МОНИТОРИНГ СОДЕРЖАНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВАХ НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ ЮЖНОЙ ТАЙГИ ТОМСКОЙ ОБЛАСТИ

Работа посвящена проблемам охраны почвенного покрова месторождений углеводородного сырья южно-таежной подзоны Томской области. Представлены результаты исследований экологического состояния почв районов нефтедобычи, алгоритм организации мониторинга содержания тяжелых металлов в фоновых почвах и статистическая обработка полученных данных. Ключевые слова: экологический мониторинг, тяжелые металлы, почвы.

Требования лицензионных соглашений и законодательства РФ в области охраны окружающей среды [1, 2] выдвигают на первый план проблему организации и проведения экологического мониторинга.

Под экологическим мониторингом понимают систему регулярных наблюдений в пространстве и времени, позволяющую оценивать динамику изменения природной среды и контролировать её состояние под воздействием техногенных факторов [3]. Выделяется мониторинг локальный, региональный и глобальный [4, 5]. Каждый имеет свою специфику. Локальный мониторинг, или санитарно-гигиенический, предполагает контроль за уровнем содержания в природных средах токсичных загрязняющих веществ. Региональный, или геосистемный, - это слежение за взаимодействием природы и человека в процессе природопользования. Глобальный, или биосферный, мониторинг - это система наблюдений за общепланетарными изменениями объектов биосферы, которые происходят преимущественно в атмосфере и гидросфере и обусловливают глобальное распределение различных видов загрязнения.

Интенсивное развитие нефтегазового комплекса неизменно сопровождается загрязнением нефтью окружающей природной среды, что вызывает ответные реакции во всех компонентах экосистем, в том числе и в почве. При попадании нефти и нефтепродуктов в почву происходят глубокие и часто необратимые изменения морфологических, физических, физико-химических и других свойств, а иногда и существенная перестройка всего почвенного профиля. Система контролируемых показателей при проведении экологического мониторинга наряду с нефтепродуктами, сульфат- и хлоридионами должна включать в себя определение тяжелых металлов (ТМ), которые содержатся в составе нефти, а также образуются при сжигании попутного газа. Почвы рекомендуется анализировать на содержание Hg, Pb, Zn, Cd, Ni, Cr, Cu, V, Mn [6].

Цель данной работы — оценка фонового содержания и установление закономерностей распределения ТМ по профилю в основных типах почв при проведении локального мониторинга.

Система экологического опробования почв проектируется на основе ландшафтной дифференциации территории с учетом транзитных микроландшафтов с повышенной экологической чувствительностью (поймы рек и ручьев), вероятных путей поверхностной и грунтовой миграции поллютантов. Фоновые пункты наблюдений размещаются на значительном расстоянии от объектов промысла, на территориях, не подверженных техногенному загрязнению. Контрольные площадки наблюдений располагаются вблизи объектов добычи

нефти (кустовые площадки) и подготовки к эксплуатации (установки подготовки нефти, блочные кустовые и дожимные насосные станции и т.д.).

Объектом исследования являются почвы Васюганской и Лугинецкой групп нефтегазовых месторождений, расположенных в пределах Объ-Иртышского междуречья южно-таежной подзоны Томской области.

В работе представлены результаты мониторинговых исследований содержания ТМ в фоновых почвах в период с 2002 по 2007 г. Статистическая обработка данных проведена с использованием пакета программ «Statistica», «Microsoft Exel». Проведены сравнения однотипных почв на месторождениях с разным сроком эксплуатации – до 10 лет (новые) и более 15 лет (старые). Анализы выполнены в лаборатории мониторинга природной среды ОАО «ТомскНИПИнефть ВНК», аккредитованной в системе аккредитации аналитических лабораторий Госстандарта России (аттестат РОСС RU. 0001.510987), методом атомно-эмиссионной спектроскопии с индуктивно связанной плазмой (АЭС-ИСП). Преимуществом метода АЭС-ИСП является высокая производительность анализа, одновременное определение большого количества элементов и низкий предел обнаружения. В связи с этим определение кислоторастворимых форм ТМ по сравнению с валовыми формами и подвижными соединениями более информативно.

