BECTHWK TOMCHKOI0 roCYJAPCTBEHHOI 0 YHWBEPCUTETA

2012 YnpasneHue, BblYNCINTENbHAA TEXHUKA U MHCHOPMATUKA Ne 2(19)

INPOEKTUPOBAHUE U TUATHOCTHUKA
BBIYUCJ/IMTEJIBHBIX CUCTEM

VIIK 004.312
A.Yu. Matrosova, A.V. Melnikov, R.V. Mukhamedov, S.A. Ostanin, V. Singh

SELECTION OF THE FLIP-FLOPS
FOR PARTIAL ENHANCED SCAN TECHNIQUES'

Structural scan based delay testing is used to detect delay faults. Because of the
architectural limitations not each test pair vy, v, can be applied by scan delay test-
ing. That declines test coverage. Partial enhanced scan approach based on selec-
tion of flip-flops was suggested to permit using arbitrary test pairs vy, vo. The
problem of selection of flip-flops may be solved with applying estimations of
controllability and observability of the state variables corresponding to the flip-
flops. Calculation of controllability and observability estimations is based on 2-
length combinational equivalent analyses and PDF testing.
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Introduction

Delay testing has become very important problem in nanometer technologies.
Structural scan based delay testing is used for detecting the circuit delays. Because of
the architectural limitations not each pair v, v, can be applied by a scan delay test. En-
hanced scan techniques were developed to remove the restrictions on vector pairs. Un-
fortunately these techniques have rarely been used in practice because of the near dou-
bling of the flip-flop area. Most promising are partial enhanced scan approaches that are
based on selection of the proper flip-flops for including them in enhanced scan chains
[1]. In the paper [2] it is suggested to include in scan chains flip-flops with low estima-
tions of the 0 values of the corresponding state variables (low controllability) but facili-
ties of propagation of changing signal values from the input to the output (observability)
are not considered. In the paper [3] were suggested deriving estimations of both con-
trollability and observability. We suggest to appreciate flip-flop controllability as sum
of 01 transition probability and 10 transition probability for the corresponding state
variable. The flip-flop observability is appreciated as a probability of robust PDF mani-
festation for the paths of the same state variable. The algorithms of controllability and
observability calculation are developed.

In Section 1 the problem of calculation 01(10) transition probability for the state
variable is discussed. In Section 2 the method of calculation of robust PDF manifesta-
tion probability for the paths corresponding to a state variable is suggested.
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1. Calculation of a probability of 01(10) transitions of state variables

Let we have a synchronous circuit (Fig. 1) in which x,...,x, are input variables,
V1,...,Yp are state variables, zy,...,z,, are output variables, and d,,...,d, are flip flops.
Random input sequence of a sequential circuit is de-

scribed with the probability distribution p(x)),...,p(x,). Here = x, —— — z,
p(x;), i=1...n, is the probability of 1 value of input variable xn —) N z
x;. Let assume that the probability distribution p(y,),...,p(»,) 2 "
of state variables is also known. Here p(x;), i=1...n, is the :
probability of 1 value of input variable x;. 4 Yp

We want to calculate the probability 01(10) transition
for a state variable y;. For that consider the 2-length combi-
national equivalent of Fig. 2. d,

Having the structural description of a combinational  Fig, 1. Synchronous circuit
equivalent copy we may represent the copy functions cor-
responding to the combinational circuit C* by the shared BDD which roots correspond
to the state variables ylz' yeees y;’. These functions depend on the input variables

xi%,...x,2 and the state variables ylz,...,yp2 (Fig. 2).
Select root correlating with the variable yiz' . All paths connecting this root with the

1-terminal node of the shared BDD represent the corresponding function vy (x.°,....x,”,
ylz,...,yp2) as a disjoint sum of products (DSoP) D; that is as a sum in which products are
orthogonal each other. All paths connecting this root with 0-terminal node represent an
inversion of this function as DSoP D ; in the same way.

Two products are orthogonal if some variable appears in one product without inver-
sion and in another — with inversion.

Xy —> — ! x> —> 2
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Fig. 2. 2-length combinational equivalent

1.1. 01 transition probability

Extract a product K from the D; that either contains literal ;" or variable y;” is absent

in K. In the last case we add literal )73 to product K. This product encloses in general

case both the input and the state variables.

