МНОГОЛЕТНЯЯ И СЕЗОННАЯ ДИНАМИКА ЗООПЛАНКТОНА ОТКРЫТОЙ ЧАСТИ ЮЖНОГО БАЙКАЛА

Проведен анализ динамики численности и структуры зоопланктона пелагиали Южного Байкала в период с 1997 по 2007 г. Наблюдения за состоянием зоопланктона на протяжении ряда лет позволяет судить об устойчивости экосистемы озера, а зоопланктон играет одну из ключевых ролей в функционировании этой системы.

Ключевые слова: Байкал; зоопланктон; сезонная динамика; многолетняя динамика; структура.

Байкал — один из величайших водоемов в мире, крупнейший природный резервуар пресной воды. Озеро находится на юге Восточной Сибири. В форме молодого лунного диска Байкал вытянулся с юго-запада на северо-восток между 55°47' и 51°28' с.ш. и 103°43' и 109°58' в.д. Длина озера 636 км, площадь водной поверхности составляет 31,5 тыс. км². Расположен Байкал на высоте 455,7 м над ур. м. Длина береговой линии около 2 000 км. Более половины длины береговой линии озера находится под охраной [1].

Материал и методика исследований

Материалом для исследования послужили данные круглогодичных, еженедельных (за исключением времени становления и вскрытия ото льда) сборов проб сетного зоопланктона. Станция отбора проб (ст. № 1) располагается в открытой части Южного Байкала, на расстоянии 2,7 км от западного берега (51°54'195 с.ш.; 105°4'235 в.д.) над глубиной около 800 м против поселка Большие Коты. Орудием лова служила планктонная сеть Джеди (диаметр входного отверстия 37,5 см, размер ячеи 100 мкм) [1, 2]. Облавливали слой 0-500 по следующим фракциям: 500-250, 250-150, 100-50, 50-25, 25-10, 10-0 м. В данной работе проведен анализ проб зоопланктона слоя 0-25 м. Температуру воды измеряли при отборе проб фитопланктона встроенным в батометр ртутным термометром на горизонтах 0, 5, 10, 25, 50, 100, 150, 200 и 250. При расчетах в работе использовали средневзвешенное значение температуры слоя 0–25, которое рассчитывали по формуле взвешенной арифметической средней [3]. Камеральную обработку проводили по стандартным методикам [2, 4]. При определении видов пользовались работами [5–7]. Всего обработано и проанализировано 720 проб.

Сезонная динамика развития зоопланктона рассматривается по М.М. Кожову: ранняя весна (подледный период – февраль, март, апрель), поздняя весна (переходный период – май, июнь), раннее лето (июль-первая половина августа), позднее лето (вторая половина августа – сентябрь), осень (октябрь – ноябрь) и зима (декабрь – январь) [1]. Для выделения структурообразующего комплекса использовалась функция рангового распределения обилия видов [8]. Нижняя граница относительной численности вида принималась более 5%. Динамика сезонной структуры зоопланктона рассмотрена на примере 1998 г., который был обычным по температурному режиму (4,5±0,6°), и 2002 г. (6,6±0,9°) – наиболее теплого.

Результаты исследований и их обсуждение

Многолетняя динамика зоопланктона

В зоопланктоне открытой части Южного Байкала за период наблюдений выявлено 18 видов коловраток, 2 ветвистоусых и 4 веслоногих ракообразных (табл. 1).

Байкальские эндемики представлены веслоногим Epischura baicalensis и коловратками: Synchaeta pachypoda, Synchaeta pachypoida, Notholca grandis, Notholca intermedia, Euchlanis ligulata.

Таблица 1 Видовой состав коловраток и низших ракообразных открытой пелагиали Южной части Байкала