На исследованной территории наиболее распространенными болотноявляются подзолистые, подзолистые, болотные верховые, низинные и аллювиальные типы почв. Глубина просачивания нефти по профилю в значительной мере зависит от гранулометрического состава: если в подзолистых почвах легкого состава (песчаных, супесчаных) она достигает 70 см, то в тяжелых - не более 45 см. Ранее проведенные исследования [7] свидетельствуют о том, что в условиях промывного водного режима легкие фракции нефти и легкорастворимые соли могут быть вынесены из почвенного профиля боковым надиллювиальным стоком вод, и тогда они аккумулируются в подчиненных (супераквальных) ландшафтах. В последующем эти ландшафты могут служить источником вторичного загрязнения земель нефтепродуктами [8].

Результаты определения содержания ТМ в *подзолистых и болотно-подзолистых почвах* позволили установить, что в распределении их по профилю происходит заметное накопление Pb, Zn в органогенных и Ni, Cr, Cu, V в иллювиальных горизонтах (рис. 1, 2).

При статистическом сравнении данных использован непараметрический критерий Манна–Уитни. В подзолистых почвах установлены достоверные отличия (p<0,05) по содержанию ТМ в четырёх генетических

горизонтах. В почвах старых месторождений отмечено большее содержание ТМ по сравнению с почвами новых месторождений: в горизонте A_1A_2 концентрация Рb составляет 7,05 мг/кг в почвах старых месторождений и 2,15 мг/кг в почвах новых месторождений, Zn -28,87 и 5,05 мг/кг, Ni -12,47 и 3,10 мг/кг, Cr -17,91 и 4,10 мг/кг, V -14,51 и 5,75 мг/кг соответственно. В горизонте A_2 выявлены достоверные отличия для Hg и для Zn -27,36 и 13,65 мг/кг. В горизонте A_2 В зафиксированы досто-

верные отличия концентраций Mn (276 и 130 мг/кг), в иллювиальном горизонте (B_3) концентраций Zn (27,87 мг/кг в почвах старых и 12,97 мг/кг в почвах новых месторождений). Учитывая значительную удаленность фоновых пунктов наблюдений от объектов промысла, можно предположить, что большая концентрация TM в почвах месторождений с ранним сроком эксплуатации, возможно, связана с атмосферным загрязнением в результате сжигания попутного газа.

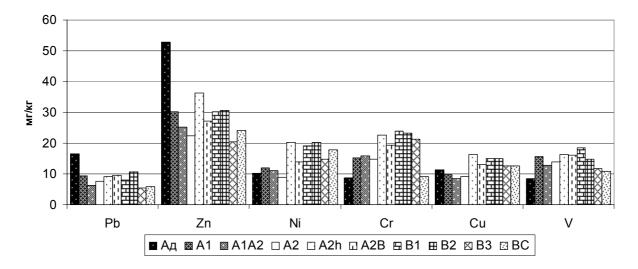


Рис. 1. Содержание ТМ в подзолистых почвах

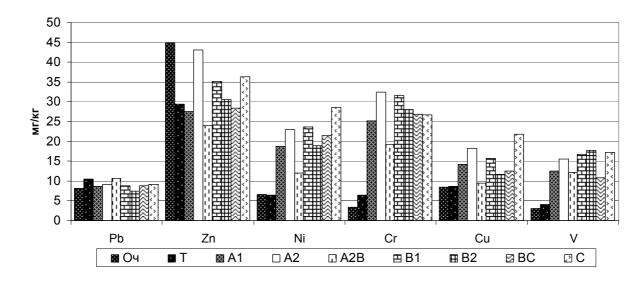


Рис. 2. Содержание ТМ в болотно-подзолистых почвах

В таких почвах, как болотно-подзолистые, вследствие высокой сорбционной способности торфяного слоя нефть проникает максимально на глубину 20–30 см до глубины залегания глеевого горизонта, который является нефтеупором. Но, несмотря на это, некоторая часть нефтепродуктов вымывается атмосферными и грунтовыми водами и переносится на довольно значительные расстояния по уклону местности.

