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Аннотация. Представлено комплексное теоретико-экспериментальное ис-

следование биметаллических нанокатализаторов на основе палладия и железа 

(Pd–Fe), сочетающее методы моделирования ab initio, эволюционного структур-

ного поиска и рентгеноструктурного анализа. С использованием эволюционного 

алгоритма USPEX в связке с теорией функционала плотности (DFT) предсказаны 

термодинамически стабильные атомные конфигурации нанокластеров Pd–Fe 

в диапазоне составов Pd:Fe = 1:1–20:1 и размеров 13–55 атомов. На основании 

полученных данных сформирована кристаллографическая база эталонных интер-

металлических фаз, включая известные соединения FePd, Fe2Pd4, FePd3 и более 

сложные низкосимметричные структуры Fe2Pd10 и Fe2Pd16. Экспериментальный 

синтез катализаторов на носителе γ-Al2O3 с последующим трехэтапным термиче-

ским восстановлением позволил получить наночастицы переменного состава. 

Идентификация фазового состава синтезированных образцов выполнена методом 

Ритвельда с использованием созданной базы. Установлено, что фазовое равнове-

сие в системе Pd–Fe нелинейно зависит от стехиометрического соотношения ком-

понентов: при низком содержании Pd доминирует фаза Fe2Pd4, с увеличением 

концентрации палладия наблюдается появление фаз FePd3, Fe2Pd10 и Fe2Pd16. Рас-

четы адгезионной и поверхностной энергий показали, что упорядоченные фазы 

состава FePd, Fe2Pd4 и FePd3 обладают повышенной реакционной способностью, 

что делает их перспективными для каталитических приложений. Результаты  

работы демонстрируют эффективность синергии цифрового проектирования  

материалов и экспериментальной верификации для рационального создания вы-

сокоактивных и селективных биметаллических катализаторов. 
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Abstract. This work presents a comprehensive theoretical and experimental study 

of bimetallic palladium-iron (Pd–Fe) nanocatalysts, combining ab initio modeling, evo-

lutionary structure search, and X-ray diffraction analysis. Using the evolutionary algo-

rithm USPEX coupled with Density Functional Theory (DFT), thermodynamically  

stable atomic configurations of Pd-Fe nanoclusters were predicted for compositions in 

the range of Pd:Fe = 1:1 to 20:1 and cluster sizes of 13–55 atoms. Based on the results, 

a crystallographic database of reference intermetallic phases was compiled, including 

known compounds such as FePd, Fe2Pd4, and FePd3, as well as more complex,  

low-symmetry structures like Fe2Pd10 and Fe2Pd16. The catalysts were synthesized on  

a γ-Al2O3 support followed by a three-stage thermal reduction treatment, yielding na-

noparticles of variable composition. Phase identification of the synthesized samples 

was performed using the Rietveld method and the created database. It was established 

that the phase equilibrium in the Pd–Fe system non-linearly depends on the stoichio-

metric ratio of the components: the Fe2Pd4 phase dominates at low Pd content, while an 
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increase in palladium concentration leads to the formation of FePd3, Fe2Pd10, and 

Fe2Pd16 phases. Calculations of adhesion and surface energies revealed that the ordered 

phases FePd, Fe2Pd4, and FePd3 exhibit high reactivity, making them promising for 

catalytic applications. The results demonstrate the efficacy of a synergistic approach 

combining digital materials design with experimental verification for the rational crea-

tion of highly active and selective bimetallic catalysts. 
Keywords: bimetallic catalysts, Pd-Fe, USPEX, Rietveld method, intermetallic phases 
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Введение 

 

Биметаллические катализаторы на основе палладия и железа (Pd–Fe) 

привлекают все большее внимание в области гетерогенного катализа благо-

даря их уникальным функциональным свойствам, сочетающим высокую ка-

талитическую активность палладия и экономическую доступность, экологи-

ческую совместимость и ферромагнитные характеристики железа [1–3]. 

