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Аннотация. Статья посвящена анализу современных достижений в области 

применения методов машинного обучения (МО) для решения задачи прогнози-

рования условий синтеза и свойств тонкопленочных материалов на основе диок-

сида титана для фотокатализа. Проведенный обзор показывает, что, несмотря на 

растущий интерес к данной теме, разработанные на сегодняшний день модели 

МО носят узкоспециализированный характер. Обучение моделей проводится на 

небольшом наборе экспериментальных данных, что существенно сужает область 

их практического применения и препятствует созданию универсальных инстру-

ментов для дизайна материалов. Основной проблемой является отсутствие ком-

плексных моделей, способных устанавливать сквозные связи в цепочке «условия 

синтеза – свойства – фотокаталитическая активность» и целостно описывать це-

ленаправленный синтез фотокатализаторов на основе TiO2 как в тонкопленоч-

ном, так и в дисперсном состоянии. Так как итоговая эффективность фотокатали-

затора определяется в том числе параметрами фотокаталитического процесса, то 

их учет также затрудняет создание комплексных моделей МО. Для преодоления 

указанных ограничений в статье обосновывается необходимость создания стан-

дартизированных и структурированных баз данных, которые должны обобщать 

разрозненные экспериментальные результаты из множества источников, обеспе-

чивая их согласованность и машиночитаемость. Интеграция данных в единые 

платформы станет фундаментом для разработки более точных и надежных моде-

лей МО, способных ускорить открытие и оптимизацию перспективных фотока-

талитических материалов на основе TiO2. 
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Abstract. This article analyzes recent developments in the use of machine learning 

techniques to predict the synthesis conditions and properties of thin film titanium dioxide 

photocatalytic materials. It demonstrates that, although there has been growing interest 

in this area, the machine learning models that have been developed so far are highly 

specialized and limited in their application. These models are trained using only a small 

set of experimental data, which limits their usefulness and hinders the creation of more 

general tools for the material design. 

The main challenge is the absence of the comprehensive models that can establish 

connections between the «synthesis conditions – properties – photocatalytic activity» 

and comprehensively describe the targeted synthesis of the titanium dioxide photocata-

lysts, both in thin film and dispersed forms. Since the final photocatalytic efficiency is 

also dependent on the parameters of the photocatalytic process, considering these  

factors also complicates the development of comprehensive machine learning models. 

To address these challenges, this paper emphasizes the need for creating standardized 

and structured databases that synthesize diverse the experimental results from various 

sources, ensuring consistency and machine readability. Integrating data into unified 

platforms forms the basis for developing more accurate and dependable machine learning 

models capable of accelerating the identification and optimization of promising titanium 

dioxide based photocatalytic materials. 
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Тонкопленочные материалы на основе диоксида титана становятся пер-

спективной альтернативой дисперсным материалам в области фотоэлектро-

катализа и фотокатализа [1–5]. Они отличаются большей площадью актив-

ных центров на поверхности, лучшей интеграцией с другими материалами 

и конкурируют с порошковыми фотокатализаторами по эффективности и 
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легкости применения [6]. Диоксид титана отличается высокой химической 

стабильностью, относительно невысокой стоимостью, нетоксичностью [7], 

однако высокая скорость рекомбинации носителей заряда, а также большое 

значение ширины запрещенной зоны (Eg) оксида в различных кристалличе-

ских модификациях (3,2–3,4 эВ) не позволяет ему эффективно использовать 

весь спектр солнечного излучения и давать высокий квантовый выход [8, 9]. 

Одной из стратегий повышение фотоактивности диоксида титана является 

его легирование другими полупроводниковыми оксидами редкоземельных 

элементов, в том числе диоксидом церия [3, 5, 8–12], что приводит к возник-

новению в материале гетеропереходов, которые способствуют эффектив-

ному разделению носителей зарядов, повышению их времени жизни, изме-

нению значения Eg и росту степени использования видимого света.  

Мощным инструментом для выявления скрытых и нелинейных взаимо-

связей между условиями синтеза, структурой и свойствами материалов  

является машинное обучение (МО). Его применение для прогнозирования 

состава новых материалов с заданными функциональными свойствами и оп-

тимизации условий их получения приводит к снижению ресурсов и времени, 

затрачиваемых на проведение исследований [13]. Несмотря на большой по-

тенциал применения искусственного интеллекта в материаловедении, в том 

числе в области фотокатализа c участием диоксида титана, в литературе 

представлены в основном результаты исследований отдельных научных 

групп, поэтому данная статья посвящена анализу достижений в применении 

методов машинного обучения для прогнозирования свойств тонкопленоч-

ных материалов на основе диоксида титана, в том числе фотокаталитиче-

ской активности, выявления существующих проблем и перспектив развития.  