В болотно-подзолистых почвах достоверные отличия (p<0,05) в содержании ТМ зафиксированы лишь в торфяных горизонтах. В частности, на новых месторождениях наблюдается более высокое содержание Zn

(39,93 мг/кг) по сравнению с почвами месторождений более раннего срока эксплуатации (25,45 мг/кг).

Болотные верховые и болотные низинные торфяные почвы. Известно, что в результате деятельности нефтегазового комплекса загрязнение почв может происходить как атмосферным путем, так и поверхностным стоком поллютантов. Свойства торфа определяют жесткий захват загрязнителей и их устойчивое накопление в органогенном материале [9]. Но, несмотря на значительную нефтеемкость торфов, и они не являются абсолютным экраном для движения техногенных потоков нефти (ни вниз по профилю, ни по уклонам местности) [10]. Концентрация и

распределение ТМ в профиле таких почв тесно связаны с микроэлементным составом болотных вод, ботаническим ставом торфов и содержанием ТМ в торфообразующей породе [11, 12]. Однако дополнительный химический анализ болотных вод и специализированный анализ определения ботанического состава торфов значительно увеличивают материально-технические и трудовые затраты мониторинга. Поэтому для оценки экологического состояния болотных почв мы осуществляем отбор проб на химический анализ торфяных горизонтов, визуально различающихся по степени разложения растительных остатков до уровня стояния грун-

товых вод, которые переводят движение нефти и нефтепродуктов в вертикальном профиле почв в латеральный сток. Содержание ТМ в болотных почвах представлено на рис. 3, 4. Максимальная концентрация ТМ отмечена в верхних горизонтах и постепенно снижается с глубиной профиля, несколько увеличиваясь к торфообразующей породе. Особенно отчетливо это прослеживается в верховых торфяниках, для которых характерна большая мощность органогенной толщи. Достоверные отличия в содержании ТМ между болотными верховыми и низинными торфяными почвами на разновозрастных месторождениях не выявлены.

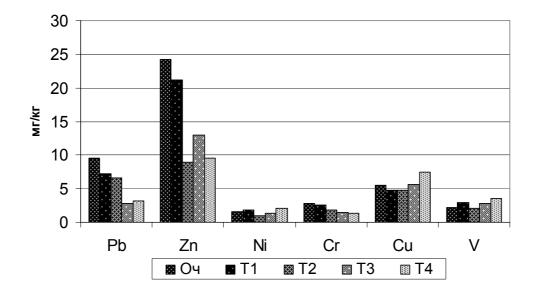


Рис. 3. Содержание ТМ в болотных верховых торфяных почвах

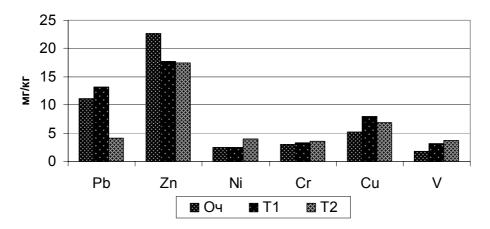


Рис. 4. Содержание ТМ в болотных низинных торфяных почвах

В аллювиальных почвах, преимущественно маломощных и легкого гранулометрического состава, нефть способна пропитывать весь профиль [13]. Это грозит большим экологическим уроном, т.к. при нефтяных разливах на пойменных ландшафтах нефть попадает в речную систему благодаря подъему уровня воды в весенние и осенние паводки.

