn)3Si2 и фазой Al2Cu. Наличие игольчатых образований Al5FeSi, являю-

щихся сечениями пластинчатых образований, потенциально негативно влияет на 

пластичность композиционного материала, так как они могут выступать концен-

траторами напряжений и служить эпицентрами трещин. Их образование в данном 

сплаве, в противоположность исходному сплаву АК12, предположительно, связано 

с процессом получения данного сплава и контактом с поверхностями из железа, 

несмотря на то что все оборудование было обработано защитными покрытиями. 

Стоит отметить, что в полученном материале с добавлением базальтовых воло-

кон происходят превращения железистомарганцевистой фазы. На рис. 5 представ-

лена разновидность данной фазы с весовым соотношением элементов: Al – 60%, 

Fe – 27%, Si – 8%, Mn – 5%. Данная фаза может быть идентифицирована как гек-

сагональная разновидность фазы Al12(Fe, Mn)3Si [5–7]. Изменение состава фазы  

и ее морфологии может происходить из-за влияния кальция, входящего в состав 

базальтовых волокон. Взаимодействие расплава алюминия с волокнами приводит 

к росту новых интерметаллидных фаз, что сдвигает термодинамическое равнове-

сие в пользу фазы Al12(Fe, Mn)3Si [8–10]. 
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Рис. 5. ЭДС-анализ поверхности композита АК12 + 1 мас. % базальтовых волокон 

Fig. 5. EDS-analysis of the surface of the composite AK12+1 wt.% basalt fibers 
 

Результаты испытаний на растяжение представлены в таблице и на рис. 6, из 

которого следует, что условный предел текучести сплава АК12 при введении в него 

базальтовых волокон не изменяется. 

Механические свойства сплава АК12 и композита АК12 + 1 мас. % БВ 

Образцы 
Предел теку-

чести, МПа 

Предел проч-

ности, МПа 

Деформа-

ция, % 

Микротвердость 

по методу  

Виккерса, HV 

Твердость по 

методу  

Бринелля, HB 

АК12 +  

1 мас. % БВ 
66 ± 3 232 ± 15 3.54 ± 0.05 137 ± 14 117 ± 4 

АК12  

исходный 
69 ± 3 186 ± 11 2.79 ± 0.05 114 ± 8 102 ± 4 

 

 

Рис. 6. Диаграмма растяжения сплава АК12 и композита материала  

АК12 + 1 мас. % базальтовых волокон 

Fig. 6. Stress–strain diagrams for AK12 alloy and composite AK12 + 1 wt. % basalt fibers 
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Однако введение 1 мас. % базальтовых волокон приводит к увеличению пре-

дела прочности на 25%. Повышение предела прочности может быть осуществимо 

благодаря нескольким механизмам упрочнения: разности коэффициентов тепло-

вого расширения (КТР) и модулей упругости между алюминиевым сплавом АК12 

и базальтовыми волокнами [11]. КТР алюминия и базальтовых волокон различа-

ются практически в 4 раза (см. таблицу) [12], что в соответствии с данным меха-

низмом упрочнения вызывает образование напряжений на границе раздела фаз 

алюминий–базальтовое волокно. Возникшие напряжения порождают дислокации, 

скопления которых и способствуют упрочнению. Увеличение относительного 

удлинения с 2.8 до 3.54% может быть следствием перераспределения нагрузки  

с матрицы, которой выступает алюминиевый сплав АК12, на базальтовое волокно, 

чья способности к удлинению значительно превышают возможности силуминов. 

Введение волокон базальта в сплав АК12 также приводит к увеличению твер-

дость по Бринеллю с 102 до 117 единиц твердости (HB) и микротвердости по Вик-

керсу с 114 до 137 HV. Увеличение твердости и микротвердости может быть свя-

зано с увеличившимся количеством интерметаллидных фаз, преимущественно 

твердых, но хрупких по сравнению с алюминием, что видно из рис. 3 и 4. 

На рис. 7 представлено изображение поверхности разрушения сплава АК12 по-

сле одноосного растяжения. 
 

 

Рис. 7. Поверхность разрушения композиционного материала  

АК12 + 1 мас. % базальтовых волокон 

Fig. 7. Failure surface of the composite AK12 + 1 wt. % basalt fibers 
 

Фрактографический анализ поверхности разрушения показал, что при разру-

шении исходного сплава АК12 и композита с добавлением 1 мас. % базальтовых 

волокон основным механизмом разрушения является транскристаллитное ква-

зихрупкое разрушение [13–15]. В пользу этого говорит наличие элементов поверх-

ности с четким границами – фасеток скола, которые образуются при хрупком разру-

шении по определенным кристаллографическим плоскостям. Однако в некоторых 

редко встречающихся областях поверхности разрушения обнаружены «ямки» – 

особенности морфологии поверхности разрушения, характерные для пластиче-

ского разрушения. Ямки могут быть сформированы в областях с локальными скоп-

лениями матрицы алюминия без других фаз или структур. 
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Заключение 

 

В настоящей работе осуществлен комплексный анализ влияния базальтовых 

волокон на макроструктуру и микроструктуру сплава АК12, проведена оценка 

вклада базальтовых волокон в повышение предела прочности, относительного 

удлинения, твердости и микротвердости данного сплава. Результаты, полученные 

в ходе исследования, подтверждают, что введение 1 мас. % базальтовых волокон 

в алюминиевый сплав АК12 в сочетании с ультразвуковой и вибрационной обра-

боткой расплава приводит к модификации микроструктуры, изменению морфоло-

гии интерметаллидных фаз и улучшению механических свойств полученного ком-

позиционного материала. 

Установлено, что в результате взаимодействия базальтовых волокон с алюми-

ниевым расплавом в структуре образуется гексагональная фаза Al₁₂(Fe,Mn)₃Si, за-

мещающая исходную скелетообразную фазу Al₁₅(Fe,Mn)₃Si₂. Предположительно, 

данный фазовый переход обусловлен наличием кальция в составе базальтовых во-

локон, который влияет на термодинамическое равновесие формирования интерме-

таллических соединений. Анализ структуры показал, что, несмотря на увеличение 

среднего размера дендритной ячейки (с 32 ± 3 до 38 ± 3 мкм), композитный сплав 

сохраняет равномерное распределение кремния и интерметаллидных фаз. 

Механические испытания выявили значительное увеличение предела прочно-

сти на разрыв (с 186 ± 11 до 232 ± 15 МПа) и относительного удлинения (с 2.79 до 

3.54%) при сопоставимом уровне текучести. Также зафиксировано повышение 

твердости по Бринеллю и микротвердости по Виккерсу. Эти изменения обуслов-

лены как упрочняющим эффектом самих волокон, так и перераспределением 

напряжений на границе волокно–матрица. Фрактографический анализ подтвер-

дил, что основным механизмом разрушения остается транскристаллитное ква-

зихрупкое разрушение, однако локальные области пластической деформации сви-

детельствуют об улучшении пластичности материала. 

Таким образом, добавление базальтовых волокон является эффективным спо-

собом модификации литейного сплава АК12 и может быть использовано в техно-

логиях получения алюминиевых композиционных материалов с повышенными 

эксплуатационными характеристиками. 
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Аннотация. Представлены результаты исследования двухфазного стационарного 

квазиодномерного течения в сопле Лаваля с учетом процессов коагуляции, дробле-

ния и вращения капель конденсированной фазы. Математическая модель основана 

на использовании многожидкостной модели сплошной среды и метода квазиуста-

новления. Проведены численные исследования характеристик двухфазной среды. 

Проанализированы зависимости двухфазных потерь от различных функций распре-

деления конденсированной фазы во входном сечении сопла. Показано, что для ряда 

течений использование распределений, отличных от нормально-логарифмических, 

оказывает заметное влияние на структуру потока. 

Ключевые слова: сопло Лаваля, двухфазное квазиодномерное течение, функция 

распределения, двухфазные потери, математическое моделирование 
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Abstract. This study presents numerical results for a steady quasi-one-dimensional two-

phase flow in a Laval nozzle, accounting for the coagulation, breakup, and rotation of 

droplets in the condensed phase. The mathematical model is based on a multicomponent 

continuum approach combined with a quasi-steady solution method; second-order numerical 

schemes are used for spatial integration. Several inlet droplet-size distributions obtained 
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from an intrachamber combustion simulation are examined to assess their impact on the 

two-phase losses and flow structure. Comparisons with the lognormal and truncated loga-

rithmic laws show that, for some flow regimes, deviations from the classical lognormal 

distribution have little effect on thrust characteristics, whereas in other cases the influence 

is significant. The results show that both the mass fraction of the condensed phase and  

the choice of inlet distribution shape can noticeably affect the reduction of the specific 

impulse. The study illustrates the evolution of droplet sizes along the nozzle and identifies 

the conditions under which the impact of the distribution shape becomes important. Future 

work will extend the proposed approach to the entire internal flow path of a solid-propel-

lant rocket motor. 

Keywords: Laval nozzle, two-phase quasi-one-dimensional flow, distribution function, 

two-phase losses, mathematical modeling 
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Введение 

 

Широкое применение ракетных двигателей на твердом топливе (РДТТ) в кос-

мических исследованиях обусловливают их дальнейшее совершенствование. Для 

определения энерго-тяговых характеристик у разрабатываемого двигателя необхо-

димо знать распределение газодинамических параметров во всем его тракте.  

Из исследований двухфазных течений в подобных установках следует, что на 

энерго-тяговые характеристики двигателя существенное влияние оказывает распре-

деление конденсированной фазы (к-фазы) продуктов сгорания на входе в сопловой 

блок. Для большинства применяемых смесевых твердых топлив (СТТ) принято за-

давать распределение частиц на входе в сопло на основе нормально-логарифмиче-

ского закона [1]. Такое распределение формируется, исходя из начальной функции 

распределения на поверхности горения топлива и ее дальнейшей эволюции в ка-

мере сгорания. Это весьма сложная многофакторная задача, которая зависит от со-

става топлива, условий горения, времени пребывания продуктов сгорания в камере 

сгорания и других факторов. Решению этой задачи посвящено много эксперимен-

тальных и теоретических исследований [2–7]. К настоящему времени такие иссле-

дования продолжаются, так как пока многие процессы изучены не полностью и 

возникает ряд противоречивых данных. Так, в работе [8] показано, что нормально-

логарифмический закон распределения не соответствует распределению на входе 

в сопло для рассматриваемых авторами СТТ. Отмечено, что использование под-

хода случайных блоков и новых моделей агломерации позволяет получать более 

качественную информацию о распределении частиц на входе в сопло. 

В работе [9] выполнено исследование распределения по размерам впрыскива-

ющих капель на картину двухфазного течения в камере сгорания. Показано, в част-

ности, влияние этих распределений на параметры потока на входе в сопло. Приве-

дены как гистограммы состава алюминия, так и распределения параметров потока 

в поперечном сечении на входе в сопло. 
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Поскольку начальное распределение по размерам у поверхности топлива суще-

ственно влияет на распределение на входе в сопло, был выполнен ряд исследова-

ний по их определению. Можно отметить работу [10] в которой выполнено экспе-

риментальное изучение распределения по размерам конденсируемых частиц в за-

висимости от геометрии образца, интервала времени закалки и уровня давления на 

основе бомбы закалки. Получено, что частицы имеют размеры от 0.1 до 300 мкм и 

их распределение трехмодальное. Аппроксимация полного распределения опи-

сана как сумма нормально-логарифмических распределений для каждой моды.  

С учетом изменения распределения частиц в газодинамическом тракте двигателя 

получена одномодальная функция на срезе сопла. 

В работе [11] предложена динамическая модель агломерации, которая позво-

ляет получить функцию распределения агломератов по размерам для разных 

начальных спектров частиц. Так же можно отметить работу [12], где была разра-

ботана и реализована комплексная физико-математическая модель двухфазного 

течения продуктов сгорания СТТ во всем газодинамическом тракте РДТТ. В дан-

ную модель включен ряд подмоделей, описывающих такие физические процессы, 

происходящие в продуктах сгорания двигателя, как агломерация, их газофазное 

горение и конденсация продуктов горения на частицы высокодисперсного оксида 

и на сами агломераты, динамика изменения параметров газовой фазы, агломератов 

и оксидов, химическое взаимодействие между Al иAl2O3 в агломератах и ряд дру-

гих процессов. В работах для модельных двигателей и условных составов топлива 

получены распределения основных параметров двухфазного течения в РДТТ.  

В частности, приведены распределения массовой функции плотности распределе-

ния агломератов как у поверхности топлива, так и на входе в сопло. 

Следует отметить, что в этих работах для исследования течений продуктов сго-

рания, как правило, заложены модели, учитывающие основные физические про-

цессы в камере сгорания. При расчете течений в сопле необходимо также учесть  

специфические процессы, происходящие в нем, и, как показывают исследования, 

они вносят существенный вклад в уровень двухфазных потерь удельного импульса. 

Цель настоящей работы состоит анализе влияния отличия функции распреде-

ления конденсированных частиц от общепринятого нормально-логарифмического 

закона на распределения параметров в сопле и на величину потерь удельного им-

пульса на двухфазность. 

 

Физико-математическая постановка задачи 

 

Рассматривается стационарное течение двухфазной среды, представляющей 

собой смесь газа и полидисперсной конденсированной фазы, являющейся жидкими 

каплями оксида алюминия, в сопле Лаваля. В сопловом блоке важными процес-

сами являются процессы коагуляции и дробления капель, приводящие к перерас-

пределению фракций частиц по размерам. Процессы коагуляции смещают спектр 

по размерам в сторону более крупных фракций, увеличивая инерционное отстава-

ние капель относительно газовой фазы, и, как следствие, приводят к увеличению 

потерь удельного импульса. Одновременно с этим возрастает влияние аэродина-

мических сил, действующих на капли и приводящих к их деформации и дроблению. 

Дополнительным фактором, влияющим на развитие к-фазы, является вращение ча-

стиц, которое возникает при нецентральных столкновениях между каплями. При 
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больших угловых скоростях вращения капель возможно их разрушение за счет 

воздействия центробежных сил. 

В настоящей работе используется многожидкостная модель полидисперсной 

среды [13]. В рамках этой модели стационарное квазиодномерное течение двух-

фазной среды с учетом коагуляции, дробления и вращения жидких капель описы-

вается системой уравнений вида [14, 15]: 
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Расчет процесса взаимодействия частиц друг с другом производился в рамках 

непрерывного подхода методом «меченых частиц» [15]. С учетом полидисперсной 

модели осколков А.А. Шрайбера коагуляционные члены в уравнениях (5)–(8) 

имеют вид:  
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где параметры с индексом i относятся к номерам фракций конденсированной фазы, 

а величины без индекса относятся к газовой фазе. u, p, T, ρ, H – скорость, давление, 

температура, плотность и энтальпия, cs – теплоемкость вещества частиц, cp – тепло-

емкость газа при постоянном давлении, ni – количество частиц i-й фракции в еди-

нице объема, m – масса частицы, E – полная энергия, Kji – константа взаимодей-

ствия, Qi – коагуляционные члены, Фji – математическое ожидание отношения  

изменения массы крупной частицы к общей массе столкнувшихся с ней мелких 

частиц, αkji – массовая нормированная функция распределения по размерам оскол-

ков i, образовавшихся при столкновении частицы k-й фракции с j-й, φ ,φ ,φv M

i i i
 – 

коэффициенты силового, теплового и вращательного взаимодействия между газо-

вой фазой и частицами i-й фракции, F – сечение сопла; 

 

Метод решения 

 

В большинстве работ для численного решения системы (1)–(9) применяется 

подход, основанный на решении обратной задачи [16]. Однако при использовании 

сопел сложной геометрии задание начального распределения параметра (например, 

давления), обеспечивающего соответствие восстановленного профиля с базовым, 

является затруднительным.  

В настоящей работе применен метод квазиустановления, широко используемый 

при расчете осесимметричных и пространственных течений в соплах [17]. Суть 

метода заключается в использовании итерационного процесса, в котором общее ста-

ционарное решение формируется путем решения нестационарных уравнений газо-

вой фазы в сочетании со стационарными уравнениями для фракций жидких капель. 

В связи с этим для газовой фазы на входе в сопло задается два граничных условия 

(энтропия и энтальпия), а на срезе сопла течение считается сверхзвуковым и гранич-

ные условия не задаются. Начальные поля газодинамических параметров определя-

ются с использованием газодинамических функций в равновесном приближении. 

Для численного интегрирования системы уравнений газовой фазы применялась 

схема Годунова второго порядка точности, а уравнения к-фазы интегрировались 

неявной разностной схемой также второго порядка точности [14, 15]. Итерации по 

временным шагам повторяются до достижения заданного критерия сходимости. 

Реализация описанного метода квазиодномерного течения легла в основу раз-

работанного специализированного программного обеспечения на языке C++  

с использованием объектно-ориентированного подхода и многофайловой струк-

туры проекта, обеспечивающей гибкость, расширяемость и удобство поддержки 

кода. Расчеты проводятся на основе отдельного файла-задания, в котором указы-

ваются все необходимые параметры моделирования, включая геометрию сопла, 

параметры газа и частиц, численные схемы, критерии сходимости и т.д. В про-

грамму интегрирована обширная база данных, позволяющая генерировать разно-
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образные геометрии сопел, применять различные формы коэффициентов сопро-

тивления, моделей дробления частиц и другие физические характеристики, что 

обеспечивает универсальность и адаптивность численной модели к различным за-

дачам многофазных течений. Такой подход обеспечивает возможность дальнейшей 

модернизации разрабатываемого программного комплекса на задачи многомерных 

течений и моделирования процессов в камерах сгорания без необходимости кар-

динальной переработки его архитектуры. 

 

Численные исследования 
 

При проведении численных исследований влияния функции распределения ка-

пель во входном сечении сопла рассматривались распределения, полученные  

в результате моделирования процессов горения, выполненные в работах [9, 12].  

Во всех вариантах использовалась сетка, состоящая из Nx = 2 000 узлов и число 

фракций N = 25. 

В работе [12] авторы провели численное моделирование течения многофазной 

среды и эволюции к-фазы в камере сгорания твердотопливного ракетного двигателя. 