Notice that the state variables correspond to the transition functions \ull,...,\upl that
depend on the input variables x1',...,x,! and the state variables yll,...,yp1 and all these
variables are statistically independent on the input variables x,%,...,x,> [2]. It means that
we may substitute instead of the variables x1%,...x,° of the product K their probabilities
and do that with each product from the D,, selected above mentioned way. We have got
the following sum: bk,
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Here b; is result of multlpllcatlons of the probabilities p(x)),...,p(x,) of the proper in-
put Va;rlables from a set {x,°,. x,, o and k; consists of some state variables (possibly
with inversions) from a set {yl yeeesVp o8 The different functions corresponding to the
state variables of the product &; (they are represented with the C' copy) in general case
depend on the same variables and these functions are statistically dependent.

Represent corresponding to the product k; conjunction of the state variable functions
with the BDD-graph.

We may calculate a probability of this conjunction using the given probability dis-
tribution for the input and the state variables.

Multiply the result by b;. Execute this with each product K from the D;. Summing re-
sults we calculate the 01 transition probabilities.

1.2. Example of calculating
01 transition probability

Consider an example to illustrate the above mentioned results. The transition func-
tions of a copy of the combination equivalent are represented with the following shared
BDD (Fig. 3). For simplicity we don’t use up-
per indexes of variables.

Let probabilities of the 1 value of the inter-
nal and the state variables be the same and

equal to 1/2: p(x)) = p(x2) = p(y1) = p(2) = 1/2.
Select the state variable yl.z' (Fig. 2). Ex-
tract the corresponding DSoP from the shared
BDD (Fig. 3). Here we take into consideration
upper indexes: i =x'x; V¥ y;.
All products do not contain y,>. Conse-
quently we need add the literal 3, to each
Fig. 3. Shared BDD product. As a result we have got DSoP D"
NV VIV -
Substitute probabilities instead of the variables x,°, x,” and obtain the following re-
sult: 1/4 372 v1/2 y2y3 .
Extract the functions \TJ},\ulz , corresponding to the )712 .

¥, from the shared BDD (Fig 2 and 3):

1=1
J’1 _xlyzvx1x29

p(F2) = 1/A+1/4 = 1/2;

2 _ 1 111
Yo =X VNy,.
The conjunction of these functions is represented with

the expression: (X 73 v X[ X3) A (X} VX ¥ y3).

The BDD of this expression is represented on Fig. 4.

Extract DSoP, representing the conjunction 512 y% " Fig. 4. BDD representation

x1 y2 v xllleylly; = 1/4 + 1/16 = 5/16 . of the conjunction )712y§
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We could calculate p( )712 yg ) directly from the BDD of Fig. 4.

Substitute into the expression marked with (*) the obtained probabilities and calcu-
late the probability of 01 transition: p (01) = 1/4*1/2 + 1/2*5/16 = 9/32.

1.3. 10 transition probability
To calculate 10 transition probabilities we need obtain DSoP of D, from shared

BDD selecting root that correlates with the variable yf' . Then we choose the products

from 5; with the literal y; and the products that does not contain the variable y; adding

to the last products the literal y;. For each chosen product we execute the steps of the
point 4.

2. A probability calculation of manifestation of robust PDFs for state variable

Consider the problem of probability calculation of manifestation of robust PDFs for
state variable. First we consider robust PDF test pair properties [3]. For that we will ex-
amine the equivalent normal form (ENF) of a combinational equivalent copy.

2.1. Robust PDF test pair properties

An equivalent normal form represents the function implementing with the circuit
and all the circuit paths. Each ENF literal is supplied with the index sequence enumer-
ating the gates of the path. It should be noted that a literal with the same index sequence
may appear in different ENF products. The ENF of the circuit (Fig. 5) is as follows (1).

Fig. 5. The combinational circuit @459 bsg €59 V Dsg Cazas9 A3450€50 V

V4689 D750 C234689 V A14689 C234680 D789 V' Frass0 D189 d3a680 V A1asso 34689 759

If literals have the same index sequences but their variables are opposite in sign then
we call them as opposite literals. The same variables x;,X; being opposite in sign we

call opposite variables. Opposite literals are absent in an ENF but opposite variables
may present. We will spread all operations on products of a SoP (Sum of Products) on
ENF products. We call an ENF product empty if it contains opposite variables. Notice
that an ENF empty product consists of different literals.