	Южный Байкал								
Таксон	Зима	Be	есна	Ле	Осень				
	Эима	ранняя	поздняя	раннее	позднее	Осснь			
1	2	3	4	5	6	7			
Тип Rotifera									
Класс Eurotatoria De Ridder, 1957									
Подкласс Eurotatoria Bartos, 1959									
Надотряд Eurotatoria Markevich, 1990	•					•			
Отряд Saeptiramida Markevich, 1990									
Семейство Synchaetidae Hudson et Gosse, 1886									
Synchaeta pachypoda Jaschnov, 1922	+	+	+	+	-	_			
Synchaeta pachypoida Kutikova et Vassiljeva, 1982	+	+	+	+	-	-			
Synchaeta sp.	+	+	+	+	_	_			
Synchaeta sp. sp.	+	+	+	+	-	_			
Polyarthra dolichoptera Idelson, 1925	_	-	-	_	+	_			
Отряд Saltiramida Markevich,1990									
Семейство Asplanchnidae Eckstein, 1883									
Asplanchna herricki Guerne, 1888	-	+	+	+	+	+			
A. priodonta Gosse, 1850	_	+	+	+	+	+			
Отряд Transversiramida Markevich, 1990									
Семейство Euchlanidae Ehrenberg, 1838									

1	2	3	4	5	6	7
Euchlanis ligulata Kutikova et Vassiljeva, 1982	_	_	+	+	+	+
Семейство Brachionidae Ehrenberg, 1838						
Brachionus urceus (Linnaeus, 1758)	_	_	_	_	+	+
Keratella cochlearis (Gosse, 1851)	+	+	+	+	+	+
K. quadrata (Müller, 1786)	+	+	+	+	+	+
Kellicottia longispina (Kellicott, 1879)	+	+	+	+	+	+
Notholca grandis Voronkov, 1917	+	+	+	+	_	-
N. intermedia Voronkov, 1917	+	+	+	+	_	_
N. baicalensis Jaschnov, 1922	-	+	+	-	-	-
Семейство Conochilidae Harring, 1913						
Conochilus unicornis Rousselet, 1960	_	_	+	+	+	+
Семейство Filiniidae Bartos, 1959						
Filinia terminalis (Plate, 1886)	+	+	+	+	+	+
Отряд Paedotrochidae Markevich, 1990						
Семейство Collothecidae Harring, 1913						
Collotheca sp.	_	_	+	+	+	+
Тип Arthropoda						
Надкласс Crustacea						
Класс Branchiopoda Latrelli, 1816						
Надотряд Cladocera						
Отряд Anomopoda Sars, 1865						
Семейство Daphniidae Straus, 1820						
Daphnia galeata G.O. Sars, 1864	_	_	+	+	+	+
Семейство Bosminidae Sars, 1865						
Bosmina longirostris (O.F. Müller, 1785)	_	_	+	+	+	+
Класс Maxillopoda Dahl, 1956						
Подкласс Copepoda Milne Edwards, 1840						
Надотряд Gymnoplea Giesbrecht, 1834						
Отряд Calanoida Sars, 1903						
Семейство Temoridae Sars, 1903						
Epischura baicalensis Sars, 1900	+	+	+	+	+	+
Семейство Diaptomidae Sars, 1903						
Eudiaptomus graciloides (Lilljeborg, 1888)	_	_	_	_	+	-
Надотряд Podoplea Giesbrecht, 1834						
Отряд Cyclopoida Burmeister, 1834						
Семейство Cyclopidae Dana, 1846						
Подсемейство Cyclopinae Burmeister, 1834						
Cyclops kolensis Lilljeborg, 1901	+	+	+	+	+	+
Подсемейство Eucyclopinae Kiefer, 1927						
Eucyclops serrulatus Fischer, 1851	_	_	_	_	+	_

Круглогодично в зоопланктоне отмечены: эндемик E. baicalensis, палеаркт Cyclops kolensis и круглогодичные виды коловраток [9]: Keratella quadrata, Keratella cochlearis, Filinia terminalis, Kellicottia longispina (табл. 1). В период с зимы до раннего лета встречаются эндемичные коловратки: S. pachypoda, S. pachypoida, N. grandis, N. intermedia. С весны до конца осени в зоопланктон открытого озера входят коловратки Asplanchna herricki, Asplanchna priodonta. С прогревом

вод, в период с поздней весны до конца осени, в планктоне появляются теплолюбивые ветвистоусые Daphnia galeata, Bosmina longirostris и коловратки Conochilus unicornis, Collotheca sp., Euchlanis ligulata (табл. 1). Поздним летом единично отмечены Eucyclops serrulatus, Eudiaptomus graciloides и Polyarthra dolichoptera.

Проведенные исследования выявили следующие изменения в межгодовой динамике зоопланктона (рис. 1).