Распределение формировалось на основе расчета траекторий частиц от поверхно-

сти горения до входного сечения сопла с учетом процессов горения, коагуляции 

(броуновской и турбулентной) и окисления алюминия.  

На рис. 1 показано сравнение нормально-логарифмической функции с распре-

делением, полученным в работе [12] при одинаковом среднемассовом диаметре 

капель d43 = 2.4 мкм. Видно, что функция [12] характеризуется одинаково малым 

массовым содержанием к-фазы в асимптотических областях, в то время как в нор-

мально-логарифмическом распределении характерна концентрация к-фазы вблизи 

моды распределения.  
 

 

Рис. 1. Сравнение функций распределения к-фазы 

Fig. 1. Comparison of condensed-phase distribution functions 
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Проведены расчеты с использованием данных функций в качестве начального 

распределения во входном сечении сопла. На рис. 2 изображено сравнение распре-

делений среднемассового диаметра капель вдоль сопла. Как показали расчеты, раз-

личие в форме распределения между функциями для рассматриваемого течения не 

оказывает большого влияния на структуру течения и энерго-тяговые характери-

стики потока. Двухфазные потери составили 1.95% для распределения [12] и 1.91% 

для нормально-логарифмического закона. 
 

 

Рис. 2. Сравнение распределения d43 вдоль сопла 

Fig. 2. Comparison of d43 distribution along the nozzle 

 

В работе [9] рассматривается эволюция распределения к-фазы в камере сгора-

ния в зависимости от начальной функции распределения частиц алюминия в топ-

ливе. На рис. 3 показаны графики распределения капель на поверхности горения и 

на входе в сопло, при использовании усеченного (1, 3) и нормального (2, 4) лога-

рифмических законов, полученные авторами [9]. 

Для проведения численных исследований в качестве входных данных для рас-

чета течения в сопле использовались распределения к-фазы, советующие графи-

кам 3 и 4 (см. рис. 3). Массовая доля составляла z = 0.18, а контур сопла взят из 

работы [9]. На рис. 4 показано распределение среднемассового диаметра d43 вдоль 

сопла. Поскольку авторы [9] использовали топливо с весьма крупными включени-

ями частиц алюминия, то к-фаза во входном сечении сопла имеет значительно  

увеличенный среднемассовый диаметр по сравнению с работой [12]. В выходном 

сечении сопла d43 для обеих моделей практически совпадают. Такое поведение мо-

жет быть частично обусловлено тем, что в настоящей работе не учитывается ско-

ростное отставание во входном сечении сопла. В этих вариантах начальные функции 

распределения оказывают существенное влияние на двухфазные потери, которые 

составляют ξ = 3% для усеченного логарифмического распределения и ξ = 3.5% 

для нормально-логарифмического закона. Следует отметить, что из-за большого 
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начального размера капель активные процессы взаимодействия между к-фазой и 

газовой фазой происходят в дозвуковой части сопла. При увеличении массовой 

доли до z = 0.4 качественная картина изменяется. В этом случае при использовании 

нормально-логарифмического закона двухфазные потери будут меньше, чем при 

усеченном логарифмическом распределении. 

 

  

1 3 

  

2 4 

Рис. 3. Эволюция к-фазы: 1, 2 – на поверхности горения; 3, 4 – во входном сечении сопла [9] 

Fig. 3. Evolution of the condensed phase: (1, 2) on the burning surface  

and (3, 4) in the nozzle inlet section [9] 
 

В настоящей работе численное исследование выполнено для усеченного лога-

рифмического закона распределения. Профиль сопла остается неизменным, мас-

совая доля принимается равной z = 0.3. На рис. 5 показано изменение среднемас-

сового диаметра вдоль оси сопла при различных d43 на входе в сопло. Видно, что 

с увеличением d43 возрастает интенсивность взаимодействия к-фазы в области ми-

нимального сечения, что приводит к увеличению двухфазных потерь (таблица). 
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Рис. 4. Сравнение распределения d43 вдоль сопла 

Fig. 4. Comparison of d43 distribution along the nozzle 

 

 

Рис. 5. Сравнение распределения d43 вдоль сопла 

Fig. 5. Comparison of d43 distribution along the nozzle 

 

Варианты расчетов 

№ 1 2 3 

d43вх, мкм 2.9 3.4 3.86 

d43вых, мкм 5.9  6.4 6.74 

ξ, % 3.8 4.2 4.5 

 
Заключение 

 

В работе выполнено математическое моделирование течения двухфазной по-

лидисперсной среды в сопле с учетом процессов коагуляции, дробления и враще-

ния капель к-фазы в стационарной квазиодномерной постановке. Для решения  

системы уравнений использовался метод квазиустановления. Получены зависимости 
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характеристик двухфазного течения для различных начальных функций распреде-

ления капель во входном сечении сопла. Проведенный анализ показал, что форма 

распределения к-фазы может оказывать существенное влияние на величину двух-

фазных потерь в зависимости от режима течения. В некоторых течениях различия 

между функциями малы, тогда как в других их влияние становится выраженным. 

Кроме того, выявлено, что массовая доля к-фазы с учетом выбора функции распре-

деления оказывает заметное влияние на двухфазные потери удельного импульса. 

Проведено численное исследование с использованием усеченного логарифми-

ческого закона распределения к-фазы во входном сечении сопла. Показано, что для 

данного течения при увеличении среднемассового диаметра на входе в сопло двух-

фазные потери возрастают. 

В дальнейшем планируется распространить данный подход для расчета тече-

ния во всем газодинамическом тракте РДТТ. 
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Abstract. This article presents the results of numerical modeling in a two-dimensional 

axisymmetric approximation of the interaction between solid propellant (SP) combustion 

products and a deformable viscoelastic charge during the transition to a steady-state operating 

mode of a nozzleless propulsion system. The turbulent flow of a viscous compressible gas 

in the combustion chamber is described by the Navier–Stokes equations using the k–ω SST 

turbulence model. The viscoelastic behavior of the charge is described using the relaxation 

moduli of elasticity, which are approximated by the Prony series, and the Williams-Landel-

Ferry time–temperature shift function. Displacements of the points on the charge surface 

are obtained as functions of time for three values of the initial shear modulus. The influence 

of the viscoelastic behavior of the charge on the time variation of maximum pressure  

in the combustion chamber and on the position of the sonic line in the charge channel  

is determined. It is shown that the time dependence of the maximum pressure in the com-

bustion chamber has a characteristic maximum that coincides with the characteristic  

relaxation time of the relative shear modulus. A decrease of the initial shear modulus  

of the SP leads to an elongation of the sonic line into the channel. 

Keywords: nozzleless propulsion system, viscoelasticity, stress–strain state, internal  

ballistics, fluid–deformable body interaction 

 

Acknowledgments: This work was financially supported by the Ministry of Education 

and Science of the Russian Federation (state assignment No. FSWM-2025-0012). 

 

For citation: Min’kov, L.L., Gimaeva, N.R., Dil’, D.V. (2025) Numerical study of the 

transition to a steady-state operating mode of a nozzleless propulsion system with a visco-

elastic cylindrical charge. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika 

i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 98.  

pp. 120–135. doi: 10.17223/19988621/98/11 
 

 

Введение 

 

Особенностью современных конструкций разгонно-стартовых ступеней инте-

гральных ракетно-прямоточных двигателей (РПД) является отсутствие соплового 

блока. Простота, надежность, отсутствие отделяемого соплового оборудования  

и уменьшение требований теплозащиты делают привлекательными бессопловые 

двигательные установки (БДУ) для применения в стартовых ступенях интеграль-

ных РПД [1–3]. 

История эволюции РПД описана в статье [4]. Впервые концепция прямоточных 

воздушно-реактивных двигательных установок была предложена французским 

ученым Рене Лорин в 1913 г. Начиная с 1930-х гг. французские инженеры успешно 

разрабатывали и демонстрировали воздушно-реактивные двигатели для самолетов 

и ракет. С развитием технологий и опыта отработки к 1970-м гг. сформировалась 

концепция использования твердотопливных зарядов в ступенях РПД. В середине 

1980-х гг. прошли летные испытания тактической ракеты на интегральном твердо-

топливном воздушно-реактивном двигателе, стартовая ступень которой представ-

ляла собой твердотопливную БДУ. 

В работе [5] предложена упрощенная физико-математическая модель для тео-

ретического анализа основных внутрикамерных процессов БДУ. Показано, что 

при цилиндрической форме выходного участка потери импульса по сравнению  
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с классической ДУ составляют порядка 14%. Формирование конусообразного вы-

ходного участка канала заряда может увеличить эффективность БДУ только при 

относительно небольшом уменьшении площади поверхности активного участка 

горения заряда. 

В работе [6] представлен метод совместного решения газодинамической и гео-

метрической задач при физико-математическом моделирования внутрикамерных 

процессов в БДУ. Расчет параметров у переднего днища заряда проводился в не-

стационарной нульмерной постановке, а для канала заряда применялись одномер-

ные газодинамические уравнения в квазистационарной постановке. Для изменения 

геометрии канала заряда в процессе его выгорания использовался метод направ-

ленных отрезков. Локальная скорость горения определялась по эмпирическому  

закону в зависимости от давления и скорости газового потока, т.е. с учетом эрози-

онной составляющей. В результате численных исследований по предложенной  

методике получены оценки потерь удельного импульса тяги по сравнению с клас-

сической ДУ на уровне 3–3.5%. Также высказано предположение, что твердые ра-

кетные топлива (ТТ) с высокой чувствительностью скорости горения к давлению 

имеют преимущества для реализации удельного импульса в БДУ. 

В работах [7–9] развивается направление математического моделирования 

внутрикамерных процессов БДУ на полный цикл работы двигателя. Решается сов-

местная задача, включающая срабатывание воспламенителя, движение заглушки, 

выгорание заряда твердого топлива и нестационарное осесимметричное течение 

газовой смеси в камере сгорания. Численное моделирование проводится методом 

Давыдова (методом крупных частиц). Результаты численных экспериментов пока-

зали неплохую сходимость с опытными данными по давлению у переднего дна  

и силе тяги в выходном сечении. Полученное расчетами распределение газодина-

мических параметров по тракту в разные моменты времени работы ДУ позволяет 

наблюдать переход от вихревых нестационарных течений к практически ламинар-

ным потокам продуктов сгорания по мере выгорания заряда твердого топлива. 

В работах [10–11] расчет внутрибаллистических характеристик в ДУ с зарядом, 

имеющим особенность в форме «зонтика», и БДУ на твердом топливе на полный 

период работы проводился в осесимметричном приближении. Отслеживание го-

рящей поверхности топлива осуществлено неявным образом с помощью метода 

уровней на декартовой структурированной вычислительной сетке. Газодинамиче-

ские параметры определялись с использованием разностных схем третьего по-

рядка аппроксимации по пространству. Показано, что для БДУ квазиодномерная 

модель занижает значения давления на 20% по сравнению с двумерной осесиммет-

ричной моделью. 

Таким образом, в перечисленных выше работах поднимались и частично были 

решены вопросы определения газодинамических и энергетических параметров 

БДУ на твердом топливе с учетом постепенного воспламенения заряда, вскрытия 

заглушки, квазистационарного и нестационарного режимов течения газовой смеси 

по тракту в процессе выгорания заряда. 

Однако, как показывает практика, существует серьезная проблема деформиро-

вания твердотопливного заряда за счет высоких перепадов давления по каналу  

в начале работы ДУ. Взаимное влияние деформационных и газодинамических  

процессов при определенных условиях может привести к нестабильности работы 

ДУ. Поэтому для оценки работоспособности конструкции целесообразно ставить 
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и решать совместные задачи газовой динамики и напряженно-деформированного 

состояния. 

В работах [12–13] предлагается алгоритм численного решения сопряженной за-

дачи взаимодействия между нестационарным потоком газа и деформируемым упру-

гим твердым телом на основе метода конечных элементов. Показано, что в случае 

заряда ТТ с особенностью типа «зонтик» для ДУ с утопленным соплом в период 

выхода на режим наблюдаются осцилляции поверхности заряда как в продольном, 

так и поперечном направлении, что влияет на зависимость давления от времени. 

Анализ гиперупругого поведения заряда твердого топлива БДУ под действием 

газодинамической нагрузки в начальный период его работы проведен в работе [14] 

в рамках решения сопряженной задачи газовой динамики для проточного тракта и 

механики деформируемого твердого тела для заряда. Показано, что в БДУ с заря-

дом ТТ, имеющим низкий модуль Юнга, может возникнуть явление резонанса. 

Анализ выхода на режим двухимпульсного твердотопливного ракетного дви-

гателя выполнен в работах [15–17] на основе совместного решения системы трех-

мерных нестационарных уравнений для вязкого теплопроводного газа, системы 

уравнений МДТТ и уравнения теплопроводности для определения температуры 

поверхности топлива. Предполагалось, что модуль упругости топлива постоянен. 

Показано, что для заряда длиной 0.9 м и диаметром канала 0.08 м в случае жест-

кого соплового блока при возрастании давления от 0.1 до 23.6 МПа амплитуда про-

дольных колебаний поверхности заряда может достигать 10 мм, а поперечных – 3 мм. 

Современные смесевые ТТ обладают вязкоупругими свойствами, когда модули 

сдвига и упругости зависят от времени, и неучет этого факта может приводить  

к существенным различиям в оценке напряженно-деформированного состояния 

заряда. Так, в работе [18] проводилось моделирование динамического отклика за-

ряда ДУ на нагрузку, вызванную повышением давления в начальный период ра-

боты двигателя, на основе квазистатического упругого анализа и нестационарного 

анализа, учитывающего вязкоупругие свойства топлива HTPB. Показано, что пер-

вый случай дает завышенные значения отклика по сравнению со вторым. 

В работе [19] проведен вязкоупругий структурный анализ для определения 

влияния свойств вставки на напряжение и деформацию вдоль границы раздела 

вставка / топливо в твердотопливной ДУ на основе упрощенной 2D осесимметрич-

ной модели с привлечением пакета Ansys. Показано, что под действием нагрузки 

за счет повышения давления на начальном участке работы двигателя напряжения 

вдоль границы раздела вставка / топливо возрастают с увеличением начального 

модуля и уменьшаются с увеличением коэффициента Пуассона гильзы. 

В работе [20] проводится исследование вязкоупругого поведения заряда ТТ при 

акустической неустойчивости рабочего процесса в камере сгорания ДУ. Показано, 

что динамический отклик ТТ относительно максимальных осевых перемещений 

сжатия при выходе ДУ на основной режим работы практически полностью соот-

ветствует уровню осевых перемещений сжатия при статическом нагружении, что 

объясняется генерацией высокочастотной малоамплитудной газодинамической не-

устойчивости в камере сгорания ДУ, а также низкой энергетикой самого топлива. 

Целью настоящей работы – исследование взаимовлияния газодинамической 

нагрузки и напряженно-деформированного состояния (НДС) заряда вязкоупругого 

ТТ в период выхода БДУ на стационарный режим в различных условиях термоста-

тирования заряда. 
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Постановка задачи 
 

Рассматриваются процессы, происходящие в модельном бессопловом двига-

теле, разрез которого показан на рис. 1, в начальный период его работы. Двигатель 

состоит из цилиндрического заряда ТТ 1, прикрепленного к корпусу 2, и камеры 

сгорания 3. Левая торцевая поверхность и цилиндрическая поверхность 4 заряда 

являются поверхностями горения. Правая торцевая поверхность 5 забронирована. 

Продуты сгорания, поступающие с поверхности горения, вытекают наружу через 

границу 6. Заряд ТТ под действием возникающей со стороны продуктов сгорания 

газодинамической нагрузки деформируется, изменяя поверхность горения, что,  

в свою очередь, влечет за собой изменение давления в камере сгорания, которое 

ведет к изменению напряженно-деформированного состояния заряда. 
 

 

Рис. 1. Разрез модельного бессоплового двигателя:  

1 – корпус, 2 – заряд ТТ, 3 – камера сгорания, 4 – поверхность горения,  

5 – инертная поверхность, 6 – выходная граница; A – контрольная точка 

Fig. 1. Sectional view of a nozzleless engine model: 

1, housing; 2, solid propellant charge; 3, combustion chamber; 4, combustion surface;  

5, inert surface; and 6, outlet boundary; A is the control point 
 

Будем предполагать, что в начальный момент времени поверхность топлива за-

жигается мгновенно, продукты сгорания представляют собой вязкий сжимаемый 

газ, течение является нестационарным, турбулентным. Материал заряда ТТ обла-

дает вязко-гиперупругими свойствам [18–20]. 

Для описания НДС заряда используются уравнение сохранения массы и уравне-

ние движения. Связь между напряжениями и деформациями для вязко-гиперупру-

гого тела записывается через энергию деформации по модели Нео–Гука с исполь-

зованием релаксационных модулей упругости. 

Зависимость релаксационного модуля сдвига и объемного модуля упругости от 

времени аппроксимируется рядами Прони [21]: 

0( ) ( )G t G g t= ,     
( )

( )
0

2 1 ν
( ) ( )

3 1 2ν
K t G g t

+
=

−
,     

( )0
1

( ) α α exp
τ

n

i
i i

t
g t

a T=

 
= + − 

 
 , 

где αi и τi – коэффициенты ряда Прони; a(T) – функция температурно-временного 

сдвига; G0 – начальный модуль сдвига;  – коэффициент Пуассона, g(t) – относи-

тельный релаксационный модуль. 

Функция температурно-временного сдвига a(T) согласно модели Williams–

Landel–Ferry [22] имеет вид:  

 
( )1 0

2 0

log ( )
a T T

a T
a T T

−
=

+ −
. (1) 

Для описания течения продуктов сгорания используются уравнение неразрыв-

ности, уравнение сохранения количества движения, уравнение сохранения энергии, 
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уравнение состояния, уравнение турбулентной энергии и уравнение удельной ско-

рости диссипации турбулентной энергии. 

Граничные условия задаются следующим образом. Для заряда на плоскости 

симметрии задается равенство нулю нормальных перемещений, в месте крепления 

заряда к корпусу задается условие равенства нулю перемещений во всех направле-

ниях. Для газа на твердой стенке задается условие прилипания. Стенки предпола-

гаются теплоизолированными. Граничное условие для удельной скорости дисси-

пации турбулентной энергии на стенке реализуется через пристеночные функции, 

а для турбулентной энергии задается равенство нулю ее нормальной производной. 

