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In this paper we prove the asymptotic efficiency of the model selection procedure
proposed by the authors in [1]. To this end we introduce the robust risk as the least
upper bound of the quadratical risk over a broad class of observation distributions.
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1. Introduction

In this paper we will investigate the asymptotic efficiency of the model selection
procedure proposed in [1] for estimating a 1-periodic function S:R — R, S € L,[0,1],
in a continuous time regression model

dy, =S@t)dt+dg,, 0<t<n, )

with a semimartingale noise & =(§,))<<,. The quality of an estimate S (any real-

valued function measurable with respect to o{y,,0<¢<n}) for § is given by the mean
integrated squared error, i.e.

Ry(5,8)=Eps|| -S|, @

where E g is the expectation with respect to the noise distribution O given a function S;

1
IS IP= [, > (odx.
The semimartingale noise (&, )<<, 1s assumed to take values in the Skorohod space
D[0,n] and has the distribution Q on D[0,n] such that for any function f from
L,[0,n] the stochastic integral

LN = fdg, 3)

is well defined with
Eyl,(f)=0 and E,l}(f)<c" jo f2ds, 4)
where " is some positive constant which may, in general, depend on 7, i.e. 6" =0,

such that
0<liminf o, <limsupo, <. (5)

n—>0 n—»o0

' The paper is supported by the RFFI — Grant 09-01-00172-a.
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Now we define a robust risk function which is required to measure the quality of an
estimate S provided that a true distribution of the noise (&, )o,<, is known to belong to

some family of distributions Q) which will be specified below. Just as in [2], we define
the robust risk as
R::(S’n,S)z sup RQ(gn’S) (6)
0eQ,
The goal of this paper is to prove that the model selection procedure for estimating
S in the model (1) constructed in [1] is asymptotically efficient with respect to this risk.
When studying the asymptotic efficiency of this procedure, described in detail in

Section 2, we suppose that the unknown function S in the model (1) belongs to the
Sobolev ball

wh={f eCh,[0,1], an(”n <r}, 7
j=0

where >0,k >1 are some parameters, [0,1] is a set of k times continuously

per

differentiable functions f:[0,1] > R such that f (l)(O) =f @ () forall 0<i<k. The

functional class W,.k can be written as the ellipsoid in /, , i.e.

Wt ={feCy,[0 Z a,05<r}, ®)
k ‘
where a; =Y (2nfj/2])*.

i=0

In [1] we established a sharp non-asymptotic oracle inequality for mean integrated
squared error (2). The proof of the asymptotic efficiency of the model selection
procedure below largely bases on the counterpart of this inequality for the robust risk
(6) given in Theorem 1.

It will be observed that the notion "nonparametric robust risk" was initially
introduced in [3] for estimating a regression curve at a fixed point. The greatest lower
bound for such risks have been derived and a point estimate is found for which this
bound is attained. The latter means that the point estimate turns out to be robust
efficient. In [4] this approach was applied for pointwise estimation in a heteroscedastic
regression model.

The optimal convergence rate of the robust quadratic risks has been obtained in [5]
for the non-parametric estimation problem in a continuous time regression model with a
coloured noise having unknown correlation properties under full and partial
observations. The asymptotic efficiency with respect to the robust quadratic risks, has
been studied in [2], [6] for the problem of non-parametric estimation in heteroscedastic
regression models. In this paper we apply this approach for the model (1).

The rest of the paper is organized as follows. In Section 2 we construct the model
selection procedure and formulate (Theorem 2.1) the oracle inequality for the robust
risk. Section 3 gives the main results. In Section 4 we consider an example of the model
(1) with the Levy type martingale noise. In Section 5 and 6 we obtain the upper and
lower bounds for the robust risk. In Section 7 some technical results are established.
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2. Oracle inequality for the robust risk

The model selection procedure is constructed on the basis of a weighted least
squares estimate having the form

