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Structural scan based delay testing is used to detect delay faults. Because of the

architectural limitations not each test pair v1, v2 can be applied by scan delay test-

ing. That declines test coverage. Partial enhanced scan approach based on selec-

tion of flip-flops was suggested to permit using arbitrary test pairs v1, v2. The

problem of selection of flip-flops may be solved with applying estimations of

controllability and observability of the state variables corresponding to the flip-

flops. Calculation of controllability and observability estimations is based on 2-

length combinational equivalent analyses and PDF testing.
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Introduction

Delay testing has become very important problem in nanometer technologies.
Structural scan based delay testing is used for detecting the circuit delays. Because of
the architectural limitations not each pair v1, v2 can be applied by a scan delay test. En-
hanced scan techniques were developed to remove the restrictions on vector pairs. Un-
fortunately these techniques have rarely been used in practice because of the near dou-
bling of the flip-flop area. Most promising are partial enhanced scan approaches that are
based on selection of the proper flip-flops for including them in enhanced scan chains
[1]. In the paper [2] it is suggested to include in scan chains flip-flops with low estima-
tions of the 0 values of the corresponding state variables (low controllability) but facili-
ties of propagation of changing signal values from the input to the output (observability)
are not considered. In the paper [3] were suggested deriving estimations of both con-
trollability and observability. We suggest to appreciate flip-flop controllability as sum
of 01 transition probability and 10 transition probability for the corresponding state
variable. The flip-flop observability is appreciated as a probability of robust PDF mani-
festation for the paths of the same state variable. The algorithms of controllability and
observability calculation are developed.

In Section 1 the problem of calculation 01(10) transition probability for the state
variable is discussed. In Section 2 the method of calculation of robust PDF manifesta-
tion probability for the paths corresponding to a state variable is suggested.

                                                          
1 Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований
(грант № 11-08-92694-ИНД).
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1. Calculation of a probability of 01(10) transitions of state variables

Let we have a synchronous circuit (Fig. 1) in which x1,…,xn are input variables,
y1,…,yp are state variables, z1,…,zm are output variables, and d1,…,dp are flip flops.

Random input sequence of a sequential circuit is de-
scribed with the probability distribution ρ(x1),…,ρ(xn). Here
ρ(xi), i=1…n, is the probability of 1 value of input variable
xi. Let assume that the probability distribution ρ(y1),…,ρ(yp)
of state variables is also known. Here ρ(xi), i=1…n, is the
probability of 1 value of input variable xi.

We want to calculate the probability 01(10) transition
for a state variable yi. For that consider the 2-length combi-
national equivalent of Fig. 2.

Having the structural description of a combinational
equivalent copy we may represent the copy functions cor-
responding to the combinational circuit C2 by the shared BDD which roots correspond
to the state variables 2

1
y ′ ,…, 2

p
y ′ . These functions depend on the input variables

x1

2,…,xn
2 and the state variables y1

2,…,yp
2 (Fig. 2).

Select root correlating with the variable 2

i
y ′ . All paths connecting this root with the

1-terminal node of the shared BDD represent the corresponding function ψi
2 (x1

2,…,xn
2,

y1

2,…,yp
2) as a disjoint sum of products (DSoP) Di that is as a sum in which products are

orthogonal each other. All paths connecting this root with 0-terminal node represent an
inversion of this function as DSoP D i in the same way.

Two products are orthogonal if some variable appears in one product without inver-
sion and in another – with inversion.
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Fig. 2. 2-length combinational equivalent

1 . 1 .  0 1  t r a n s i t i o n  p r o b a b i l i t y

Extract a product K from the Di that either contains literal 2

i
y or variable yi

2 is absent

in K. In the last case we add literal 2

i
y  to product K. This product encloses in general

case both the input and the state variables.
Notice that the state variables correspond to the transition functions ψ1

1,…,ψp
1 that

depend on the input variables x1

1,…,xn
1 and the state variables y1

1,…,yp
1 and all these

variables are statistically independent on the input variables x1

2,…,xn
2 [2]. It means that

we may substitute instead of the variables x1

2,…,xn
2 of the product K their probabilities

and do that with each product from the Di, selected above mentioned way. We have got
the following sum: j jb k∑

z1

zm

…
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Fig. 1. Synchronous circuit
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Here bj is result of multiplications of the probabilities ρ(x1),…,ρ(xn) of the proper in-
put variables from a set {x1

2,…,xn
2} and kj consists of some state variables (possibly

with inversions) from a set {y1

2,…,yp
2}. The different functions corresponding to the

state variables of the product kj (they are represented with the C1 copy) in general case
depend on the same variables and these functions are statistically dependent.