На выходе из канала при дозвуковом истечении задается давление, равное давле-

нию окружающей среды. На плоскости симметрии задаются условия симметрии. 

На границе раздела поверхность деформируемого твердого тела – газ задается 

условие равенства нормальных напряжений в топливе и газе и равенство касатель-

ных напряжения в топливе и газе, а также равенство скоростей перемещения газа 

и точек поверхности топлива. 
 

Метод решения 
 

Вычислительная область представляет собой сектор цилиндрической области 

(см. рис. 1), в которой угол между плоскостями сечения, проведенными вдоль оси, 

равен 5. 

Для численного решения системы уравнений НДС использовался метод конеч-

ных элементов с линейными функциями формы для восьмиточечных гексагональ-

ных элементов. Численное решение системы уравнений, описывающих течение 

продуктов сгорания, выполнялось по методу Патанкара на сетке с шестигранными 

ячейками с использованием неявной противопоточной схемы второго порядка точ-

ности по пространственным переменным для конвективных членов уравнений и 

первым порядком точности по времени. Реализация указанных методов была вы-

полнена в вычислительном комплексе Ansys в среде Workbench с привлечением 

соответственно модулей Transient Structural и Fluent, обмен данными между кото-

рыми осуществлялся с помощью модуля System Coupling. На каждом шаге по вре-

мени при решении системы газодинамических уравнений выполнялось 20 итераций. 

На каждом этапе сопряжения нагрузка–перемещение выполнялось 5 итераций. 

В данной постановке горящая поверхность заменена твердой стенкой, а приход 

массы и энергии газов моделируется через источниковые члены в соответствую-

щих уравнениях [23].  
 

Обсуждение результатов численного решения 
 

Для численного решения поставленной задачи были приняты следующие зна-

чения параметров. Длина заряда – 125 см, толщина свода заряда – 7 см, радиус 

канала заряда – 4 см, ширина зазора между левыми торцами камеры сгорания и 

заряда – 1 см, ширина и высота области справа от заряда соответственно 19 и 21 см. 

Теплофизические параметры продуктов сгорания приведены в табл. 1, характери-

стики твердого топлива –  в табл. 2, коэффициенты ряда Прони для модельного 

топлива – в табл. 3 [24], начальные модули сдвига в зависимости от температуры 

и коэффициент Пуассона – в табл. 4, коэффициенты функции температурно-вре-

менного сдвига – в табл. 5 [25]. 
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Т а б л и ц а  1  

Теплофизические параметры  

продуктов сгорания 

Теплоемкость, Дж/(кг·K) 1 006 

Молярная масс, кг/кмоль 29 

Динамическая вязкость, Па·с 1.79·10–5 

Теплопроводность, Вт/(м·K) 0.0242 

 

Т а б л и ц а  3  

Коэффициенты ряды Прони для топлива 

i αi τi, с 

0 0.0486666  

1 0.0114570 5·10–6 

2 0.0055763 5·10–5 

3 0.2436390 1·10–4 

4 0.2486060 2.5·10–4 

5 0.1022000 5·10–4 

6 0.1285610 1·10–3 

7 0.0833416 2.5·10–3 

8 0.0551554 5·10–3 

9 0.0537361 1.5·10–2 

10 0.0190610 5·10–2 
 

 

Т а б л и ц а  2  

Характеристики твердого топлива 

Скорость горения при 1 атм, u01, мм/с 6.4 

Показатель степени в законе горения, 1 0.41 

Температура горения, K 2 960 

Плотность топлива, кг/м3 1 710 

 

Т а б л и ц а  4  

Начальные значения модуля сдвига 

и коэффициент Пуассона 

T, °С G0, МПа ν 

–45 90 

0.4999 20 50 

71 30 
 

Т а б л и ц а  5  

Коэффициенты функции a(T),  

уравнение (1) 

a1, [–] –5.4 

a2, K 770.27 

T0, K 293 
 

На рис. 2. показано влияние температуры ТТ на поведение относительного мо-

дуля сдвига g(t) от времени. К моменту времени 0.1 с относительный модуль 

сдвига достигает наименьшего значения  0.0487, которое не зависит от темпера-

туры топлива в диапазоне от –45 до +70°С. Более высокие температуры топлива 

ведут к более быстрому снижению относительного модуля сдвига в начальный пе-

риод нагрузки (t < 10–5 c) и более медленному снижению в конечный период 

нагрузки (t > 10–3 c). 
 

 

Рис. 2. Зависимость относительного релаксационного модуля от времени нагрузки: 

1 – T = –45°С, 2 – +20°С, 3 – +70°С 

Fig. 2. Dependence of the relative relaxation modulus on the loading time at T = (1) –45,  

(2) +20, and (3) +70°С 
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Для исследования численного решения на сходимость были проведены рас-

четы на трех сетках, параметры которых приведены в табл. 6. Количество элемен-

тов и ячеек в окружном направлении равнялось 1, что соответствует осесиммет-

ричному приближению. 

Расчеты, проведенные на сетке № 1, выполнялись с шагом по времени, равным 

510–6 с, на сетке № 2 – 2.510–6 с, на сетке № 3 – 1.2510–6 с.  

Т а б л и ц а  6  

Параметры сетки для исследования на сходимость 

Название 

сетки 

Размер ячеек 

по оси х и по оси y, мм 

Число ячеек  

в области газа 

Число элементов  

в области заряда 

Сетка № 1 10 1 074 875 

Сетка № 2 5 4 296 3 500 

Сетка № 3 2.5 17 184 14 000 

 

На рис. 3 показано влияние разностной сетки на осевое перемещение (а) и ра-

диальное перемещение (b) правой нижней угловой точки А (см. рис. 1) от времени 

для топлива с начальным модулем сдвига 90 МПа. Если принять, что кривые 3, 

полученные на самой мелкой сетке, соответствуют «точному» решению, то видно, 

что выполняются условия  

3 2 3 1( ) ( ) ( ) ( ) ,x t x t x t x t −   −     3 2 3 1( ) ( ) ( ) ( ) ,y t y t y t y t −   −  

где индекс 1 соответствует решению, полученному на сетке № 1, индекс 2 – на 

сетке № 2, индекс 3 – на сетке № 3. Начиная с момента времени 0.05 мс измельче-

ние разностной сетки практически не влияет на зависимости ( )x t  и ( )y t . 

Отсутствие влияния разностной сетки на распределение давления вдоль оси ка-

меры сгорания на момент времени 10 мс показано на рис. 4.  
 

    
а                                                                       b 

Рис. 3. Влияние сетки на смещение точки A во времени: а – осевое смещение;  

b – радиальное смещение; 1 – сетка № 1, 2 – № 2, 3 – № 3; G0 = 90 МПа 

Fig. 3. Effect of the mesh on the displacement of point A over time (a) axial and (b) radial  

displacements at different meshes: 1, No. 1; 2, No. 2; and 3, No. 3; G0 = 90 МPа 
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Рис. 4. Влияние сетки на распределение давления вдоль оси канала: 

1 – сетка № 1, 2 – № 2, 3 – № 3 

Fig. 4. Effect of the mesh on the pressure distribution along the channel axis  

at different meshes: 1, No. 1; 2, No. 2; and 3, No. 3 
 

Результаты расчетов, приведенные далее, были получены на сетке № 1. 

Малые значения начального модуля сдвига, характерные для топлив, имеющих 

высокую температуру термостатирования, приводят к большим перемещениям по-

верхности топлива (рис. 5). Уменьшение модуля сдвига с 90 до 30 МПа привело  

к увеличению смещения точки А от положения равновесия более чем в два раза 

как в осевом направлении, так и в радиальном.  
 

  
 а                                                                            b 

Рис. 5. Влияние начального сдвигового модуля на смещение: а – осевое смещение;  

b – радиальное смещение; 1 – G0 = 90 МПа, 2 – 50 МПа, 3 – 30 МПа 

Fig. 5. Effect of the initial shear modulus on displacement  

(a) axial and (b) radial displacements at: G0 = (1) 90, (2) 50, and (3) 30 МPа 
 

Для вязкоупругого топлива, в отличие от гиперупруго [14], характерным явля-

ется монотонное изменение перемещения точек поверхности заряда от времени. 
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На рис. 6 и 7 показаны поля соответственно осевых и радиальных перемещений 

внутри заряда ТТ на момент времени 100 мс для начальных модулей сдвига 30,  

50 и 90 МПа. Видно, что, как осевое (см. рис. 6), так и радиальное перемещение 

(см. рис. 7) возрастают по мере продвижения от стенки камеры сгорания к каналу 

и от левого торца заряда к правому торцу. 
 

  

Рис. 6. Осевые перемещения: 

а – G0 = 90 МПа, b –50 МПа, c –30 МПа 

Fig. 6. Axial displacements  

at G0 = (a) 90, (b) 50, and (c) 30 МPа 

Рис. 7. Радиальные перемещения: 

а – G0 = 90 МПа, b – 50 МПа, c – 30 МПа 

Fig. 7. Radial displacements  

at G0 = (a) 90, (b) 50, and (c) 30 МPа 
 

Высокие температуры термостатирования ведут, одной стороны, к увеличению 

перемещения точек заряда под действием газодинамической нагрузки, а с другой 

стороны, ведут к уменьшению напряжения внутри топлива (рис. 8). При этом мак-

симальные напряжения достигаются на правом торце заряда в месте его крепления 

к корпусу. Снижение модуля сдвига в 3 раза привело к уменьшению максималь-

ного напряжения в 1.46 раза. 
 

  

Рис. 8. Эквивалентные напряжения по Мизесу 

в МПа: а – G0 = 90 МПа, b –50 МПа, c –30 МПа 

Fig. 8. Equivalent stresses according to von Mises 

in MPa at G0 = (a) 90, (b) 50, and (c) 30 МPа 

Рис. 9. Положение изолинии M = 1: 

1 – G0 = 30 МПа, 2 – 90 МПа, 3 –  

Fig. 9. Position of isoline M = 1 at 

G0 = (1) 30 MPa, (2) 90 МPа, and (3)  
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На рис. 9 показано положение звуковых линий в камере сгорания для двух за-

рядов с начальным модулем сдвига 30 МПа (кривая 1) и 90 МПа (кривая 2) и для 

заряда без учета деформаций (кривая 3). Уменьшение значения начального модуля 

сдвига ведет к растяжению звуковой линии вглубь канала.  

В табл. 7 приведены значения максимального давления Pmax и геометрические 

параметры канала в зависимости от начального модуля сдвига топлива. Здесь Sг – 

площадь поверхности топлива, Sг,M1 – площадь поверхности горения, ограниченная 

звуковой линией, XM=1, YM=1 – соответственно абсцисса и ордината точки присо-

единения звуковой линии к образующей канала, F – площадь поперечного сечения 

канала, проведенного через точку присоединения звуковой линии к образующей 

канала. 

Т а б л и ц а  7  

Геометрические параметры 

G0, МПа 30 50 90  

Pmax, МПа 5.37 5.65 5.97 7.04 

Sг, см2 51.36 50.74 50.24 49.34 

Sг,M1, см2 49.98 49.97 49.85 49.34 

XM=1, см 124.95 125.59 125.94 126.0 

YM=1, см 4.90 4.78 4.60 4.10 

F, см2 1.046 0.997 0.922 0.733 

 

 

Рис. 10. Изменение максимального давления от времени:  

1 – G0 = 30 МПа, 2 – 50 МПа, 3 – 90 МПа, 4 –  

Fig. 10. Time variation of the maximum pressure at 

G0 = (1) 30 MPa, (2) 50 МPа, (3) 90 MPa, and (4)  

 

Увеличение начального модуля сдвига топлива ведет к уменьшению деформа-

ции заряда, в результате чего уменьшается значение ординаты точки крепления 

звуковой линии к образующей поверхности заряда, следствием чего является умень-
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шение площади критического сечения и уменьшение поверхности горения, нахо-

дящейся слева от точки крепления звуковой линии к образующей заряда (см. рис. 9). 

При увеличении начального модуля сдвига с 30 до 90 МПа площадь горения 

уменьшается незначительно (в 1.003 раза), в то время как площадь критического 

сечения уменьшается существенно (в 1.135 раза), в результате чего давление в ка-

мере сгорания становится больше. 

Неучет деформации заряда ведет к завышению максимального давления в ка-

мере сгорания от 18 до 32% (см. табл. 7, правый столбец). На рис. 10 показано изме-

нение максимального давления от времени для разных начальных модулей сдвига 

ТТ. С увеличением начального модуля сдвига возрастает максимальное давление, 

что связано с уменьшением площади проходного сечения канала (см. табл. 7). Кри-

вые 1–3 имеют характерный максимум в момент времени, близкий к 10 мс, после 

которого давление монотонно падает (на 7–10% к моменту времени 100 мс), 

асимптотически приближаясь к своему стационарному значению, определяемому 

положением контура заряда. Время 10 мс является характерным временем релак-

сации материала заряда ТТ (см. рис. 2), за которое относительный модуль сдвига 

уменьшается со своего максимального значения до значения, близкого к мини-

мальному.  

 

Заключение 

 

Вязкоупругое поведение заряда ТТ под действием нагрузки со стороны про-

дуктов сгорания в начальный период работы БДУ оказывает существенное влия-

ние на внутрибаллистические характеристики БДУ. Повышение температуры тер-

мостатирования заряда ТТ ведет к снижению максимального давления в камере 

сгорания БДУ за счет увеличения площади проходного сечения канала, связанного 

с более сильными деформациями заряда за счет более низкого модуля сдвига. 

Наибольшие осевые и радиальные перемещения наблюдаются по периметру ка-

нала на правом торце заряда, причем изменение перемещений во времени проис-

ходит монотонно. Зависимость максимального давления в камере сгорания от вре-

мени имеет характерный максимум, совпадающий по времени с характерным  

временем релаксации относительного модуля сдвига, за которое он уменьшается 

со своего максимального значения до минимального. Начальный модуль сдвига 

ТТ влияет на форму канала, тем самым изменяя поле течения, причем уменьшение 

начального модуля сдвига ведет к растягиванию звуковой линии вглубь канала. 
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Аннотация. Проведено сравнение неоднородных двумерных течений полимерных 

расплавов с различной структурой макромолекул в каналах с прямоугольным сече-

нием и внезапным сужением. Показано, что при моделировании течения полимера  

с разветвленной структурой в области входа в щелевой канал возникает возвратное 

течение, чего не наблюдается в случае течения линейного полимера с близким зна-

чением начальной сдвиговой вязкости. Для расчетов использовалась реологическая 

модель Виноградова–Покровского, поля скоростей и напряжений были получены 

методом конечных элементов. Полученные результаты демонстрируют хорошее со-

ответствие между теоретическими и экспериментальными данными. 

Ключевые слова: реология, вязкость, расплавы полимеров, вихревое течение, рео-

логическое уравнение состояния, двумерные течения, метод конечных элементов 
 

Благодарности: Авторы выражают свою признательность Центру вычислительной 

механики и компьютерного инжиниринга при ТПУ за помощь в проведении вычис-

лений с использованием вычислительной среды COMSOL Multiphysics. 
 

Для цитирования: Павлов М.С., Павлюк Ю.А., Пышнограй Г.В. Влияние реологи-

ческих характеристик полимерных расплавов на кинематику их течений в сходя-

щихся каналах // Вестник Томского государственного университета. Математика и 

механика. 2025. № 98. С. 136–150. doi: 10.17223/19988621/98/12 
 

 

Original article 
 

Effect of rheologocal properties of polymer melts  

on kinematics of their flows in converging channeles 
 

Mikhail S. Pavlov1, Yuriy A. Pavlyuk2, Grigoriy V. Pyshnograi3 
 

1 Tomsk Polytechnical University, Tomsk, Russian Federation 
2 Altai State Pedagogical University, Barnaul, Russian Federation 



Павлов М.С., Павлюк Ю.А., Пышнограй Г.В. Влияние реологических характеристик 

137 

3 Altai State Technical University, Barnaul, Russian Federation 

1 mspavlov@tpu.ru 

2 pawlyk1996@yandex.ru 
3 pyshnograi@mail.ru 

 

Abstract. This study uses a modified Vinogradov–Pokrovsky rheological model to inves-

tigate two-dimensional flows of polymer melts with different molecular structures in chan-

nels with a rectangular cross-section and a sudden contraction. The effect of the polymer 

structure on the flow behavior is analyzed. It is shown that the branched polymer exhibits 

a reverse flow in the entrance region of the slit channel, whereas the linear polymer does 

not induce secondary flows. This effect is found to be governed by the polymer relaxation 

time, i.e., the Weissenberg number. 

The profiles of the x- and y-components of the velocity vector are examined in several 

cross-sections upstream of the slit channel and within the channel. For the branched polymer, 

the x-component of the velocity takes both positive and negative values, and the y-compo-

nent is directed away from the channel axis, which indicates the presence of a reverse flow. 

The branched polymer demonstrates a non-parabolic velocity profile in the slit channel,  

in contrast to the linear polymer, whose velocity distribution is close to parabolic. 

In all the considered cases, the computed velocity profiles are compared with the experi-

mental data. The obtained results confirm the applicability of the modified Vinogradov–

Pokrovsky rheological model for describing non-uniform flows of polymer melts, as well 

as the efficiency of finite-element-based computational methods for simulating unsteady 

two-dimensional flows of nonlinear viscoelastic media with a rheological law written in  

a differential form. 
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Введение 

 

В процессе переработки большинство полимерных материалов находится в вяз-

котекучем состоянии. Одна из причин изучения вторичных течений при входе в ка-

нал связана с тем, что при экструзии полимерных расплавов часто используются 

каналы с изменяющейся геометрией. Это приводит к образованию вторичных те-

чений, в которых расплав медленно вращается. Длительное пребывание в таком 

состоянии может вызвать нежелательное термическое разложение, что негативно 

влияет на качество конечного продукта. Для успешной переработки полимеров 

необходимо тщательно проектировать штампы и переходные элементы, а также 

выбирать подходящие материалы и условия обработки, чтобы предотвратить не-

желательные эффекты. 