- = A . A L pn
§,= V80 with §y,=— [0 (0, ©)
j=1
where (¢) ;5 is the standard trigonometric basis in L,[0,1] defined as
o =1 ¢;(x)=~2Tr,2n[j/21x), /> 2, (10)
where the function 77;(x)=cos(x) for even j and Tr;(x)=sin(x) for odd j; [x]

denotes the integer part of x. The sample functionals éjn are estimates of the

corresponding Fourier coefficients

1
0, =(5,0,)= ], S®o;()d. (11)
Further we introduce the cost function as
T =2 V(DB =22 (D8P Pu(¥)-
j=1 Jj=1
Here

~

~ A2 © . ~ S A2 )
0, =0, " Wwith G":Z} 07, [=[Vnl+1;
=
f)n(y) is the penalty term defined as

- )zén\v\z

As to the parameter p, we assume that this parameter is a function of n,i.e. p=p,
such that 0 <p <1/3 and

limn®p, =0 forall &>0.

n—>0

We define the model selection procedure as
5.=5; (12)
where {( is the minimizer of the cost function J, (y) in some given class I' of weight
sequences v = (Y(/)) ;> €[0,1]", i.e.

Y= argminyer ']n (Y) . (1 3)

Now we specify the family of distributions Q, in the robust risk (6). Let P, denote
the class of all distributions Q of the semimartingale (&,) satisfying the condition (4).

It is obvious that the distribution Q, of the process & =Vo"w,, where (w,) is a

standard Brownian motion, enters the class P,, i.e. Q€ P,. In addition, we need to
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impose some technical conditions on the distribution Q of the process ()<<, - Let
denote

- 2
G(Q) = llmn—>oo Eljas); EQ E}j,n s (14)
where
1
E.;j,n = ﬁln ((I)] ) 5

(£,(¢;) is given in (3)) and introduce two F, — R, functionals

L,(@Q)= sup

xeH ,#(x)<n

i x; (Eg&l., ‘G(Q))‘

Jj=1
and

2
LZ,n (Q) = sup EQ [Z xj éj,n ] 5
=

|x|<L#(x)<n
0 2 © 2 «©
where H =[-LIJ", [x =3 " xj, #() =" 1; .o and
Pt 2 2
Ft:_j,n = E-’.ia" - EQé.f’” '

Now we consider the family of all distributions QO from P, with the growth
restriction on L; ,(0)+ L, ,(0) , i.e.

P ={0eP,:L,(0)+L,,(0)<I,],

where /, is a slowly increasing positive function, i.e. /, — +o0 as n — +co0 and for any
6>0
.1
lim % =0.

n—»0 nés

It will be observed that any distribution Q from P, satisfies conditions C,) and

C,) on the noise distribution from [1] with ¢, </, and ¢, , </,. We remind that

these conditions are

Cl) cl*Jl = Ll,n (Q) <005

) Cz,n =L, ,(Q)<x.

In the sequel we assume that the distribution of the noise (&,) in (1) is known up to
its belonging to some distribution family satisfying the following condition.

C*) Let Q, be a family of the distributions Q from P, such that Q, € O, .

An important example for such family is given in Section 4.

Now we specify the set ' in the model selection procedure (12) and state the oracle
inequality for the robust risk (6) which is a counterpart of that obtained in [1] for the
mean integrated squared error (2). Consider the numerical grid
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A, =L Ky <t 0t ) (15)
where ;, =ie and m = [1/82]; parameters k* >1 and 0 <e<1 are functions of 7, i.e.
k" =k*(n) and €= g(n), such that for any >0

lim k*(n) =400, limk*(n)lnn=0,
n—x0

n—»o0 5 (16)
lime(n)=0 and lim n°e(n)=+o.
n—»0 n—>0
For example, one can take
e(n) = ! and k" (n)=+In(n+1)
In(n+1)
for n>1.
Define the set " as
I={y,,0€4,}, (17)

where v, is the weight sequence corresponding to an element o = (3,¢) € 4, , given by
the formula

Yu(j)zl{léjsjo}+(1_(j/wa)ﬁ)l{j0<j5ma} (18)