Represent corresponding to the product kj conjunction of the state variable functions
with the BDD-graph.

We may calculate a probability of this conjunction using the given probability dis-
tribution for the input and the state variables.

Multiply the result by bj. Execute this with each product K from the Di. Summing re-
sults we calculate the 01 transition probabilities.

1 . 2 .  E x a m p l e  o f  c a l c u l a t i n g
0 1  t r a n s i t i o n  p r o b a b i l i t y

Consider an example to illustrate the above mentioned results. The transition func-
tions of a copy of the combination equivalent are represented with the following shared

BDD (Fig. 3). For simplicity we don’t use up-
per indexes of variables.

Let probabilities of the 1 value of the inter-
nal and the state variables be the same and
equal to 1/2: ρ(x1) = ρ(x2) = ρ(y1) = ρ(y2) = 1/2.

Select the state variable 2

i
y ′  (Fig. 2). Ex-

tract the corresponding DSoP from the shared
BDD (Fig. 3). Here we take into consideration

upper indexes: 2 2 2 2 2

1 1 2 1 2
y x x x y′ = ∨ .

All products do not contain y1

2. Conse-
quently we need add the literal y 1

2 to each

product. As a result we have got DSoP D*:
2 2 2 2 2 2

1 2 1 1 1 2
x x y x y y∨ .

Substitute probabilities instead of the variables x1

2, x2

2 and obtain the following re-

sult: 2 2 2

1 1 2
1 4 1 2y y y∨ .

Extract the functions 1 1

1 2
,ψ ψ , corresponding to the 2

1
y ,

y2

2 from the shared BDD (Fig. 2 and 3):
2 1 1 1 1

1 1 2 1 2
y x y x x= ∨ ;

ρ( 2

1
y ) = 1/4+1/4 = 1/2;

2 1 1 1 1

2 1 1 1 2
y x x y y= ∨ .

The conjunction of these functions is represented with

the expression: 1 1 1 1 1 1 1 1

1 2 1 2 1 1 1 2
( ) ( )x y x x x x y y∨ ∧ ∨ .

The BDD of this expression is represented on Fig. 4.
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We could calculate ρ( 2 2

1 2
y y ) directly from the BDD of Fig. 4.

Substitute into the expression marked with (*) the obtained probabilities and calcu-
late the probability of 01 transition: ρ (01) = 1/4*1/2 + 1/2*5/16 = 9/32.

1 . 3 .  1 0  t r a n s i t i o n  p r o b a b i l i t y

To calculate 10 transition probabilities we need obtain DSoP of 
i

D  from shared

BDD selecting root that correlates with the variable 2

i
y ′ . Then we choose the products

from 
i

D  with the literal yi and the products that does not contain the variable yi adding

to the last products the literal yi. For each chosen product we execute the steps of the
point A.

2. A probability calculation of manifestation of robust PDFs for state variable

Consider the problem of probability calculation of manifestation of robust PDFs for
state variable. First we consider robust PDF test pair properties [3]. For that we will ex-
amine the equivalent normal form (ENF) of a combinational equivalent copy.

