Nº 1(18)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

УДК 519.872

Т.В. Любина, А.А. Назаров

ИССЛЕДОВАНИЕ НЕМАРКОВСКОЙ МОДЕЛИ КОМПЬЮТЕРНОЙ СЕТИ СВЯЗИ, УПРАВЛЯЕМОЙ ДИНАМИЧЕСКИМ ПРОТОКОЛОМ ДОСТУПА¹

В статье рассматривается немарковская модель компьютерной сети связи, управляемая динамическим протоколом доступа. Проводится анализ математической модели сети связи и находится характеристическая функция числа заявок в источнике повторных вызовов. Найдено условие существования стационарного режима сети. Получено распределение вероятностей числа заявок в источнике повторных вызовов.

Ключевые слова: *RQ-система*, динамический протокол доступа, конфликт заявок, оповещение о конфликте, стационарный режим.

Построение адекватных математических моделей телекоммуникационных, вычислительных, производственных систем может быть осуществлено в рамках теории массового обслуживания [1–3]. Сети связи обеспечивают возможность оперативно получать, обрабатывать и передавать необходимую информацию. Поэтому актуальной является задача построения адекватных моделей сетей связи случайного доступа и методов их исследования. Исследованию сетей связи в виде систем массового обслуживания (СМО) с источником повторных вызовов посвящены работы А.А. Назарова [4, 5], Г.И. Фалина [6, 7], В.И. Клименок [8], И.И. Хомичкова [9–11] и др. Методы теории массового обслуживания [1–3] являются наиболее действенными в проведении исследований компьютерных сетей связи, адекватными математическими моделями которых являются RQ-системы (Retrial Queueing systems) [6, 12, 13]. В монографии J. R. Artalejo, А. Gomez-Corral [12] приведено большое количество ссылок на работы, опубликованные за последние двадцать лет, по этой тематике.

Представляет интерес рассмотрение моделей, учитывающих интервалы недоступности прибора (моноканала), когда реализуется этап оповещения о конфликте [14], а также исследование сетей связи, управляемых статическими [15], динамическими [16, 17], адаптивными [18] протоколами случайного множественного доступа.

В статье рассмотрим немарковскую модель компьютерной сети связи, управляемую динамическим протоколом доступа.

⁻

¹ Работа выполнена при поддержке АВЦП «Развитие научного потенциала высшей школы (2009–2011 годы)», проект № 2.1.2/11803 «Разработка методов исследования немарковских систем массового обслуживания и их применение к сложным экономическим системам и компьютерным сетям связи».

1. Постановка задачи

Любая абонентская станция, сформировав свое сообщение, отправляет его на общий ресурс. Если ресурс свободен, то начинает осуществляться немедленная передача сообщения, которая заканчивается успешно, если другие сообщения не поступали. А если во время передачи некоторого сообщения поступает другое, происходит наложение сигналов, сообщения считаются искаженными, то есть возникает конфликт. От момента возникновения конфликта рассылается сигнал оповещения о конфликте. Сообщения, попавшие в конфликт, а также поступившие на этапе оповещения о конфликте, считаются искаженными и переходят в источник повторных вызовов (ИПВ), откуда вновь обращаются к ресурсу после случайного времени задержки. Задачей данной работы является нахождение распределения вероятностей состояний системы.

2. Математическая модель

Математическую модель сети связи рассмотрим в виде немарковской однолинейной RQ-системы, управляемой динамической дисциплиной обслуживания, на вход которой поступает простейший поток заявок с интенсивностью λ (рис. 1). Требование, заставшее прибор свободным, занимает его для обслуживания в течение случайного времени, имеющего произвольную функцию распределения B(x). Если во время обслуживания одной заявки поступает другая, то они вступают в конфликт. От этого момента начинает реализовываться этап оповещения о конфликте. Длины интервалов оповещения о конфликте имеют функцию распределения A(x). Обе заявки, попавшие в конфликт, а также заявки, поступившие на интервале оповещения о конфликте, переходят в источник повторных вызовов (ИПВ), из которого с динамической (зависящей от состояния ИПВ) интенсивностью σ/i вновь обращаются к прибору с попыткой повторного обслуживания, то есть вероятность обращения к прибору за время Δt для любой заявки из ИПВ со-

ставляет $\frac{\sigma}{i}\Delta t + o(\Delta t)$, если в ИПВ находится i заявок. Если прибор свободен, то

поступающая заявка становится на обслуживание, если же он занят, то вновь возникает конфликт заявок и процедура его разрешения повторяется.

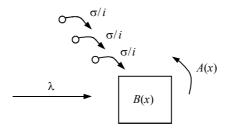


Рис. 1. Немарковская динамическая RQ-система с конфликтами заявок и оповещением о конфликтах

Задачей является нахождение распределения вероятностей состояний системы, то есть числа заявок в источнике повторных вызовов и состояний прибора.

3. Исследование немарковской модели компьютерной сети связи, управляемой динамическим протоколом случайного доступа

Пусть i(t) – число заявок в ИПВ, k(t) – определяет состояние прибора следующим образом:

$$k(t) = \begin{cases} 0, \text{ если прибор свободен,} \\ 1, \text{ если прибор занят,} \\ 2, \text{ если идет этап оповещения о конфликте,} \end{cases}$$

z(t) – длина интервала от момента t до момента окончания текущего режима функционирования прибора при k(t) = 1 и k(t) = 2 в момент времени t.