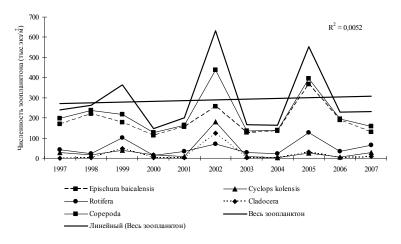


Рис. 1. Динамика численности зоопланктона в открытой части Южного Байкала (1997–2007 гг.)

В 1997 г. среднегодовая средневзвешенная температура воды Южного Байкала составила $4,9\pm0,6^{\circ}$ С (табл. 2). В зоопланктоне преобладали веслоногие (82%), в частности науплиальные и копиподитные стадии $E.\ baicalensis$, которая имела среднегодовую численность $168,8\pm21,1$ тыс. $9\kappa3./\text{m}^2$. Численность еще одного представителя веслоногих $C.\ kolensis$ составила $27,9\pm8,6$ тыс. $9\kappa3./\text{m}^2$, единично отмечен $E.\ serrulatus$ ($0,08\pm0,08$ тыс. $9\kappa3./\text{m}^2$). Ветвистоусые встречались

только в конце лета, осенью и были представлены $B.\ longirostris\ (0.98\pm03\$ тыс. $3\kappa3./\text{m}^2)$ и $D.\ galeata\ (0.23\pm0.22\$ тыс. $3\kappa3./\text{m}^2)$. Среднегодовая численность коловраток составила $41.74\$ тыс. $3\kappa3./\text{m}^2$, среди которых многочисленны были круглогодичные виды: $K.\ longispina\ (5.01\pm0.9\$ тыс. $3\kappa3./\text{m}^2)$, $F.\ terminalis\ (10.04\pm3.3\$ тыс. $3\kappa3./\text{m}^2)$, $K.\ quadrata\ (11.69\pm4.2\$ тыс. $3\kappa3./\text{m}^2)$. Эндемичные и летне-осенние виды коловраток имели небольшую численность.

Таблица 2 Среднегодовая средневзвешенная температура воды в слое 0–25 м в открытой части Южного Байкала

Год	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
t, °C	4,9±0,6	4,5±0,6	5,2±0,7	4,1±0,6	3,5±0,6	6,6±0,9	4,4±0,5	5,0±0,6	5,7±0,8	4,7±0,6	6,2±0,9

В 1998 г. среднегодовая средневзвешенная температура воды была $4,5\pm0,6^{\circ}$ С. По количественным показателям зоопланктона также лидировали веслоногие (90%), при этом среднегодовая численность *E. baicalensis* составила $220,67\pm26,9$ тыс. $9\kappa3./\text{m}^2$, а *C. kolensis* — $15,84\pm4,8$ тыс. $9\kappa3./\text{m}^2$. Ветвистоусые встречались только осенью, среди них доминировала *B. longirostris* ($3,13\pm2,4$ тыс. $9\kappa3./\text{m}^2$), а теплолюбивая *D. galeata* встречалась редко, ее численность составила всего $0,03\pm0,02$ тыс. $9\kappa3./\text{m}^2$. Среднегодовая численность коловраток была 22,38 тыс. $9\kappa3./\text{m}^2$, среди них лидировали круглогодичные виды: *К. longispina* ($4,78\pm1,3$ тыс. $9\kappa3./\text{m}^2$), *F. terminalis* ($4,89\pm1,6$ тыс. $9\kappa3./\text{m}^2$) и *K. quadrata* ($7,45\pm2,6$ тыс. $9\kappa3./\text{m}^2$).

В **2000** г. среднегодовая средневзвешенная температура воды была $4,1\pm0,6^{\circ}$ С. Доля веслоногих составила 87% от общей численности всего зоопланктона. Среднегодовая численность *E. baicalensis* была $112,59\pm\pm31,87$ тыс. $9\kappa3./m^2$, *C. kolensis* – $15,64\pm5,1$ тыс. $9\kappa3./m^2$. По-прежнему ветвистоусые были представлены всего двумя видами: *B. longirostris* $(3,01\pm1,5$ тыс. $9\kappa3./m^2)$ и *D. galeata* $(0,68\pm0,4$ тыс. $9\kappa3./m^2)$. В этот год основной вклад в численность коловраток внес *C. unicornis* $(8,28\pm3,6$ тыс. $9\kappa3./m^2)$. Численность круглогодичных коловраток мала, эндемичные и летне-осенние формы коловраток отмечены единично.

