2010 Математика и механика № 1(9)

УДК 512.541

А.Р. Чехлов

О НИЛЬГРУППАХ p-РАНГА 1^1

Найдены необходимые и достаточные условия, при которых группы без кручения *p*-ранга 1 являются нильгруппами.

Ключевые слова: нильгруппа, связная группа, р-характеристика, р-тип.

Все рассматриваемые в статье группы — абелевы. Напомним, что функция μ : $A \times A \to A$ называется *умножением* на группе A, если

$$\mu(a,b+c) = \mu(a,b) + \mu(a,c)$$
 и $\mu(b+c,a) = \mu(b,a) + \mu(c,a)$ для всех $a,b,c \in A$.

Всякое кольцо (под кольцом подразумевается не обязательно ассоциативное или коммутативное кольцо, но умножение всегда дистрибутивно с двух сторон относительно сложения) на группе A задает некоторое умножение μ , а именно $\mu(a,b)=ab$, и это соответствие между кольцевыми структурами и умножениями на группе A биективно. Если μ и ν – умножения на группе A, то их cymma μ + ν определяется по правилу

$$(\mu+\nu)(a,b) = \mu(a,b)+\nu(a,b)$$
 для всех $a,b \in A$.

Относительно введенной операции сложения все умножения на группе A образуют абелеву группу, *группу умножений* на A, Mult A. Всякая группа A может быть тривиальным образом снабжена кольцевой структурой, если все произведения ее элементов положить равными 0. Такое кольцо называется *нуль-кольцом*. Нуль группы Mult A – это умножение, соответствующее нуль-кольцу на A. Группа A называется *нильгруппой* $[1, \S 120]$, если на A не существует никаких колец, отличных от нуль-кольца, т.е. Mult A = 0. Всякая периодическая делимая группа является нильгруппой [1, теорема 120.3]. Из $[1, \S 121]$ сразу следует, что всякая нильгруппа не содержит ненулевых делимых подгрупп без кручения. Группа без кручения ранга 1 не является нильгруппой тогда и только тогда, когда ее тип идемпотентен [1, теорема 121.1]. В [2, теорема 3] описаны сепарабельные нильгруппы без кручения, а также изучены векторные нильгруппы. Отметим, что для каждой группы A имеют место изоморфизмы:

Mult
$$A \cong \text{Hom}(AAA, A) \cong \text{Hom}(A, E(A)^{+})$$
 [1, теорема 118.1].

Через **Z** обозначается аддитивная группа (или кольцо) целых чисел, \widehat{Z}_p – группа (или кольцо) целых p-адических чисел, \mathbf{N} – множество всех натуральных чисел. Если A – группа, p – простое число, то $p^\omega A = \bigcap_{n=1}^\infty p^n A$, $\Pi(A)$ – множество

¹ Работа выполнена при поддержке ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы. Государственный контракт П 937 от 20 августа 2009 г.

всех простых чисел p со свойством $pA \neq A$, $r_p(A) - p$ -ранг группы A, т.е. ранг ее фактор-группы A/pA. E(A) — кольцо эндоморфизмов группы A. Подгруппа G группы A называется чистой (p-чистой), если $nG = G \cap nA$ $(p^nG = G \cap p^nA)$ для каждого $n \in \mathbb{N}$. Группа без кручения A называется квазиоднородной, если $\Pi(A) = \Pi(G)$ для любой ее ненулевой чистой подгруппы G.

Обозначим через R_p класс групп без кручения и без ненулевых элементов бесконечной p-высоты при данном простом числе p. Если $a \in A \in R_p$, $\xi = r_0 + r_1 p + \ldots$ – целое p-адическое число, то через ξa будем обозначать элемент группы A, являющийся пределом в p-адической топологии последовательности $(r_0 + \ldots + r_n p^n)a$ $(n = 0, 1, \ldots)$. Следуя [3], p-характеристикой элемента a будем называть множество

$$H_p^A(a) = \{\xi \mid \xi \in \widehat{Z}_p \text{ и } \xi a \text{ определено} \}.$$