Компонента z(t) определяется только в те моменты, когда $k(t) \neq 0$, если k(t) = 0, то компонента z(t) не определяется. Обозначим

$$P\{k(t) = 0, i(t) = i\} = P_0(i,t),$$

$$P\{k(t) = k, i(t) = i, z(t) < z\} = P_k(i,z,t).$$

Процесс $\{k(t), i(t), z(t)\}$ изменения во времени состояний описанной системы является марковским.

Для распределений вероятностей $P_0(i,t)$ и $P_k(i,z,t)$ Δt -методом по формуле полной вероятности составим систему равенств

$$\begin{cases} P_{0}(0,t+\Delta t) = P_{0}\left(0,t\right)(1-\lambda\Delta t) + P_{1}\left(0,\Delta t,t\right) + o(\Delta t), \\ P_{1}(0,z-\Delta t,t+\Delta t) = \left[P_{1}(0,z,t) - P_{1}(0,\Delta t,t)\right](1-\lambda\Delta t) + \\ +P_{0}\left(0,t\right)\lambda\Delta tB(z) + P_{0}\left(1,t\right)\sigma\Delta tB(z) + o(\Delta t), \\ P_{1}(1,t+\Delta t) = P_{0}\left(1,t\right)(1-\lambda\Delta t)(1-\sigma\Delta t) + P_{1}\left(1,\Delta t,t\right) + o(\Delta t), \\ P_{1}(1,z-\Delta t,t+\Delta t) = \left[P_{1}(1,z,t) - P_{1}(1,\Delta t,t)\right](1-\lambda\Delta t)(1-\sigma\Delta t) + \\ +P_{0}\left(1,t\right)\lambda\Delta tB(z) + P_{0}\left(2,t\right)\sigma\Delta tB(z) + o(\Delta t), \\ \dots \\ P_{0}(i,t+\Delta t) = P_{0}\left(i,t\right)(1-\lambda\Delta t)(1-\sigma\Delta t) + P_{1}\left(i,\Delta t,t\right) + P\left(z,\Delta t,t\right) + o(\Delta t), \\ P_{1}(i,z-\Delta t,t+\Delta t) = \left[P_{1}(i,z,t) - P_{1}(i,\Delta t,t)\right](1-\lambda\Delta t)(1-\sigma\Delta t) + \\ +P_{0}\left(i,t\right)\lambda\Delta tB(z) + P_{0}\left(i+1,t\right)\sigma\Delta tB(z) + o(\Delta t), \\ P_{2}(i,z-\Delta t,t+\Delta t) = \left[P_{2}(i,z,t) - P_{2}(i,\Delta t,t)\right](1-\lambda\Delta t) + P_{2}\left(i-1,z,t\right)\lambda\Delta t + \\ +P_{1}\left(i-2,\infty,t\right)\lambda\Delta tA(z) + P_{1}\left(i-1,\infty,t\right)\sigma\Delta tA(z) + o(\Delta t), \end{cases}$$

применяя которые, получим систему дифференциальных уравнений Колмогорова, в которой обозначим
$$\left. \frac{\partial P_1(0,z,t)}{\partial z} \right|_{z=0} = \frac{\partial P_1(0,0,t)}{\partial z}$$
:

$$\begin{cases} \frac{\partial P_0(0,t)}{\partial t} = -P_0(0,t)\lambda + \frac{\partial P_1(0,0,t)}{\partial z}, \\ \frac{\partial P_1(0,z,t)}{\partial t} = \frac{\partial P_1(0,z,t)}{\partial z} - \frac{\partial P_1(0,0,t)}{\partial z} - P_1(0,z,t)\lambda + P_0\left(0,t\right)\lambda B(z) + P_0\left(1,t\right)\sigma B(z), \\ \frac{\partial P_0(1,t)}{\partial t} = -P_0(1,t)(\lambda+\sigma) + \frac{\partial P_1(0,0,t)}{\partial z}, \\ \frac{\partial P_1(1,z,t)}{\partial t} = \frac{\partial P_1(1,z,t)}{\partial z} - \frac{\partial P_1(1,0,t)}{\partial z} - P_1(1,z,t)(\lambda+\sigma) + P_0\left(1,t\right)\lambda B(z) + P_0\left(2,t\right)\sigma B(z), \end{cases}$$

. .

$$\begin{cases} \frac{\partial P_0(i,t)}{\partial t} = -P_0(i,t)(\lambda+\sigma) + \frac{\partial P_1(i,0,t)}{\partial z} + \frac{\partial P_2(i,0,t)}{\partial z}, \\ \frac{\partial P_1(i,z,t)}{\partial t} = \frac{\partial P_1(i,z,t)}{\partial z} - \frac{\partial P_1(i,0,t)}{\partial z} - P_1(i,z,t)(\lambda+\sigma) + P_0\left(i,t\right)\lambda B(z) + P_0\left(i+1,t\right)\sigma B(z), \\ \frac{\partial P_2(i,z,t)}{\partial t} = \frac{\partial P_2(i,z,t)}{\partial z} - \frac{\partial P_2(i,0,t)}{\partial z} - P_2(i,z,t)\lambda + P_2(i-1,z,t)\lambda + P_1\left(i-2,t\right)\lambda A(z) \\ + P_1\left(i-1,t\right)\sigma A(z). \end{cases}$$

