2008 Математика и механика № 3(4)

УДК 512.623

Е.А. Фомина

ОБ ОДНОМ КЛАССЕ ДВУМЕРНО УПОРЯДОЧЕННЫХ ПОЛЕЙ

В статье представлен метод построения бесконечно узких двумерно упорядоченных полей на базе линейно упорядоченного поля.

Ключевые слова: линейно упорядоченные поля, базис трансцендентности, двумерно упорядоченные поля.

Основные определения теории двумерно упорядоченных полей

Основные определения, относящиеся к теории двумерно упорядоченных полей, изложены в [1]. Приведем те из них, которые часто встречаются в тексте статьи.

1. Функция двумерного порядка $\zeta: M^3 \to \{0, 1, -1\}$. Говорят, что двумерный порядок на множестве M реализуем на плоскости \mathbf{R}^2 , если существует инъекция $\phi: M \to \mathbf{R}^2$, такая что

$$\forall x, y, z \in M \ \zeta(x, y, z) = \eta_2(\varphi(x), \varphi(y), \varphi(z)),$$

где η_2 – функция стандартной ориентации плоскости.

- 2. Поле K, на котором задан двумерный порядок, совместимый с алгебраической структурой поля, называется двумерно упорядоченным полем K, ζ , или 2-упорядоченным полем.
 - 3. Базой K_0 двумерно упорядоченного поля K называется множество

$$K_0 = \{x \in K | \zeta(0, 1, x) = 0\}.$$

База K_0 является линейно упорядоченным полем.

4. Верхним конусом K^u поля K называется множество

$$K^{u} = \{x \in K | \zeta(0, 1, x) \ge 0\}.$$

Задание верхнего конуса K^u однозначно определяет двумерный порядок в поле K. Поэтому далее 2-упорядоченное поле будем обозначать $<\!K, K^u>$.

5. Элемент $a ∈ K^n \setminus K_0$ называется бесконечно близким к базе K_0 элементом, если $\forall n, \forall r ∈ K_0, r ≤ a$,

$$(a-r)^n \in K^u \setminus K_0$$
.

Конструкция бесконечно узкого двумерно упорядоченного поля

Определение. Двумерно упорядоченное поле называется бесконечно узким, если все его элементы либо бесконечно близки к базе, либо являются элементами базы.

Пусть всюду далее $\langle K_0, \leq \rangle$ — линейно упорядоченное поле; a — трансцендентный над K_0 элемент. Имеет место следующая

Теорема 1 [3]. Рассмотрим поле $K_1 = K_0(a)$. Множество

$$K_1^u = \{ f(a) \in K(a) | f'(a) \ge 0 \}$$

задаёт в поле K_1 двумерный порядок, при котором поле K_1 является бесконечно узким.

Обобщённая конструкция построения бесконечно узких двумерно упорядоченных полей

Расширение линейно упорядоченного поля K_0 будем проводить следующим образом. Пусть B — базис трансцендентности топологического замыкания \tilde{K}_0 над K_0 . На \tilde{K}_0 единственным образом продолжается линейный порядок с K_0 . Рассмотрим поле $K=K_0(B)$. Элементами поля K являются дробно-рациональные функции $f_1(a_1,...,a_n)$ с коэффициентами из поля K_0 .

Теорема 2. Множество

$$K^{u} = \{f(a_{1}, ..., a_{n}) \in K \mid df(a_{1}, ..., a_{n}) \geq 0\},\$$

где

$$df(a_1,...,a_n) = \frac{\partial f}{\partial x_1} dx_1 + ... + \frac{\partial f}{\partial x_n} dx_n; x_i = a_i; dx_i = 1,$$

задаёт в поле K структуру бесконечно узкого двумерно упорядоченного поля.

Доказательство. Для того чтобы K^u было верхним конусом 2-порядка на поле K, необходимо и достаточно выполнение следующих 4 условий [1]:

- (a) $K^u + K^u = K^u$;
- **(b)** $K^u \cup -K^u = K$;
- (c) $(K^{u}\setminus\{0\})^{-1} = -K^{u}\setminus\{0\};$
- (d) если $x, z \in K^u, y \in K^u \setminus K_0; zy^{-1}, yx^{-1} \in K^u$, то $zx^{-1} \in K^u$.

Убедимся, что K^u есть верхний конус 2-порядка в поле K.

Проверим выполнение условий (a) - (d).

(a) Проверим замкнутость множества K^u относительно сложения.

Пусть $f(a_1, ..., a_n), g(a_1, ..., a_n) \in K^u$. Тогда

$$\frac{\partial f}{\partial x_1} + \dots + \frac{\partial f}{\partial x_n} \ge 0 \quad \mathbf{и} \quad \frac{\partial g}{\partial x_1} + \dots + \frac{\partial g}{\partial x_n} \ge 0$$

при $x_i = a_i$, где $f(a_1, ..., a_n)$, $g(a_1, ..., a_n) \in K$.