2 . 1 .  R o b u s t  P D F  t e s t  p a i r  p r o p e r t i e s

An equivalent normal form represents the function implementing with the circuit
and all the circuit paths. Each ENF literal is supplied with the index sequence enumer-
ating the gates of the path. It should be noted that a literal with the same index sequence
may appear in different ENF products. The ENF of the circuit (Fig. 5) is as follows (1).
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Fig. 5. The combinational circuit 
1459 59 59 59 23459 3459 59

  a b e b c d e∨ ∨

14689 789 234689 14689 234689 789
 a b c a c d∨ ∨ ∨

14689 789 34689 14689 34689 789
   a b d a d d∨

If literals have the same index sequences but their variables are opposite in sign then
we call them as opposite literals. The same variables , 

i i
x x  being opposite in sign we

call opposite variables. Opposite literals are absent in an ENF but opposite variables
may present. We will spread all operations on products of a SoP (Sum of Products) on
ENF products. We call an ENF product empty if it contains opposite variables. Notice
that an ENF empty product consists of different literals.

Examine non-empty products of ENF. Any such product turns into SoP product after
elimination of index sequences from literals followed with elimination of repeated vari-
ables. Sum of obtained products is SoP representing the function f. Non empty ENF
product call implicant of the function f.

We consider single robust PDF of the path α in the circuit for the appropriate transi-
tions along the path [3] as the temporary ap (bp)-fault of the ENF literal xiα. This fault
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lasts during time ω, ω>τ. Here τ is the time passing between adjacent synchronizing
signals of the circuit.

The literal xiα is changed for the constant 1 (bp-fault) in ENF products when the cor-
responding PDF activates the 1 value instead of the expected 0 value on the relevant
circuit output and a vector v2.This PDF corresponds to falling transition.

The literal xiα is changed for the constant 0 (ap-fault) in ENF products when the cor-
responding PDF activates the 0 value instead of the expected 1 value on the relevant
circuit output and a vector v2. This PDF corresponds to rising transition.

A test pattern v2 in the PDF test pair v1, v2 is a test pattern for bp(ap)-fault of ENF.
Let K be ENF product (in partly K may be empty ENF product). K is expansible

with the literal xiα if elimination of this literal gives rises to product K * that is implicant
of the function f. Otherwise K is not expansible with the xiα.

Elimination of the literal from a product modifies the given ENF (K changes for K
*). If K * is non-empty product and K * is non implicant of the function f, then f changes
along with ENF. It means that the 1 value area of the function f increases.

K * is the result of glue of products K and K . Here K  is obtained from K with
changing the literal xiα for opposite literal. We will call K  as addition of K .

We suppose that the variable xi in the literal xiα doesn’t have an inversion. First con-
sider bp-fault of the literal xiα.

Let K  be a set of ENF products so that each product does not contain xiα.
Divide the rest ENF products into two sets: one of them 

rxi
K  consists of products so

that each of them has repeating variable xi (the same variables with the same sign of in-
version and the different index sequences). Products of 

rxi
K  don’t change the func-

tion f when bp-fault takes place and consequently not generate test pattern vb for bp-fault.
Another set 

sxi
K  consists of the products (empty and non-empty) without repeating

variable xi.
Let K be non-empty product from

sxi
K . If K is non-expansible product by literal xiα

then changing that literal for the constant 1 in K alters the function f. That may be de-
tected with a test pattern vb which turns into 1 the product K  and turns into 0 fault free
ENF. This test pattern is at the same time test pattern v2 from a test pair v1, v2 for the
corresponding PDF. Notice that vb turns into one the product K * possibly together with
other products derived from 

sxi
K  by changing the literal xiα for the constant 1.

If K is expansible product by literal xiα then changing that literal for the constant 1
does not alter the function f. It means that there is no test pattern vb for bp-fault origi-
nated by the product K.

bp-fault

Consider bp-fault of the literal xiα and test pattern vb that satisfies above mentioned
conditions. Variable 

i
x  take the 1 value on v2.

Denote as u the minimal cube covering v1, v2 and as k(u) – the product representing u.
Theorem 1. To derive robust PDF test pair v1, v2 corresponding to bp-fault we need

the following.
1. v2 is a test pattern for bp-fault;
2. Variable xi in v1, v2 takes the opposite values;
3. k(u) is orthogonal to each product from K ;
4. Test pattern v1 turns into 1 product K from 

sxi
K  that generates test pattern vb .
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Corollary 1. The function f takes the 0 value on v2 and takes the 1 value on v1.
Corollary 2. Empty product K from 

sxi
K  doesn’t originate robust PDF test pair.