Взаимодействие между компонентами в Pd–Fe-системах способствует про-

явлению синергетических эффектов – как электронного (лигандного), так и 

геометрического (деформационного) характера, что позволяет тонко «настра-

ивать» адсорбционные и реакционные свойства активных центров [4]. 

Вследствие этого Pd–Fe-нанокатализаторы проявляют высокую эффектив-

ность в таких технологически значимых процессах, как селективное гидри-

рование органических соединений [5], электрохимическое выделение водо-

рода (HER) [3], окисление муравьиной кислоты (FAOR) [6], а также катали-

тическое разложение формиата натрия и гидролиз химических гидридов для 

генерации чистого водорода [2]. 

Однако каталитические характеристики систем Pd–Fe довольно чувстви-

тельны к их наноструктуре: атомному распределению, морфологии, степени 

сегрегации компонентов и природе поверхностных слоев [7]. Даже при фик-

сированном мольном соотношении Pd:Fe возможны тысячи структурных изо-

меров – от структуры типа «ядро–оболочка» (Pd-shell/Fe-core или наоборот) 

до полностью гомогенных сплавов или фазово-разделенных агрегатов [4]. 

Такое структурное разнообразие обусловливает широкий спектр энергети-

ческих ландшафтов и каталитических свойств, что делает традиционный  

эмпирический подход к синтезу и оптимизации данных материалов весьма 

неэффективным. 

В этих условиях методы in silico-проектирования становятся ключевым 

инструментом для предсказания термодинамически стабильных и каталити-
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чески активных конфигураций биметаллических нанокластеров. В частности, 

эволюционный алгоритм USPEX (Universal Structure Predictor: Evolutionary 

Xtallography) позволяет без априорных предположений исследовать огром-

ное конфигурационное пространство и выявлять глобальные и локальные 

энергетические минимумы для заданных состава и размера кластера [8].  

В последние годы USPEX в сочетании с методами теории функционала 

плотности (DFT) уже продемонстрировал высокую эффективность при мо-

делировании Pd-содержащих биметаллических систем, включая Pd–Ni и 

Pd–Cu [7, 9], а недавно – и Pd–Fe-кластеры малой размерности [7]. 

Перспективным направлением, дополняющим эволюционное моделиро-

вание, является интеграция данных USPEX / DFT с методами искусственного 

интеллекта (ИИ) и машинного обучения (МО). Такие гибридные подходы 

позволяют ускорить скрининг каталитически перспективных структур, вы-

являть скрытые корреляции между геометрическими / электронными харак-

теристиками активных центров и их реакционной способностью, а также 

строить надежные предсказательные модели на основе ограниченных обу-

чающих выборок [10–12]. В рамках парадигмы цифрового материаловеде-

ния подобные стратегии открывают путь к рациональному, «от структуры  

к свойству» проектированию новых поколений катализаторов с заданными 

функциональными характеристиками. 

Настоящая работа посвящена систематическому экспериментальному 

(рентгеноструктурный анализ) и теоретическому исследованию структурного 

ландшафта Pd–Fe-нанокластеров (13–55 атомов) в широком диапазоне соста-

вов (Pd:Fe = 1:1–50:1) с использованием эволюционного алгоритма USPEX 

в связке с DFT-расчетами и элементами анализа данных на основе ИИ. Цель 

исследования – выявление термодинамически предпочтительных атомных 

конфигураций, анализ их склонности к сегрегации и интерметаллическому 

упорядочению, а также установление связи между предсказанными струк-

турами и потенциальной каталитической активностью. Полученные резуль-

таты формируют основу для экспериментального синтеза и направленной 

оптимизации Pd–Fe--катализаторов в прикладных реакциях. 

 

Объекты и методы 

 

Биметаллические катализаторы Pd–Fe синтезировали методом пропитки 

предварительно дегазированного носителя γ-Al2O3 (125–250 мкм) раствором 

ацетилацтонатов палладия и железа в ледяной уксусной кислоте. После про-

питки и сушки при 80°C в течение 18 ч образцы подвергали трехстадийной 

термической обработке в потоке газа (60 мл/мин): прокаливанию в аргоне при 

525°C, окислению в кислороде при 375°C и восстановлению в водороде при 

525°C (на всех стадиях нагрев 1 град./мин, выдержка 2 ч) для удаления орга-

нических лигандов и формирования металлических наночастиц. Полученные 

катализаторы маркировали в соответствии с мольным соотношением Pd:Fe. 