Большинство представленных в литературе работ направлено на приме-

нение МО для прогнозирования значения Eg диоксида титана в дисперсном 

состоянии [14–17], которая является одним из основных факторов, оказыва-

ющих влияние на его фотоактивность. Так, в работе [14] предложено прове-

дение прогнозирования Eg фотокатализаторов на основе анатаза в диапазоне 

от 2,28 до 3,25 эВ с использованием модели регрессии гауссовского про-

цесса, исходя из представленных в литературе экспериментальных данных 

о параметрах кристаллической решетки (структурного параметра) и пло-

щади поверхности (морфологического параметра) материалов. Модель, по-

строенная на анализе экспериментальных данных, позволяет избежать оши-

бок, связанных с применением данных, полученных теоретически ab-initio [17], 

и демонстрирует высокий коэффициент корреляции (R2) 99,99% с результа-

тами эксперимента.  

Форма и размер частиц диоксида титана также оказывают влияние на его 

фотокаталитическую активность, так как направление роста кристалла ока-

зывает влияние на динамику носителей заряда в нем. Прогнозирование 

формы нанокристалла исходя из принципов ab-initio, которые учитывают 

только значения поверхностной энергии различных кристаллографических 

поверхностей, невозможно. В условиях реального эксперимента направление 

роста кристалла определяется наличием сорбирующихся на поверхности 
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ионов, которые могут выступать в качестве регуляторов формы. В работе [18] 

для прогнозирования формы и размера частиц TiO2 была предложена мо-

дель МО с использованием алгоритмов искусственных нейронных сетей, 

обучение которой проводилось на экспериментальных данных, полученных 

непосредственно авторами. С применением методов экспериментального 

планирования авторы определили основные параметры гидротермального 

синтеза TiO2 с заданной формой и размером (исходные концентрации три-

этаноламин титаната и этаноламина, pH, температуры синтеза), что позво-

лило разработать модель с высокой достоверностью на небольшом наборе 

данных. Разработанная авторами статьи [18] модель МО позволила не 

только предсказывать свойства конечного материала, но и определять усло-

вия гидротермальной обработки для получения наночастиц с формой усе-

ченной бипирамиды или удлиненных частиц длиной от 20 до 140 нм.  

Принципиально важное значение для фотокатализа также имеет кон-

троль соотношения аморфной и кристаллической фаз в нанокомпозитах 

TiO2, так как несмотря на то, что кристаллические структуры отличаются 

более высокой фотоактивностью, аморфные структуры характеризуются 

меньшей скоростью рекомбинации носителей зарядов. Для прогнозирования 

и классификации соотношения аморфной и кристаллической фаз в наноком-

позитах TiO2, полученных золь-гель методом, модели машинного обучения 

также были разработаны при использовании собственных эксперименталь-

ных данных авторами работы [19]. Ими было установлено, что модель  

регрессии гауссовского процесса является наиболее успешной моделью, 

предсказывающей с точностью 99,9 % степень превращения аморфной фазы 

в кристаллическую в результате термической деструкции образцов при тем-

пературе от 200 до 550°C со скоростью нагрева 1, 5, 10, 20°С/мин золей на 

основе тетраизопропоксида титана, предварительно высушенных при 120°С.  

Обзор достижений в применении методов МО для проектирования фо-

токаталитических процессов с участием TiO2 приведен в работе [1]. Авторы 

уделяют основное внимание прогнозированию параметров фотокаталитиче-

ского процесса и конфигурации фотореакторов и не рассматривают во-

просы, связанные с прогнозированием условий синтеза фотокатализаторов.  

Прогнозирование фотоактивности TiO2 в реакциях разложения органи-

ческих загрязнителей в зависимости от условий процесса с использованием 

моделей МО также представлено в работах [20, 21]. Авторами работы [20] 

была собрана собственная база данных из 200 наборов результатов экспери-

мента по изучению фотокаталитической активности диоксида титана из 

опубликованных источников, на основании которой и проводилось обучение 

моделей МО. Наилучшие результаты показали модели с использованием  

алгоритмов Adaboost, Catboos и XGBoost. Применение метода импутации 

позволило избежать удаления неполных наборов данных, а повышение точ-

ности моделей было достигнуто путем использования синтетически сгене-

рированных исходных данных. Анализ SHAP позволил установить, что ско-

рость фотодеградации загрязняющих веществ в воздухе как выходной пара-

метр в моделях в первую очередь зависит от количества фотокатализатора, 
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размера реактора и типа органического загрязнителя, а затем от его началь-

ной концентрации, интенсивности и длины волны излучения и темпера-

туры. Авторы работы [21], проанализировав 13 алгоритмов моделей МО для 

прогнозирования константы скорости фотодеградации красителей на ос-

нове аналогичных входных параметров фотокаталитического процесса, 

также установили, что модель XGBoost показывает наибольшую точность 

(R2: 0,932‒0,926 и 0,937‒0,924 на этапах обучения и тестирования соответ-

ственно).  