Помимо этого, вихревые потоки связаны с изменениями гидродинамической 

структуры расплава. Когда энергия упругости во вторичном течении достигает кри-

тического уровня напряжения, скорость перед выходом из емкости увеличивается 



Механика / Mechanics 

138 

по сравнению со скоростью выхода. Таким образом, проточная система способ-

ствует аккумуляции энергии (усиливается вторичный поток), что в конечном итоге 

приводит к формированию струй расплава, которые попадают в основной поток, 

вызывая случайные дефекты экструдата. 

Работа [1] была одной из первых, где теоретический анализ двумерного тече-

ния был проведен независимо от экспериментов по визуализации. Исследовалось 

течение в сходящемся канале, образованном двумя параллельными плоскостями, 

которые сходятся к вершине прямоугольного конуса. Дальнейшие исследования 

этой проблемы с применением вязкоупругих реологических моделей и процедур 

возмущений были проведены в работах [2–6]. В этих исследованиях авторы полу-

чили схожие результаты, которые отличаются в деталях, вероятно, из-за алгебра-

ических погрешностей. В работе [7] были получены численные решения для обла-

стей с закругленными и выступающими углами, что привело к возникновению  

угловых вторичных течений. 

В работе [8] было проведено первое систематическое теоретическое исследо-

вание вторичных течений на входе для расплавов полимеров. В ходе исследования 

изучался процесс плоского резкого сжатия несжимаемой жидкости с высокой 

сдвиговой вязкостью. Это касалось как ньютоновских, так и неньютоновских жид-

костей со степенным законом. Исследователи обнаружили, что в ньютоновской 

жидкости в углу резервуара формируется небольшой и слабый вихрь. Однако 

уменьшение сдвиговой вязкости приводит к уменьшению размеров и интенсивно-

сти вихря. Практические расчеты не подтвердили усиление слабого углового 

вихря, как это наблюдалось в эксперименте. Для преодоления вычислительных 

трудностей авторы использовали две упрощенные реологические модели, осно-

ванные на экспериментальных данных о течении на входе и выходе для типичного 

образца расплава полистирола [9]. Обе модели имели сдвиговую вязкость, которая 

зависела от скорости деформации и соответствовала модели Карро. 

Хотя вторичные потоки возникают из-за вязкоупругих напряжений, в экспери-

ментах основное внимание уделялось визуализации поля скоростей. Это связано  

с тем, что изучение области вблизи входящего угла представляет собой сложную 

задачу [10–14]. 

В исследовании [15] была использована реологическая модель Гизекуса с восемью 

параметрами в изотермических условиях для анализа осесимметричного течения не-

сжимаемого полимера LDPE. Авторы провели сравнение ньютоновского (первая 

итерация – слабое ньютоновское вторичное течение на входе) и полностью вязко-

упругого (сходящееся – большое упругое вторичное течение на входе) решений. Ре-

зультаты были представлены в виде графиков вдоль центральной линии и поперек 

капилляра. На графиках были показаны сдвиговые и нормальные вязкоупругие до-

полнительные напряжения вблизи входящего угла. Примечательно, что максималь-

ное значение нормальных напряжений в ньютоновском решении примерно в 12 раз 

больше, чем в сходящемся решении с вторичными течениями. Из-за столь высокого 

поперечного нормального напряжения происходила рециркуляция части расплава. 

Разработка модели Pom-Pom стала важным шагом в развитии реологических 

теорий [16]. Модель была протестирована на простых сдвиговых и одноосных рас-

тяжениях. Хотя результаты были многообещающими, оставались вопросы отно-

сительно того, насколько хорошо модель сможет предсказывать более сложные 

течения [16–24]. 
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В работах [25, 26] проведены расчеты течений с различными геометрией и рео-

логическими свойствами. Было изучено плоское течение вязкой несжимаемой 

жидкости в Т-образном канале [25] и трубе с внезапным сужением [26]. 

В работе [27] была применена модифицированная модель Виноградова–По-

кровского, адаптированная для анализа трехмерного потока полимерных распла-

вов LDPE и LLDPE через щель с резким входом 14:1. Эта модель была применена 

к экспериментальным данным [14]. В ходе исследования [27] было установлено, 

что выбранная реологическая модель успешно предсказывает особенности тече-

ния на входе для обоих расплавов, включая вторичное течение в случае LDPE.  

Таким образом, для более глубокого понимания происходящих процессов тре-

буется изучение влияния реологических характеристик полимерного расплава  

(его начальной сдвиговой вязкости и начального времени релаксации) на гидроди-

намическую структуру течения в сходящемся канале как в области входа, так  

и в самом щелевом канале. Это является целью настоящей работы. 

 

Реологическая модель Виноградова–Покровского 
 

Система уравнений динамики на основе модифицированной модели Виногра-

дова–Покровского была сформулирована ранее [28–30]: 
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где Re = ρUl/η0 – числа Рейнольдса; Wi = (τ0U)/l – число Вайсенберга; U = Q/(ρl2) – 

характерная скорость; l – характерная длина; Q – массовый расход; τ0 – начальное 

время релаксации; p – гидростатическое давление; η0 – начальное значение сдви-

говой вязкости; η1 – остаточная сдвиговая вязкость полимера (η1 ≪ η0); aik – сим-

метричный тензор анизотропии второго ранга; I = a11 + a22 + a33 – первый инвариант 

тензора анизотропии aik; κ = 1.2β и β = β(I) = (β0 + p0I)/(1 + √(p0I)) – феноменологи-

ческие параметры модели, которые зависят от первого инварианта тензора анизо-

тропии [31] и учитывают в уравнениях динамики макромолекулы размеры и 

форму молекулярного клубка. 

Эти уравнения далее будут применяться для моделирования течений полимер-

ных расплавов. 
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Расчетная область 
 

На рис. 1 показана расчетная область, которая состоит из половины резервуара 

с квадратным поперечным сечением и щелевой матрицы. Резервуар ABCO имеет 

размеры 50 × 7 мм. Щелевой канал ODEF – 40 × 0.5 мм. Расчетная область пред-

ставляет собой половину экспериментальной установки, размеры которой соотно-

сятся как 14:1, взятой из работы [10]. Длины прямоугольников были выбраны до-

статочно большими, чтобы избежать влияния областей входа в резервуар и выхода 

из щелевого канала на результаты решения. 
 

 

Рис. 1. Расчетная область 

Fig. 1. Computational region 
 

На границах резервуара макромолекулы полимера прилипают к стенкам про-

точного канала, поэтому на отрезках BC, CD и DE скорости u = ν = 0. 

Отрезок AF является осью симметрии, поэтому при y = 0 соответствующие 

частные производные равны нулю. На входе в резервуар компоненты скорости 

рассчитываются по формулам v(–50/l, y/7) = 0 и u(–50/l, y/7) = 1.5(1 – (y/7)2), где  

y изменяется от 0 до 7. На выходе из щелевого канала FE использованы граничные 

условия p = 0, ∂u/∂x = 0 и v = 0. 

В начальный момент времени значения скоростей и напряжений равны нулю. 

После получения ненулевых значений эти значения использовались в качестве 

начальных для следующих итераций. 
 

Численный метод 
 

Для нахождения решения использовался метод конечных элементов, который 

реализован в пакете COMSOL Multiphysics. Нелинейность задачи была преодолена 

путем использования многозадачного режима, что соответствует разделению на 

физические процессы: гидродинамический и вязкоупругий. В процессе решения 

гидродинамической задачи были определены поля скоростей и давлений, а в про-

цессе решения вязкоупругой задачи поля дополнительных напряжений. Эти шаги 

повторяли до достижения необходимой точности, причем на каждой временной 

итерации требовалось от двух до шести повторений. 

Для обоснования применения численного метода для решения систем уравне-

ний в частных производных необходимо анализировать точность, стабильность и 

сходимость используемого алгоритма. Нередко решение таких задач вызывает не 

меньше сложностей, чем решение полученных систем нелинейных уравнений. 
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Поэтому оценку выполняли по упрощенной методике. Для этого выполняли рас-

четы на разных сетках триангулярного вида: 212, 848, 3 392 и 13 568 элементов. 

Контролировались площадь вихря и скорость потока в щелевом канале. Второй 

параметр был учтен, потому что характеристики течения полимера меняются при 

переходе из резервуара в щелевой канал. 

В табл. 1 представлены расчеты при Wi = 0.8 и Re = 0.005. 

Т а б л и ц а  1  

Влияние числа элементов сетки на результаты моделирования 

Параметры 
Число элементов 

212 848 3 392 13 568 

Площадь вихря 20.27 27.93 30.56 31.17 

Значения скорости на оси канала 40.96 28 26 26.29 
 

Поскольку грубая сетка имеет всего 212 элементов, то расчеты существенно 

отличаются от результатов, полученных с использованием более мелкой сетки. 

Однако использование более мелких сеток затрачивает значительно больше ма-

шинного времени – примерно на два порядка. Поэтому вычисления проводились 

на сетке с 848 элементами. Сетку с 3 392 элементами использовали для уточнения 

результатов. 

Стабильность достигается неявной методикой и релаксацией при переходе к сле-

дующей итерации. 

Безразмерное время варьирует от 0 до 100, а относительная точность – 0.001 на 

каждой временной итерации. 

 

Результаты 

 

Для сопоставления расчетов с экспериментальными данными обратимся к ра-

ботам [10–14]. В этих работах в качестве материалов использовалось два типа по-

лиэтилена: LDPE (Lupolen 1840 H, Basell) и LLDPE (Escorene LLN 1201 XV, 

Exxon). LDPE обладает разветвленной молекулярной структурой, а LLDPE – ли-

нейной. Характеристические данные о материалах приведены в табл. 2, взятой из 

работы [14]. 

Т а б л и ц а  2  

Характеристики материала 

Характеристики LDPE LLDPE 

Плотность, ρ(г/см3), (25°C) 0.918 0.926 

Молярная масса, MW (кг/моль) 245 150 

Начальная сдвиговая вязкость, η0 (Па), 150C 54.500 25.500 

Модуль упругости, J0
e (Па−1) 7.7 × 10–4 < 8 × 10–5 

Время релаксации, η0J0
e (с) ~ 42 < 2 

 

Данные образцы по многим параметрам схожи между собой, однако полимер 

LLDPE имеет более низкую начальную вязкость и меньшее время релаксации по 

сравнению с LDPE. 

Для выполнения расчетов течения подбирались параметры реологической мо-

дели κ, β, η0 и τ0. Для этого использовались экспериментальные данные [14]. Для 
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образца LLDPE получены η0 = 14 500 Па, τ0 = 0.01 с, а для LDPE η0 = 18 500 Па,  

τ0 = 0.45 с. Значения для начальной сдвиговой вязкости отличаются от приведен-

ных в табл. 2, потому что в экспериментах [14] измерения проводили при 180°C. 

Параметры β = 0.1 и κ = 0.12 оказались одинаковыми для обоих образцов полиме-

ров. Значение плотности ρ для полимера LDPE составляет 918 кг/м³, для LLDPE – 

926 кг/м³. Расчеты проводились при числах Вайсенберга Wi = 0.45 для LDPE,  

Wi = 0.01 для LLDPE, а также при числах Рейнольдса Re = 6·10–6 для LDPE и  

Re = 4·10–6 для LLDPE. 

Сначала рассмотрим результаты расчетов для образца LDPE [10, 14]. В этом 

случае изменение поля скоростей в резервуаре перед входом в плоскую фильеру 

показано профилями x-компоненты вектора скорости u в различных сечениях:  

x = –1, –3, –5, –8 (рис. 2). По мере приближения к входу в щелевой канал происхо-

дит деформация профиля скорости u. При этом максимальная скорость течения 

полимерного расплава увеличивается, а скорость в промежутке от 0.5 до 7 мм 

уменьшается и даже становится отрицательной. Результаты расчетов хорошо со-

гласуются с экспериментальными данными [10, 14]. 
 

 

Рис. 2. Зависимость x-компоненты вектора скорости u  

при разных значениях x = –1, –3, –5, –8 

Fig. 2. Dependence of the x-component of velocity vector u  

at different values of x = –1, –3, –5, and –8 
 

Для оценки малых скоростей профили продольной скорости в области входа  

в канал были воспроизведены в увеличенном масштабе (рис. 3). 

Из рис. 3 видно, что существуют отрицательные значения x-компоненты век-

тора скорости. Изменение знака показывает, что эта часть расплава действительно 

меняет направление движения при приближении к щелевой матрице. То есть поток 

разворачивается в сторону, противоположную направлению экструзии. Это явле-

ние можно объяснить наличием вихрей над плоскостью входа, которые уже были 

обнаружены в экспериментах [10, 12]. 

Также для полимера LDPE были получены профили y-компоненты вектора ско-

рости v в резервуаре (рис. 4). В верхней части канала поток закручивается против 

часовой стрелки, и поэтому y-компонента скорости принимает как положительные 

значения (при 0 ≤ y ≤ 2), так и отрицательные (при y > 2). Значения скоростей  

на этих участках достигают 15% от значений, направленных к центру. Этот резуль-

тат также указывает на наличие вихревого течения, обнаруженного в эксперимен-

тах [10, 12]. 
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Рис. 3. x-компонента вектора скорости u 

Fig. 3. x-component of velocity vector u 

 

 

Рис. 4. Зависимость y-компоненты вектора скорости v  

при разных значениях x = –1, –3, –5, –8 

Fig. 4. Dependence of the y-component of velocity vector v  

at different values of x = –1, –3, –5, and –8 
 

Далее в ходе исследования были сопоставлены характеристики двух видов поли-

меров LDPE и LLDPE. Продемонстрировано, как структура полимера влияет на 

установившейся профиль скорости как в резервуаре, так и в щелевом канале [31]. 

На рис. 5 изображены поля скоростей для x-компоненты вектора скорости u 

полимеров LDPE и LLDPE в резервуаре при значении x = –30 мм. На рис. 6 изоб-

ражены поля скоростей для x-компоненты вектора скорости u полимеров LDPE и 

LLDPE в щелевом канале при значении x = 30 мм. 

Во всех случаях наблюдается отклонение установившегося профиля скорости 

от параболического, который характерен для ньютоновских сред. При этом обра-

зец LDPE демонстрирует более сильное отклонение от параболического профиля, 

чем LLDPE. В этом случае полимер LDPE демонстрирует высокую степень соот-

ветствия между профилем скорости и экспериментальными данными [14].  

Таким образом, профили скоростей для разветвленного полиэтилена LDPE су-

щественно отличаются от параболического, в отличие от полиэтилена с макромо-

лекулами LLDPE, обладающими линейной структурой. 
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Рис. 5. Зависимость x-компоненты вектора скорости u при x = –30 мм  

для полимеров LDPE и LLDPE 

Fig. 5. Dependence of the x-component of velocity vector u at x = –30 mm  

for LDPE and LLDPE polymers 

 

  

Рис. 6. Зависимость x-компоненты вектора скорости u  

при x = 30 мм для полимеров LDPE и LLDPE 

Fig. 6. Dependence of the x-component of velocity vector u  

at x = 30 mm for LDPE and LLDPE polymers 
 

Кроме того, интерес представляет распределение x-компоненты вектора скоро-

сти вдоль оси канала. На рис. 7 представлено сравнение x-компоненты вектора ско-

рости вдоль оси симметрии канала с экспериментальными данными [14]. 

 

 

Рис. 7. Распределение x-компоненты вектора скорости вдоль оси канала  

для двух образцов полимеров 

Fig. 7. Variation of the x-component of the velocity vector along the channel axis  

for two polymer samples 
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Рис. 8. Поле скоростей во входной области полимера LDPE  

в сечении z = 0 мм: слева – эксперимент; справа – теория 

Fig. 8. Velocity field in section z = 0 mm for LDPE polymer  

in the inlet region: experiment (on the left) and theory (on the right) 

 

       

Рис. 9. Поле скоростей во входной области полимера LLDPE  

в сечении z = 0 мм: слева – эксперимент; справа – теория 

Fig. 9. Velocity field in section z = 0 mm for LLDPE polymer  

in the inlet region: experiment (on the left) and theory (on the right) 
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Из рис. 7 видно, что максимальная скорость на оси канала наблюдается в мо-

мент входа в щель. Более того, этот максимум выше для разветвленного полиэти-

лена LDPE. Полученные результаты качественно согласуются с экспериментами. 

Далее проведено сравнение вихревых зон для рассматриваемых полимерных 

образцов. Показано, что при течении полимера LDPE перед входом в щелевой ка-

нал образуется выраженный вторичный поток (рис. 8). Полимер LLDPE сохраняет 

стабильность потока, не создавая вторичных течений (рис. 9). Важно отметить, что 

значения вязкости у этих образцов отличаются незначительно, поэтому данный 

эффект связан с временным параметром τ0.  

Все эти эффекты были выявлены в ходе численного моделирования и хорошо 

согласуются с результатами экспериментов [14]. 
 

Заключение 
 

Таким образом, выполнено исследование течения полимерного расплава в ка-

нале с прямоугольным сечением с внезапным сужением с применением реологи-

ческой модели Виноградова–Покровского. Были определены x- и y-компоненты 

вектора скорости и проведено сравнение с экспериментальными данными. 

Осуществлено сравнение характеристик двух полимерных образцов, имеющих 

различную молекулярную структуру. Исследовано влияние строения полимера на 

характер его течение. Выявлено, что при течении разветвленного полимера в углу 

резервуара над входом в щелевой канал образуется выраженный вторичный поток, 

который не наблюдается при течении линейного полимера. Установлено, что дан-

ный эффект связан с временем релаксации полимера. 

Кроме того, в щелевом канале полимер с разветвленной молекулярной струк-

турой имеет непараболический профиль продольной скорости в отличие от об-

разца линейного полимера, имеющего профиль, близкий к параболическому. Со-

гласно расчетам, профиль скорости формируется на значительном расстоянии от 

входа в щель. Это важно учитывать как при проведении измерений в узких частях 

каналов, так и при проведении вычислительных экспериментов. 