Идентификация фазового состава и уточнение кристаллографических пара-

метров синтезированных наноструктур проводились методом рентгеновской 
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дифракции на дифрактометре Miniflex 600 в геометрии Брэгга–Брентано  

с использованием Cu Kα-излучения (λ = 1.54178 Å). Измерения выполня-

лись в угловом диапазоне 2θ = 10–90° с шагом 0,02° и временем счета 2 с на 

точку. Для обработки дифракционных данных и полнопрофильного анализа 

использовался метод Ритвельда. Качество аппроксимации эксперименталь-

ных данных оценивалось по фактору достоверности Rwp. 

Для фазы Pd параметр решетки определяли путем корректировки шкалы 

по 2θ: 

2θ2 = 2 sin−1 sin 2θ1

ξ
, 

где 2θ1 – положение пика до уточнения; 2θ2 – положение пика после уточ-

нения; ξ – параметр, характеризующий степень сжатия или растяжения 

ячейки относительно начальных значений. Таким образом, после уточнения 

параметра масштаба ξ рассчитывался параметр решетки.  

Параметр решетки для фазы Pd уточнялся путем коррекции шкалы 2θ  

с использованием коэффициента масштаба: 

𝑎𝑟𝑒𝑓𝑖𝑛𝑒𝑑 = ξ ∗ 𝑎𝑖𝑛𝑖𝑡𝑖𝑎𝑙. 

Для описания экспериментальных дифрактограмм использовалась мо-

дель, включающая три основных вклада: 

𝐼𝑐𝑎𝑙𝑐(2θ) = ∑ 𝑎𝑖 ∙ 2θ𝑖5
𝑖=0 + 𝑆𝑆𝑃𝑇𝐼𝑆𝑃𝑇(2θ) + 𝑆𝐶𝑇𝐿𝑆𝑇𝐼Σ(2θ, μ, σ), 

где первое слагаемое – полиномиальный фон 𝑎0, … , 𝑎5 (6-й степени); 

𝑆𝑆𝑃𝑇𝐼𝑆𝑃𝑇(2θ) – вклад от дифракционной картины носителя (γ-Al2O3), 

𝑆𝐶𝑇𝐿𝑆𝑇𝐼Σ(2θ, μ, σ) – вклад от наночастиц катализатора. 

Оптимизация 11 параметров модели (коэффициенты фона, шкальные 

множители, параметры распределения частиц по размерам μ, σ, коэффици-

ент масштаба решетки ξ) проводилась с использованием модуля curve_fit из 

библиотеки SciPy в среде программирования Python. 

Средний размер и дисперсность наночастиц определялись путем аппрок-

симации экспериментальной дифракционной картины линейной комбина-

цией профилей, рассчитанных для частиц разного размера, в рамках под-

хода, разработанного Cervellino: 

𝐼Σ(2θ, μ, σ) = ∑ 𝑃𝑖(𝑑𝑖 , μ, σ)𝐼𝑖(2θ)𝑁
𝑖=1 . 

Вероятностный множитель 𝑃𝑖 задавался логнормальным распределением: 

𝑃𝑖(𝑑𝑖 , μ, σ) =
1

σ√2π

1

𝑑𝑖
exp [−

1

2
(

ln 𝑑𝑖−μ

σ
)

2
], 

где μ, σ – параметры распределения, а средний размер частиц вычислялся как 

𝑑𝐴𝑉𝐺 = 𝑒μ+
σ2

2 . 