Examine non-empty products of ENF. Any such product turns into SoP product after
elimination of index sequences from literals followed with elimination of repeated vari-
ables. Sum of obtained products is SoP representing the function f. Non empty ENF
product call implicant of the function f.

We consider single robust PDF of the path o in the circuit for the appropriate transi-
tions along the path [3] as the temporary a, (b,)-fault of the ENF literal x;,. This fault
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lasts during time ®, ®w>t. Here 1 is the time passing between adjacent synchronizing
signals of the circuit.

The literal x;, is changed for the constant 1 (b,-fault) in ENF products when the cor-
responding PDF activates the 1 value instead of the expected 0 value on the relevant
circuit output and a vector v,.This PDF corresponds to falling transition.

The literal x;, is changed for the constant 0 (a,-fault) in ENF products when the cor-
responding PDF activates the 0 value instead of the expected 1 value on the relevant
circuit output and a vector v,. This PDF corresponds to rising transition.

A test pattern v, in the PDF test pair vy, v; is a test pattern for b,(a,)-fault of ENF.

Let K be ENF product (in partly K may be empty ENF product). K is expansible
with the literal x;, if elimination of this literal gives rises to product K * that is implicant
of the function f. Otherwise K is not expansible with the x;,.

Elimination of the literal from a product modifies the given ENF (K changes for K
"). If K" is non-empty product and K * is non implicant of the function £, then f changes
along with ENF. It means that the 1 value area of the function fincreases.

K " is the result of glue of products K and K . Here K is obtained from K with
changing the literal x;, for opposite literal. We will call K as addition of K .

We suppose that the variable x; in the literal x;, doesn’t have an inversion. First con-
sider b,-fault of the literal x;,.

Let K be a set of ENF products so that each product does not contain x;,.

Divide the rest ENF products into two sets: one of them K, ; consists of products so

that each of them has repeating variable x; (the same variables with the same sign of in-
version and the different index sequences). Products of K, ; don’t change the func-

tion /' when b,-fault takes place and consequently not generate test pattern v, for b,-fault.
Another set K ; consists of the products (empty and non-empty) without repeating

variable x;.

Let K be non-empty product from K ;. If K is non-expansible product by literal x;,
then changing that literal for the constant 1 in K alters the function . That may be de-
tected with a test pattern v, which turns into 1 the product K and turns into 0 fault free
ENF. This test pattern is at the same time test pattern v, from a test pair v;, v, for the
corresponding PDF. Notice that v, turns into one the product K * possibly together with
other products derived from K; by changing the literal x,, for the constant 1.

If K is expansible product by literal x;, then changing that literal for the constant 1
does not alter the function f. It means that there is no test pattern v, for b,-fault origi-
nated by the product K.

by-fault

Consider b,-fault of the literal x;, and test pattern v, that satisfies above mentioned
conditions. Variable x; take the 1 value on v,.

Denote as « the minimal cube covering vy, v, and as k(u) — the product representing u.

Theorem 1. To derive robust PDF test pair v, v, corresponding to b,-fault we need
the following.

1. v, is a test pattern for b,-fault;

2. Variable x; in v;, v, takes the opposite values;

3. k(u) is orthogonal to each product from K ;

4. Test pattern v, turns into 1 product K from K ,; that generates test pattern v, .
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Corollary 1. The function f'takes the 0 value on v, and takes the 1 value on v;.
Corollary 2. Empty product K from K_,; doesn’t originate robust PDF test pair.

Corollary 3. v, is a test pattern for a,-fault.
As k(u) is orthogonal to all products of K then v, is orthogonal to all products of K
but v, turns into 1the function £, It means that v, is a test pattern for a,-fault.

a,~fault

Now consider a,-fault of the literal x;. All products from K remain in the fault
ENF.
The rest products of the fault free ENF are divided into two sets: one of them K,;

consists of the empty products and another K,,,,;

; consists of the non-empty products.

The products of K,; do not change the function f'when a,-fault takes place and conse-

quently not generate test pattern v,, .
Consider the set K All its products disappear when a,-fault takes place. If it

nexi *
changes the function f then there exists a test pattern v, that detects a,-fault. The test

pattern turns into 1 some products from K,,; and turns into 0 the rest products of the

fault free ENF. The test pattern v, also turns into 1 the variable x;.