1/(2B+1)

where j, = jo (o) =[o,/(1+Inn)], o, = (t11) and

_(B+DEB+D
TB - ZB .
B
Along the lines of the proof of Theorem 1 in [1] one can establish the following

result.
Theorem 1. Assume that the unknown function S is continuously differentiable

and the distribution family O in the robust risk (6) satisfies the condition C*). Then
the estimator (12), for any n > 1, satisfies the oracle inequality

‘on 1+3p-2p> . . 1
R1(§,8) s P P-min K} (5,,5)+--D, p), (19)
where the term D, (p) is defined in [10] such that
D
lim "gp) =0 (20)
n—w n

for each 6>0.

Remark 1. The inequality (19) will be used to derive the upper bound for the robust
risk (6). It will be noted that the second summand in (19) when multiplied by the
optimal rate n**/**) tends to zero as n —> oo for each k >1. Therefore, taking into
account that p — 0 as n — oo, the principal term in the upper bound is given by the

minimal risk over the family of estimates (§y) As is shown in [7], the efficient

yel *
estimate enters this family. However one can not use this estimate because it depends on
the unknown parameters £ >1 and » >0 of the Sobolev ball. It is this fact that shows
an adaptive role of the oracle inequality (19) which gives the asymptotic upper bound in
the case when this information is not available.
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3. Main results

In this Section we will show, proceeding from (19), that the Pinsker constant for the
robust risk (6) is given by the equation

o 26k/(2k+1)
G—j 1)

R, =((2k+1)r)”(2"”)[ e

It is well known that the optimal (minimax) rate for the Sobolev ball er is
n?H kD (see, for example, [8, 9]). We will see that asymptotically the robust risk of
the model selection (12) normalized by this rate is bounded from above by R;,.

Moreover, this bound can not be diminished if one considers the class of all admissible
estimates for S .

Theorem 1. Assume that, in model (1), the distribution of (&,) satisfies the

condition C*). Then the robust risk (6) of the model selection estimator §, defined in

(12), (17), has the following asymptotic upper bound

limsup nz"“z"“)% sup R, (5.,,8)<1. (22)
k

*
n— k,n SEW,

Now we obtain a lower bound for the robust risk (6). Let I, be the set of all
estimators §, measurable with respect to the sigma-algebra o{y,,0<7<n} generated

by the process (1).
Theorem 2. Under the conditions of Theorem 1

liminf nz"“z’f“)R%jnf sup R} (S,,S)>1. (23)

n—0 k,n Sn€T, SEW;{(

Theorem 1 and Theorem 2 imply the following result
Corollary 3. Under the conditions of Theorem 1

. 1 . .o~
lim *¥/k+D — inf sup R (5,,S)=1. (24)
n—»0 Rk,n Syell, SeW,k

Remark 1. The equation (24) means that the sequence R;,n defined by (21) is the
Pinsker constant (see, for example, [8, 9]) for the model (1).
4. Example
Let the process (&,) be defined as
&[ = QIW[ + QZZ[ ’ (25)

where (w,),s( is a standard Brownian motion, (z,),s, is @ compound Poisson process
defined as

Nt
% :Z Y,
=

where (N,), is a standard homogeneous Poisson process with unknown intensity
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A >0 and (¥;), isaniid. sequence of random variables with

EY;=0, EY}=1 and EY;<o.
Substituting (25) in (3) yields
EL (/)= +aMIIfIF.
In order to meet the condition (4) the coefficients g;, 0, and the intensity A >0
must satisfy the inequality
of +oIn<ao”. (26)
Note that the coefficients g,, o, and the intensity A in (4) as well as ¢ may
depend on n,1i.e. g, =g;(n) and A =A(n).
As is stated in [1], Theorem 2, the conditions C;) and C,) hold for the process
(25) with 6 = 6(Q) = 07 + 0\ defined in (14), ¢/ (n) =0 and
cy(n)<4o(c+olEYY).
Let now Q, be the family of distributions of the processes (25) with the coefficients
satisfying the conditions (26) and
0 <A1, 27)

where the sequence /, is taken from the definition of the set P, . Note that the

distribution O, belongs to Q.. One can obtain this distribution putting in (25)
0, =Vo" and g, =0. It will be noted that Q, = P, if
40" (6" +], EX<I,.