Работы, направленные на применение методов МО для прогнозирования 

фотокаталитической активности TiO2 в тонкопленочном состоянии, в лите-

ратуре практически отсутствуют. Авторами работы [22] модель МО на ос-

нове искусственных нейронных сетей (R2: 0,99) была применена для про-

гнозирования влияния времени фотодеградации органического красителя и 

содержания SiO2 в составе тонкопленочного фотокатализатора TiO2:SiO2, 

полученных золь-гель методом, на степень деградации красителя. В работах 

[23–25] методы МО применяются только для прогнозирования свойств по-

крытий, таких как микротвердость, пористость, толщина, показатель прелом-

ления, в зависимости от условий синтеза. Все исследователи применяют для 

обучения только свои экспериментальные данные. Входными переменными 

для модели МО в работе [25] были условия электрохимического осаждения 

на Al-подложках пленок Ni–P–TiO2 (соотношение компонентов в электро-

лите NiSO4–NaH2PO2–TiO2, время и температура), а выходным параметром – 

микротвердость по Виккерсу. Модель была разработана на основе алго-

ритма Extra Trees и показала высокий коэффициент корреляции 94,47. Зави-

симость между показателем преломления и пористостью пленок TiO2,  

а также составом исходной суспензии и методикой ее нанесения на стеклян-

ную подложку обнаруживается с применением алгоритма машинного обу-

чения Random Forest [23]. Для разработки модели авторами было проанали-

зировано 32 образца. Модель демонстрирует невысокую корреляцию с экс-

периментальными данными (всего 93,5%), которая, по мнению авторов,  

может быть повышена при увеличении набора экспериментальных данных 

для обучения модели. Более высокую точность моделей МО для прогнози-

рования пористости пленок TiO2 с использованием алгоритмов Random 

Forest и XGBoost удалось получить в работе [24]. Для обучения и тестиро-

вания моделей МО авторами была проанализирована пористость 100 пленок 

диоксида титана, полученных методом анодного окисления, в зависимости 

от напряжения и времени реакции. Учет всех параметров синтеза (тип элек-

тролита, состав электролита, pH, приложенное напряжение и разность по-

тенциалов, температура и продолжительность анодирования) пока вызывает 

затруднение, так как требует проведения большого числа эксперименталь-

ных исследований для обучения моделей МО. Выбор наиболее значимых 

параметров произведен на основании интуиции экспериментатора.  

Таким образом, применение методов МО для прогнозирования условий 

синтеза, свойств и фотокаталитической активности диоксида титана, в том 

числе в тонкопленочном состоянии демонстрирует значительный потенциал. 
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В настоящее время методы МО применяются для решения отдельных задач 

в рамках цепочки «условия синтеза – свойства – функциональные свойства» 

материалов. Требуется разработка комплексных моделей МО как для дис-

персных материалов, так и для тонкопленочных, в том числе на основе ди-

оксида титана, модифицированного другими полупроводниковыми окси-

дами (РЗЭ). Высокий коэффициент корреляции показывают модели, разра-

ботанные с применением алгоритмов машинного обучения XGBoost и 

Random Forest. Большинство моделей МО разрабатывается на основании 

ограниченного количества экспериментально полученных данных, что 

сужает область их применения, а также вызывает опасение в их достоверно-

сти. Выбор условий синтеза в качестве входных данных для моделей МО 

осуществляется зачастую на основании опыта экспериментатора, что также 

уменьшает их точность и обобщающую способность. Для прогнозирования 

значения ширины запрещенной зоны как одного из определяющих параметров 

фотоактивности материалов на основе диоксида титана для МО возможно 

применять данные, полученные ab-initio, что решает основную проблему не-

хватки экспериментальных данных для обучения. Однако теоретические 

расчеты не позволяют оценить все межатомные взаимодействия, что может 

приводить к заниженным значениям Eg и систематическим ошибкам разра-

батываемых на их основе моделей МО. Решение существующих проблем 

возможно путем создания стандартизированных баз данных, в которых бу-

дут обобщены представленные в литературе результаты исследования вли-

яния параметров синтеза, составов прекурсоров, фазового состава, морфо-

логии, оптических свойств на фотокаталитическую активность материалов 

на основе диоксида титана. Результаты должны быть представлены в еди-

ном формате, пригодном для анализа с помощью моделей искусственного 

интеллекта. Данные базы станут основой для построения более точных и 

универсальных моделей, способных ускорить дизайн новых тонкопленоч-

ных фотокатализаторов. 
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