Запишем полученную систему для стационарного распределения $P_0(i,t) = \Pi_0(i)$, $P_k(i,z,t) = \Pi_k(i,z)$:

$$\begin{cases} -\Pi_{0}(0)\lambda + \frac{\partial \Pi_{1}(0,0)}{\partial z} = 0, \\ \frac{\partial \Pi_{1}(0,z)}{\partial z} - \frac{\partial \Pi_{1}(0,0)}{\partial z} - \Pi_{1}(0,z)\lambda + \Pi_{0}(0)\lambda B(z) + \Pi_{0}(1)\sigma B(z) = 0, \end{cases}$$

$$\begin{cases} -\Pi_{0}(1)(\lambda + \sigma) + \frac{\partial \Pi_{1}(0,0)}{\partial z} = 0, \\ \frac{\partial \Pi_{1}(1,z)}{\partial z} - \frac{\partial \Pi_{1}(1,0)}{\partial z} - \Pi_{1}(1,z)(\lambda + \sigma) + \Pi_{0}(1)\lambda B(z) + \Pi_{0}(2)\sigma B(z) = 0, \end{cases}$$

$$\dots \qquad (2)$$

$$\begin{cases} -\Pi_{0}(i)(\lambda + \sigma) + \frac{\partial \Pi_{1}(i,0)}{\partial z} + \frac{\partial \Pi_{2}(i,0)}{\partial z} = 0, \\ \frac{\partial \Pi_{1}(i,z)}{\partial z} - \frac{\partial \Pi_{1}(i,0)}{\partial z} - \Pi_{1}(i,z)(\lambda + \sigma) + \Pi_{0}(i)\lambda B(z) + \Pi_{0}(i+1)\sigma B(z) = 0, \end{cases}$$

$$\frac{\partial \Pi_{2}(i,z)}{\partial z} - \frac{\partial \Pi_{2}(i,0)}{\partial z} - \Pi_{2}(i,z)\lambda + \Pi_{2}(i-1,z)\lambda + \Pi_{1}(i-2)\lambda A(z) + \Pi_{1}(i-1)\sigma A(z) = 0. \end{cases}$$

Чтобы решить систему (2), определим характеристические функции

$$H_0(u) = \sum_{i=0}^{\infty} e^{jui} \Pi_0(i) , \quad H_k(u,z) = \sum_{i=0}^{\infty} e^{jui} \Pi_k(i,z) . \tag{3}$$

Из системы (2) с учётом равенств (3) получаем следующую систему уравнений для функций $H_0(u)$ и $H_k(u,z)$:

$$\begin{cases} -H_0(u)(\lambda+\sigma) + \frac{\partial H_1(u,0)}{\partial z} + \frac{\partial H_2(u,0)}{\partial z} + \Pi_0(0)\sigma = 0, \\ \frac{\partial H_1(u,z)}{\partial z} - H_1(u,z)(\lambda+\sigma) = \frac{\partial H_1(u,0)}{\partial z} - H_0(u)(\lambda+e^{-ju}\sigma)B(z) - \\ -\Pi_1(0,z)\sigma + \Pi_0(0)e^{-ju}\sigma B(z), \end{cases} \tag{4}$$

$$\frac{\partial H_2(u,z)}{\partial z} - H_2(u,z)\lambda(1-e^{ju}) = \frac{\partial H_2(u,0)}{\partial z} - H_1(u)(\lambda e^{2ju} + \sigma e^{ju})A(z) + \\ +\Pi_1(0)e^{ju}\sigma A(z), \end{cases}$$

которая является системой трёх уравнений с тремя основными неизвестными $H_0(u) \ , \ H_1(u,z) \ , \ H_2(u,z) \ \ \text{и шестью вспомогательными неизвестными } \frac{\partial H_1(u,0)}{\partial z} \ ,$ $\frac{\partial H_2(u,0)}{\partial z} \ , \ H_1(u) \ , \ \Pi_0(0) \ , \ \Pi_1(0) \ \ \text{и} \ \ \Pi_1(0,z) \ .$

Нахождение вспомогательных неизвестных

Из первых двух уравнений системы (2) неизвестные $\Pi_1(0,z)$ и $\Pi_1(0)$ выразим через величину $\Pi_0(0)$. Для этого второе уравнение системы (2) запишем в виде

$$\frac{\partial \Pi_{1}(0,z)}{\partial z} - \Pi_{1}(0,z)\lambda = \frac{\partial \Pi_{1}(0,0)}{\partial z} - \Pi_{0}(0)\lambda B(z) - \Pi_{0}(1)\sigma B(z),$$

откуда получим

$$\Pi_{1}(0,z) = e^{\lambda z} \int_{0}^{z} e^{-\lambda x} \left\{ \frac{\partial \Pi_{1}(0,0)}{\partial z} - \Pi_{0}(0) \lambda B(x) - \Pi_{0}(1) \sigma B(x) \right\} dx . \tag{5}$$