5. Upper bound

1. Known smoothness

First we suppose that the parameters k>1, » >0 and 6~ in (4) are known. Let the

family of admissible weighted least squares estimates (S’Y)yer for the unknown function

Se W,.k be given (17), (18). Consider the pair
oy = (k,ty)

where ¢, = [r_n/a]a, a =r/c, and ¢ satisfies the conditions in (16). Denote the
corresponding weight sequence in I as

Yo =Ya, - (28)

Note that for sufficiently large »n the parameter o belongs to the set (17). In this

section we obtain the upper bound for the empiric squared error of the estimator (6).
Theorem 1. The estimator § 1o satisfies the following asymptotic upper bound

: 1 .
limsup »****" —— sup R} (5, ,8)<1. (29)

n—o k,n Sewt



38 V. Konev, S. Pergamenshchikov

Proof. First by substituting the model (1) in the definition of éi , in(9) we obtain

1
T
are defined in (14). Therefore, by the definition of the

9j,n = e.f +

where the random variables ; ,

estimators 3«, in (9) we get

1, =SIP=22 (=7o(/)* 0] =2M, + 3 v ())&,

Jj=1 j=1
. 1 & . .
with Mn :_Z (]_YO(]))YO(])e_j ij,n :
Jn &
It should be observed that
EQ,S Mn =0

for any Q € Q, . Further the condition (4) implies also the inequality E, Z‘,z <o, for

jon =

each distribution Q € O, . Thus,

* A z . G:; Z .

Ry (5,:5)< > (1=v,(j) 6 =y 1o (). (30)
J=Y Jj=1

where 1, = j,(a,) . Denote

= 2K/ (2k+D)

sup(1-y,(j))’/a;,

J21
where a; is the sequence as defined in (8). Using this sequence we estimate the first

summand in the right hand of (30) as

n
2K/ kD) Z (l—yo(j))z 6? <v, Z a; 6?.

J= J21

From here and (8) we obtain that for each S e er

n
Y, () =n* DS 1y (j)? 67 <v, 7.
J=
Further we note that

. — 2K/ (2k+1) 1
lim sup () Uy S 2k/(2k+1)°
o0 ()
where the coefficient t; is given (18). Therefore, for any n >0 and sufficiently large
n>1
sup Y, (S)<(1+m) (o) 0, (31)
Sewf

2k

s

where =T
2k 2k/(2k-+1)
()



Nonparametric estimation in a semimartingale regression model. Part 2 39

To examine the second summand in the right hand of (29) we set
1 o,
Ty, = (2k+1) Z Yo (/)
n j=1

Since by the condition (5)

.t
lim =2 =1,
n—o0 rn

one gets

. i 2 1/(2k+1) k2
lim %YM - with v =) K
e () (k+1)(2k +1)

Note that by the definition (22)
(@) YT, 405G ) Y = R,
Therefore, for any >0 and sufficiently large n >1

HOHD sup RY(§,.8) S+,
Sew,

Hence Theorem 1. o

2. Unknown smoothness

Combining Theorem 1 and Theorem 1 yields Theorem 1. o

6. Lower bound
First we obtain the lower bound for the risk (2) in the case of "white noise" model
(1), when &, =Vc" w, . As before let Q, denote the distribution of (&, )<<, in D[0,n].

Theorem 1. The risk (2) corresponding to the the distribution Q, in the model (1)
has the following lower bound
liminf »*** inf L sup Ry(3,,5)>1, (32)

> Syl Rk,n Seer
where Ry (-,-) = Ry, ().
Proof. The proof of this result proceeds along the lines of Theorem 4.2 from [2]. Let
1
V' be a function from C*(R) such that V(x)>0, j_lV(x)dx:I and V(x)=0 for
[x[>1. For each 0<n<1 we introduce a smoother indicator of the interval
[-14+m,1—n] by the formula

| u—x
L) =0 ey G(Tj du.