Множество *p*-характеристик совпадает с множеством всех *p*-чистых подгрупп группы \hat{Z}_p , содержащих группу **Z**. В [3] показано, что если $A,B \in R_p$, $r_p(A) = 1$, а $a \in A \backslash pA$ и $H_p(a) \subseteq H_p(b)$ для некоторого $b \in B$, то существует единственный гомоморфизм f_b : $A \rightarrow B$ со свойством $f_b a = b$; в частности, если $b \in A(H_b(a)) = \{x \in A \mid a \in A \mid a \in A \mid a \in A \in A \}$ $H_p(x) \supseteq H_p(a)$ }, то отображение $b \mapsto f_b$ задает изоморфизм $E(A)^+ \cong A(H_p(a))$. Будем говорить, что p-характеристики H_1, H_2 эквивалентны, если существуют такие $n,m \in \mathbb{N}$, что $nH_1 \subseteq H_2$, $mH_2 \subseteq H_1$. Класс эквивалентности в множестве p-характеристик будем называть p-типом. Группу $A \in R_p$ назовем p-однородной, если все ее ненулевые элементы имеют один и тот же p-тип τ , в этом случае будем писать $\tau_p(A) = \tau$. На множестве всех *p*-типов можно ввести отношение частичного порядка \leq . Например, запись $\tau_1 \leq \tau_2$ означает, что существуют p-характеристики $H_1 \in \tau_1$, $H_2 \in \tau_2$, такие, что $nH_1 \subseteq H_2$ для некоторого $n \in \mathbb{N}$. Понятие p-типа было введено автором в ряде работ ([4-7] и др.). Множество p-типов всех ненулевых элементов группы $A \in R_p$ обозначим через $T_p(A)$, а через $\tau_p(a) - p$ -тип элемента $a \in A$. Если $H_1 \in \tau_1$, $H_2 \in \tau_2$, то под H_1H_2 будем понимать p-характеристику (т.е. p-чистую подгруппу группы \hat{Z}_p), порожденную элементами h_1h_2 , где $h_1 \in H_1$, $h_2 \in H_2$, а под p-типом $\tau_1\tau_2$ будем понимать p-тип, содержащий H_1H_2 . Если $H_1\subseteq H_2$, то под p-характеристикой H_2 : H_1 будем понимать наибольшую p-характеристику H, для которой $HH_1 \subseteq H_2$. p-характеристику H назовем uдемпотентной, $H^2 = HH = H$. Отметим, что $H_p(p^n a) = H_p(a)$ для всех $n \in \mathbb{N}$. Групповые термины, примененные к кольцу, касаются его аддитивной группы.

Лемма 1. Пусть A и B – группы из R_p p-ранга 1. Если $\tau_p(a) \le \tau_p(b)$ для некоторых $0 \ne a \in A, \ 0 \ne b \in B, \ \text{то} \ H = \text{Hom}(A,B)$ является группой из R_p p-ранга 1 и $\tau_p(b) : \tau_p(a) \in T_p(H)$. В противном случае Hom(A,B) = 0.

Доказательство. Ясно, что $H \in R_p$. Если $H_p(a) \subseteq H_p(b)$ (можно считать, что $a \in A \backslash pA, b \in B \backslash pB$), то существует единственный гомоморфизм $f: A \longrightarrow B$ со свойством fa = b. Если $\xi H_p(a) \subseteq H_p(b)$ $(\xi \in \widehat{Z}_p \setminus p\widehat{Z}_p)$, то $H_p(a) \subseteq \xi^{-1} H_p(b) = H_p(\xi b)$.

Поэтому существует гомоморфизм ϕ : $A \rightarrow B$, $\phi a = \xi b$. Ясно, что $\phi = \xi f$, т.е. $H_p(f) \supseteq H_p(b)$: $H_p(a)$. Пусть теперь $\eta f \in H$ для некоторого $\eta \in \widehat{Z}_p \setminus p\widehat{Z}_p$. Имеем $(\eta f)a = \eta b$. Отсюда $H_p(a) \subseteq H_p(\eta b) = \eta^{-1}H_p(b)$ и $\eta H_p(a) \subseteq H_p(b)$, т.е. $\eta \in H_p(b)$: $H_p(a)$ и, значит, $H_p(f) = H_p(b)$: $H_p(a)$. Если $\psi a = x$ для $x \in B \backslash pB$, то $x = \zeta b$ для некоторого $\zeta \in \widehat{Z}_p \setminus p\widehat{Z}_p$. Откуда $\zeta^{-1}\psi a = b$, значит, $\zeta^{-1}\psi = f$ или $\psi = \zeta f$. В частности, $r_p(H) = 1$.