В **2001** г., когда в открытой части Южного Байкала была самая низкая среднегодовая средневзвешенная температура воды — $3.5\pm0.6^{\circ}$ С (табл. 2), доля веслоногих составила 81%. Среднегодовая численность *E. baicalensis* была 154.58 ± 22.9 тыс. $9k3./m^2$, численность *C. kolensis* 8.29 ± 3.9 тыс. $9k3./m^2$, также среди веслоногих единично встречался *E. graciloides* (0.01 ± 0.01) тыс. $9k3./m^2$). Только в конце осени в зоопланк-

тоне отмечены ветвистоусые: *B. longirostris* $(2,01\pm 1\,\text{тыс.})$ жз./м²) и *D. galeata* $(0,9\pm 0,05\,\text{тыс.})$ жз./м²), которые составили всего 1% от общей численности всего планктона. Среднегодовая численность коловраток была 35,01 тыс. экз./м² при лидировании круглогодичных: *K. longispina* $(8,66\pm 3,5\,\text{тыс.})$ экз./м²), *F. terminalis* $(6,86\pm 3,7\,\text{тыс.})$ жз./м²) и эндемичных зимне-весенних видов: *S. pachypoda* $(3,98\pm 3,5\,\text{тыс.})$ экз./м²) и *N. grandis* $(8,2\pm 5,5\,\text{тыс.})$ экз./м²).

В 2002 г. за весь исследуемый период времени наблюдается самая высокая среднегодовая средневзвешенная температура воды 6,6±0,9°С. По количественным показателям также лидировали веслоногие (69%). В этот год отмечена их самая высокая среднегодовая численность – 436,7 тыс. экз./м² при доминировании E. baicalensis (258,81±55,8 тыс. экз./м²). Среднегодовая численность теплолюбивого С. kolensis именно в этот год максимальная и составляет $179,89\pm65,3$ тыс. экз./м². В этот период максимальные показатели численности и по группе веслоногих (124,80 тыс. экз./м²), их доля составляла почти 50% от общей численности всего зоопланктона при лидировании D. galeata (102,5± \pm 63,3 тыс. экз./м²). Среднегодовая численность коловраток также очень высокая (70,95 тыс. экз./м²), среди которых доминирует C. unicornis (38,68 \pm 25,51 тыс. экз./м 2). Численность круглогодичных видов K. longispina (7,27±2,8 тыс. экз./м²) и К. quadrata (11,69± ± 4.2 тыс. экз./м²), зимне-весенние и летне-осенние виды коловраток малочисленны.

В **2003** г. среднегодовая средневзвешенная температура была $4,4\pm0,5^{\circ}$ С. В этот период доля веслоногих составляет 82%. Ведущую роль по-прежнему играет *E. baicalensis* (126,28 \pm 31,5 тыс. экз./м²), численность *C. kolensis* 9,04 \pm 3,2 тыс. экз./м². Среднегодовая численность ветвистоусых составляет 2,67 тыс. экз./м². Среди коловраток доминирует зимне-весенний вид *S. pachypoda* (11,01 \pm 4,8 тыс. экз./м²), роль круглогодичных коловраток мала.

В **2004** г. среднегодовая средневзвешенная температура была $5.0\pm0.6^{\circ}$ С. Доля веслоногих составляет 84%, в частности численность E. baicalensis $136,25\pm23,3$ тыс. экз./м², C. kolensis – $2,07\pm0,7$ тыс. экз./м². В составе ветвистоусых единично отмечены D. galeata $(0,01\pm0.01)$ тыс. экз./м²), численность B. longirostris $2,72\pm0.9$ тыс. экз./м². В составе коловраток лидирует Synchaeta sp. $(34,5\pm3,1)$ тыс. экз./м²), также многочис-

ленны круглогодичные виды: *K. longispina* (6 \pm 2 тыс. экз./м²), *F. terminalis* (4,38 \pm 1,3 тыс. экз./м²), *K. quadrata* (2,41 \pm 0,8 тыс. экз./м²) и летне-осенний вид *C. unicornis* (6,63 \pm 3,8 тыс. экз./м²).