Theorem 2. To derive robust PDF test pair vy, v, corresponding to a,-fault we need
the following.

1. v, s a test pattern for a,-fault;

2. Variable x; in vy, v, takes the opposite values;

3. k(u) is orthogonal to each product from K ;

4. There exists product K from K that does not contain repeated variable x; so

that values of the variables of the cube representing this product and values of the vari-
ables of test patterns vy, v, (except variable x;) coincide.

Corollary 1. The function f'takes the 1 value on v, and takes the 0 value on v;.

Corollary 2. v, is a test pattern for b,-fault.

As k(u) is orthogonal to all products of K then v, is orthogonal to all products of K
and by the construction v, turns into 1 the addition of the product K. It means that v; is a
test pattern for b,-fault.

2.2. A probability calculation
of robust PDF manifestation for the given path

Represent as the DSoP all robust test pairs for the given path originated by one
product of ENF. For that we have to find product K from K,,; that does not contain

repeated variable x; and obtain the SoP D from the set K fixing the variables of the
product K except x;. All roots of the equation D = 0 are represented either as ROBDD or
Free BDD. Each path from the root till thel-terminal node

arises to the product, corresponding to 2" robust test

pairs consisting of neighboring Boolean vectors. Here 7 is a /

rank of the product and » is the number of ENF variables. /
(Notice that the variable x; is absent in the product). Having

got the BDD for each K from K that does not contain 0 1

nexi

repeated variable x; and corresponds to the same path a we  gjs 6. BDD representation
may execute disjunction operation on these BDDs and ob- of the product d
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tain BDD representing all robust test pairs. Using the last BDD we may calculate a
probability of the robust PDF manifestation for the path o substituting instead of the
variables their probabilities from the probability distribution.

[lustrate that procedure by an example. Let the variable ¢ be a state variable. First

consider the literal cy34680. Take into consideration that for the product abe , k(u)=a b s
and the corresponding D, D = d v d d . The BDD represents the only product d.
Consider forth product of the ENF that contains the literal cy3e80- In this case
K=acd ,ku)y=ad ,D=bv1 = 1.The equation D = 0 has no roots.
Consequently a probability of robust test pair manifestation for the path o corre-

sponding to the literal cps450 is represented by the formula abd and is equal to
12*%1/2*%1/2 = 1/8.
Here we suppose 1 value probability of each variable is equal to 1/2.

2.3. A probability calculation
of robust PDF manifestation for state variable

When we consider a state variable we have to regard all paths (literals) connected
with this variable. Derive for each path a probability of robust PDF manifestation in the
above mentioned way. Then we have to summarize these probabilities.

Notice that a test pair for one path does not change the signal values of other path
corresponding to the same variable as all products representing another paths are con-
tained in a set K formed for the path considered. It means that sensitizations of different
paths of the same variable are statistically non-compatible events.

Let ¢ be state variable. We additionally have to find a probability of robust PDF
manifestation for the path corresponding to the literal C oo - Then K =bc de,

k(u)=bde, D= a .
BDD originates the only root: product a. Consequently a probability of robust PDFs
manifestation for the path corresponding to the literal Coiso is represented by the for-

mula abde. It is equal to 1/2*1/2*1/2*1/2 = 1/16. Then a probability of manifestation of
robust PDFs for the state variable c is as follows: 1/8+1/16 = 3/16.

We have got the following experimental results.

Controllability Pc and observability Po have been calculated for each state variable
for some benchmarks. Flip-flops corresponding to state variables with low controllabil-
ity or/and observability can be selected for including in enhanced scan chains. The ad-
ditional investigations are necessary for choosing the threshold values for probability
and observability We may only say that flip-flops with zero observability must not be
included in enhanced scan chains.

The algorithm of estimation calculation of flip-flop observability is based on ENF
analysis and using BDDs. ENF is very complicate formula for real circuits. It is possible
to use OR/AND tree to present all paths of a circuit [6]. These trees are used for finding
the estimations for benchmarks of the Table 1.