Так как $\lambda>0$, следовательно, $\lim_{z\to\infty}e^{\lambda z}=\infty$, а это означает, что для второго сомножителя выполняется предельное равенство

$$\int\limits_{0}^{\infty}e^{-\lambda x}\left\{ \frac{\partial\Pi_{1}(0,0)}{\partial z}-\Pi_{0}\left(0\right)\lambda B(x)-\Pi_{0}\left(1\right)\sigma B(x)\right\} dx=0\ .$$

Тогда

$$\frac{\partial \Pi_1(0,0)}{\partial z} - \Pi_0(0) \lambda B^*(\lambda) - \Pi_0(1) \sigma B^*(\lambda) = 0, \qquad (6)$$

где

$$B^*(\lambda) = \int_0^\infty e^{-\lambda x} dB(x) .$$

Из первого уравнения системы (2) следует, что

$$\frac{\partial \Pi_1(0,0)}{\partial z} = \Pi_0(0)\lambda \,, \tag{7}$$

поэтому уравнение (6) примет вид

$$\Pi_0(0)\lambda(1-B^*(\lambda))-\Pi_0(1)\sigma B^*(\lambda)=0,$$

следовательно,

$$\Pi_0(1)\sigma = \lambda \Pi_0(0) \frac{1 - B^*(\lambda)}{B^*(\lambda)}.$$
 (8)

Тогда, с учётом равенств (7) и (8) уравнение (5) перепишем в виде

$$\Pi_{1}(0,z) = \Pi_{0}(0,0)e^{\lambda z} \int_{0}^{z} e^{-\lambda x} \left\{ \lambda - \lambda B(x) - \lambda \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} B(x) \right\} dx =$$

$$= \Pi_{0}(0)e^{\lambda z} \int_{0}^{z} e^{-\lambda x} \lambda \left\{ 1 - \frac{B(x)}{B^{*}(\lambda)} \right\} dx.$$

Так как $\Pi_1 \left(0 \right) = \lim_{z \to \infty} \Pi_1 (0,z)$, то

$$\Pi_{1}\left(0\right) = \Pi_{0}\left(0\right) \frac{\lambda \left(1 - \frac{1}{B^{*}(\lambda)}\right)}{-\lambda} = \Pi_{0}\left(0\right) \left(\frac{1}{B^{*}(\lambda)} - 1\right) = \Pi_{0}\left(0\right) \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} \; .$$

Для системы (4) можно записать

$$\begin{cases} H_{1}(u,z) = e^{(\lambda+\sigma)z} \int_{0}^{z} e^{-(\lambda+\sigma)x} \left\{ \frac{\partial H_{1}(u,0)}{\partial z} - H_{0}(u) \left(\lambda + e^{-ju}\sigma\right) B(x) - H_{0}(u) \left(\lambda + e^{-ju}\sigma\right) B(x) \right\} dx, \\ -\Pi_{1}(0,x)\sigma + \Pi_{0}(0)e^{-ju}\sigma B(x) dx, \\ H_{2}(u,z) = e^{\lambda(1-e^{ju})z} \int_{0}^{z} e^{-\lambda(1-e^{ju})x} \left\{ \frac{\partial H_{2}(u,0)}{\partial z} - H_{0}(u) \left(\lambda e^{2ju} + \sigma e^{ju}\right) A(x) + \Pi_{1}(0)e^{ju}\sigma A(x) dx, \end{cases}$$

$$(10)$$

тогда получим следующую систему уравнений:

$$\begin{cases} \frac{\partial H_{1}(u,0)}{\partial z} - H_{0}(u) \left(\lambda + e^{-ju}\sigma\right) B^{*}(\lambda + \sigma) - \Pi_{1}^{*}(0,\lambda + \sigma)\sigma + \Pi_{0}(0) e^{-ju}\sigma B^{*}(\lambda + \sigma) = 0, \\ \frac{\partial H_{1}(u,0)}{\partial z} + H_{1}(u) (\lambda + \sigma) - H_{0}(u) (\lambda + \sigma) - \Pi_{1}(0)\sigma + \Pi_{0}(0) e^{-ju}\sigma = 0, \\ \frac{\partial H_{2}(u,0)}{\partial z} - H_{1}(u) \left(\lambda e^{2ju} + \sigma e^{ju}\right) A^{*} \left(\lambda \left(1 - e^{ju}\right)\right) + \Pi_{1}(0) e^{ju}\sigma A^{*} \left(\lambda \left(1 - e^{ju}\right)\right) = 0, \end{cases}$$
(11)
$$\frac{\partial H_{2}(u,0)}{\partial z} + H_{2}(u)\lambda \left(1 - e^{ju}\right) - H_{1}(u) \left(\lambda e^{2ju} + \sigma e^{ju}\right) + \Pi_{1}(0) e^{ju}\sigma = 0, \\ \frac{\partial H_{1}(u,0)}{\partial z} + \frac{\partial H_{2}(u,0)}{\partial z} - H_{0}(u) (\lambda + \sigma) + \Pi_{0}(0)\sigma = 0, \end{cases}$$

где
$$\Pi_1(0) = \Pi_0(0) \frac{1 - B^*(\lambda)}{B^*(\lambda)}, \quad \Pi_1^*(0, \lambda + \sigma) = \frac{\lambda}{\sigma} \Pi_0(0) \frac{B^*(\lambda) - B^*(\lambda + \sigma)}{B^*(\lambda)}.$$

Система (11) является системой пяти уравнений относительно трёх основных $H_0(u)$, $H_1(u)$, $H_2(u)$ и двух вспомогательных неизвестных $\frac{\partial H_1(u,0)}{\partial z}$, $\frac{\partial H_2(u,0)}{\partial z}$.