В 2005 г. среднегодовая средневзвешенная температура воды была высокая и составила 5,7±0,8°C. Количественные характеристики зоопланктона, как и в 2002 г., велики. Основу численности составляли ветвистоусые (72%) при лидировании *E. baicalensis* $(367,84\pm156,75)$ тыс. экз./м²) и С. kolensis $(25,49\pm$ 12,2 тыс. экз./м 2). Единично встречался E. serrulatus $(2,34\pm2,3)$ тыс. экз./м²). Ветвистоусые по-прежнему представлены всего двумя видами: D. galeata $(4,56\pm3 \text{ тыс.} 9к3./м^2)$ и В. longirostris $(25,25\pm$ \pm 14,68 тыс. экз./м²). В этот год среднегодовая численность коловраток самая максимальная (127,02 тыс. экз./м²), главным образом за счет массового развития теплолюбивого С. unicornis, который составил около 60% от общей численности всех коловраток.

В **2006** г., когда среднегодовая средневзвешенная температура была $4.7\pm0.6^{\circ}$ С, в зоопланктоне открытой части Южного Байкала доля веслоногих составила 85% при доминировании *E. baicalensis* (188.3 ± 37.2 тыс. экз./м²) и *C. kolensis* (6 ± 2.4 тыс. экз./м²). Вклад в состав зоопланктона ветвистоусых составил также, как и в 2001 г., всего 1%, среднегодовая численность *D. galeata* 0.18 ± 0.1 тыс. экз./м² и *B. longirostris* – 2.37 ± 0.9 тыс. экз./м². В составе коловраток многочисленны круглогодичные виды: *K. longispina* (9.67 ± 2.9 тыс. экз./м²), *F. terminalis* (9.64 ± 2.6 тыс. экз./м²),

K. quadrata $(8,29\pm3,3 \text{ тыс. экз./м}^2)$ и летне-осенний вид *C. unicornis* $(7,39\pm3,5 \text{ тыс. экз./м}^2)$.

В **2007** г. среднегодовая средневзвешенная температура была $6,2\pm0,9^{\circ}$ С (табл. 2). Доля веслоногих составила 68% от общей численности всего зоопланктона. Среднегодовая численность *E. baicalensis* была $130,19\pm18,3$ тыс. $9\kappa3./\text{m}^2$ и *C. kolensis* — $6,0\pm2,4$ тыс. $9\kappa3./\text{m}^2$. Ветвистоусые по-прежнему представлены всего двумя видами: *D. galeata* $2,8\pm1,4$ тыс. $9\kappa3./\text{m}^2$ и *B. longirostris* — $4,28\pm1,5$ тыс. $9\kappa3./\text{m}^2$. Среди коловраток чаще встречались круглогодичные виды: *K. longispina* $(9,54\pm3,1$ тыс. $9\kappa3./\text{m}^2)$, *F. terminalis* $(2,93\pm2,7$ тыс. $9\kappa3./\text{m}^2)$, *K. quadrata* $(8,9\pm8,5$ тыс. $9\kappa3./\text{m}^2)$, зимневесенний вид *N. grandis* $(8,9\pm8,5$ тыс. $9\kappa3./\text{m}^2)$ и летнеосенний *С. unicornis* $(27,38\pm22,1$ тыс. $9\kappa3./\text{m}^2)$.

Таким образом, за период 1997–2007 гг. в открытой пелагиали Южного Байкала самые высокие значения средних величин численности у представителя группы Сорероda – $E.\ baicalensis$. Среднегодовая численность эпишуры изменялась примерно в 3 раза – от 112,59 \pm 31,87 до 367,84 \pm 156,75 тыс. экз./м², максимальной была в 2005 г., минимальной – в 2000 г. (рис. 1).

Среднегодовая численность еще одного представителя группы Сорероda – C. kolensis испытывала резкие колебания и изменялась более чем в 90 раз – от 2,07±0,7 до 179,89±65,3 тыс. экз./м², максимума достигала в самый теплый 2002 г. (табл. 2), минимума в 2004 г.

Связь между температурой воды и численностью циклопа хорошо выражена (рис. 2).