Corollary 3. v1 is a test pattern for ap-fault.
As k(u) is orthogonal to all products of K then v1 is orthogonal to all products of K

but v1 turns into 1the function f. It means that v1 is a test pattern for ap-fault.

ap-fault

Now consider ap-fault of the literal xiα. All products from K  remain in the fault
ENF.

The rest products of the fault free ENF are divided into two sets: one of them 
exi

K

consists of the empty products and another 
nexi

K  consists of the non-empty products.

The products of 
exi

K  do not change the function f when ap-fault takes place and conse-

quently not generate test pattern va .
Consider the set  

nexi
 K . All its products disappear when ap-fault takes place. If it

changes the function f then there exists a test pattern va that detects ap-fault. The test
pattern turns into 1 some products from 

nexi
K  and turns into 0 the rest products of the

fault free ENF. The test pattern va also turns into 1 the variable xi.
Theorem 2. To derive robust PDF test pair v1, v2 corresponding to ap-fault we need

the following.
1. v2 is a test pattern for ap-fault;
2. Variable xi in v1, v2 takes the opposite values;
3. k(u) is orthogonal to each product from K ;
4. There exists product K from 

nexi
K  that does not contain repeated variable xi so

that values of the variables of the cube representing this product and values of the vari-
ables of test patterns v1, v2 (except variable xi) coincide.

Corollary 1. The function f takes the 1 value on v2 and takes the 0 value on v1.
Corollary 2. v1 is a test pattern for bp-fault.
As k(u) is orthogonal to all products of K then v1 is orthogonal to all products of K

and by the construction v1 turns into 1 the addition of the product K. It means that v1 is a
test pattern for bp-fault.

2 . 2 .  A  p r o b a b i l i t y  c a l c u l a t i o n
o f  r o b u s t  P D F  m a n i f e s t a t i o n  f o r  t h e  g i v e n  p a t h

Represent as the DSoP all robust test pairs for the given path originated by one
product of ENF. For that we have to find product K from 

nexi
K  that does not contain

repeated variable xi and obtain the SoP D from the set K fixing the variables of the
product K except xi. All roots of the equation D = 0 are represented either as ROBDD or
Free BDD. Each path from the root till the1-terminal node
arises to the product, corresponding to 2n−1−r robust test
pairs consisting of neighboring Boolean vectors. Here r is a
rank of the product and n is the number of ENF variables.
(Notice that the variable xi is absent in the product). Having
got the BDD for each K from 

nexi
K  that does not contain

repeated variable xi and corresponds to the same path α we
may execute disjunction operation on these BDDs and ob-

d

10

Fig. 6. BDD representation
of the product d
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tain BDD representing all robust test pairs. Using the last BDD we may calculate a
probability of the robust PDF manifestation for the path α substituting instead of the
variables their probabilities from the probability distribution.

Illustrate that procedure by an example. Let the variable c be a state variable. First

consider the literal c234689. Take into consideration that for the product abc , k(u) = a b ,

and the corresponding D, D = d d d∨ . The BDD represents the only product d.

Consider forth product of the ENF that contains the literal c234689. In this case

K = ac d , k(u) = a d , D = 1b ∨  = 1.The equation D = 0 has no roots.
Consequently a probability of robust test pair manifestation for the path α corre-

sponding to the literal c234689 is represented by the formula abd  and is equal to
1/2*1/2*1/2 = 1/8.

Here we suppose 1 value probability of each variable is equal to 1/2.

2 . 3 .  A  p r o b a b i l i t y  c a l c u l a t i o n
o f  r o b u s t  P D F  m a n i f e s t a t i o n  f o r  s t a t e  v a r i a b l e

When we consider a state variable we have to regard all paths (literals) connected
with this variable. Derive for each path a probability of robust PDF manifestation in the
above mentioned way. Then we have to summarize these probabilities.

Notice that a test pair for one path does not change the signal values of other path
corresponding to the same variable as all products representing another paths are con-
tained in a set K formed for the path considered. It means that sensitizations of different
paths of the same variable are statistically non-compatible events.