Таким образом, исходя из полученных результатов, можно ожидать, что моди-

фицированная реологическая модель Виноградова–Покровского окажется также 

применима и для других типов геометрии каналов, например Т-образного канала, 

цилиндрического канала, прямоугольного канала с препятствием и др., что будет 

сделано в будущих исследованиях. Кроме того, результаты показывают эффектив-

ность применения вычислительных методов, основанных на методе конечных эле-

ментов, для расчета нестационарных двумерных течений нелинейных вязкоупру-

гих сред с реологическим законом поведения в дифференциальной форме. Также 

разработанная математическая модель может послужить отправной точкой для  

будущих исследований, направленных на изучение того, как геометрия канала, мо-

лекулярное строение полимера и температура влияют на характер течения в сужа-

ющихся каналах. 
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Аннотация. Исследуется влияние солнечного излучения на аэродинамику, теплооб-

мен и перенос пассивной легкой примеси в 3D уличном каньоне. Для численного 

исследования привлекаются уравнения Рейнольдса, k-eps модель турбулентности  

с учетом плавучести, рассматривается теплообмен не только внутри уличного кань-

она, но и в ограждающих его твердых поверхностях. Результаты расчетов показали, 

что солнечный нагрев боковых поверхностей каньона может приводить к заметному 

изменению картины течения внутри каньона, которое сопровождается ухудшением 

качества воздуха в зоне дыхания пешеходов (до 2 м от дна каньона). 

Ключевые слова: турбулентное неизотермическое течение, плавучесть, солнечное 
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Abstract. This work investigates the influence of solar radiation on the aerodynamics, heat 

transfer, and pollutant dispersion in a street canyon. The main purpose of this study is  

to develop a mathematical model of aerodynamics, coupled heat transfer, and pollutant 

dispersion, as well as to examine the impact of solar heating on air quality in the pedestrian 

breathing zone (up to 2 m from the bottom of the canyon). The microscale model M2UE 

has been extended with a module for calculating coupled heat transfer between the ambient 

environment, building walls, and road surfaces. The study is based on the Reynolds equa-

tions and the k–ε turbulence model with buoyancy effects, considering heat transfer both 

inside the canyon and within the solid enclosing surfaces. A numerical experiment was 

conducted to simulate the impact of solar heating of the windward building wall at various 

solar elevation angles. The results show that solar heating of the canyon walls significantly 

modifies the airflow structure, leading to deteriorated air quality in the pedestrian zone.  

It is found that the highest pollutant concentrations occur near the windward (eastern) side 

of the canyon when it is partially (~50%) or fully (~100%) heated by solar radiation during 

the daytime, whereas higher concentrations near the leeward side are observed in the  

absence of solar heating or under partial heating from the setting sun. 

Keywords: non-isothermal turbulent flow, buoyancy, solar radiation, conjugate heat  

transfer, street canyon, pollution transfer 
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Введение 

 

Одним из эффективных способов изучения процессов распространения авто-

мобильных выбросов в городах является применение микромасштабных матема-

тических моделей [1], описывающих движение воздуха и транспортировку загряз-

няющих веществ. С помощью таких моделей можно предсказать распространение 

автомобильных выбросов в зависимости от конфигурации городской застройки  

и погодных условий. В последнее десятилетие при численном моделировании дви-

жения воздуха и распространения загрязняющих веществ в уличных каньонах ис-

следователи из разных стран учитывали не только сложную аэродинамику турбу-

лентного потока, но и неизотермический характер рассматриваемого процесса  

с учетом влияния силы плавучести. 

В [2] авторы исследовали влияние отношения размеров уличного каньона (от-

ношение высоты к ширине каньона, AR) и реального солнечного нагрева на кон-

вективный теплоперенос и вентиляцию в полномасштабном двумерном уличном 

каньоне. Для анализа использовались результаты экспериментов, проводимых  

в ветровом туннеле, в котором перпендикулярно основному потоку располагались 

модели уличных каньонов с AR = 1.1, 2.4, 4, и 5.67. Также для исследования при-

влекался коммерческий пакет вычислительной гидродинамики и теплопередачи 
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ANSYS Fluent. При моделировании использовались уравнения Рейнольдса для не-

сжимаемой жидкости, RNG k-eps модель турбулентности, метод пристеночных 

функций. Влияние силы плавучести в уравнениях движения рассматривалось  

в приближении Буссинеска. Для учета падающего солнечного излучения применя-

лись модель трассировки солнечных лучей (Solar Ray Tracing Model) и P1-прибли-

жение радиационной модели переноса излучения. На границах учитывались кон-

вективный теплообмен и рассеяние излучения. Перенос тепла внутри стен не рас-

сматривался. Авторами получено хорошее согласование результатов моделирования 

и результатов эксперимента в ветровом туннеле. В работе было установлено, что 

при AR = 1.1 и 2.4 в 2D каньоне образуется один главный вихрь, способствующий 

хорошей вентиляции, в то время как при AR = 4 и 5,67 образуется двухвихревая 

структура движения. Характер течения в уличном каньоне существенно зависит от 

условий солнечного нагрева поверхностей. Нагрев подветренной стороны каньона 

и его дна заметно усиливает вентиляцию. При значительном нагреве наветренной 

стороны или ее части (в глубоком каньоне) основной вихрь в каньоне деформиру-

ется, и в нижней части появляется дополнительный вихрь, способствующий 

накоплению примеси в зоне дыхания пешеходов [2].  

В [3, 4] отмечается, что солнечный нагрев поверхностей глубокого уличного 

каньона ведет к образованию сложной многовихревой структуры течения в рас-

сматриваемой области и чаще всего ухудшает проветриваемость внутри этого эле-

мента городской застройки. Коэффициент конвективного теплообмена распределен 

неравномерно по поверхностям и зависит от солнечного излучения и геометрии 

каньона. Кроме того, отмечается, что при слабом ветре и низком уровне турбу-

лентности температура внутри каньона увеличивается на 1–2°С. В [3, 4] использо-

вались те же вычислительные технологии, что и в [2].   

В [5] выполнено численное исследование влияния солнечного нагрева в улич-

ном каньоне с AR = 1. Результаты показали, что важным является рассмотрение 

процессов аэродинамики и теплообмена в трехмерной постановке, поскольку 

структура течения при определенных условиях смешанной конвекции и излучения 

может значительно меняться в поперечном основному течению направлении с об-

разованием двух- или многовихревых структур. Влияние естественной конвекции 

значительно при скорости ветра менее 2 м/с. В [5] при моделировании солнечного 

нагрева учитывались процессы теплообмена в ограничивающих каньон поверхно-

стях. Также использовался пакет ANSYS Fluent. 

В [6] влияние солнечного нагрева наветренной стены уличного каньона иссле-

довалось путем задания повышенной температуры подсвечиваемой Солнцем ча-

сти поверхности стенки. Использовался разрабатываемый авторами оригинальный 

программный комплекс M2UE (Microscale Model of Urban Environment) [1], в ко-

тором численно решаются трехмерные уравнения Рейнольдса, замкнутые с исполь-

зованием двухпараметрической модели турбулентности, учитывающей влияние 

силы плавучести, уравнения теплообмена и переноса примеси. Результаты расчетов 

показали, что при скорости ветра 1 м/с нагрев наветренной образующей уличного 

каньона (температура стенки больше на 20°) приводит к изменению структуры те-

чения и характера распространения примеси внутри каньона. Нагрев половины 

наветренной стенки уличного каньона приводит к изменению структуры течения 

и значительному увеличению максимальной концентрации примеси в каньоне и 

средней концентрации в зоне дыхания пешеходов.  
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Таким образом, проведенный обзор литературы показывает, что при численном 

моделировании движения воздуха и переноса примеси в уличном каньоне целесо-

образно наряду с осредненными по Рейнольдсу трехмерными уравнениями Навье–

Стокса с динамическим турбулентным замыканием и учетом силы плавучести 

учитывать сопряженный теплообмен между окружающей средой, стенами зданий 

и дорожным полотном. По проведенному обзору литературы можно заключить, 

что влияние температурной неоднородности на ограничивающих рассматривае-

мую область поверхностях на структуру турбулентного течения – существенно. 

Исходя из этого, возникает потребность в более полном моделировании конвек-

тивного теплопереноса, а это напрямую связано с моделированием влияния сол-

нечного излучения. Такой подход позволит более точно описать сопряженные 

аэродинамические и тепловые процессы, протекающие в уличных каньонах при 

солнечном нагреве. 

Целями работы являются:  

1) разработка физико-математической модели турбулентного неизотермиче-

ского течения с плавучестью, сопряженного радиационно-конвективного теплооб-

мена и переноса легкой инертной примеси в уличном каньоне; 

2) численное исследование совместного влияния слабого ветра и частичного / 

полного солнечного нагрева наветренной стороны уличного каньона, в нижней ча-

сти которого поступает примесь от выбросов автомобильного транспорта, на ка-

чество воздуха в зоне дыхания пешеходов. 

 

Физическая постановка задачи 

 

Рассматривается стационарное неизотермическое турбулентное течение не-

сжимаемой вязкой среды в уличном каньоне, образованном двумя протяженными 

зданиями, между которыми находится широкая дорога. Ось Ох1 ориентирована на 

восток, Ох2 – на север, Ox3 – вертикально вверх (рис.1). Движение набегающего 

воздушного потока над зданиями направлено вдоль оси Ох1. Теплофизические 

свойства, степень черноты стен, крыш зданий и дорожного полотна могут разли-

чаться. Высота зданий (H) соизмерима с шириной улицы (W). Длина уличного  

каньона L на порядок превышает высоту и ширину.  

В результате солнечного излучения в светлое время суток различные участки 

образующих уличного каньона в рассматриваемых условиях могут последова-

тельно нагреваться: сначала подветренная сторона, потом дно и наветренная сто-

рона каньона.  

Стены и дно уличного каньона могут иметь переменную температуру, отлич-

ную от температуры окружающей среды. Это возможно в результате антропоген-

ной деятельности или солнечного нагрева. Для представления влияния силы пла-

вучести в уравнениях движения используется приближение Буссинеска–Обербека, 

применение которого оправдано при небольшом изменении температуры воздуха 

внутри рассматриваемой области, порядка несколько градусов. Внизу уличного 

каньона, ближе к середине, находятся линейные источники выбросов автотранс-

порта, расположенные на небольшой высоте над поверхностью и ориентирован-

ные параллельно уличным зданиям. Поступающая от автомобилей примесь счита-

ется легкой, химически инертной и не осаждающейся на образующих уличного 

каньона. 
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Рис. 1. Иллюстрация физической постановки задачи 

Fig. 1. Illustration of the physical problem formulation 

 
Т а б л и ц а  1  

Свойства ограничивающих каньон поверхностей 

Поверх-

ности 

Коэффициент теплопро-

водности, Вт/(м·К) 
Степень черноты Толщина, м 

Температура на 

внешней границе, С 

Стены 1,5 0,88 1,0 23 

Дорога 2,0 0,75 2,0 17 

Крыши 2,0 0,88 1,0 23 
 

Геометрические размеры каньона заданы следующим образом: высота H и ши-

рина W = 20 м, глубина L = 90 м. Скорость ветра выбранного западного направле-

ния над зданиями U1 равна 1,0 м/с. Интенсивность турбулентности потока состав-

ляет 30%. Температура окружающей среды принята равной 20°C. Значения коэф-

фициента теплопроводности, степени черноты стен, дороги и крыш, толщины 

стен, прогреваемого слоя дороги [2–4] представлены в табл. 1. Там же представ-

лены значения температуры на внешних границах: в помещениях здания (23°С), 

на глубине 2 м под дорожным полотном (17°С). 

 

Математическая постановка задачи 

 

Рассматриваются трехмерные уравнения Рейнольдса для несжимаемой среды 

(ρ = const), уравнение энергии и переноса инертной газообразной примеси: 

 

0;
j

j

u

x


=


 (1) 
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( ) 0

0

( )1
; 1,2,3;
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t
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u u u g T Tp
i

x x x x T

   − 
= − +  +  − = 

      

 (2) 

 

;
Pr

j t

j j t j

Tu T
a

x x x

    
= +       

 (3) 

 

.
j t

C

j j t j

Cu C
D S

x x Sc x

    
= + +       

 (4) 

В правых и левых частях уравнений (1)–(4) по повторяющемуся индексу j про-

изводится суммирование от 1 до 3; черта представляет собой операцию осредне-

ния по Рейнольдсу; , , ,iu p T C  – компоненты скорости, давление, температура  

и концентрация инертной газообразной примеси; , , ,a D   – кинематическая вяз-

кость, плотность, температуропроводность, коэффициент диффузии; компоненты 

вектора ускорения свободного падения определяются в соответствии с принятым 

направлением осей: g1 = g2 = 0, g3 = –g; g – значение ускорения свободного падения; 

,Pr ,t t tSc  – турбулентная вязкость, турбулентные числа Прандтля и Шмидта, ко-

торые появляются в (1)–(4) в результате турбулентного замыкания с использова-

нием градиентных соотношений Буссинеска [7]; T0 – некоторая относительная тем-

пература, в качестве которой может быть принята температура набегающего по-

тока; SC – источник поступления примеси вблизи дна уличного каньона. 

В качестве граничных условий используются следующие [8–10]. Скорость по-

тока, температура, концентрация примеси, турбулентные характеристики на входе 

при x1 = 0 известны. На выходе принимаются условия равенства нулю производ-

ных по x1 от величин, вычисляемых из дифференциальных конвективно-диффузи-

онных уравнений (1)–(4) (компонент скорости, температуры, концентрации), что 

моделирует доминирование адвекции выходящего потока над диффузией. При  

x2 = 0 или x2 = L также рассматриваются условия равенства нулю производных по x2. 

На стенках все компоненты скорости равны нулю, и задаются условия отсутствия 

осаждения примеси, а также условия теплового баланса радиационно-конвектив-

ного сопряженного теплообмена, учитывающие изменение температуры не только 

в воздушной среде, но и в стенах зданий: 

 ( ) ( )44 .
2(2 )

w w

w sun w w w room

w w

T T q H T T T
L

 
  − + + −  = − − 

 (5) 

Здесь Tw – температура наружной поверхности стен или дна каньона; qsun – тепло-

вой поток от солнечного нагрева, для некоторых участков стен или дна может быть 

равен нулю из-за затененности поверхности; εw – степень черноты поверхности 

каньона; Hw – плотность падающего излучения (Hw = 1 672 Вт/м2 принята для рас-

сматриваемых условий); σ – постоянная Стефана–Больцмана; λw, Lw – коэффициент 

теплопроводности и толщина стен зданий; Troom – температура внутри помещений, 

которая поддерживается на постоянном уровне; α – коэффициент теплоотдачи. 

Коэффициент теплоотдачи рассчитывается с применением формул метода при-

стеночных функций [11] 

( )

0.25

0.25Pr ln / / (Pr/ Pr )

p P

t P P t

C C k

Ey C k f






 =

  +
, 
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где kp – кинетическая энергия турбулентности на расстоянии yp от стенки в области 

турбулентного пристенного слоя, E = 9.0, Cp – удельная теплоемкость. 

При расчете qsun = Qsun (1 – A) использовались формулы из [12] 

0( ) cos ,cos 0

0,                                cos 0

g w slope

sun

a a S S
Q

−   
= 

 
, 

где ag(x3), aw(x3) – функции, учитывающие рассеяние и поглощение излучения кис-

лородом, озоном, диоксидом углерода и водяным паром в атмосфере [12], χ – угол 

склонения Солнца, cos / cosslopeS i=  , i – угол падения солнечных лучей на по-

верхность, 0 0cos cos cos sin sin cos( )i =  +   − , α0 – угол наклона поверхно-

сти (α0 = π/2 или 3π/2 – вертикальные поверхности, ориентированные на запад или 

восток), β – солнечный азимут, η – азимут наклона поверхности, который измеря-

ется как угол между нормалью к поверхности и направлением на юг, S0 – солнеч-

ная постоянная; A – альбедо поверхности.  

В данной работе турбулентное замыкание основных уравнений осуществляется 

с использованием k–ε-модели [13, 14], в которой рассматривается воздействие 

силы плавучести на уровень турбулентных пульсаций. Подход Лаундера–Спол-

динга [11] применяется для эффективного и экономичного описания турбулент-

ных процессов в непосредственной близости от стенки. Метод пристеночных 

функций Лаундера–Сполдинга широко используется при моделировании турбу-

лентности неизотермических течений вблизи стенки при высоких значениях числа 

Рейнольдса (более 106), которые часто реализуются в индустриальных и геофизи-

ческих приложениях. Главным образом это обусловлено разумными вычислитель-

ными затратами на проведение численного моделирования трехмерных течений  

и теплообмена в геометрически сложных областях. 

 

j T

j j k j

ku k
P G

x x x

    
=  + + + −         

; (6) 
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; .
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t i
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P G

x x x T x
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Численный метод решения задачи 
 

Поставленная задача решается численно с использованием структурированных 

сеток и метода конечного объема [15]. В параллелепипеде, включающем область 

исследования, строится неравномерная прямоугольная сетка со сгущением сеточ-

ных плоскостей к твердым поверхностям (стенкам или крышам уличного каньона). 

Часть полученных в результате построения такой сетки конечных объемов явля-

ется фиктивной, поскольку они выходят за область моделирования движения и 

теплообмена несущей среды. Они исключаются из расчетов. Сгущение узлов сетки 
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вблизи твердых поверхностей необходимо для обеспечения выполнения условий 

применения метода пристеночных функций [11], согласно которому ближайший  

к твердой поверхности узел сетки должен располагаться на безразмерном рассто-

янии y+ = yv*/ν = 50–300, в области развитой пристеночной турбулентности. Здесь 

y – расстояние до стенки, v* – динамическая скорость, ν – коэффициент кинемати-

ческой вязкости несущей среды. После построения вычислительной сетки произво-

дится получение разностной схемы, аппроксимирующей дифференциальную задачу. 

В соответствии с основными идеями метода конечного объема это осуществляется 

путем интегрирования каждого дифференциального уравнения по отдельному ко-

нечному объему, при приближенном вычислении поверхностных и объемных ин-

тегралов применяются 2D и 3D аналоги метода средних прямоугольников, а для 

представления производных – центрально-разностные формулы численного диф-

ференцирования. Для точного выполнения разностного уравнения неразрывности 

(1) используется смешенное представление значений сеточных функций зависи-

мых переменных, в соответствии с которым компоненты вектора скорости ассоци-

ируются с центрами граней конечных объемов, а остальные сеточные функции за-

висимых переменных – с центрами конечных объемов [15]. Использование таких 

разнесенных сеток избавляет также от осцилляций рассчитываемых значений дав-

ления, которые могут иметь место при использовании неразнесенных сеток.  