Если A и B — группы из R_p p-ранга 1, то $G = A \otimes B$ — группа без кручения p-ранга 1. Необязательно $G \in R_p$, однако для $a \in A$ и $b \in B$ следует, что $\tau_p(a \otimes b + p^\omega G) \geq \tau_p(a) \tau_p(b)$.

- **Лемма 2.** 1) Кольцо S из R_p p-ранга 1 либо является нуль-кольцом, либо изоморфно некоторому p-чистому подкольцу кольца \widehat{Z}_p .
- 2) Группа $A \in R_p$ p-ранга 1 не является нильгруппой тогда и только тогда, когда для некоторых $\tau_1, \tau_2 \in T_p(A)$ найдется $\tau \in T_p(A)$ со свойством $\tau_1 \tau_2 \leq \tau$.

Доказательство. 1) вытекает из того, что S^+ можно рассматривать как p-чистую подгруппу в \hat{Z}_p , а всякое умножение на S продолжается до умножения кольца \hat{Z}_p .

2) Если $a,b \in A$, $a,b \neq 0$, и $\xi \in H_p(a)$, $\eta \in H_p(b)$, то $\xi \eta(ab) = (\xi a)(\eta b)$. Откуда следует, что $H_p(a)H_p(b) \subseteq H_p(ab)$, т.е. $\tau_p(a)\tau_p(b) \leq \tau_p(ab)$.

Обратно, допустим, что $\tau_1\tau_2 \leq \tau$. Согласно лемме 1, $E(A)^+$ является группой из R_p и $t=\tau$: $\tau_1 \in T_p(E(A)^+)$. Тогда $\tau_2 \leq t$. Следовательно, Mult $A \cong \operatorname{Hom}(A,E(A)^+) \neq 0$. Отметим, что (поскольку в кольце из R_p p-ранга 1, не являющегося нуль-кольцом, нет делителей нуля) в качестве τ_1 и τ_2 могут участвовать любые p-типы из $T_p(A)$.

Лемма 3. Пусть $A \in R_p$ – группа p-ранга 1. Тогда эквивалентны следующие утверждения:

- 1) А содержит элемент с наименьшей *p*-характеристикой;
- 2) A изоморфна аддитивной группе некоторого p-чистого подкольца кольца \widehat{Z}_p , содержащего кольцо ${\bf Z}$;
 - 3) А содержит элемент с идемпотентной *p*-характеристикой.

Доказательство. 1) \Rightarrow 2). Пусть $a \in A \backslash pA$ — элемент с наименьшей p-характеристикой. Тогда $A = A(H_p(a)) \cong E(A)^+$, где E(A) можно рассматривать как p-чистое подкольцо в \widehat{Z}_p (лемма 2).

Импликация 2) \Rightarrow 3) очевидна, так как в кольце из R_p с 1 имеем $H_p(1)=H_p(1)H_p(1)$.

3)⇒1). Пусть $a \in A \backslash pA$ — элемент с идемпотентной p-характеристикой. Если $b \in A$, то $b = \xi a$ для некоторого $\xi \in H_p(a)$. Так как $\xi H_p(a) \subseteq H_p(a)$, то $H_p(a) \subseteq \xi^{-1}H_p(a) = Hp(\xi a)$, т.е. $H_p(a) \subseteq H_p(b)$ для любого $b \in A$.

В леммах 4, 5 и в теореме 6 используются идеи доказательств некоторых результатов § 96 из [1].

Лемма 4. Пусть $A = \prod_{i \in I} A_i$, $B = \prod_{j \in J} B_j$, где A_i и B_j – квазиоднородные группы и $r_p(A_i) = 1$, $r_q(B_i) = 1$ для некоторых $p \in \Pi(A_i)$, $q \in \Pi(B_i)$. Тогда если $\eta: A \rightarrow B$ – не-

56 *А.Р. Чехлов*

нулевой гомоморфизм, то $\tau_1 \le \tau_2$ для некоторых $\tau_1 \in T_p(A_i)$ и $\tau_2 \in T_p(B_j)$, где $p \in \Pi(A_i) \cap \Pi(B_i)$ и $i \in I, j \in J$.