Но тогда имеем

$$\begin{split} \frac{\partial f}{\partial x_1} + \ldots + \frac{\partial f}{\partial x_n} + \frac{\partial g}{\partial x_1} + \ldots + \frac{\partial g}{\partial x_n} &\geq 0 \quad \text{при } x_i = a_i \ , \\ \frac{\partial (f+g)}{\partial x_1} + \ldots + \frac{\partial (f+g)}{\partial x_n} &\geq 0 \end{split}$$

или

Значит, $(f+g) \in K^u$.

Условие **(b)** выполнено. В самом деле, пусть $f(a_1,...,a_n) \in K$. Тогда либо $df(x_1,...,x_n) \geq 0$ при $x_i = a_i$, либо $df(x_1,...,x_n) \leq 0$ при $x_i = a_i$. В первом случае получаем, что $f(a_1,...,a_n) \in K^u$, а во втором $-f(a_1,...,a_n) \in -K^u$. Значит, $K^u \in -K^u = K$.

(c) Пусть $f(a_1, ..., a_n) \in (K^u \setminus \{0\})^{-1}$, значит, $f^{-1}(a_1, ..., a_n) \in K^u \setminus \{0\} \leftrightarrow f^{-1}(a_1, ..., a_n) \ge 0 \leftrightarrow$

$$df^{-1}(a_1,...,a_n) = -\frac{\partial f(a_1,...,a_n)}{f^2(a_1,...,a_n)} \ge 0$$

 $\leftrightarrow df(a_1,...,a_n) \leq 0 \iff f(a_1,...,a_n) \in -K^u \setminus \{0\}.$

Докажем, что условие **(d)** для K^u также выполнено.

34 *E.A. Фомина*

Пусть $f(a_1, ..., a_n)$, $g(a_1, ..., a_n) \in K^u$, $h(a_1, ..., a_n) \in K^u \setminus K_0$, hf^{-1} , $gh^{-1} \in K^u$. Покажем, что $gf^{-1} \in K^u$.

Имеем

$$d(hf^{-1}) \ge 0$$
, $d(gh^{-1}) \ge 0$,

т. е.

$$\frac{fdh - hdf}{f^2} \ge 0; \ \frac{hdg - gdh}{h^2} \ge 0;$$

$$fdh - hdf \ge 0; hdg - gdh \ge 0. \tag{*}$$

Так как $f(a_1, ..., a_n)$, $g(a_1, ..., a_n) \in K^u$, $h(a_1, ..., a_n) \in K^u \setminus K_0$, т.е. $df \ge 0$, dh > 0, $dg \ge 0$, то умножим первое неравенство из (*) на dg, а второе неравенство на df. Имеем

$$fdhdg - hdfdg \ge 0$$
; $hdgdf - gdhdf \ge 0$,

или

$$fdhdg \ge hdfdg \ge gdhdf \ge 0$$
,

или

$$fdhdg - gdhdf \ge 0$$
.

Умножая последнее неравенство на $(dh)^{-1}$, dh > 0, имеем

$$fdg - gdf \ge 0$$
,

значит, и

$$\frac{fdg - gdf}{f^2} \ge 0$$
, r.e. $d(gf^{-1}) \ge 0$,

следовательно, $gf^{-1} \in K^u$, что и требовалось доказать.

Таким образом, в поле $K = K_0(B)$ эффективно задан нетривиальный двумерный порядок.

Покажем, что K – бесконечно узкое двумерно упорядоченное поле.

Пусть $f(a_1, ..., a_n) \in K^n \backslash K_0$. Докажем, что, для любого натурального n, для любого $r \in K_0$, такого, что $r < f(a_1, ..., a_n)$

$$(f-r)^n \in K^u \backslash K_0$$
.

Чтобы элемент $(f-r)^n$ принадлежал открытому верхнему конусу, необходимо и достаточно, чтобы

$$d((f-r)^n) > 0.$$

Действительно, имеем для любого натурального n $[n(f-r)^{n-1}df] > 0$, так как df > 0 (по определению принадлежности к верхнему конусу), (f-r) > 0 (в силу того, что $K = K_0(B)$ является также и линейно упорядоченным полем), и, значит, согласно определению, $f(a_1, ..., a_n)$ – бесконечно близкий к K_0 элемент. Теорема доказана.

ЛИТЕРАТУРА

- 1. Пестов Г.Г. Двумерно упорядоченные поля. Томск, 2003.
- Пестов Г.Г., Фомина Е.А. О сечениях в базе 2-упорядоченного поля // Вестник ТГУ. 2007. № 301. С. 94 – 96.
- 3. *Пестов Г.Г.*, *Фомина Е.А*. Конструкция бесконечно узкого двумерно упорядоченного поля // Вестник ТГУ. Математика и механика. 2007. № 1. С. 50 53.

Статья принята в печать 24.10.2008 г.