Кроме того, чтобы уменьшить влияние схемной вязкости на искомые значения 

скорости, температуры, концентрации, в данной работе применяются так называ-

емые монотонизированные противопотоковые схемы ван Лира MLU или MUSCL 

[15, 16]. В итоге полученные разностные схемы на участках монотонного измене-

ния приближенного решения на равномерных сетках обладают вторым порядком 

аппроксимации, соответствующие им системы линейных уравнений имеют матрицы 

с диагональным преобладанием, что позволяет использовать надежные итераци-

онные методы для получения приближенного решения задачи. В данной работе 

такие системы решались методом релаксации для компонент скорости и методом 

неполной факторизации Н.И. Булеева [17] для остальных скалярных характери-

стик (температуры, концентрации, турбулентных параметров). Поскольку полная 

задача является взаимосвязанной и нелинейной, использовались глобальные ите-

рации. В качестве критерия завершения вычислительного процесса рассматрива-

лись значения норм векторов невязок сеточных уравнений и векторов ошибок 

между двумя последовательными итерациями. Предлагаемая модель и численный 

метод прошли тестирование на результатах экспериментов в ветровом тоннеле  

с обогреваемой выемкой [18] и переноса примеси в модели уличного каньона [19]. 

Получено хорошее согласование [6].  

Отдельно остановимся на выводе вычислительной процедуры, позволяющей 

избежать применения локальных итераций для получения значения температуры 

стенки Tw из нелинейного уравнения (5). Представим (5) в следующем виде: 
4 0Ax Dx E+ + = , 

где  

/ 300wx T= ,   44 300 / 2(2 )w wA =   −  ,   ( / ) 300k kD L=  +  ,

/ (2(2 )) /p sun w w w k room kE T q H T L= − − − − − . 

Перепишем это уравнение в виде:  
4 0, / 0, / 0x dx e d D A e E A+ + = =  =  , 



Старченко А.В., Данилкин Е.А., Лещинский Д.В. Численное моделирование влияния излучения 

159 

и для нахождения положительного действительного корня применим метод Фер-

рари [20]. Этот корень вычисляется по следующим формулам: 

 ( )1 10.5 4
300

Tw
x y y q= = − − + − − , (8) 

где 
2 2

3 3
1

2 2

d d
y Q Q= − + + − − , 

23 24

3 2

e d
Q

 − 
= +   
   

, а при выборе величины 

( )2

1 1

1
4

2
q y y e= −  −  следует ориентироваться на то значение q, которое обеспе-

чивает неотрицательность (–y1 – 4q) в (8). 

 

Результаты расчетов 

 

Для обнаружения неблагоприятных аэродинамических условий, приводящих  

к увеличению концентрации примеси в зоне дыхания пешеходов, были проведены 

расчеты (табл. 2) для изотермического случая (базовый вариант 1), частичного (ва-

риант 2) и полного солнечного нагрева наветренной стороны уличного каньона 

(вариант 3). В работах [2–6] указывается, что при совместном влиянии слабого 

набегающего ветрового потока над каньоном (скорость ~ 1м/с) и существенной 

естественной конвекции у наветренной поверхности может образовываться слож-

ная аэродинамическая картина потока внутри уличного каньона, приводящая к на-

коплению примеси в нижней части каньона. 

Т а б л и ц а  2  

Параметры для расчета теплообмена в уличном каньоне при солнечном нагреве  

для рассматриваемых вариантов расчетов 

№ варианта t, время суток qsun, Вт/м2 Asun 

1  0 0 

2 18:00 780 0.5 

3 15:00 600 1.0 

Примечание. t – локальное время суток, qsun – величина теплового потока падающего сол-

нечного излучения, зависящая от величины угла склонения χ, Asun – доля поверхности навет-

ренной стенки, на которую падает солнечное излучение. 

 

В расчетах использовалась сетка 102 × 63 × 92. Удвоение количества узлов 

сетки в каждом координатном направлении не привело к существенному измене-

нию значений скорости и концентрации примеси. 

При рассмотрении неизотермических течений в атмосферном пограничном 

слое обычно используется число Ричардсона 2

, / ( )w ave ref refRi gH T T U=  , чтобы ко-

личественно оценить баланс между силой термической плавучести 
, /w ave refg T T  и 

адвекции 2 /refU H . В городских условиях неизотермические течения можно клас-

сифицировать на три категории [3]: Ri << 1 – адвекция существенно доминирует 

над силой термической плавучести; Ri ~ 1 – адвекция сопоставима с силой плаву-

чести; Ri >> 1 – силы плавучести определяют характер течения. Осредненная по 

всем поверхностям уличного каньона разность Tw – Tref в рассматриваемых условиях 
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составила 4.03 К (вариант 2) и 6.13 К (вариант 3) и, соответственно, Ri = 0 (вариант 1), 

Ri = 2.7 (вариант 2), Ri = 4.1 (вариант 3) (H = 20 м, Uref = 1м/с, Tref = 293 К). Таким 

образом, вариант 1 относится к случаю, когда распределение примеси в каньоне 

определяется адвективным переносом, а варианты 2 и 3 – к сложному взаимодей-

ствию адвекции и плавучести и их влиянию на распространение примеси. 

На рис. 2 представлены векторное поле скорости и распределение безразмер-

ной концентрации C* = c*U1
*L*H/SC в поперечном сечении уличного каньона при 

x2 = L/2 для варианта 1 (изотермический случай). Видно, что в каньоне формируется 

вращательное движение воздуха с активным выносом поступающей снизу при-

меси за счет адвекции. Наибольшие значения концентрации примеси наблюдаются 

в левой половине нижней части области исследования и у подветренной стороны. 

 

 

Рис. 2. Рассчитанные для варианта 1 векторное поле скорости и изолинии безразмерной 

концентрации примеси внутри уличного каньона при x2 = L/2 

Fig. 2. Calculated vector velocity field and pollution concentration contours  

within the street canyon at x2 = L/2 for case 1 
 

Рисунки 3 и 4 демонстрируют как нагреваемая Солнцем величина доли поверх-

ности Asun наветренной стены и значение теплового потока qsun влияют на аэроди-

намику и тепломассоперенос в уличном каньоне. При Asun = 0.5 и qsun = 780 Вт/м2 

(см. рис. 3, а, 4, а) основной вихрь смещается влево и вверх, а в нижней части 

каньона интенсивность движения уменьшается, вдоль наветренной стенки рас-

четы показывают подъемное движение, которое формирует многовихревую струк-

туру; в частности, внизу у подветренной стороны появляется вихрь, препятствую-

щий выносу примеси вверх вдоль этой поверхности. Заметим, что чем больше по-

верхность солнечного нагрева наветренной стороны (см. рис. 3, b, 4, b), тем больше 

скорость локального пристенного подьемного движения и скорость движения воз-

духа на уровне зоны дыхания пешеходов. Судя по рис. 2–4, наибольшие значения 

скорость на этом уровне имеет при изотермических условиях, наименьшие – при 

Asun = 0.5, что согласуется с результатами [3]. 
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а                                                                             b 

Рис. 3. Рассчитанные векторные поля скорости и изолинии безразмерной концентрации 

примеси внутри уличного каньона при x2 = L/2: а – вариант 2, b – вариант 3 

Fig. 3. Calculated vector velocity fields and pollution concentration contours  

within the street canyon at x2 = L/2: (a) case 2 and (b) case 3 

 

 
 а                                                                                 б 

Рис. 4. Рассчитанные векторные поля скорости и изолинии температуры воздуха  

внутри уличного каньона при x2 = L/2: а – вариант 2, б – вариант 3 

Fig. 4. Calculated vector velocity fields and air temperature contours  

within the street canyon at x2 = L/2: (a) case 2 and (b) case 3 
 

В итоге для варианта 2, судя по изолиниям концентрации, ниже 8 м в уличном 

каньоне формируется слой загрязненного воздуха с почти постоянной концентра-

цией, значения которой изменяются в сторону повышения только вблизи источ-

ника поступления примеси. Концентрация в зоне дыхания пешеходов на высоте 

1,6 м для этого варианта значительно увеличивается по сравнению со случаем изо-

термического течения (Рис 5). При Asun = 1.0 и qsun = 600 Вт/м2 (см. рис. 3, b, 4, b) 
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образуется двувихревая картина течения: ярко выраженный вихрь сверху способ-

ствует возвращению части выносимой из каньона примеси в его верхнюю часть, а 

второй, справа снизу, – выносу поступающей из линейного источника примеси 

вдоль наветренной стенки из каньона.   
 

 

Рис. 5. Значения безразмерной концентрации примеси на высоте 1.6 м  

от нижней границы уличного каньона 

Fig. 5. Dimensionless pollution concentration at a height of 1.6 m  

from the lower boundary of the street canyon 
 

Такая картина течения способствует очищению (хорошему выносу примеси) из 

левой нижней части каньона, что подтверждает график зависимости безразмерной 

концентрации C* = c*U1
*L*H/SC от x1 (рис. 5). 

 

Заключение 
 

Разработана версия модели M2UE для расчета турбулентного неизотермиче-

ского течения с плавучестью и сопряженным теплообменом с твердыми стенками, 

ограничивающими область уличного каньона. На поверхностях уличного каньона 

могут рассматриваться условия не только конвективного, но и радиационного теп-

лообмена (охлаждения / нагрева) с окружающей средой. 

Для рассматриваемых в работе условий радиационно-конвективного сопряжен-

ного теплообмена на твердых стенках разработан эффективный безитерационный 

метод расчета температуры поверхности. 

Выполненные на основе усовершенствованной модели M2UE вычислительные 

эксперименты показали, что при неполном солнечном нагреве наветренной стенки 

уличного каньона и слабом ветре (~ 1м/с) внутри рассматриваемой области может 

сформироваться аэродинамическая картина, приводящая к накоплению (2х) при-

меси в нижней половине каньона и особенно в зоне дыхания пешеходов. 
 

Список источников 
 

1. Старченко А.В., Нутерман Р.Б., Данилкин Е.А. Численное моделирование турбулентных 

течений и переноса примеси в уличных каньонах. Томск: Изд-во Том. ун-та, 2015. 252 с. 

doi: 10.17223/9785751123963 



Старченко А.В., Данилкин Е.А., Лещинский Д.В. Численное моделирование влияния излучения 

163 

2. Chen L., Hang J., Chen G., Liu S., Lin Y., Mattsson M., Sandberg M., Ling H. Numerical inves-

tigations of wind and thermal environment in 2D scaled street canyons with various aspect 

ratios and solar wall heating // Building and Environment. 2021. V. 190. Art. 107525. doi: 

10.1016/j.buildenv.2020.107525 

3. Yang H., Chen G., Wang D., Hang J., Li Q., Wang Q. Influences of street aspect ratios and 

realistic solar heating on convective heat transfer and ventilation in full-scale 2D street canyons // 

Building and Environment. 2021. V. 204. Art. 108125. doi: 10.1016/j.buildenv.2021.108125 

4. Liu S., Yang X., Yang H., Gao P., Hang J., Wang Q. Numerical investigation of solar impacts 

on canyon vortices and its dynamical generation mechanism // Urban Climate. 2021. V. 39. 

Art. 100978. doi: 10.1016/j.uclim.2021.100978 

5. Bottillo S., De Lieto Vollaro A., Galli G., Vallati A. CFD modeling of the impact of solar  

radiation in a tridimensional urban canyon at different wind conditions // Solar Energy. 2014. 

V. 102. P. 212–222. doi: 10.1016/j.solener.2014.01.029 

6. Данилкин Е.А., Лещинский Д.В., Старченко А.В. Микромасштабная математическая  

модель неизотермического турбулентного течения и переноса пассивной газообразной 

примеси в уличном каньоне // Вестник Томского государственного университета. Мате-

матика и механика. 2023. № 85. С. 117–131. doi: 10.17223/19988621/85/9 

7. Лойцянский Л.Г. Механика жидкости и газа. М.: Дрофа, 2003. 846 с. 

8. Бубенчиков А.М., Старченко А.В. Численные модели динамики и горения аэродисперс-

ных смесей в каналах. Томск: Изд-во Том. ун-та, 1998. 236 с. 

9. Литвинцев К.Ю., Дектерев А.А., Мешкова В.Д., Филимонов С.А. Влияние излучения на 

формирование ветрового и температурного режимов в городской среде // Теплофизика 

и аэромеханика. 2023. № 4. С. 723–735.  

10. Белов И.А., Шеленшкевич И.А., Шуб Л.И. Моделирование гидромеханических процес-

сов в технологии изготовления полупроводниковых приборов и микросхем. Л.: Поли-

техника, 1991. 287с. 

11. Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computational 

Methods in Applied Mechanics and Engineering. 1974. V. 3 (2). P. 269‒289. doi: 

10.1016/0045-7825(74)90029-2 

12. Mahrer Y., Pielke R.A. The Effects of Topography on Sea and Land Breezes in Two-Dimen-

sional Numerical Model // Monthly Weather Review. 1977. V. 105. P. 1151–1162. 

13. Henkes R.A.W.M., van der Flugt F.F., Hoogendoorn C.J. Natural Convection Flow in a Square 

Cavity Calculated with Low-Reynolds-Number Turbulence Models // Int. J. Heat Mass Trans-

fer. 1991. V. 34. P. 1543–1557. 

14. Starchenko A.V., Danilkin E.A., Leshchinskiy D.V. Numerical Simulation of the Distribution 

of Vehicle Emissions in a Street Canyon // Mathematical Models and Computer Simulations. 

2023. V. 15 (3). С. 427‒435.  

15. Patankar S. Numerical heat transfer and fluid flow. New York: Hemisphere Publ. Corporation, 

1980. 214 р. doi: 10.1201/9781482234213 

16. Van Leer B. Towards the ultimate conservative difference scheme. V. A second-order sequel 

to Godunov's method // Journal of Computational Physics. 1979. V. 32 (1). P. 101–136. doi: 

10.1016/0021-9991(74)90019-9 

17. Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М.: 

Физматлит, 1995. 288 с. 

18. Allegrini J., Dorer V., Carmeliet J. Wind tunnel measurements of buoyant flows in street  

canyons // Building and Environment. 2013. V. 59. P. 315–326. doi: 10.1016/j.buildenv. 

2012.08.029 

19. Kikumoto H., Ooka R. Large-eddy simulation of pollutant dispersion in a cavity at fine grid 

resolutions // Building and Environment. 2018. V. 127. P. 127–137. doi: 10.1016/j.buildenv. 

2017.11.005 

20. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. М.: 

Наука, 1984. 831с.  



Механика / Mechanics 

164 

References 
 

1. Starchenko A.V., Nuterman R.B., Danilkin E.A. (2015) Chislennoe modelirovanie turbulent-

nykh techeniy i perenosa primesi v ulichnykh kan'onakh [Numerical study of turbulent flows 

and pollution transport in street canyons]. Tomsk: Tomsk State University Press. doi: 

10.17223/9785751123963 

2. Chen L., Hang J., Chen G., Liu S., Lin Y., Mattsson M., Sandberg M., Ling H. (2021) Numerical 

investigations of wind and thermal environment in 2D scaled street canyons with various as-

pect ratios and solar wall heating. Building and Environment. 190. Article 107525. doi: 

10.1016/j.buildenv.2020.107525 

3. Yang H., Chen G., Wang D., Hang J., Li Q., Wang Q. (2021) Influences of street aspect ratios 

and realistic solar heating on convective heat transfer and ventilation in full-scale 2D street 

canyons. Building and Environment. 204. Article 108125. doi: 10.1016/j.build-

env.2021.108125  

4. Liu S., Yang X., Yang H., Gao P., Hang J., Wang Q. (2021) Numerical investigation of solar 

impacts on canyon vortices and its dynamical generation mechanism. Urban Climate. 39. Ar-

ticle 100978. doi: 10.1016/j.uclim.2021.100978 

5. Bottillo S., De Lieto Vollaro A., Galli G., Vallati A. (2014) CFD modeling of the impact of 

solar radiation in a tridimensional urban canyon at different wind conditions. Solar Energy. 

102. pp. 212–222. doi: 10.1016/j.solener.2014.01.029 

6. Danilkin E.A., Leshchinskiy D.V., Starchenko A.V. (2023) Mikromasshtabnaya matematich-

eskaya model' neizotermicheskogo turbulentnogo techeniya i perenosa passivnoy 

gazoobraznoy primesi v ulichnom kan'one [A microscale mathematical model of a non-iso-

thermal turbulent flow and transport of a passive gaseous pollutant in a street canyon]. Vestnik 

Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University 

Journal of Mathematics and Mechanics. 85. pp. 117–131. doi: 10.17223/19988621/85/9 

7. Loytsyanskiy L.G. (2003) Mekhanika zhidkosti i gaza [Gas and fluid mechanics]. Moscow: Drofa.  

8. Bubenchikov A.M., Starchenko A.V. (1998) Chislennye modeli dinamiki i goreniya aerodis-

persnykh smesey v kanalakh [Numerical models of dynamics and combustion of aerodispersed 

mixtures in channels]. Tomsk: Tomsk University Publishing House. 

9. Litvintsev K.Yu., Dekterev A.A., Meshkova V.D., Filimonov S.A. (2023) Vliyanie izlucheniya 

na formirovanie vetrovogo i temperaturnogo rezhimov v gorodskoy srede [Influence of radia-

tion on the formation of wind and temperature regimes in the urban environment]. Teplofizika 

i aeromekhanika – Thermophysics and Aeromechanics. 4. pp. 723–735. 

10. Belov I.A., Shelenshkevich I.A., Shub L.I. (1991) Modelirovanie gidromekhanicheskikh 

protsessov v tekhnologii izgotovleniya poluprovodnikovykh priborov i mikroskhem [Modeling 

of hydro-mechanical processes in the technology of semiconductor devices and circuits pro-

duction]. Leningrad: Politekhnika. 