В эту систему также входит величина $\Pi_0(0)$, значение которой будет определено ниже из условия нормировки.

Исключение вспомогательных неизвестных

Домножим второе уравнение системы (11) на e^{ju} , сложим с четвертым и, вычитая из полученного равенства пятое уравнение, запишем

$$\frac{\partial H_1(u,0)}{\partial z} \left(e^{ju} - 1 \right) - H_0(u) \lambda \left(e^{ju} - 1 \right) - H_1(u) \lambda e^{ju} \left(e^{ju} - 1 \right) - H_2(u) \lambda \left(e^{ju} - 1 \right) = 0 ,$$

откуда получим равенство

$$\frac{\partial H_1(u,0)}{\partial z} = H_0(u)\lambda + H_1(u)\lambda e^{ju} + H_2(u)\lambda. \tag{12}$$

Домножая четвертое уравнение системы (11) на $A^*(\lambda(1-e^{ju}))$ и вычитая из третьего уравнения, запишем

$$\frac{\partial H_2(u,0)}{\partial z} \left\{ 1 - A^* \left(\lambda \left(1 - e^{ju} \right) \right) \right\} - H_2(u) \lambda \left(1 - e^{ju} \right) A^* \left(\lambda \left(1 - e^{ju} \right) \right) = 0,$$

откуда получим равенство

$$\frac{\partial H_2(u,0)}{\partial z} = H_2(u)\lambda \left(1 - e^{ju}\right) \frac{A^* \left(\lambda \left(1 - e^{ju}\right)\right)}{1 - A^* \left(\lambda \left(1 - e^{ju}\right)\right)} = 0.$$
 (13)

Применяя полученные равенства (12) и (13) к первому, второму и четвертому уравнениям системы (11), получим

$$\begin{cases} H_{0}(u) \left\{ \lambda - \left(\lambda + e^{-ju} \sigma \right) B^{*}(\lambda + \sigma) \right\} + H_{1}(u) \lambda e^{ju} + H_{2}(u) \lambda = \\ = \Pi_{0}(0) \left\{ \lambda \frac{B^{*}(\lambda) - B^{*}(\lambda + \sigma)}{B^{*}(\lambda)} - \sigma e^{-ju} B^{*}(\lambda + \sigma) \right\}, \\ -H_{0}(u) e^{-ju} \sigma + H_{1}(u) \left\{ \lambda \left(e^{ju} + 1 \right) + \sigma \right\} + H_{2}(u) \lambda = \Pi_{0}(0) \left\{ \sigma \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} - \sigma e^{-ju} \right\}, \\ -H_{1}(u) \left\{ \lambda e^{2ju} + \sigma e^{ju} \right\} + H_{2}(u) \frac{\lambda \left(1 - e^{ju} \right)}{1 - A^{*} \left(\lambda \left(1 - e^{ju} \right) \right)} = \Pi_{0}(0) \left\{ -\sigma \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} e^{ju} \right\}. \end{cases}$$

$$(14)$$

Система (14) является системой трёх линейных однородных алгебраических уравнений относительно трёх неизвестных функций $H_k(u)$ и одной неизвестной постоянной $\Pi_0(0)$.

Нахождение неизвестных функций
$$H_k(u)$$
 и постоянной $\Pi_0(0)$

Для того чтобы найти значение величины $\Pi_0(0)$ в системе (14), положим u=0. При этом в третьем уравнении получаем неопределенность вида $\frac{0}{0}$. Для того чтобы ее раскрыть воспользуемся правилом Лопиталя, то есть

$$\lim_{x \to 1} \frac{\lambda(1-x)}{1-A^*(\lambda(1-x))} = \lim_{x \to 1} \frac{-\lambda}{-A^{*'}(\lambda(1-x))(-\lambda)} = \lim_{x \to 1} \frac{1}{-A^{*'}(\lambda(1-x))} = -\frac{1}{A^{*'}(0)},$$

где $x=e^{ju}$. Так как $A^*\left(\lambda(1-x)\right)=\int\limits_0^\infty e^{-\lambda(1-x)y}dA(y)$, то

$$A^{*'}(0) = \int_{0}^{\infty} e^{0y}(-y)dA(y) = -\int_{0}^{\infty} ydA(y) = -a.$$