Содержание и распределение ТМ в профиле *аллювиальных почв* представлено на рис. 5. Максимальные их концентрации отмечены в дерновых горизонтах и горизонтах B_2 , граничащих с почвообразующей породой. В трех горизонтах аллювиальных почв (Aд, A_1 , B_1) разновозрастных месторождений выявлены достоверные отличия (р<0,05) в содержании ТМ. Так, в почвах новых месторождений (горизонт Aд) наблюдается незначительное увеличение концентрации Cr (19,07 мг/кг), Cu (13,75 мг/кг), V (18,53 мг/кг) по сравнению с их содержанием в почвах с более ранним сроком эксплуатации (Cr - 9,63 мг/кг, Cu - 8,02 мг/кг, V - 6,86 мг/кг).

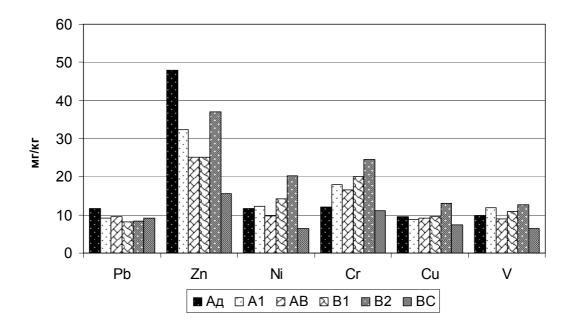


Рис. 5. Содержание ТМ в аллювиальных почвах

Аналогичные достоверные отличия по содержанию Hg установлены в горизонтах A_1 и B_1 . Это связано с тем, что при интенсивной разработке новых месторождений (бурение кустовых площадок, обустройство линейных объектов), видимо, происходит незначительное загрязнение тяжелыми металлами почвенного покрова, мелких водотоков, снежного покрова в зимний период, что в конечном итоге сказывается на большем их содержании в почвах новых месторождений.

В настоящее время, по мнению многих авторов, данные о содержании ТМ в почвах сложно сравнивать с ус-

тановленными ПДК [14], поскольку накопление в почвах зависит от их содержания в почвообразующих породах [15], гранулометрического состава [16] и принадлежности почв к различным экосистемам [17]. В связи с этим необходимо разрабатывать ПДК для конкретных природноклиматических зон. При отсутствии ПДК рекомендуется принимать удвоенное региональное содержание элемента в фоновой почве [18].

В соответствии с рекомендациями [18], нами предпринята попытка установить ПДК для кислоторастворимых форм ТМ (таблица).

Удвоенное содержание кислоторастворимь	ry dony TM p noupo	у томитой тойги Томого	й облости
у двоенное содержание кислоторастворимь	AX WUUM TIM B HU4BA	х южной тайги томско	и ооласти

Тип почв	Hg	Pb	Zn	Ni	Cr	Cu	V	Mn
	мг/кг							
Дерново-подзолистые	0,32	33,22	105,58	20,42	17,38	22,58	17,00	2410
Болотно-подзолистые	0,32*	20,80*	58,80*	12,84*	12,92*	17,36*	8,12*	418,28*
	0,06**	17,32**	54,92**	37,56**	50,32**	28,40**	25,06**	540,28**
Болотные верховые торфяные	0,28	19,14	48,50	3,24	5,58	11,10	4,38	155,26
Болотные низинные торфяные	0,20	22,28	45,32	5,06	6,00	10,36	3,64	226,16
Аллювиальные	0,28	23,40	95,84	23,22	23,98	18,92	19,56	2015

^{*} Органогенные горизонты; ** минеральные горизонты.

Таким образом, за ПДК (удвоенное содержание элемента) в почвах южной тайги Томской области можно принять следующие концентрации кислоторас-

творимых форм ТМ: Hg - 0.3 мг/кг, Pb - 33 мг/кг, Zn - 106 мг/кг, Ni - 38 мг/кг, Cr - 50 мг/кг, Cu - 28 мг/кг, V - 25 мг/кг, Mn - 2410 мг/кг.