11. Launder B.E., Spalding D.B. (1974) The numerical computation of turbulent flows. Computa-

tional Methods in Applied Mechanics and Engineering. 3(2). pp. 269–289. doi: 10.1016/0045-

7825(74)90029-2 

12. Mahrer Y., Pielke R.A. (1977) The effects of topography on sea and land breezes in two-di-

mensional numerical model. Monthly Weather Review. 105. pp. 1151–1162. doi: 
10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2 

13. Henkes R.A.W.M., van der Flugt F.F., Hoogendoorn C.J. (1991) Natural convection flow in a 

square cavity calculated with low-Reynolds-number turbulence models. International Journal 

of Heat and Mass Transfer. 34. pp. 1543–1557. doi: 10.1016/0017-9310(91)90258-G 

14. Starchenko A.V., Danilkin E.A., Leshchinskiy D.V. (2023) Numerical simulation of the dis-

tribution of vehicle emissions in a street canyon. Mathematical Models and Computer Simu-

lations. 15(3). pp. 427‒435. doi: 10.1134/S207004822303016X 

15. Patankar S. (1980) Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publish-

ing Corporation. doi: 10.1201/9781482234213 



Старченко А.В., Данилкин Е.А., Лещинский Д.В. Численное моделирование влияния излучения 

165 

16. Van Leer B. (1974) Towards the ultimate conservative difference scheme. II. Monotonicity 

and conservation combined in a second order scheme. Journal of Computational Physics. 14. 

pp. 361–370. doi: 10.1016/0021-9991(74)90019-9 

17. Il’in V.P. (1995) Metody nepolnoy faktorizatsii dlya resheniya algebraicheskikh sistem [Meth-

ods of incomplete factorization for solving algebraic systems]. Moscow: Fizmatlit. 

18. Allegrini J., Dorer V., Carmeliet J. (2013) Wind tunnel measurements of buoyant flows in 

street canyons. Building and Environment. 59. pp. 315–326. doi: 10.1016/j.build-

env.2012.08.029 

19. Kikumoto H., Ooka R. (2018) Large-eddy simulation of pollutant dispersion in a cavity at fine 

grid resolutions. Building and Environment. 127. pp. 127–137. doi: 10.1016/j.build-

env.2017.11.005 

20. Korn G., Korn T. (1984) Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov 

[Mathematical handbook for scientists and engineers]. Moscow: Nauka. 

 
Сведения об авторах: 

Старченко Александр Васильевич − профессор, доктор физико-математических наук,  

заведующий кафедрой вычислительной математики и компьютерного моделирования, ве-

дущий научный сотрудник Регионального научно-образовательного математического цен-

тра Томского государственного университета (Томск, Россия). E-mail: starch@math.tsu.ru  

Данилкин Евгений Александрович – кандидат физико-математических наук, доцент ка-

федры вычислительной математики и компьютерного моделирования, старший научный 

сотрудник Регионального научно-образовательного математического центра Томского гос-

ударственного университета (Томск, Россия). E-mail: ugin@math.tsu.ru  

Лещинский Дмитрий Викторович – старший преподаватель кафедры вычислительной 

математики и компьютерного моделирования, младший научный сотрудник Регионального 

научно-образовательного математического центра Томского государственного универси-

тета (Томск, Россия). E-mail: 360flip182@gmail.com   

 

Information about the authors: 

Starchenko Aleksandr V. (Professor, Doctor of Physics and Mathematics, Head of Department, 

Department of Computational Mathematics and Computer Modeling, Leading Researcher, Re-

gional Scientific and Educational Mathematical Center, Tomsk State University, Tomsk, Russian 

Federation). E-mail: starch@math.tsu.ru 

Danilkin Evgeniy A. (Candidate of Physics and Mathematics, Associate Professor, Department 

of Computational Mathematics and Computer Modeling, Senior Researcher, Regional Scientific 

and Educational Mathematical Center, Tomsk State University, Tomsk, Russian Federation). E-mail: 

ugin@math.tsu.ru 

Leshchinskiy Dmitriy V. (Senior Lecturer, Department of Computational Mathematics and  

Computer Modeling, Junior Researcher, Regional Scientific and Educational Mathematical  

Center, Tomsk State University, Tomsk, Russian Federation). E-mail: 360flip182@gmail.com  

 

Статья поступила в редакцию 17.06.2025; принята к публикации 08.12.2025 

 

The article was submitted 17.06.2025; accepted for publication 08.12.2025 

 

 

 



ВЕСТНИК ТОМСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 

2025                                                 Математика и механика                                                 № 98 
Tomsk State University Journal of Mathematics and Mechanics 

© О.Н. Шабловский, 2025 

 

 
Научная статья 

УДК 517.958:531.32 

doi: 10.17223/19988621/98/14 
 

Неустойчивые возмущения закрученного течения  

идеальной несжимаемой жидкости в областях  

с открытыми границами 
 

Олег Никифорович Шабловский 
 

Гомельский государственный технического университет им. П.О. Сухого,  

Гомель, Беларусь, shablovsky-on@yandex.ru 

 

Аннотация. Рассмотрены линеаризованные уравнения Эйлера, определяющие за-

крученное осесимметричное течение идеальной несжимаемой жидкости. Скорость 

основного течения имеет одну нетривиальную (азимутальную) компоненту, завися-

щую от радиальной цилиндрической координаты. Построены точные решения, 

определяющие растущие со временем возмущения скорости и / или давления. Дано 

аналитическое описание неустойчивых состояний потока жидкости в открытых об-

ластях различной геометрической формы, таких как комбинация вихревого цилин-

дра с непроницаемой поверхностью, непроницаемый цилиндр, зазор между цилин-

драми. Открытыми участками границ служат проницаемые сферические сегменты, 

расположенные на торцах цилиндра. 

Ключевые слова: уравнения Эйлера, задача протекания, открытое течение, вихревая 

спираль, коаксиальные цилиндры 
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Abstract. This paper examines the linearized Euler equations determining the axisymmet-

ric swirling flow of an ideal incompressible fluid. The main flow is characterized by  

a single nontrivial (azimuthal) velocity component that depends arbitrarily on the radial 

cylindrical coordinate. Based on a perturbed steady-state solution, explicit expressions  

for vortex helices and spiral-shaped stream surfaces are obtained. Exact solutions are con-

structed that incorporate arbitrary functions in their structure and describe perturbations  

of velocity and/or pressure growing linearly in time. A hydrodynamic interpretation of 
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these solutions is given in terms of the fluid flow through a given domain. An analytical 

description is provided for the unstable fluid states in the regions with open boundary seg-

ments. Three geometric configurations of such domains are analyzed. The first is the flow 

outside a vortex cylinder attached to an impermeable surface with a non-monotonic profile 

in the radial cylindrical coordinate. The second is the flow inside an impermeable cylinder 

with movable permeable spherical segments at its ends; the boundary conditions on these 

segments represent a coupling between velocity and pressure perturbations and the velocity 

of the segment. The third configuration is the flow in a gap between coaxial cylinders with 

movable permeable segments located at their ends. The effect of the pressure gradient  

on the spatial structure of the vortex field is studied. The effect of geometric parameters  

of the open regions on the flow properties is determined. 

Keywords: Euler equations, flow problem, open flow, vortex spiral, coaxial cylinders 
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Введение 

 

В данной статье на основе уравнений Эйлера для идеальной жидкости рассмат-

риваются открытые закрученные течения, в которых неустойчивые возмущения 

скорости и / или давления являются линейными функциями времени. Укажем 

краткий перечень научных публикаций, относящихся к теме нашего исследования. 

История вопроса и основные результаты изучения фундаментальных свойств вих-

ревого движения идеальной однородной несжимаемой жидкости изложены в кни-

гах [1–3]. В работах [4–6] проанализированы различные типы неустойчивости и их 

влияние на поведение решений двумерных и трехмерных уравнений Эйлера. Ста-

тья [7] содержит анализ решений уравнений Эйлера со специальной геометриче-

ской структурой; в частности, здесь представлены геликоидальные решения. Основ-

ные сведения о состоянии экспериментальных исследований свойств закрученных 

течений (спиралевидные вихревые структуры, радиальный градиент давления) 

имеются в [8, 9]. Задача протекания нестационарного потока жидкости через об-

ласть с открытыми участками границ [10–12] занимает важное место в современ-

ной математической гидродинамике. Анализ устойчивости открытых невязких те-

чений при различных вариантах постановки начально-краевой задачи представлен 

в [13–17]. Отметим, что в этих работах придается большое значение геометриче-

ским формам изучаемых областей: каналам и линиям тока на плоскости, зазорам 

между цилиндрами и сферами и др. 

Ясно, что для дальнейшего изучения обсуждаемых задач полезно иметь в явном 

виде примеры физически содержательных неустойчивых течений, обладающих 

нетривиальными свойствами. 

Предметом данного исследования являются уравнения Эйлера, линеаризован-

ные на точном стационарном решении, представляющем собой произвольную ана-

литическую зависимость азимутальной скорости от радиальной цилиндрической 

координаты. 

Цель работы – построить точные частные решения линеаризованных уравне-

ний Эйлера и указать неустойчивые закрученные течения в областях, имеющих 

проницаемые участки границ. 
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Исходные уравнения 

 

В сферической системе координат (r, θ, φ) нестационарное осесимметричное 

(∂/∂φ ≡ 0) движение идеальной несжимаемой жидкости определяется уравнениями 
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Здесь r – радиальная сферическая координата; θ – полярный угол; φ – азимуталь-

ный угол; v(vr, vθ, vφ) – вектор скорости жидкости; t – время; ρ – плотность; p – 

давление. Вектор вихря скорости равен ( ) vω rot21= . Связь с цилиндрической 

системой координат дается формулами = sinr  и = cosrz , которые опреде-

ляют радиальную цилиндрическую и осевую координаты. 

Эта система уравнений движения имеет точное стационарное решение 

 vr ≡ 0,  vθ ≡ 0, ( )= Ηv , ( )=p , ( )2Η d d=     , (1) 

где вращательная скорость ( )= Ηv  – произвольная дифференцируемая функ-

ция, ограниченная в изучаемой области. В дальнейшем при рассмотрении отдель-

ных течений применяем частные зависимости ( )Η . Например: 

1) полубесконечный интервал  )0,  , ( ) 00 ==Η , ( ) 0=→Η ,  

 ( )= 11 exp aHΗ ; H1, a1 – const; H1 > 0, a1 < 0; (2) 

2) конечный интервал 
( ) ( )1 2

,   
 

; ( ) ( )  210 , ( ) 00 ==Η . 

Линеаризацию исходных уравнений выполняем, применяя малые добавки f, g, 

h, b к основному решению (1): 

 vr = f (r, θ, t), vθ = g(r, θ, t), ( ) ( )trhΗv ,,+= , ( ) ( )trbp ,,+= . (3) 

В результате стандартных преобразований имеем линеаризованную систему 

уравнений 
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Точка над символом функции означает дифференцирование d/dζ. В последующем 

изложении считаем, что произвольные функции, содержащиеся в решениях си-

стемы (4), (5), являются ограниченными и дифференцируемыми. Далее нам пона-

добится уравнение 

 0grad = vSv , (6) 

определяющее непротекаемую поверхность Sv ( r , θ , t ) =0 , а также уравнение 
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 0grad = Sω , (7) 

определяющее вихревую поверхность Sω (r , θ , t ) =0 . Термин «винтовое движение» 

применяем в тех случаях, когда вектор скорости параллелен вектору вихря скоро-

сти, 0= vω . 

 

Стационарное решение 
 

В (4), (5) полагаем 0 t , 0+ HH . Здесь мы оставляем в стороне случай 

0=+ HH . Стационарное возмущенное течение определяется зависимостями (3), 

в которых 

 ( ) = cosAf , ( ) −= sinAg , ( ) ( )+= hΗv , ( )= bHh 2 ,  ) ,0 , (8) 

причем A(ζ), b(ζ), H(ζ) – произвольные функции, которые должны удовлетворять 

условиям: ζ=0, H=0, h=0; ζ→∞, A→0, b→0, H→0, h→0. Завихренность течения 

(8) определяется следующими выражениями: 

( ) +



= vvr 

2

cos
, ( ) +



−
= vv

2

sin
, 2A−= . 

Значит, в цилиндрических координатах ( )= Avz , ( ) ( )+=  2vvz  , а ζ – ра-

диальные компоненты скорости и завихренности нулевые: vζ ≡0, ωζ ≡ 0. Следова-

тельно, ζ = const > 0 – это семейство непротекаемых вихревых цилиндров. Каждый 

такой цилиндр – прямой и круговой, а ζ есть радиус направляющей окружности. 

На поверхности цилиндра ζ = ζS движение является винтовым, если выполнено 

условие 

 ζ=ζS, ( )  AvvvA   −=+ . (9) 

Укажем два интересных варианта течения вида (8). 

Примем связь 

 ( ) ( ) ( )= vAAvz , constA , (10) 

в которой A  в соответствии с процедурой линеаризации есть величина 1-го по-

рядка малости, а в остальном произвольная. Течение (8), (10) содержит непротека-

емую спиралевидную поверхность 

 ( ) ( ) 0ctg,, =−+ ASv , (11) 

геометрические свойства которой зависят от выбора произвольной функции Φ(ζ). 

Выражение (11) есть результат интегрирования уравнения (6). Именно связь (10) 

дает возможность записать (11) в конечной форме. Плоскость θ=π /2 будем назы-

вать условно плоскостью экватора. 

Если ( ) = 1 , const1  , 0A , то 

 ( ) 1ctg −= Av . (12) 

В северной части пространства нужно взять  2,0  , 01  , φ≥0; в южной 

части пространства   ,2 , 01  , φ≤0. На плоскости экватора имеем спи-

раль Архимеда, ( ) 12 == Av . 

Если ( ) ( )= 21 ln ; Φ1, Φ2 – const; 0A , 02  , то 

 ( ) ( ) 12 ctgexp1 −= Av . (13) 
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В северной части пространства 01  , φ≥0, ( ) 0,0 →=v ; в южной части про-

странства 01  , φ≤0, ( ) 0, →=v . На плоскости экватора имеем логариф-

мическую спираль, ( ) ( ) ( )12 exp12 == Av . Непротекаемую спираль (13) 

можно поместить внутри непротекаемого вихревого цилиндра ( )2
1 1 = v ,  

а при 1
v=  задать, например, постоянное давление жидкости. 

Если ( ) ( )= 21 tg ; Φ1, Φ2 – const; 0A , 02  , то 

 ( ) ( ) 12 ctgarctg1 −= Av . (14) 

В северной части пространства 01  , φ≥0; в южной части пространства 1 0,   

φ≤0. На плоскости экватора имеем спираль, которая по мере роста аргумента 

01 A

 

асимптотически приближается изнутри к окружности радиуса ( )22 .   

Непротекаемую спираль (14) можно поместить внутри непротекаемого вихревого 

цилиндра ( ) 2
1 2= v , ( ) const1 == vp . 

Итак, течение (8), удовлетворяющее связи vz ↔vφ (10), содержит в своей струк-

туре спиралевидную поверхность тока (11). Условие винтового движения (9) с уче-

том (10) выглядит так: 

 S= , 0=++  vvAA  . (15) 

Приведем частный пример винтового движения. Пусть основное течение опре-

деляется формулой (2), и при этом h=δ1H, где |δ1| – малая величина 1-го порядка. 

Тогда  

 ( ) ( ) ( )  ( )2
111

2
11 212exp12 aaaHb +−= ,  ) ,0 . (16) 

В итоге получаем ( )1 1exp ,A A a=    ( )1 1 11 ,A A H= +  ( ) ( )2

1 12 1 0,S SA a a = − +  +    

и значение ( )Sa − 1  должно располагаться в малой левой окрестности 2, а именно: 

( )2
11 2 =+ Sa . На поверхности цилиндра S=  течение является винтовым. 

Теперь в решении (8) примем связь =  sinB , или, что то же самое, 

 ( ) ( ) const+=  AvvB  , (17) 

где B1  – малая величина 1-го порядка. После интегрирования уравнения (7) по-

лучаем спиралевидную вихревую поверхность 

 ( ) ( ) 0ctg,, =++  BS , (18) 

где Φω(ζ) – произвольная функция. Выражения (11) и (18) имеют одинаковую ана-

литическую форму, поэтому, применяя переобозначения ζv →ζω, Φ→Φω, 

( ) −→ BA , находим спиралевидные вихревые поверхности = , геометриче-

ские свойства которых аналогичны (12)–(14). Например, вихревую поверхность 

вида (14) можем поместить внутри непротекаемого вихревого цилиндра 

( )2
1 2=  , являющегося изобарической поверхностью. Итак, течение (8), 

удовлетворяющее связи ωθ ↔ωφ (17), содержит в своей структуре спиралевидную 

поверхность (18). Случай, когда в потоке жидкости выполнены сразу две связи (10) 

и (17), неинтересен. Условие винтового движения (9) с учетом (17) выглядит так: 

 S= , 0=+ vBA . (19) 
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Приведем частный пример винтового движения. Берем по-прежнему (см.: (16)) 

течение (2) и h=δ1H. Тогда (17) дает ( ) ( )( )( ) ( )1

1 1 1 11 expA H B a a−

 = +   +  , т.е. 

здесь A(ζ = 0) ≠ 0, A(ζ → ∞) = 0. Течение винтовое на поверхности цилиндра ζ=ζS, 

для которого ( ) ( )
1

2 2

1 11Sa B
−

−  = + =   . 

Подведем итог. Для решения (8), (2), (16) верны следующие утверждения. Те-

чение, удовлетворяющее связи vz ↔vφ (10), является винтовым при том значении  

ζ = ζS, которое есть корень уравнения (15), имеющего вид связи ωθ ↔ωφ (17). Тече-

ние, удовлетворяющее связи ωθ ↔ωφ, является винтовым при том значении ζ = ζS, 

которое есть корень уравнения (19), имеющего вид связи vz ↔vφ. 

 

Растущее возмущение давления 
 

Простые аналитические преобразования позволяют построить следующее точ-

ное решение системы уравнений (4), (5): 

 ( )0b t t C= + , ( ) ( )0 2h t t C H= +   , 0 const 0t   , (20) 

−−= ctg1 ghf , ( )= 21 rGh , ( )HHGHC +=  , ( )GG
r

D
g +




−= 4

2

cos2

. 