где a — математическое ожидание продолжительности этапа оповещения о конфликте. Тогда

$$\lim_{x \to 1} \frac{\lambda(1-x)}{1-A^*(\lambda(1-x))} = \frac{1}{a}.$$

Следовательно, с учётом этих преобразований получаем следующую систему трёх уравнений при u=0:

$$\begin{cases} H_{0}(0) \left\{ \lambda - (\lambda + \sigma) B^{*}(\lambda + \sigma) \right\} + H_{1}(0)\lambda + H_{2}(0)\lambda = \\ = \Pi_{0}(0) \left\{ \lambda \frac{B^{*}(\lambda) - B^{*}(\lambda + \sigma)}{B^{*}(\lambda)} - \sigma B^{*}(\lambda + \sigma) \right\}, \\ -H_{0}(0)\sigma + H_{1}(0) \left\{ 2\lambda + \sigma \right\} + H_{2}(0)\lambda = \Pi_{0}(0) \left\{ \sigma \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} - \sigma \right\}, \\ H_{1}(0)(\lambda + \sigma) - \frac{1}{a} H_{2}(0) = \Pi_{0}(0) \left\{ \sigma \frac{1 - B^{*}(\lambda)}{B^{*}(\lambda)} \right\}, \end{cases}$$

$$(15)$$

Система (15) является системой трёх алгебраических уравнений относительно величин $H_k(0)$, значения которых определяются в виде

$$H_0(0) = \frac{\lambda - b_1 \Pi_0(0)}{(\lambda + \sigma) B^* (\lambda + \sigma)},$$

$$H_1(0) = \frac{\lambda - b_1 \Pi_0(0) - B^* (\lambda + \sigma) [\lambda - b_2 \Pi_0(0)]}{(\lambda + \sigma) B^* (\lambda + \sigma)},$$
(16)

$$H_2(0) = a(\lambda + \sigma) \frac{-B^*(\lambda + \sigma)b_3\Pi_0(0) + \lambda b_1\Pi_0(0) - B^*(\lambda + \sigma)[\lambda - b_2\Pi_0(0)]}{(\lambda + \sigma)B^*(\lambda + \sigma)},$$

где
$$b_1 = \lambda \frac{B^*(\lambda) - B^*(\lambda + \sigma)}{B^*(\lambda)} - \sigma B^*(\lambda + \sigma)$$
, $b_2 = \sigma \frac{1 - B^*(\lambda)}{B^*(\lambda)} - \sigma$, $b_3 = \sigma \frac{1 - B^*(\lambda)}{B^*(\lambda)}$.

Значение $\Pi_0(0)$ найдём из условия нормировки

$$\sum_{k=0}^{2} H_k(0) = 1,$$

тогда, принимая во внимание (16), получим

$$\Pi_0(0) = \frac{\lambda[2 + a(\lambda + \sigma)] - B^*(\lambda + \sigma)\{\lambda[2 + a(\lambda + \sigma)] + \sigma\}}{\lambda[2 + a(\lambda + \sigma)]B^*(\lambda) - B^*(\lambda + \sigma)\{\lambda[2 + a(\lambda + \sigma)] + \sigma\}}B^*(\lambda). \tag{17}$$

Таким образом, значение величины $\Pi_0(0)$ определяется равенством (17), а из системы (14) однозначно определяются значения функций $H_k(u)$. Неоднородную систему линейных алгебраических уравнений (14) перепишем в матричном виде

$$H(u)Q(u) = \Pi_0(0)G(u),$$
 (18)

обозначив

$$H(u) = \{H_0(u), H_1(u), H_2(u)\},\$$

$$Q(u) = \begin{bmatrix} \lambda - \left(\lambda + e^{-ju}\sigma\right)B^*(\lambda + \sigma) & -e^{-ju}\sigma & 0\\ \lambda e^{ju} & \lambda\left(e^{ju} + 1\right) + \sigma & -\lambda e^{2ju} - \sigma e^{ju}\\ \lambda & \lambda & \frac{\lambda\left(1 - e^{ju}\right)}{1 - A^*\left(\lambda\left(1 - e^{ju}\right)\right)} \end{bmatrix},$$

$$G(u) = \left\{ \frac{\lambda \left(B^*(\lambda) - B^*(\lambda + \sigma)\right)}{B^*(\lambda)} - \sigma e^{-ju} B^*(\lambda + \sigma); \sigma \frac{1 - B^*(\lambda)}{B^*(\lambda)} - \sigma e^{-ju}, \sigma \frac{1 - B^*(\lambda)}{B^*(\lambda)} e^{ju} \right\},$$

где $\Pi_0(0)$ определяется равенством (17), тогда решение H(u) системы (18)

$$H(u) = \Pi_0(0)G(u)Q^{-1}(u)$$
.

Так как характеристическая функция $h(u) = Me^{jui(t)}$ имеет вид

$$h(u) = \sum_{k=0}^{2} H_k(u) = H(u)E$$
,

где E — единичный вектор, тогда распределение вероятностей $\Pi(i)$ числа заявок в источнике повторных вызовов можно записать как

$$\Pi(i) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-jui} h(u) du.$$
 (19)

Численное интегрирование в (17) при заданных значениях параметров λ , σ и преобразованиях Лапласа — Стилтьеса $B^*(\lambda)$ и $B^*(\lambda+\sigma)$ не представляет труда для широкого спектра значений i.