It will be noted that /, € C*(R), 0< I,, <1 and for any m >1 and positive constant
c>0

lim sup

=0 33)
N0 fl, <} (

[ rom@an-[' rea
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where | f'|,=sup_;c,; | f(x)|. Further, we need the trigonometric basis in L,[-1,1],
that is

el(x):1/\/5,64(x):Trj(n[j/2]x),j22. (34)

Now we will construct of a family of approximation functions for a given regression

function S following [2]. For fixed 0 <& <1 one chooses the bandwidth function as
1

1 1
h=h, =) N, n %1 (35)

with
. otkn?*

Pe T (1=e)r2* (k +1)(2k +1)

N, =In*n

and considers the partition of the interval [0,1] with the points ), =2hkm, 1<m<M ,
where
M =[1/2h)]-1.
For each interval [y, —A,Y, +h] we specify the smoothed indicator as L, (v, (%),

where v, (x) = (x—x,,)/h . The approximation function for S(¢) is given by
M N
S.n (=202 2 Dy y (1), (36)
m=1 j=I

where z=(z,, ;)i<mep 1<;<n 18 an array of real numbers;
D, ()= €; (v, NI, (v, (x))
are orthogonal functions on [0,1].
Note that the set er is a subset of the ball
B, ={f e LI0.1| f|*<r}.
Now for a given estimate §, we construct its projection in L,[0,1] into B,
Fp= Prg (S,
In view of the convexity of the set B, one has
IS, -SIP2l 7,-S I

for each Se W' < B, .
From here one gets the following inequalities for the the risk (2)

sup Ry(S,,8) 2 sup Ry(F,,S) 2 sup  Ry(F,.S),

SeW,.k SeW,.k {zeRd:Sz,,,eW,k}
where d = MN .
In order to continue this chain of estimates we need to introduce a special prior
distribution on R’ . Let « = (K, D1<mem 1< <y be arandom array with the elements

K, =t %, 37

m,j — 'm,j m,j>

where K:‘n’ are i.i.d. gaussian N(0,1) random variables and the coefficients

J
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_\O.;
=L

We choose the sequence (y_f- )i<j<y inthe same way as in [2] (see (8.11)) , i.e

41

m,j

k —k
=N, J

We denote the distribution of x by n,. We will consider it as a prior distribution of
the random parametric regression S

_» Which is obtained from (36) by replacing z with «.
Besides we introduce

| 2,
=, {z e R?: max max <Inn;. (39)
1<Sm<M 1<j<N t

By making use of the distribution ., one obtalns

sup Ro(S,-9)2[ . iy, Bous., 1 Fu=Sen P (@),
SEW r s0=n ’

Further we introduce the Bayes risk as

R(F,) = [ oo Ro(F s Se it (d2)

and noting that || f, I*< r we come to the inequality

sup Ry(3,,)2R(F,)-®,, (39)
SeW,.k

w, = E(l

where s ety Hlz )OS, 1P)-
By Proposition A.1 from Appendix A.1 one has, for any p >0

lim n’ w,=0.
n—0

Now we consider the first term in the right-hand side of (39). To obtain a lower

bound for this term we use the L,[0,1]-orthonormal function family (G, ;)<< 1<;<n
which is defined as

m J (x) \/— € (vm (x))1(|vm(x)\§1) :
We denote by ¢

and g,, ;(z) the Fourier coefficients for functions , and S
respectively, i.e.