Произвольные функции С(ζ) и D(ζ) нужно задавать так, чтобы иметь при t=0 фи-

зически содержательное решение, ограниченное во всей области течения. Функ-

ция G(ζ) применяется для компактности записи. Решение (20) дает равную нулю 

ζ-радиальную компоненту завихренности, ωζ ≡0, поэтому здесь ζ = const > 0 есть 

семейство вихревых цилиндров. 

Приведем пример. Основное течение имеет вид (2). Взяв D(ζ) ≡ 0, 

( ) ( )1 1 22 exp ,C С a a=  +    a2 < 2a1 < 0, получим ( ) ( )2

1 1 1 212 exp ,h rС H a=    a21 = a2 – 2a1. 

Здесь С1 – постоянная малая величина 1-го порядка. Поведение скорости опреде-

ляется формулами ( )1 sinv h v = −  =  , 

 ( ) ( ) ( )1

0 1 2 1

1

2 exp
2

C
h t t a a a

H


= + +  −   

, ( )1

21 212

1

1 exp
2

z

zC
v a a

H

 
= +  
  

. (21) 

Вращательная компонента завихренности выглядит так: 

( )( ) ( )2

1 21 1 21 214 3 expzC a H a a = −  +   . 

Течение жидкости происходит вне вихревого цилиндра ζ=ζω и ограничено непро-

текаемыми поверхностями z=± z v (ζ): 

 ( ) ( )2

1 21expvz z a=  −  , z1 – const. (22) 

Область течения:  vv zzz ,− , ζ ≥ ζω > 0, и тогда 

 ( ) 






 
+


== 2122

1

11

2
1 a

H

Cz
zzv vz . (23) 

Половина высоты вихревого цилиндра равна ( )== vc zz . Экстремум функ-

ции (22) достигается при ( )212 az −== , т.е. именно там, где ( ) 0== zzv , 

см. (21) (рис. 1). Вместе с тем имеем ( ) 0==  , ( )213 a−= ,  z0 , 
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т.е. по мере удаления от оси z сначала меняет знак скорость vz, а затем ωφ. Вихревой 

цилиндр ( )12 a−=  определяем из граничного условия ( ) 0== h , см. (21). 

Возмущение h и градиент возмущения давления ∂b/∂ζ сохраняют постоянными 

свои знаки во всей области течения. Если 3a1 ≥a2, то z . Основной интерес 

представляет случай, когда нулевая скорость ( ) 0== zzv  присутствует в дан-

ном потоке жидкости: z 0 , 3a1 <a2 <2a1 (см. рис. 1). 

 

 

Рис. 1. Границы области течения (20)–(22): ζ = ζω – вихревой цилиндр; 

( )vz z=    – непроницаемые поверхности; ( )m v zz z=   

Fig. 1. Boundaries of the flow region (20) – (22): ζ = ζω is the vortex cylinder; 

( )vz z=    are the impermeable surfaces; and ( )m v zz z=    

 

Структура течения зависит от знака константы С1 и симметрична по отноше-

нию к плоскости z=0, см. (21), (23). При С1 > 0 вихревой цилиндр ζ = ζω – это сток 

конечных размеров, т.е.

 

( ) 00 ==zvz , vζ<0 во всей области течения, а для 

 z  ,  имеем: если z > 0, то vz > 0; если z < 0, то vz < 0, рис. 2, а. При С1 < 0 

вихревой цилиндр ζ = ζω – это источник конечных размеров, т.е.

 

( ) 00 ==zvz ,  

vζ > 0 во всей области течения, а для  z  ,  имеем: если z > 0, то vz < 0; если 

z < 0, то vz > 0, рис. 2, b. На рис. 2 ось z идет вдоль образующей вихревого цилиндра. 

Для источника и стока гладкий выступ на непроницаемой границе (22) является 

причиной изменения направления вектора скорости v(vζ, vφ, vz). Пример течения, 

содержащего излом непроницаемой границы, дан в [18]. 

 

Растущее возмущение скорости 

 

Система уравнений (4), (5) имеет следующее точное решение: 

( )
( )zf

r

tt
f ,1

0 
+

= , 
( )

( )
+

= 1
0 g

r

tt
g , 011 =


+

z
gf , ( ) ( )


+=

z
gbb 10 , 

 







=

b

H
h

2
, t0 ≡ const > 0, (24) 

где b0(ζ), g1(ζ) – произвольные функции. Формулы (24) определяют неустойчивое 

начальное (t=0) состояние жидкости. Отметим, что в данном случае ζ=const есть 
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семейство стационарных поверхностей тока; z – компонента градиента давления 

равна 

 ( ) ( )11 p z g   =   , (25) 

а также выполнено соотношение ctgrv v= −  . Радиальная цилиндрическая ком-

понента завихренности не зависит от времени: 

 1

4

gd

H d


 
 = −  

  
. (26) 

Цилиндр ζ=  ζ1 является вихревой поверхностью, если ζ1 >0 есть корень уравнения 

( )1 1g g=  . 

 

  
   a                                                                            b 

Рис. 2. Схема расположения компонентов vz и vζ вектора скорости течения (20)–(22).  

Направления этих компонент отмечены стрелками, параллельными осям z и ζ  

соответственно: a – сток; b – источник; ( )1

1 0, mz z  

Fig. 2. Spatial position of the velocity vector components vz and vζ for the flow (20) – (22).  

The directions of these components are indicated by arrows parallel to z- and ζ-axes, 

 respectively: (a) discharge; (b) source; ( )1

1 0, mz z  

 

Далее нам понадобятся формулы 

 ( )
( )1

0z

g
v t t

−
= +


, 1

2

gz
h

H

  
=  

  
, (27) 

( ) hHz +





=

1
2 , ( ) 1

02
g

t t

 
 = +  

  
,  

( ) hHr
rr

+



−=

1
2 . 

В случае (24) интеграл уравнения (7) имеет вид: 

 ( )
( )

( )2

0

, , const 0
2

H
S t d

t t


 
    + + =

+ . (28) 
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Следовательно, вихревую поверхность можно представить в явной либо неявной 

форме как ( ) 0tt +=  , и, независимо от вида основного течения H(ζ) > 0, 

имеем 

 0  , 0  t . (29) 

Приведем примеры. Рассмотрим течение внутри цилиндрической поверхности 

тока ζ=ζv, 0<ζv <∞: 

 = 1HH , 0const1 H ,  v ,0 , (30) 

( ) 00 b , ( ) ( )= 3
21

11 exp agg , 03 a , 

где 
1
1g  – постоянная малая величина 1-го порядка. Интеграл (28) дает логариф-

мическую спираль 

( )







+

−
=

012
exp

ttH
v , φ≥0, H1dφ>0, ( ) v== 0 , 

которая обладает свойствами (29): она обматывается вокруг оси ζ=0, неограни-

ченно приближаясь к ней. В начальном состоянии (t=0) наблюдается стремление 

к расширению вихревой поверхности, находящейся внутри цилиндра ζ=ζv. На оси 

цилиндра жидкость неподвижна. Структура решения (24) позволяет поставить 

внутри цилиндра ζ=ζv проницаемые границы области – подвижные сферические 

сегменты: ( ) ( )0ttvtrr SS +== , ( )00 = trSv ,  S ,0

 

– северная область, 

и  − ,S  – южная область, где vS >0 – постоянная скорость перемещения 

поверхности сегмента, SvS r=sin , рис. 3. Радиальная сферическая скорость 

протекания через сегменты равна ( ) ( ) ( )−== sinexpcossin 3
21

1 SSSSr ravrgrrv . 

 

 

Рис. 3. Схема расположения компонентов vr и vθ вектора скорости течения (30)–(32): 

ζ = ζv – непроницаемый цилиндр; r = rS – проницаемый сферический сегмент 

Fig. 3. Spatial position of velocity vector components vr and vθ for the flow (30)–(32): 

ζ = ζv is the impermeable cylinder; r = rS is the permeable spherical segment 
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Согласно (24), при b0(ζ)≡0 полученное решение удовлетворяет граничному 

условию 

 r= rS, 0=+ Srvvb , (31) 

которое представляет собой связь между возмущением давления b(r= rS) и скоро-

стью протекания vr (r= rS). 

Возьмем для определенности 01
1 g . Тогда в северной области течения 

vr (r= rS)>0, в южной области vr (r= rS)<0. Ясно, что  

( ) ( ) ( ) SSSSSz gvrrrv −== 1 , SvS = sinsin , 1
1sgnsgn gvz −= . 

Схема течения показана на рис. 3. Формула 

 ( )
SrrS

S
S

z

p

d

d

v

r
rr

=

 





















==

2
 (32) 

дает корреляцию между вращательной компонентой завихренности и ζ-радиаль-

ной неоднородностью продольного градиента давления. Громоздкая запись θ-ком-

поненты завихренности здесь не приводится; отметим только, что для ωθ(r= rS) ос-

новным элементом аналитической структуры тоже является производная 

(d/dζ)(g1/ζ), см. (25)–(27). 

Итак, для данного течения (30) формирование вихревого поля обусловлено  

зависимостью ∂p/∂z от ζ-радиальной координаты. Эта зависимость немонотонная: 

она имеет минимум при ( )3
1 1 a−= , 03

1
1 ag . 

 

Течение между двумя коаксиальными цилиндрами 
 

На основе решения (24), ( ) 00 b  рассмотрим течение жидкости между коак-

сиальными цилиндрами: 

 ei  , , ( )00 = trSei , Si r=1sin , Se r=2sin . 

Внутри цилиндрического зазора перемещаются проницаемые сферические сег-

менты, из которых вырезана центральная часть, соответствующая внутреннему 

цилиндру и заключающая в себе конечную окрестность оси z: ( ) ( )0ttvtr SS += , 

0Sv ,  21,

 

– северная область, и  12 , −−  – южная область,  

рис. 4. На поверхности r=rS выполнено граничное условие (31). Радиальная сфе-

рическая скорость протекания жидкости через сегменты зависит от выбора функ-

ции g1(ζ): ( ) ( ) ( ) −== ctg1 1 SSSr gvrrv , = sinSS r . Далее нижними индек-

сами i, e отмечаем параметры течения на внутреннем и внешнем цилиндрах соот-

ветственно. 

Примем связь между функциями H(ζ) и g1(ζ): 

 


=











g

Hg

d

d 2
12 2

, (33) 

где g1 – постоянная малая величина 1-го порядка. Изучим движение, для кото-

рого 

( )( )
( ) e

e
e

m

m
HH

+

+
=





1

1
,   ( ) =  ctggHh , 
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 hHb = 2 ,    ( ) ee mHH +=  1 , (34) 

( )

( )





























−+−

−
=





H
e

i
Hi

Hi

mmg

mH
g

11

12 22

1 ,     ei  , ,  11, − . 

 

 

Рис. 4. Геометрические параметры области течения (34) в зазоре между непроницаемыми 

коаксиальными цилиндрами: ζ = ζi и ζ = ζe – радиусы внутреннего и внешнего цилиндров; 

r = rS – проницаемый сферический сегмент 

Fig. 4. Geometric parameters of the flow domain (34) in a gap between impermeable coaxial  

cylinders: ζ = ζi and ζ = ζe are the radii of internal and external cylinders, respectively; r  =  rS  

is the permeable spherical segment 

 

Применяем обозначения: 

i

e
H

H

H
m = , 

i

e

h

h
m = , 

( )
1

1
1

−

−
=+ 

H

ie

m
m . 

При анализе решения (34) полагаем H(ζ)>0 и фиксируем исходные положитель-

ные параметры ζi, ζe, He, mH. Отметим, что ( ) ( )izezH vvm = , 

( ) ( )SSSSz vgHHrrrv −== 2 , ( )SS HH == , = sinSS r ,  21, . Со-

гласно (6), течению (34) соответствует непротекаемая поверхность 

 ( ) 0=− YSv , ( ) ( ) ( )2

02 1 sin 2 2sinY H t t g 
 = + + +  
 

, (35) 

где Φ(Y) – произвольная функция, область значений которой находится внутри  

интервала  ei  , . Например, ( ) Yiei 2
2

1 sin −+=

 

либо 

( ) Yiei 2
2

1 th −+= , где Φ1, Φ2 – const, 0<Φ1 ≤1. Именно связь (33) поз-

воляет получить в явном виде спираль (35). Из (25), (33) следует, что 

 sgn sgn
d p

g
d z



 
=  

  
. (36) 
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Существуют два режима движения (34), зависящие от поведения основного  

течения, а именно от знака производной dH/dζ. Режим I: если mH >1,  

то ( )eim  , ( ) 01 +  em , ( ) zvzpg sgnsgnsgn −== . Здесь 0m , 

если ( )ieHm 1 ; 01 − m , если ( ) 1 ieHm ; 0=m , если 

( )ieHm = . 

Режим II: если 10  Hm , то ( )eim  0 , ( ) 01 +  em , 

( ) zvzpg sgnsgnsgn =−= .  

Итак, согласно (36), gsgn  определяет характер ζ-радиальной неоднородности 

продольного градиента давления ∂p/∂z. Значение mH =1 является пороговым между 

режимами I и II. Для каждого режима формальное изменение знака константы g  

влечет за собой формальное изменение направления течения через проницаемые 

сегменты. Для выяснения физического характера различий между режимами I и II 

будем сопоставлять течения с одинаковыми ( )zp sgn . Возьмем для определен-

ности течения, в которых ∂p/∂z<0. В режиме I эта ситуация наблюдается при 

0g , и здесь |∂p/∂z| растет с ростом ζ. В режиме II имеем 0g , и здесь |∂p/∂z| 

убывает с ростом ζ. Такой же результат справедлив и для ∂p/∂z>0, т.е. после фор-

мального изменения направления продольного течения. В качественном отношении 

поведение направлений векторов vr и vθ одинаковое для обоих режимов (см. рис. 4). 

Вывод: для данного течения 

( ) 













=


=−

z

p

d

d

d

dH
mH sgnsgn1sgn . 

В экваториальной плоскости z-компонента завихренности не зависит от g : 

 ( ) 00 ==zh , ( ) ( )( ) ( )( )
2

0 2 2 1z e ez H m m  
  = = +   +  
 

. (37) 

Обозначим ( ) ( ) ( ) 0== zdd zz . Для режима I имеем ( ) 00 = zz , и здесь 

существует еще один порог: 0=m . Если 0m , то 0 z ; если ( )0,1−m , 

то 0 z . 

Вывод: для режима I ( )( ) zieHm =− sgnsgn . 

Для режима II завихренность ( )0= zz  как функция аргумента ζ может быть 

знакопеременной и немонотонной. Действительно, ( ) 00 = zz , если 

( ) ( ) 2− mie , см. (37). Нулевое значение ( ) 00 == zz  получаем при 

( )−== me20 , и перемена знака происходит во внутренних точках 

( )ei  ,0 , когда 

 ( ) ( )iem −  22 . (38) 

Кроме того, e=0

 

при ( ) 2=− m , и тогда ( ) 00 = zz  для  )ei  , . Если 

( ) ( )iem =−  2 , то i=0 , и тогда ( ) 00 = zz  для ( ei  , . Если 

( ) ( )iem −  2 , то ( ) 00 = zz  на всем интервале  ei  , . 

Вывод: по отношению к перемене знака завихренности ( )0= zz  параметр 

( )− m  имеет два пороговых значения, ( ) 2=− m и ( ) iem =−  2  (рис. 5). 
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⊝ ⊝→⊕ ⊕ 

1 (−m*) 0 2 ζe / ζi 2ζe / ζi 

 
Рис. 5. Режим ( )0,1Hm  . Интервалы значений параметра ( )m− , для которых ( )0z z = , 

см. (37), отрицательная [⊝], знакопеременная [⊝→⊕] и положительная [⊕] 

Fig. 5. Flow regime at ( )0,1Hm  . Intervals with the values of parameter ( )m−  for which,  

according to (37), ( )0z z =  is negative [⊝], alternating [⊝→⊕], and positive [⊕] 

 

Функция ( ) z  характеризует ζ-радиальную неоднородность завихренности 

( )0= zz . Имеем 0 z , если ( ) ( )iem −  3 . Нулевое значение 

( ) 01 == z  получаем при ( )−== me31 ; здесь ( )ei  ,1 , если 

 ( ) ( )iem −  33 . (39) 

Кроме того, e=1

 

при ( ) 3=− m , и тогда 0 z  для  )ei  , . Если 

( ) ( )iem =−  3 , то i=1 , и тогда 0 z  для ( ei  , . Если 

( ) ( ) 3− mie , то 0 z  на всем интервале  ei  , . Функция ( ) z   

в точке 1=  достигает максимум. 

Вывод: по отношению к перемене знака Ωz(ζ), т.е. по отношению к переходу 

«монотонность–немонотонность» функции ( )0= zz , параметр ( )− m  имеет два 

пороговых значения: ( ) 3=− m  и ( ) iem =−  3 . Этот результат аналогичен 

тому, что показан на рис. 5 для ( )0= zz . 

Итак, отношение радиусов цилиндров ζ e / ζ i  предопределяет свойства течения, 

потому что именно эта величина указывает границы интервалов значений m , для 

которых наблюдаются знакопостоянные и знакопеременные, монотонные и немо-

нотонные зависимости ( )0= zz  аргумента ζ. Например, условия (38) и (39) сов-

местимы друг с другом, если ( ) ( )iem −  23 . 

 

Заключение 
 

Решение (1) содержит произвольную зависимость vφ = H(ζ), поэтому конкрет-

ный выбор основного течения дает возможность рассматривать разнообразные  

варианты поведения возмущенного движения. Для стационарного решения (8) 

определены закономерности появления спиралевидных вихревых поверхностей. 

Решение (20) характеризует течение, обусловленное растущим со временем возму-

щением давления. Гидродинамическая интерпретация: течение жидкости вне вихре-

вого цилиндра, к которому пристыкована непроницаемая поверхность (см. рис. 1). 

Решение (24) определяет течение, обусловленное растущим со временем возмуще-

нием скорости. Гидродинамическая интерпретация:  

1) течение внутри цилиндрической поверхности тока; на торцах этого цилин-

дра находятся подвижные проницаемые сферические сегменты см. (рис. 3), и на 

поверхностях сегментов выполнено условие (31);  

2) течение в зазоре между коаксиальными цилиндрами (см. рис. 4).  
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