4. Исследование условия существования стационарного режима

В силу свойств вероятности должны выполняться неравенства $0 < \Pi_0(0) < 1$, тогда из (17) запишем двойное неравенство

$$0 < \frac{\lambda[2 + a(\lambda + \sigma)] - B^*(\lambda + \sigma)\{\lambda[2 + a(\lambda + \sigma)] + \sigma\}}{\lambda[2 + a(\lambda + \sigma)]B^*(\lambda) - B^*(\lambda + \sigma)\{\lambda[2 + a(\lambda + \sigma)] + \sigma\}}B^*(\lambda) < 1,$$

которое определяет условие существования стационарного режима. Таким образом в данном неравенстве необходимо, чтобы числитель и знаменатель принимали значения одного и того же знака. Нетрудно показать, что эти значения должны быть положительными, тогда имеет место система трёх неравенств:

$$\begin{cases} \lambda [2 + a(\lambda + \sigma)] < \lambda [2 + a(\lambda + \sigma)] B^*(\lambda), \\ \lambda [2 + a(\lambda + \sigma)] > B^*(\lambda + \sigma) \{\lambda [2 + a(\lambda + \sigma)] + \sigma\}, \\ \lambda [2 + a(\lambda + \sigma)] B^*(\lambda) > B^*(\lambda + \sigma) \{\lambda [2 + a(\lambda + \sigma)] + \sigma\}. \end{cases}$$

Таким образом, из вида этой системы следует, что при выполнении второго неравенства

$$\lambda[2 + a(\lambda + \sigma)] > B^*(\lambda + \sigma)\{\lambda[2 + a(\lambda + \sigma)] + \sigma\}$$
(20)

выполняются также и два остальных.

Полученное неравенство (20) является условием существования стационарного режима в немарковской модели компьютерной сети связи, управляемой динамическим протоколом доступа.

5. Численные результаты

Рассмотрим гамма-распеделения времени обслуживания заявок и продолжительности этапа оповещения о конфликтах заявок. Для гамма-распределения времени обслуживания заявок с параметрами α и β преобразования Лапласа – Стилтьеса $B^*(\lambda)$ и $B^*(\lambda+\sigma)$ имеют следующий вид:

$$B^{*}(\lambda) = \left(\frac{\beta}{\beta + \lambda}\right)^{\alpha},$$

$$B^{*}(\lambda + \sigma) = \left(\frac{\beta}{\beta + \lambda + \sigma}\right)^{\alpha}.$$
(21)

Для гамма-распределения продолжительности этапа оповещения о конфликтах заявок с параметрами γ и ν преобразование Лапласа – Стилтьесса $A^*\left(\lambda\left(1-e^{ju}\right)\right)$ запишется как

$$A^* \left(\lambda \left(1 - e^{ju} \right) \right) = \left(\frac{\gamma}{\gamma + \lambda \left(1 - e^{ju} \right)} \right)^{\mathsf{v}}.$$

Значение пропускной способности для данной сети связи будет определяться условием (20), в котором $B^*(\lambda + \sigma)$ имеет соответствующий вид (21).

Определение. Пропускной способностью сети связи называется точная верхняя граница S тех значений загрузки $\rho = \lambda b$, где b — среднее значение времени обслуживания, для которых в математической модели сети существует стационарный режим.

Для заданных значений параметров σ = 1,5 , α = β = 0,5 , γ = ν = 0,5 пропускная способность данной системы составляет S = 0,3365 , поэтому значение параметра λ примем равным, например, λ = 0,25 . Распределение вероятностей Π (i) числа заявок в источнике повторных вызовов определяется обратным преобразованием Фурье (19) и приведено в таблице, где также указаны значения величин $\delta(i) = \Pi(i+1)/\Pi(i)$.

Распределение вероятностей Π (i) числа заявок в ИПВ
при гамма-распределении времени обслуживания

i	0	1	2	3	4	5	6	7	8
$\Pi(i)$	0,5515	0,0358	0,0939	0,0706	0,0550	0,0428	0,0333	0,0259	0,0202
$\delta(i)$	0,0649	2,6245	0,7517	0,7793	0,7781	0,7784	0,7784	0,7785	0,7785
i	9	10	11	12	13	14	15	16	
$\Pi(i)$	0,0157	0,0122	0,0095	0,0074	0,0058	0,0045	0,0035	0,0027	
$\delta(i)$	0,7785	0,7785	0,7785	0,7785	0,7785	0,7785	0,7785	0,7785	•••

Данное распределение вероятностей $\Pi(i)$ обладает свойством стабилизации последовательности отношений $\delta(i) = \Pi(i+1)/\Pi(i)$, которое заключается в том, что элементы этой последовательности принимают постоянное значение при i>2

с точностью до двух знаков после запятой. Аналогичные результаты имеют место и для других значений параметров λ , σ , α и β , γ и ν .

Для аппроксимации распределений вероятностей, обладающих указанным свойством стабилизации последовательности $\delta(i)$, целесообразно предложить квазигеометрическое распределение $\Pi\left(i\right)$ дефекта n, впервые рассмотренное в работе [16]. Полученное распределение вероятностей дефекта 2 является квазигеометрическим.

Заключение

Таким образом, в данной статье проведено исследование немарковской модели компьютерной сети связи, управляемой динамическим протоколом доступа, в виде немарковской динамической RQ-системы с конфликтами заявок и оповещением о конфликте. В результате исследования получена характеристическая функция h(u) числа заявок в источнике повторных вызовов. Равенством (19) определено распределение вероятностей $\Pi(i)$. В виде (20) найдено условие существования стационарного режима данной RQ-системы.