Доказательство. Найдется j ∈ J, для которого композиция гомоморфизмов $A \rightarrow B \rightarrow B_j$ не равна нулю. Следовательно, можно считать, что $B = B_j$ – квазиоднородная группа p-ранга 1 для некоторого $p \in \Pi(B)$. Если $B \cong \widehat{Z}_p$, то доказывать нечего. Пусть B — узкая группа и $\mathfrak{q} \neq 0$ для $a \in A$. Запишем a в виде $a = (..., a_i, ...)$, где $a_i \in A_i$. В силу квазиоднородности группы B можно считать, что $A_i \in R_p$. Соберем в одно слагаемое те A_i , для которых совпадают p-характеристики $H_p(a_i)$. Пусть $T_H = \prod_{H_p(a_i)=H} A_i$. Тогда $A = \prod_H T_H$. Сомножителей T_H не более чем $2^{2^{\aleph_0}}$ (группа \widehat{Z}_p имеет мощность 2^{\aleph_0} , а всякая группа из R_p p-ранга 1 изоморфна некоторой подгруппе группы \widehat{Z}_p). Поэтому найдется конечный набор H_1 , ..., H_k , для которого $\mathfrak{q} T_{H_1}$,..., $\mathfrak{q} T_{H_k} \neq 0$, но $\mathfrak{q}(\prod' T_H) = 0$ (штрих означает, что $H \neq H_1$, ..., H_k). Представим элемент a в виде $a = (..., a_H, ...)$, где $a_H \in T_H$. Тогда $\mathfrak{q} a = \mathfrak{q} a_{H_1} + ... + \mathfrak{q} a_{H_k}$. Если, например, $\mathfrak{q} a_{H_1} \neq 0$, то $\mathfrak{r}_p(\mathfrak{q} a_{H_1}) \geq \mathfrak{r}_p(a_{H_1})$, где $\mathfrak{r}_p(a_{H_1})$ входит в $T_p(A_i)$ любой группы из произведения T_{H_1} , а $\mathfrak{q} a_{H_1} \in B$.

Если $A \in R_p - p$ -однородная группа p-ранга 1 и $0 \neq a,b \in A$, то fa = nb при некоторых $f \in E(A)$ и $n \in \mathbb{N}$. Отсюда следует, что A - q-однородная группа для каждого $q \in \Pi(A)$.

Лемма 5. Пусть $A = \prod_{i \in I} A_i$, где каждая $A_i - p$ -однородная группа p-ранга 1 для некоторого $p \in \Pi(A_i)$. Тогда если G — квазиоднородное прямое слагаемое в A q-ранга 1 при некотором $q \in \Pi(G)$, то G - q-однородная группа и найдется группа A_i со свойством $\tau_a(G) = \tau_a(A_i)$.

Доказамельство. Для каждого $p \in \Pi(A)$ соберем группы A_i одного и того же p-типа τ и p-ранга 1 так, чтобы каждая группа соответствовала только одной паре (p,τ) ; обозначим через $A_{\tau} = \prod_{\tau_p(A_i)=\tau} A_i$ произведение таких групп A_i ; групп в этом произведении не более чем $2^{2^{\aleph_0}}$. Можно считать, что $G \not\cong \widehat{Z}_p$ ни для какого p. Поэтому G — узкая группа. Следовательно, для проекции $\pi \colon A \to G, \ A = G \oplus C,$ найдется не более чем конечное число ненулевых образов $\pi A_{\tau_1}, \dots, \pi A_{\tau_k}$, а произведение остальных групп A_{τ} гомоморфизм π переводит в нуль. Следовательно, это произведение содержится в C и $A_{\tau_1} \oplus \dots \oplus A_{\tau_k} = G \oplus C'$ для некоторой подгруппы $C' \subseteq C$. Так как $\theta_l G \neq 0$ (и $\pi A_{\tau_l} \neq 0$) для некоторой проекции $\theta_l \colon A \to A_{\tau_l}$ ($l=1,\dots,k$), то для каждого $p \in \Pi(A_i)$ следует, что $p \in \Pi(G)$ и $T_p(G)$ содержит p-тип τ_l . В частности, G — также p-однородная группа p-типа τ_l и согласно замечанию перед леммой $\tau_q(G) = \tau_q(A_l)$ для данного простого $q \in \Pi(G)$.

Теорема 6. Если $A = \prod_{\tau} A_{\tau} = \prod_{\tau} B_{\tau} \in R_p$, где A_{τ} и B_{τ} — прямые произведения p-однородных p-типа τ групп p-ранга 1, а τ пробегает различные p-типы, то $A_{\tau} \cong B_{\tau}$ для каждого τ .