Согласие между расчетной и экспериментальной дифракционной карти-

ной оценивалось с помощью взвешенного фактора сходимости Rwp, скор-

ректированного на фоновую интенсивность: 

𝑅𝑤𝑝 = [
∑ 𝑤𝑖(𝐼𝑜𝑖−𝐼𝑐𝑖−𝐼𝑏𝑖)2𝑁

𝑖

∑ 𝑤𝑖(𝐼𝑜𝑖−𝐼𝑏𝑖)2𝑁
𝑖

]
1/2

× 100%, 

где 𝐼𝑜𝑖 – интенсивность в i-й точке экспериментальной дифрактограммы 

смеси; 𝐼𝑐𝑖 – интенсивность в i-й точке рассчитанной дифрактограммы; 𝐼𝑏𝑖  – 
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фоновая интенсивность в i-й точке; 𝑤𝑖 = 1/𝐼𝑜𝑖 – вес в i-й точке; N – размер 

анализируемого массива данных. 

Для идентификации наблюдаемых фаз и анализа их термодинамической 

стабильности были использованы обширные кристаллографические базы 

данных, содержащие результаты расчетов из первых принципов (ab initio): 

OQMD (Open Quantum Materials Database) и Materials Project. Эти базы 

предоставляют информацию о кристаллической структуре, параметрах эле-

ментарной ячейки и статической энергии решетки при 0 К для тысяч неор-

ганических соединений. 

Для системы Pd–Fe был дополнительно проведен независимый прогноз 

стабильных кристаллических фаз с переменным составом с помощью кода 

USPEX (Universal Structure Predictor: Evolutionary Xtallography). Расчеты вы-

полнялись на суперкомпьютере «Блохин» Международного исследователь-

ского института интеллектуальных материалов ЮФУ. Размер популяции: 

30 структур на поколение. Доли генерационных операторов: 50% – наслед-

ственность, 30% – случайные структуры, 20% – мутации. Отбор: 60% луч-

ших структур переходили в следующее поколение. Количество шагов опти-

мизации (VASP) – 6. 

Все расчеты в рамках теории функционала плотности, использованные  

в базах данных и в связке с USPEX, были выполнены в обобщенном градиент-

ном приближении (GGA). Волновые функции валентных электронов раскла-

дывались в плосковолновом базисе с высокой энергией обрезания 330 эВ. 

Критерий сходимости по полной энергии составлял ~ 0.5·10⁻⁶ эВ/атом, что 

обеспечивает высокую точность определения энергий решеток. 

Пространственное распределение атомов в элементарных ячейках иден-

тифицированных фаз визуализировалось с использованием программного 

обеспечения для анализа кристаллических структур VESTA на основе полу-

ченных кристаллографических данных (параметры ячейки, позиции атомов, 

пространственная группа). 

 

Результаты 

 

Экспериментальное исследование процессов осаждения и анодного окис-

ления двойных сплавов Pd–Fe в электролитах разной природы показало, что 

на подложке Al2O3 формируются в условиях равномерного анодного раство-

рения наноструктурные частицы Pd–Fe переменного состава. Фазовая диа-

грамма двойного сплава Pd–Fe приведена на рис. 1. Палладий (Pd) и железо 

(Fe) обладают неограниченной растворимостью в жидком состоянии, что 

позволяет формировать сплавы с различными концентрациями компонен-

тов. При понижении температуры происходит кристаллизация с образова-

нием непрерывного ряда твердых растворов аустенитного класса. Линии 

ликвидуса и солидуса пересекаются в точке минимума, расположенной при 

температуре 1 304°C и концентрации 48 ат. % Pd. Температура перитектики 

составляет 1 310°C при 50 ат. % Pd. В твердом состоянии аустенитные рас-

творы (γ-Fe, Pd) претерпевают полиморфные превращения, а также образуют 
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интерметаллические соединения, такие как FePd (γ1) и FePd3 (γ2). Было 

установлено образование монотектоида [13] при температуре 815 ± 20°C, 

при этом растворимость Pd в α-Fe составляет около 3,5 ат. %. Критическая 

температура монотектоидного купола составляет примерно 900°C, а моно-

тектическая горизонталь простирается до 23 ат. % Pd. Эвтектоид между  

α-Fe и упорядоченной фазой FePd наблюдается при температуре 620°C и со-

держании 43 ат. % Pd. Максимальная температура образования FePd3 со-

ставляет 820 ± 20°C, что выше, чем для FePd (790 ± 20°C). Обе упорядочен-

ные фазы образуют эвтектоид при температуре 760 ± 30°C и содержании 

61,5 ат. % Pd. Двухфазная область между соединениями FePd и FePd3 охва-

тывает интервал концентраций 60,2–62,6 ат. % Pd.  
 