Далее для гамма-распределения времени обслуживания заявок и продолжительности оповещения о конфликтах заявок найдено распределение вероятностей $\Pi(i)$ числа заявок в ИПВ. Показано, что распределение вероятностей обладает свойством стабилизации последовательности отношений $\delta(i) = \Pi(i+1)/\Pi(i)$.

Для аппроксимации полученного распределения вероятностей предложено квазигеометрическое распределение дефекта 2.

ЛИТЕРАТУРА

- 1. *Гнеденко Б.В.*, *Коваленко И.И*. Введение в теорию массового обслуживания. 3-е изд., испр. и доп. М.: КомКнига, 2005. 400 с.
- 2. *Назаров А.А.*, *Терпугов А.Ф.* Теория массового обслуживания: учеб. пособие. 2-е изд., испр. Томск: Изд-во НТЛ, 2010. 228 с.
- 3. *Саати Т.Л.* Элементы теории массового обслуживания и ее приложения. М.: Сов. радио, 1971. 519 с.
- 4. *Назаров А.А.*, *Марголис Н.Ю*. Исследование неустойчивых сетей случайного доступа, управляемых статистическим протоколом с оповещением о конфликте // Автоматика и телемеханика. 2004. № 8. С. 72–84.
- 5. *Назаров А.А.*, *Цой С.А.* Исследование математической модели двухканальной сети случайного доступа // Вестник ТГУ. 2003. № 280. С. 232–238.
- 6. Falin G.I. A survey of retrial queues // Queuing Systems. 1990. V. 7. P. 127–167.
- 7. Falin G.I. Multichannel queuing system with repeated calls under high intensity of repetition // J. Inform. Processing and Cybernetics. 1987. No. 23. P. 37–47.
- 8. Klimenok V.I. Optimization of dynamic management of the operating mode of data systems with repeat calls // Automatic Control and Computer Sciences. 1993. V. 24. Is. 1. P. 23–28.
- 9. *Хомичков И.И.* Исследование моделей локальной сети с протоколом случайного множественного доступа // Автоматика и телемеханика. 1993. № 12. С. 89–90.
- 10. Хомичков И.И. Об оптимальном управлении в сети передачи данных со случайным множественным доступом // Автоматика и телемеханика. 1991. № 8. С. 176–188.
- 11. *Khomichkov I.I.* Calculation of the characteristics of local area network with P-persistent protocol of multiple random access // Automation and Remote Control. 1995. V. 56. Is. 2. P. 208–218.
- 12. *Artalejo J.R.*, *Gomez-Corral A*. Retrial Queueing Systems: A Computational Approach. Springer, 2008. 309 p.

- 13. Artalejo J.R. Accessible bibliography on Retrial Queues // Mathematical and Computer Modeling. 1999. V. 30. Is. 1–2. P. 1–6.
- 14. *Назаров А.А.*, *Кузнецов Д.Ю*. Адаптивные сети случайного доступа. Томск: ТПУ, 2002. 256 с.
- 15. *Назаров А.А.*, *Судыко Е.А*. Метод асимптотических семиинвариантов для исследования математической модели сети случайного доступа // Проблемы передачи информации. 2010. № 1. С. 94–111.
- 16. *Любина Т.В.*, *Назаров А.А.* Исследование марковской динамической RQ-системы с конфликтами заявок // Вестник Томского государственного университета. Управление, вычислительная техника и информатика. 2010. № 3 (12). С. 73–84.
- Назаров А.А., Юревич Н.М. Исследование сети с динамическим протоколом случайного множественного доступа Алоха // Автоматика и вычислительная техника. 1995. № 6. С. 53–59.
- 18. *Назаров А.А.*, *Кузнецов Д.Ю*. Исследование сети связи, управляемой адаптивным протоколом случайного множественного доступа, в условиях критической загрузки // Проблемы передачи информации. 2004. № 3. С. 69–80.

Любина Татьяна Викторовна
Назаров Анатолий Андреевич
Томский государственный университет
E-mail: lyubina_tv@mail.ru; anazarov@fpmk.tsu.ru

Поступила в редакцию 11 июля 2011 г.

Lyubina Tatiana V., Nazarov Anatoly A. (Tomsk State University). Research of non-Markovian model of the computer communication network directed by dynamic protocol of access.

Keywords: RQ-system, dynamic report of access, conflict of service requests, notification about the conflict, stationary mode.

The non-Markovian model of a computer communication network directed by dynamic protocol of access is considered in the paper. The analysis of mathematical model of a communication network is carried out and there is found a characteristic function of number of demands in a source of repeated calls. The condition of existence of a stationary mode of a network is found.

For the case of gamma distribution of a holding time of demands and duration of the notification about conflicts of demands the distribution of probabilities $\Pi(i)$ of a number of demands in a source of repeated calls is obtained. It is shown that distribution of probabilities possesses property of stabilization of sequence $\delta(i) = \Pi(i+1)/\Pi(i)$.

For approximation of the obtained distribution of probabilities almost geometric distribution of defect 2 is proposed.