Пусть $A_{\tau} = \prod_{i \in I} A_i = \prod_{j \in J} B_j$, где $A_i - p$ -однородные p-типа τ группы p-ранга 1, а B_j — квазиоднородные группы p-ранга 1. Тогда все группы B_j p-однородны и имеют p-тип τ . Более того, при одном из следующих условий:

- 1) справедлива обобщенная гипотеза континуума;
- 2) $A_i \ncong \widehat{Z}_p$ для каждого i, а множество I неизмеримо,

выполняется равенство |I| = |J|.

Доказательство. Пусть π_{τ} : $A \to A_{\tau}$ и ρ_{τ} : $A \to B_{\tau}$ — проекции. В силу леммы 4 $A_{\tau} \subseteq \prod_{s \geq \tau} B_s$. Элемент $a_{\tau} \in A_{\tau}$ запишем в виде $a_{\tau} = b_{\tau} + c_{\tau}$, где $b_{\tau} \in B_{\tau}$, $c_{\tau} \in \prod_{s > \tau} B_s$. Снова по лемме 4 $\pi_{\tau} c_{\tau} = 0 = \rho_{\tau} c_{\tau}$. Откуда $a_{\tau} = \pi_{\tau} a_{\tau} = \pi_{\tau} b_{\tau}$ и $b_{\tau} = \rho_{\tau} b_{\tau} = \rho_{\tau} a_{\tau}$. Таким образом, композиция гомоморфизмов $A_{\tau} \xrightarrow{\rho_{\tau}} B_{\tau} \xrightarrow{\pi_{\tau}} A_{\tau}$ есть тождественное отображение группы A_{τ} . Согласно лемме 5, все $B_{j} - p$ -однородные группы, поэтому в силу симметрии получаем изоморфизм $A_{\tau} \cong B_{\tau}$.

Если множество I конечно, то $|I| = r_p(A_\tau) = |J|$. Допустим, что I – бесконечное множество. Тогда если выполняется условие 1), то из равенств $2^{|I|} = |A_\tau| = 2^{|J|}$ (учесть, что $|A_i|$, $|B_j| \le 2^{\aleph_0}$) следует равенство |I| = |J|. Если выполняется условие 2), то, учитывая узкость групп A_i , для каждой группы $R \cong A_i$ получаем

$$\operatorname{Hom}(A_{\tau},R) \cong \bigoplus_{i \in I} \operatorname{Hom}(A_{i},R) \cong \bigoplus_{j \in J} \operatorname{Hom}(B_{j},R).$$

(Неизмеримость |I| влечет неизмеримость $2^{|I|} = 2^{|J|}$ и, значит, неизмеримость |J|). Согласно лемме 1, последние прямые суммы имеют p-ранги |I| и |J| соответственно.

Напомним, что группа без кручения A называется $censuremath{sasho}$, если для всякой ее ненулевой чистой подгруппы B факторгруппа A/B делима; это эквивалентно тому, что A – квазиоднородная группа и $r_p(A) = 1$ для каждого $p \in \Pi(A)$.

Пусть $A = \prod_{i \in I} A_i$, где A_i — связные группы. Для $p \in \Pi(A)$ через $\Omega_p(A)$ обозначим множество $\Omega_p(A) = \{T_p(A_i) \mid A_i \in R_p, \ i \in I\}$. Если V и W — группы p-ранга 1 из R_p , то будем писать $T_p(V) \leq T_p(W)$, если $\tau_1 \leq \tau_2$ для некоторых $\tau_1 \in T_p(V)$ и $\tau_2 \in T_p(W)$ (это эквивалентно существованию ненулевых гомоморфизмов $V \rightarrow W$).

Теорема 7. Пусть $A = \prod_{i \in I} A_i$, где A_i — связные редуцированные группы и для всех $i \in I$ и $p \in \Pi(A)$ множество $J_i^{(p)} = \{j \in I \mid T_p(A_j) \leq T_p(A_i), p \in \Pi(A_i) \cap \Pi(A_j)\}$ неизмеримо. Группа A является нильгруппой тогда и только тогда, когда для всех $p \in \Pi(A)$ и любых $\tau_1, \tau_2, \tau \in \Omega_p(A)$ выполняется неравенство $\tau_1 \tau_2 \nleq \tau$.