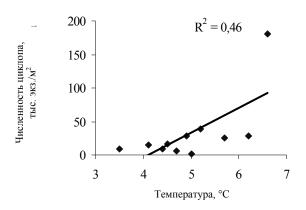


Рис. 2. Зависимость численности циклопа от температуры воды в слое 0–25 м

По группе Rotifera самое высокое среднегодовое значение численности — в 2005 г. (127,02 тыс. экз./м²) главным образом за счет массового развития теплолюбивого *С. unicornis*, который составил около 60% от общей численности всех коловраток. Круглогодичные виды [9]: *К. quadrata, К. cochlearis, F. terminalis, К. longispina* и эндемичные зимне-весенние формы коловраток: *S. pachypoda, N. grandis, N. intermedia* присутствовали в планктоне в течение всего исследуемого периода, но имели небольшую численность.

В планктонном сообществе открытой пелагиали Южного Байкала группа Cladocera была представле-

на всего двумя видами: D. galeata и B. longirostris. За период исследования максимальная численность ветвистоусых была в 2002 г. (рис. 1), в этот год их доля составляла почти 50% от общей численности всего зоопланктона, при лидировании D. galeata (42%). В период 1997—2007 гг. среднегодовые значения численности ветвистоусых очень сильно изменялись, более чем в 100 раз: от 1,21 до 124,8 тыс. 9 кз./ m^2 .

В слое 0–25 отмечена положительная зависимость численности и коловраток, и ветвистоусых от температуры воды (рис. 3).

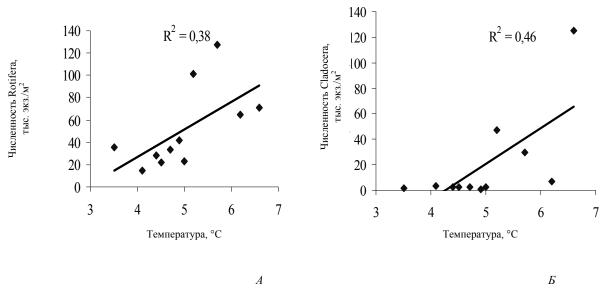


Рис. 3. Зависимость численности коловраток (А) и ветвистоусых (Б) от температуры воды в слое 0-25 м

В целом за период исследований отмечено 2 пика численности зоопланктона (рис. 1). В эти годы наблюдалась самая высокая среднегодовая средневзвешенная температура воды (табл. 2).

Сезонная динамика зоопланктона

Представляет интерес сравнить сезонную динамику зоопланктона Южного Байкала в типичный по температурному режиму год — 1998 г. и наиболее теплый 2002 г. Ход общей сезонной динамики численности определяли по изменению количественных показателей доминантных видов.

В зимний период 1998 г. основу зоопланктонного сообщества по численности составляют *E. baicalensis* (64%) и *C. kolensis* (33%). Роль круглогодичных коловраток мала. Из ветвистоусых в планктоне единично отмечены молодь дафнии и босмины (табл. 3). В весен-

ний – ранне-летний сезоны доминирует E. baicalensis (98-100%), коловратки и С. kolensis имеют небольшую численность, а ветвистоусые в составе зоопланктона не встречаются. Только в поздне-летний период в структурообразующий комплекс зоопланктона входит С. kolensis (13%) и круглогодичная коловратка К. quadrata (5%), численность E. baicalensis составила 66% от общей численности всего зоопланктона. В осенний период основу зоопланктонного сообщества составляют E. baicalensis (61%), C. kolensis (12%), K. quadrata (12%) и летне-осенняя форма коловраток [9] *С. unicornis* (8%). Поздним летом – осенью увеличивается значимость ветвистоусых, но они по прежнему не входят в доминантное ядро (табл. 3). Многолетние наблюдения в открытой части Байкала показали, что ветвистоусые встречаются в планктоне в незначительных количествах, максимума достигают поздним летом. При этом численность босмины превосходит таковую дафнии [10].

Таблица 3 Структурообразующий комплекс зоопланктона открытой части Южного Байкала в слое 0–25 м (1998, 2002 гг.), % от общей численности

	Биологические сезоны (по Кожову, 1962)											
Вид				2002 г.								
	Зима	Весна		Лето		Осень	Зима	Весна		Лето		Осень
	Эима	I	II	III	IV	Осснь	эима	I	II	III	IV	Осень
Epischura baicalensis	64	97	97	100	66	61	98	93	89	48	13	34
Cyclops kolensis	33	< 5	< 5	< 5	13	12	< 5	< 5	< 5	36	31	27
Bosmina longirostris	< 5	_	-	-	< 5	<5	_	-	_	< 5	8	13
Daphnia galeata	< 5	_	-	-	< 5	<5	_	-	_	< 5	42	6
Conochilus unicornis	_	< 5	< 5	-	< 5	8	_	-	_	10	5	9
Keratella quadrata	< 5	< 5	< 5	-	5	12	_	< 5	< 5	< 5	< 5	< 5
Число видов	8	6	8	3	15	9	4	8	8	14	13	12

Примечание. I – ранняя весна; II – поздняя весна; III – раннее лето; IV – позднее лето; – отсутствие вида в планктоне.