  
а б 

Рис. 1. Фазовая диаграмма Pd–Fe (а) [13]; выпуклая оболочка Pd–Fe (б).  

Зеленым цветом выделены стабильные фазы 
 

Необходимо отметить, однако, что в кристаллографических базах [14–16] 

приведены различные упорядоченные фазы, в частности FePd, FePd3, Fe2Pd4, 

Fe2Pd10 и Fe2Pd16 [14], откуда следует, что список стабильных двойных спла-

вов Fe–Pd, обсуждаемых в [13], оказывается неполным. FePd – это упорядо-

ченная интерметаллическая фаза, имеющая структуру, аналогичную струк-

туре AuCu, с пространственной группой P4/mmm (тетрагональная симмет-

рия). Параметры решетки приведены в табл. 1. Структура FePd3 аналогична 

AuCu3 и имеет кубическую симметрию с пространственной группой Pm3m. 

Параметры решетки для FePd3 также приведены в табл. 1. Кубическая сим-

метрия обеспечивает высокую степень симметрии и изотропности свойств. 

Структура Fe2Pd4 может быть представлена как комбинация упорядоченных 
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и неупорядоченных фаз, которая обладает более низкой симметрией по 

сравнению с FePd и FePd3. Сплавы Fe2Pd10 и Fe2Pd16 обладают сложной кри-

сталлической структурой с низкой симметрией, на формирование которой 

оказывает влияние рост концентрации палладия. Они обладают хорошей ме-

ханической прочностью и стойкостью к коррозии. Выбор оптимального со-

става Fe–Pd актуален для каталитических характеристик. 

Т а б л и ц а  1  

Структурные параметры соединений Pd–Fe 

Фазы а, Å b, Å c, Å α, град. β, град. γ, град. E, эВ 
Пространствен-

ная группа 

Al2O3 5.6635 5.6635 23.479 90.00 90.00 90.00 –23 088.279 
115, P-4m2, 

Tetragonal 

FePd 2.707 2.707 3.760 90.00 90.00 90.00 –1 663.013 
123, P4/mmm, 

Tetragonal 

Fe2Pd4 8.422 3.725 2.755 90.00 90.00 90.00 –4923.214 
71, Immm,  

Orthofhombic 

FePd3 3.885 3.885 3.885 90.00 90.00 90.00 –3 260.121 
221, Pm-3m, 

Cubic 

Fe2Pd10 11.641 3.901 3.947 90.00 90.00 90.00 –9 715.012 
65, Cmmm,  

Orthofhombic 

Fe2Pd16 8.322 8.322 3.911 90.00 90.00 90.00 –14 506.990 
139, I4/mmm, 

Tetragonal 
 

Представляет интерес поиск возможных стабильных структур соедине-

ний Pd–Fe с различным элементным составом. Элементный состав нано-

структурных фаз на подложке может быть выявлен на основе сравнитель-

ного анализа скоростей осаждения металлов. Однако прогноз полной струк-

турной информации в этом случае ограничен. Представляются актуальными 

поиск стабильных фаз двойных соединений Ni–Fe, создание на их основе 

кристаллографической базы (КБ) и идентификация частиц на подложках пу-

тем сравнения элементного содержания с данными из КБ. Результаты каче-

ственной идентификации структурного состояния наночастиц в этом случае 

в перспективе позволят исследовать термодинамические свойства соедине-

ний Ni–Fe. В литературе существуют обширные базы структур неорганиче-

ских материалов, в частности OQMD, Material Project [15, 16], в которых 

представлены данные как структурных, так и термодинамических свойств 

двойных сплавов Fe–Pd, которые определены на основе ab initio расчетов.  