ЛИТЕРАТУРА

- 1. Российская Федерация. Законы. Об охране окружающей среды: от 10 янв. 2002 г., № 7-ФЗ, ст. 35.
- 2. *Постановление* Правительства Рос. Федерации «Об организации и осуществлении государственного мониторинга окружающей среды (государственного экологического мониторинга)»: от 31 марта 2003 г., № 177.
- 3. Грива Г.И. Экологический мониторинг природно-технических комплексов на объектах предприятия «Надымгазпром» (принципы, методы и опыт организации) // Повышение эффективности освоения газовых месторождений Крайнего Севера: Сб. науч. тр. М., 1997. С. 555–566.
- 4. Гришина Л.А., Копцик Г.Н., Моргун Л.В. Организация и задачи почвенных исследований для экологического мониторинга. М.: Изд-во Мос. ун-та, 1991. С. 4–8.
- 5. Мотузова Г.Н. Содержание, задачи и методы экологического мониторинга почв. М.: Изд-во Мос. ун-та, 1994. С. 80–104.
- 6. *Методические* рекомендации по применению требований к определению исходной (фоновой) загрязненности компонентов природной среды, применению и ведению системы экологического мониторинга в границах лицензионных участков недр на территории Ханты-Мансийского автономного округа. Ханты-Мансийск: Полиграфист, 2007. 92 с.
- 7. Середина В.П., Харахордин В.Н., Непотребный А.И. Эколого-геохимические трансформации почв нефтезагрязненных экосистем южной тайги Западной Сибири // Почвы Сибири: генезис, география, экология и рациональное использование: Материалы науч. конф., посвящ. 100-летию со дня рождения Р.В. Ковалева. Новосибирск, 2007. С. 156–157.

- 8. Солнцева Н.П., Пиковский Ю.И. Особенности загрязнения почв при нефтедобыче // Миграция загрязняющих веществ в почвах и сопредельных средах. Л., 1980. С. 76–82.
- 9. Середина В.П., Андреева Т.А., Алексеева Т.П., Бурмистрова Т.И. Терещенко Н.Н. Нефтезагрязненные почвы: свойства и рекультивация. Томск: Изд-во ТПУ, 2006. 270 с.
- 10. Солнцева Н.П. Добыча нефти и геохимия природных ландшафтов. М.: Изд-во МГУ, 1998. 376 с.
- 11. Шварцев С.Л., Рассказов Н.М., Сидоренко Т.Н., Здвижков М.А. Геохимия природных вод района большого Васюганского болота // Большое Васюганское болото. Современное состояние и процессы развития. Томск, 2002. С. 139–149.
- 12. Езупёнок Е.Э. Содержание химических элементов в торфах и торфяных почвах южно-таежной подзоны Западной Сибири: Дис. ... канд. биол. наук. Томск, 2005. 145 с.
- 13. Славнина Т.П., Кахаткина И.М., Середина В.П., Изерская Л.А. Загрязнение нефтью и нефтепродуктами // Основы использования и охраны почв Западной Сибири. Новосибирск: Наука, 1989. С. 186–207.
- 14. *Кузьмин В.А.* Микроэлементный состав некоторых почв Прибайкалья и Восточно-Европейской равнины // Материалы V Всероссийского съезда общества почвоведов. Ростов-на-Дону, 2008. С. 50.
- 15. *Левшаков Л.В., Сулима А.Ф.* Определение загрязнения почв тяжелыми металлами при интенсивном антропогенном воздействии // Материалы V Всероссийского съезда общества почвоведов. Ростов-на-Дону, 2008. С. 52.
- 16. Бекецкая О.В., Чернова О.В. Экологическое нормирование: Установление фоновых концентраций микроэлементов в почвах // Материалы V Всероссийского съезда общества почвоведов. Ростов-на-Дону, 2008. С. 39.
- 17. *Хабиров И.К., Асылбаев И.Г., Рафиков Б.В. и др.* Экологический анализ состава почв Южного Урала // Материалы V Всероссийского съезда общества почвоведов. Ростов-на-Дону, 18–23 августа, 2008. С. 64.
- 18. *Порядок* определения размеров ущерба от загрязнения земель химическими веществами. М., 1993. Режим доступа: www.businesspravo.ru/Docum/Doc

Статья представлена научной редакцией «Биология» 2008 г.