В зимний и весенний период 2002 г. структурообразующий комплекс представлен одним видом: *E. baicalensis* (90–98%) (табл. 3). Уже к началу лета увеличивается значимость *C. kolensis* (36%), а доля *E. baicalensis* уменьшается до 48%. В этот период в доминантный комплекс входит теплолюбивая коловратка *C. unicornis* (8%). К концу лета — началу осени, когда температура поверхно-

стного слоя воды наиболее высокая (17°), в структурообразующем комплексе резко уменьшается численность *E. baicalensis* (11%), доля *C. kolensis*, напротив, увеличивается до 36%, а относительная численность ветвистоусых составляет почти 50% при лидировании дафнии (42%). Доминирование по численности *D. galeata* среди ветвистоусых в открытом Байкале характерно для очень

теплого года. В осенний период доминирующий состав представлен 5 видами. Численность E. baicalensis 34%, C. kolensis 27%. Среди коловраток доминирует летнеосенняя форма [9]: C. unicornis (9%), среди ветвистоусых – B. longirostris (13%) и D. galeata (6%).

Таким образом, за исследуемый период в открытой пелагиали Южного Байкала основу зоопланктонного сообщества ежегодно составляла *E. baicalensis*, которая в течение всего года входила в структурообразующий комплекс. В 2002 г., наиболее теплом, в отличие от 1998 г. уже к концу лета численность *C. kolensis* превосходит таковую *E. baicalensis*, также в этом году от-

мечено наличие в структурообразующем комплексе теплолюбивой *D. galeata*, что не характерно для 1998 г.

Обобщая результаты исследований, можно сделать следующие выводы:

- 1. Межгодовая динамика зоопланктона носит колебательный характер, не имеет достоверного временного тренда.
- 2. Изменчивость общей численности всего зоопланктона положительно связана с температурой воды.
- 3. В более теплые годы в зоопланктоне Южного Байкала возрастает роль *C. kolensis* и *D. galeata*, но основой общей численности по-прежнему является *E. baicalensis*.

ЛИТЕРАТУРА

- 1. Кожов М.М. Биология озера Байкал. М., 1962. 315 с.
- 2. Киселев И.А. Планктон морей и континентальных водоемов. Л., 1969. Т. 1. 657 с.
- 3. Закс Л. Статистическое оценивание. М.: Статистика, 1976. 598 с.
- 4. Кожова О.М., Мельник Н.Г. Инструкция по обработке проб планктона счетным методом. Иркутск: Изд-во Иркут. ун-та, 1978. 50 с.
- Кутикова Л.А. Коловратки фауны СССР. Л., 1970. 744 с.
- 6. Смирнов Н.Н., Коровчинский Н.М., Котов А.А., Синев А.Ю. Систематика CLADOCERA: современное состояние и перспективы развития // Ветвистоусые ракообразные: систематика и биология. Борок, 2007. С. 5–73.
- 7. Huys R., Boxchall G.A. Copepod evolution. L., 1991. Vol. 159. 468 p.
- 8. Федоров В.Д. Первичная продукция как функция структуры фитопланктонного сообщества // Докл. АН СССР. 1970. Т. 192, № 4. С. 901–904.
- 9. Гайгалас К.С. К познанию фауны коловраток озера Байкал // Известия Биолого-географического научно-исследовательского института. Иркутск, 1957. Т. 17, вып. 1–4. С. 103–143.
- 10. *Шевелева Н.Г., Помазкова Г.И.* Отряд Cladocera ветвистоусые ракообразные. Атлас и определитель пелагобионтов Байкала. Новосибирск: Наука, 1995. С. 431–479.

Статья представлена научной редакцией «Биология» 16 июня 2009 г.