В работе прогноз двойных структур Fe–Pd переменного состава (до 21 ато-

мов в решетке) был реализован в коде USPEX с интерфейсом VASP [17, 18] 

на суперкомпьютере «Блохин» Международного исследовательского инсти-

тута интеллектуальных материалов Южного федерального университета [17]. 

В USPEX была рассмотрена энтальпия решеток переменного состава Fe–Pd. 

Доля поколений, генерированная из случайных структур и обусловленная 

наследственностью, составляла 0,3 и 0,5 соответственно, из мутаций – 0,2. 

Доля текущего поколения, которая была использована для генерации после-

дующего поколения, составляла 0,6. В каждой генерации рассматривалась 
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популяции из 30 атомов. Расчеты производили с 6 шагами оптимизации  

в коде VASP. Расчеты энтальпии эталонов производили в рамках функцио-

нала электронной плотности в градиентном псевдопотенциале электронной 

плотности (GGA). Детали расчетов приведены в [18]. Статическая энергия 

решеток была определена при 0 К. Расчеты орбиталей электронных состоя-

ний, распределение одноэлектронной плотности и энергии основного состо-

яния производили самосогласованным образом. Волновые функции валент-

ных электронов атомов фаз анализировались в базисе плоских волн с ради-

усом обрезания кинетической энергии в 330 эВ. В этом случае сходимость 

полной энергии составляла ~ 0,5 10–6 эВ/атом.  

На основе проведенных исследований была составлена кристаллографи-

ческая база эталонных решеток двойных фаз Pd–Fe. КБ была использована 

для определения структурного состояния наночастиц на алюминиевой под-

ложке методом Ритвельда после проведенных каталитических исследований. 

Решетки стабильных фаз Pd–Fe (табл. 2, 3) позволяют методом Ритвельда 

оценить структурное состояние, долю частиц Pd–Fe переменного состава  

в исследуемом материале. Данным методом производится полнопрофильное 

сравнение экспериментальных и интегральных (теоретических) дифракто-

грамм, построенных на основе эталонов КБ (параметры решетки, атомные 

позиции и т.д.). Метод позволяет прогнозировать экспериментальные ди-

фрактограммы, а также извлекать полную структурную информацию о ма-

териалах. 

Т а б л и ц а  2  

Статическая энергия решеток чистых элементов и фаз Pd–Fe [20] 

Номер идентификации Формула Функционал E, эВ/Атом T, К 

mp-13 Fe GGA –8.47 

0 
mp-2831 FePd GGA –6.89 

mp-21845 FePd3 GGA –6.11 

mp-2 Pd GGA –5.18 

 

Т а б л и ц а  3  

Энергия формирования фаз [20] 

ID Пространственная группа ∆H, эВ/атом 

FePd5 Cmmm –0.099 

FePd8 I4/mmm –0.083 

FePd3 P4/mmm –0.108 

FePd2 Immm –0.106 
 

С целью выбора оптимального состава Pd–Fe, стимулирующего катализ, 

были использованы сплавы Pd–Fe с переменным содержанием элемента Pd: 

Pd–Fe; Pd3–Fe; Pd5–Fe; Pd10–Fe; Pd20–Fe. Дифрактограммы сплавов иссле-

дуемых составов приведены на рис. 2. Установлено, что для составов Pd–Fe 

и Pd3–Fe (см. рис. 2, a, б) на дифрактограмме доминирует сплав Fe2Pd4. Для 

состава Pd5–Fe (см. рис. 2, в) – сплавы FePd3, Fe2Pd4 в соотношении  

6,2 к 1 соответственно. Для состава Pd10–Fe (см. рис. 2, г) – Fe2Pd10. Для 

https://next-gen.materialsproject.org/materials/mp-13
https://next-gen.materialsproject.org/materials/mp-2213
https://next-gen.materialsproject.org/materials/mp-1418
https://next-gen.materialsproject.org/materials/mp-23
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состава Pd20–Fe (см. рис. 2, д) в дифрактограмме доминируют сплавы FePd3, 

Fe2Pd16 в соотношении 1,3 к 1 соответственно. Пространственное распреде-

ление атомов в решетках приведено на рис. 3. 
 