We may use for description of the ENF of a circuit the system OR-AND trees. The
complexity of the system is linear function of the number of the circuit gates [6]. To ac-
celerate the calculation of flip-flop observability it is possible to joint application of the
system OR-AND trees and the corresponding system SSBDDs [7]. We hope that these
techniques will allow calculating flip-flop observability for more complicate circuits.
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Experimental results on Iscas89 benchmarks

Circuit Flip-flops State Variable Pc Po
s27 3 Gl1 0.172 0.125
G10 0.457 0.063
G13 0.344 0.250
s344 15 ACVG3VDI 0.331 0.219
ACVG2VDI 0.260 0.219
AM3 0.125 0.875
ACVG4VDI 0.180 0.219
CNTVG2VD 0.188 0.375
AM2 0.281 0.875
CNTVG3VD 0.188 0.500
AMI 0.281 0.875
AMO 0.281 0.875
MRVG3VD 0.500 0.125
MRVG4VD 0.641 0.125
MRVGI1VD 0.406 0.125
MRVG2VD 0.406 0.125
CNTVGIVD 0.594 0.375
ACVG1VDI 0.280 0.219
s444 21 G58 0.209 0.141
G112 0.335 0.000
G49 0.063 0.063
G111 0.224 0.000
G45 0.094 0.188
G41 0.125 0.125
G113 0.130 0.000
G162BF 0.129 0.453
G80 0.133 0.343
G70 0.091 0.186
G101 0.375 0.500
G66 0.113 0.275
G110 0.233 0.000
G62 0.119 0.230
G109 0.099 0.000
G84 0.120 0.382
G92 0.108 0.362
G155 0.375 0.500
G88 0.115 0.402
G114 0.026 0.000
G37 0.578 0.000

Conclusion

The special estimations of flip-flop controllability and observability are developed.
They may be used for including flip-flops into partial enhanced scan chains. Possibili-
ties of their application to more complicate circuits are noted.
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Mampocosa A.FO., Menvruxoe A.B., Myxamedos P.B., Ocmanur C.A. (Tomckuit rocyjapcTBeH-
HBli yHHBepcuteT), Cunex B. (Muawniickuii HHCTUTYT TexHosorui, bomoeit). Beigop Tpurrepos
B YACTHYHBIE I[eNH /ISl MeTOJ0B CKAHHPOBAHHS CXeM C MaMATHIO.

KirodeBbie cioBa: HEUCTIPABHOCTH 3aJCPIKKU TyTH, POOACTHO TECTHPYEMBIH MyTh, IKBHUBAJICHT-
Has HopMasibHas popma (QHD).

[Ipu TecTupoBaHuM HEMCNPABHOCTEN 3a7€pXkKEK MyTel CXEM C MaMATbIO UCIOJb3YETCsS METO.
ckaHupoBaHus myTeil. CyllecTByIOIME apXUTEKTypHbIE pelleHus, oOecreynBarole peanusa-
M0 METOJia CKAHNPOBAHUS, HE MO3BOJISIOT MOJABATh HA TECTUPYEMYIO CXeMy JIo0yIo mapy Tec-
TOBBIX HaO00poB. OHNUM M3 BBIXOJIOB B 3TOW CHTYaIMH SBJISETCS MCIOJIB30BAaHUE YACTHYHBIX Iie-
nei CKaHMPOBAHUS ¢ TyOIHMPYIOMMMH TPUITEpaMd. B 9TH enu BKIIOYAIOTCS JINIIb HEKOTOPHIE
TPUTTEPEI CXEMBI ¢ MaMATHI0. B manHoit paboTe mpemnaraeTcst BKJIIOYATh B YaCTUYHBIE LIETIN CKa-
HHUPOBAHUS TPUITEPHI C HU3KUMH OLIEHKaMH YNpaBJsIeMOCTH U HabmromaeMocTd. PaspaboTan an-
TOPUTM BBEIYHCIICHUS YIIPABIIEMOCTH EPEMEHHOI COCTOSHYS, OCHOBAaHHBII Ha aHAN3e KOMOH-
HAIMOHHOTO SKBUBAJEHTA JUIMHEI ABa. [IpeioskeH aaropuT™ BBIYUCICHHS HAOIIOIAeMOCTH Tie-
PEMEHHON COCTOSIHUS, OCHOBAHHBIM Ha aHajK3e JKBUBAJICHTHOW HopMmanbHOU (opmbr (DHO).
[IpoBeneHs! UcHBITaHUS 00OUX ATTOPUTMOB Ha KOHTPOJIBHBIX puMepax ISCAS’86.