Let c be state variable. We additionally have to find a probability of robust PDF
manifestation for the path corresponding to the literal 

23459
с . Then K = b c de,

k(u) = bde, D = a .
BDD originates the only root: product a. Consequently a probability of robust PDFs

manifestation for the path corresponding to the literal 
23459
с  is represented by the for-

mula abde. It is equal to 1/2*1/2*1/2*1/2 = 1/16. Then a probability of manifestation of
robust PDFs for the state variable c is as follows: 1/8+1/16 = 3/16.

We have got the following experimental results.
Controllability Pc and observability Po have been calculated for each state variable

for some benchmarks. Flip-flops corresponding to state variables with low controllabil-
ity or/and observability can be selected for including in enhanced scan chains. The ad-
ditional investigations are necessary for choosing the threshold values for probability
and observability We may only say that flip-flops with zero observability must not be
included in enhanced scan chains.

The algorithm of estimation calculation of flip-flop observability is based on ENF
analysis and using BDDs. ENF is very complicate formula for real circuits. It is possible
to use OR/AND tree to present all paths of a circuit [6]. These trees are used for finding
the estimations for benchmarks of the Table 1.

We may use for description of the ENF of a circuit the system OR-AND trees. The
complexity of the system is linear function of the number of the circuit gates [6]. To ac-
celerate the calculation of flip-flop observability it is possible to joint application of the
system OR-AND trees and the corresponding system SSBDDs [7]. We hope that these
techniques will allow calculating flip-flop observability for more complicate circuits.
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Experimental results on Iscas89 benchmarks

Circuit Flip-flops State Variable Pc Po

s27 3 G11 0.172 0.125

  G10 0.457 0.063

  G13 0.344 0.250

s344 15 ACVG3VD1 0.331 0.219

  ACVG2VD1 0.260 0.219

  AM3 0.125 0.875

  ACVG4VD1 0.180 0.219

  CNTVG2VD 0.188 0.375

  AM2 0.281 0.875

  CNTVG3VD 0.188 0.500

  AM1 0.281 0.875

  AM0 0.281 0.875

  MRVG3VD 0.500 0.125

  MRVG4VD 0.641 0.125

  MRVG1VD 0.406 0.125

  MRVG2VD 0.406 0.125

  CNTVG1VD 0.594 0.375

  ACVG1VD1 0.280 0.219

s444 21 G58 0.209 0.141

  G112 0.335 0.000
  G49 0.063 0.063

  G111 0.224 0.000
  G45 0.094 0.188

  G41 0.125 0.125

  G113 0.130 0.000
  G162BF 0.129 0.453

  G80 0.133 0.343

  G70 0.091 0.186

  G101 0.375 0.500

  G66 0.113 0.275

  G110 0.233 0.000
  G62 0.119 0.230

  G109 0.099 0.000
  G84 0.120 0.382

  G92 0.108 0.362

  G155 0.375 0.500

  G88 0.115 0.402

  G114 0.026 0.000
  G37 0.578 0.000

Conclusion

The special estimations of flip-flop controllability and observability are developed.
They may be used for including flip-flops into partial enhanced scan chains. Possibili-
ties of their application to more complicate circuits are noted.
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При тестировании неисправностей задержек путей схем с памятью используется метод
сканирования путей. Существующие архитектурные решения, обеспечивающие реализа-
цию метода сканирования, не позволяют подавать на тестируемую схему любую пару тес-
товых наборов. Одним из выходов в этой ситуации является использование частичных це-
пей сканирования с дублирующими триггерами. В эти цепи включаются лишь некоторые
триггеры схемы с памятью. В данной работе предлагается включать в частичные цепи ска-
нирования триггеры с низкими оценками управляемости и наблюдаемости. Разработан ал-
горитм вычисления управляемости переменной состояния, основанный на анализе комби-
национного эквивалента длины два. Предложен алгоритм вычисления наблюдаемости пе-
ременной состояния, основанный на анализе эквивалентной нормальной формы (ЭНФ).
Проведены испытания обоих алгоритмов на контрольных примерах ISCAS’86.