   

а б в 

  

г д 

Рис. 2. Дифрактограммы сплавов Pd–Fe с переменным содержанием атомов Pd:  

а – Pd–Fe; б –Pd3–Fe; в –Pd5–Fe; г –Pd10–Fe; д –Pd20–Fe; 1 – экспериментальная  

дифрактограмма, 2 – интегральная интенсивность (модель),  

3 – разность между интенсивностями 

 

   
а б в 

  
г д 

Рис. 3. Пространственное распределение атомов в решетке соединений Pd–Fe:  

a – PdFe; б – Fe2Pd4; в – FePd3; г – Fe2Pd10; д – Fe2Pd16 



Комбинация USPEX/DFT-подхода и РФА 

153 

Из полученных результатов следует, что с ростом содержания Pd обна-

руживаются как перераспределение доли фаз, так и появление новых. Необ-

ходимо учесть также, что толщина осажденного слоя на подложке оказыва-

ется разной в разных опытах. В работе была оценена адгезионная энергия Eад, 

приходящаяся на единицу площади, которая в определенной мере может 

свидетельствовать о величине поверхностной энергии атомных решеток. 

Для сплавов FePd, Fe2Pd4, FePd3, Fe2Pd16, Fe2Pd16 адгезионная энергия оказа-

лась равной: а) –111,609, –76,916; б) –106,836, –76,916; в) –52,409; г) –16,314, 

–48,115; д) –10,196, –21,695 эВ/(Атом·А2) соответственно. Полученные ре-

зультаты свидетельствуют о прочности атомных связей в решетках и могут 

быть основой выбора соединений Pd–Fe с оптимальными каталитическими 

характеристиками. Из расчетов следует, что наибольшей поверхностной 

энергией обладают упорядоченные фазы FePd, Fe2Pd4, FePd3, которые могут 

проявить наибольший эффект в каталитических реакциях. 

 

Выводы 

 

В настоящей работе представлено комплексное исследование биметал-

лических катализаторов Pd–Fe, основанное на синергии моделирования ab 

initio с использованием эволюционного алгоритма USPEX и эксперименталь-

ного рентгеноструктурного анализа. Систематическое предсказание стабиль-

ных атомных конфигураций в широком диапазоне составов (Pd:Fe = 1:1–20:1) 

позволило построить детализированную кристаллографическую базу интер-

металлических фаз, включая как известные соединения FePd, Fe2Pd4 и FePd3, 

так и более сложные низкосимметричные структуры Fe2Pd10 и Fe2Pd16. Ана-

лиз выпуклой оболочки Pd–Fe подтвердил термодинамическую стабиль-

ность этих фаз при стандартных условиях. 

Интеграция вычисленных структурных данных с методом Ритвельда обес-

печила точную идентификацию фазового состава синтезированных образцов 

Pd–Fe/γ-Al2O3. Установлено, что фазовое равновесие в системе нелинейно 

зависит от мольного соотношения компонентов: при низком содержании 

палладия (1Pd–1Fe, 3Pd–1Fe) доминирует фаза Fe2Pd4, при увеличении доли 

Pd проявляется переход к фазам FePd3 и Fe2Pd10, а в образце 20Pd–1Fe 

наблюдается сосуществование FePd3 и Fe2Pd16. Полученные закономерно-

сти указывают на возможность целенаправленного управления фазовым  

составом катализатора за счет изменения его общего стехиометрического 

соотношения. 

Расчеты адгезионной энергии выявили высокую поверхностную энергию 

упорядоченных фаз FePd, Fe2Pd4 и FePd3, что делает их перспективными 

кандидатами для каталитических приложений, где требуются активные центры 

с повышенной реакционной способностью. Таким образом, совмещение циф-

рового проектирования материалов на основе USPEX с последующей экспе-

риментальной верификацией открывает надежный путь к рациональному со-

зданию высокоэффективных и селективных Pd–Fe-катализаторов, свойства 

которых можно прогнозировать в зависимости от структурной композиции. 
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