~ 1 1
8= Jo Fi®)G, ;(0dx and g, ()= 5., (G, ;(x)dx
Now it is easy to see that

M N
Hﬁn_Sle ||2ZZZ gmj gm/ ))2

Let us introduce the functionals X ,(-): Ll[—l 11— R as

K (=] & rwa.
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In view of (36) we obtain that

&2 =], Dy ()G, (W) =N K (1),

0z, ;
Now Proposition A.2 implies
M . M N G'KI(I,)
RFZ YD | Es., (2, ;= 8n () 1(d2) 20 PR
e IRd g S = K ()nhti,lo

Therefore, taking into account the definition of the coefficients (7, ;

) in (37) we get
o
(Fn)—2 hz T, (M. y))
with
()= LD
K, (I3)y+1

Moreover, the limit equality (33) implies directly

+D1;(n,
lim sup sup w—l =0.
n=>0 j>1 y>0 y
Therefore, we can write that for any v >0
* N *
Y;
R(F,)> > =

2nh(1+v)j o yl +1
It is easy to check directly that

* N

: 1
lim S, - Z i}] — (1_8)2k+1 ,
n—o Znth’n Jj=1 yj +1

where the coefficient R,:n is defined in (21). Therefore, (39) implies for any 0 < e <1

liminf inf a1 —— sup By(3,,$)>(1-e)"
T—w Sn Rk n SGW

Taking here limit as € - 0 implies Theorem 1. o

7. Appendix
A.l1. Properties of the parametric family (36)
In this subsection we consider the sequence of the random functions S, , defined in
(36) corresponding to the random array « = (x,, ; )i<m<pr <<y given in (37).

Proposition A.1. For any p >0

lim n? 11m EH S

2
1 +1_. |=0.
e ol Lis,empy +lzg

This proposition follows directly from Proposition 6.4 in [6].
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A.2. Lower bound for parametric
“white noise” models

In this subsection we prove some version of the van Trees inequality from [10] for
the following model

dy, =S(t,z)dt +No" dw,, 0<t<n, (A1)
where z=(z,...,z;)" is vector of unknown parameters, w=(W,)oq,<r is a Winier

process. We assume that the function S(¢,z) is a linear function with respect to the
parameter z, i.e.

d
S(t,z)=). z; S;(0). (A.2)

J=1
Moreover, we assume that the functions (S,),<;<, are continuous.

Let @ be a prior density in R? having the following form:
d
(D(Z) = CD(Zla-“’Zd) = H (PJ(ZJ),
j=1

where ¢; is some continuously differentiable density in R. Moreover, let g(z) be a

continuously differentiable RY — R function such that for each 1< j < d

‘11‘21 g(2)9;(z;,)=0 and de | g(2)|®(z)dz <0, (A3)
Zj 00
where
' Jg(2)
gj(Z):—az .

J
Letnow X, =C[0,7] and B(X,) be ¢ — field generated by cylindric sets in X, .
Forany B(X,)® B(Rd) — measurable integrable function & =¢(x,0) we denote
Ee=[, [ &0 (@) 0@z,
where p, is distribution of the process (A.1) in X, . Let now v = p,, be the distribution

of the process (6w, )<<, in X . Itis clear (see, for example [11]) that p, << v for any

zeR?. Therefore, we can use the measure v as a dominated measure, i.e. for the
observations (A.1) in X, we use the following likelihood function

du, n S(t,2) n S%(t,z2)
f(J’aZ):W=eXp{j —dy,—j Z—G*dt}. (A4)

0 ,0'* 0
Proposition A.2. For any square integrable function Zg\n measurable with respect to

o{y,,0<t<n} and forany 1< j <d the following inequality holds
N 5 "B}
E(g ~g(2)*>— : (A5)
[; Siwar+s'l,
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where

dz.

22)
B; :J.Rd gi(2)®(z)dz and I; _J'R ((EJ(Z)

Proof. First of all note that the density (A.3) is bounded with respect to 6; € R for
any 1< j<d,ie. forany y=(y)og<n €X

limsup f(».2)<e.

|z >0
Therefore, putting
0
Y, =Y¥;(y,2) =——In(f(y,2)®(2))
o0,
and taking into account condition (A.3) by integration by parts one gets

E((g,~ 2D, )= [ pr (2,00 82— (F (200 dzdv(y) -
J

= [ v e &SP dzdV(y) = B,

Now by the Bounyakovskii-Cauchy-Schwarz inequality we obtain the following
lower bound for the quiadratic risk
- B;
E(g,-g(2)' 2=
87 B’