Доказательство. Воспользуемся изоморфизмом Mult $A \cong \operatorname{Hom}(A, E(A)^+)$. Если A – нильгруппа, то, как ее прямые слагаемые, все A_i являются нильгруппами, в частности среди A_i не встречаются группы, изоморфные \widehat{Z}_p . Имеем $E(A)^+ = \operatorname{Hom}(A,A) \cong \prod_{i \in I} \operatorname{Hom}(A,A_i)$ [1, теорема 43.2]. Зафиксируем $i \in I$ и выберем некоторый $p \in \Pi(A_i)$. Запишем A в виде $A = B_i \oplus C_i$, где $B_i = \prod_{j \in J} A_j$, $C_i = \prod_{s \in I \cup J} A_s$, $J = \{j \in I \mid p \in \Pi(A_j) \text{ и } T_p(A_j) \leq T_p(A_i)\}$. В силу связности групп A_s из леммы 4 следует, что $\operatorname{Hom}(C_i,A_i) = 0$. Поэтому $\operatorname{Hom}(A,A_i) \cong \operatorname{Hom}(B_i,A_i)$. А так как все A_i – узкие группы, то $\operatorname{Hom}(B_i,A_i) \cong \bigoplus_{j \in J} \operatorname{Hom}(A_j,A_i)$ [1, следствие 94.5]. Здесь каждая группа $\operatorname{Hom}(A_i,A_i)$ является связной, множество p-типов ненулевых элементов которой

58 *А.Р. Чехлов*

содержит p-тип $\tau_p^{(i)}: \tau_p^{(j)}$, где $\tau_p^{(i)} \in T_p(A_i)$, $\tau_p^{(j)} \in T_p(A_j)$ $(\tau_p^{(i)} \geq \tau_p^{(j)})$. Из вышесказанного следует, что $E(A)^+$ можно рассматривать как подгруппу прямого произведения таких связных групп. Поэтому вновь по лемме 4 $\operatorname{Hom}(A, E(A)^+) \neq 0$ тогда и только тогда, когда $\tau_p^{(s)} \leq \tau_p^{(i)}: \tau_p^{(j)}$ или, эквивалентно, $\tau_p^{(j)} \tau_p^{(s)} \leq \tau_p^{(i)}$ для некоторых $i,j,s \in I$.

В работах [8-11] автор изучал проективно инвариантные подгруппы абелевых групп.

ЛИТЕРАТУРА

- 1. Φ укс Л. Бесконечные абелевы группы. М.: Мир, 1974. Т. 1; 1977. Т. 2.
- Чехлов А.Р. Об абелевых группах, все подгруппы которых являются идеалами // Вестник ТГУ. Математика и механика. 2009. № 3(7). С. 64 67.
- 3. *Иванов А.М.* Об одном свойстве *p*-сервантных подгрупп группы целых *p*-адических чисел // Матем. заметки. 1980. Т. 27. № 6. С. 859 867.
- 4. Чехлов А.Р. Об абелевых группах без кручения, близких к квазисервантно инъективным // Абелевы группы и модули. 1985. С. 117 127.
- Уехлов А.Р. О некоторых классах абелевых групп без кручения, близких к квазисервантно инъективным // Изв. вузов. Математика. 1985. № 8. С. 82 83.
- Чехлов А.Р. Абелевы СS-группы без кручения // Абелевы группы и модули. 1988. С. 131
 147.
- 7. *Чехлов А.Р.* О прямых произведениях и прямых суммах абелевых QCPI-групп без кручения // Изв. вузов. Математика. 1990. № 4. С. 58 67.
- Чехлов А.Р. Свойства подгрупп абелевых групп, инвариантных относительно проекций // Вестник ТГУ. Математика и механика. 2008. № 1(2). С. 76 82.
- Чехлов А.Р. О подгруппах абелевых групп, инвариантных относительно проекций // Фундамент. и прикл. матем. 2008. Т. 14. № 6. С. 211 – 218.
- Чехлов А.Р. О проективно инвариантных подгруппах абелевых групп // Вестник ТГУ. Математика и механика. 2009. № 1(5). С. 31 – 36.
- Чехлов А.Р. Сепарабельные и векторные группы, проективно инвариантные подгруппы которых вполне инвариантны // Сиб. матем. журн. 2009. Т. 50. № 4. С. 942 – 953.

СВЕДЕНИЯ ОБ АВТОРЕ:

ЧЕХЛОВ Андрей Ростиславович – доктор физико-математических наук, профессор кафедры алгебры Томского государственного университета. E-mail: cheklov@math.tsu.ru

Статья принята в печать 26.10.2009г.