Note that from (A.4) it is easy to deduce that under the distribution p,

2)= J-n S; (t) J-n S(t, Z)S (t) J.n S; (t)

0

ln S,

This implies directly

E. —6 In f(y,2z)=0
)z .
J
and

2

6 1 n 2

E.|—In z) | =— | S5()dt.
z&% ﬂy)J €L ()

Therefore,

2 _ L2

EY’ =§j0 SHoyde+1,.
Hence Proposition A.2. O

8. Acknowledgments

This research has been executed in the framework of the State Contract
02.740.11.5026.



Nonparametric estimation in a semimartingale regression model. Part 2 45

10.

11.

12.

13.

REFERENCES

. Konev, V.V. and Pergamenshchikov, S.M. Nonparametric estimation in a semimartingale

regression model. Part 1. Oracle Inequalities, Vestnik TGU. Matematika i mehanika, No. 3(7),
23 — 41 (2009).

. Galtchouk, L. and Pergamenshchikov, S. Adaptive asymptotically efficient estimation in

heteroscedastic nonparametric regression, J. Korean Statist. Soc., http://ees.elsivier.com/jkss
(2009)

. Galtchouk, L. and Pergamenshchikov, S. Asymptotically efficient estimates for non

parametric regression models, Statistics and Probability Letters, 76, No. 8, 852 — 860 (2006).

. Brua, J. Asymptotically efficient estimators for nonparametric heteroscedastic regression

models, Stat. Methodol., 6(1), 47 — 60 (2009).

. Konev, V.V. and Pergamenshchikov, S.M. General model selection estimation of a periodic

regression with a Gaussian noise, Annals of the Institute of Statistical Mathematics,
http://dx.doi.org/10.1007/s10463-008-0193-1 (2008)

. Galtchouk, L. and Pergamenshchikov, S. Adaptive asymptotically efficient estimation in

heteroscedastic nonparametric regression via model selection, http://hal.archives-ouvertes.fr/
hal-00326910/fr/ (2009)

. Galtchouk, L. and Pergamenshchikov, S. Sharp non-asymptotic oracle inequalities for non-

parametric heteroscedastic regression models, J. Nonparametric Statist., 21, No. 1, 1 — 16
(2009).

. Pinsker, M.S. Optimal filtration of square integrable signals in gaussian white noise,

Problems Transimis. information, 17, 120 — 133 (1981).

. Nussbaum, M. Spline smoothing in regression models and asymptotic efficiency in L,, Ann.

Statist., 13, 984 — 997 (1985).

Gill, R.D. and Levit, B.Y. Application of the van Trees inequality: a Bayesian Cramér-Rao
bound, Bernoulli, 1, 59 — 79 (1995)

Liptser, R. Sh. and Shiryaev, A.N. Statistics of Random Processes. 1. General theory. NY:
Springer (1977).

Fourdrinier, D. and Pergamenshchikov, S. Improved selection model method for the
regression with dependent noise, Annals of the Institute of Statistical Mathematics, 59(3), 435
—464 (2007).

Galtchouk, L. and Pergamenshchikov, S. Nonparametric sequential estimation of the drift in
diffusion processes, Math. Meth. Statist., 13, No. 1, 25 — 49 (2004).

CBEAEHHNA Ob ABTOPAX:

Konev Victor, Department of Applied Mathematics and Cybernetics, Tomsk State University,
Lenin str. 36, 634050 Tomsk, Russia, e-mail: vvkonev@mail.tsu.ru

Pergamenshchikov Serguei, Laboratoire de Math'ematiques Raphael Salem, Avenue de
I’Universit’e, BP. 12, Universit’e de Rouen, F76801, Saint Etienne du Rouvray, Cedex France
and Department of Mathematics and Mechanics,Tomsk State University, Lenin str. 36, 634041
Tomsk, Russia, e-mail: Serge.Pergamenchtchikov@univ-rouen.fr

Cratbs npuHsTa B nevats 16.11.2009 r.



