№ 4(17)

УПРАВЛЕНИЕ ДИНАМИЧЕСКИМИ СИСТЕМАМИ

УДК 658.512

Ю.И. Параев, Т.И. Грекова, Е.Ю. Данилюк

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ОДНОСЕКТОРНОЙ ЭКОНОМИКОЙ НА КОНЕЧНОМ ИНТЕРВАЛЕ ВРЕМЕНИ

Получено аналитическое решение динамической задачи оптимального управления односекторной экономикой на конечном интервале времени. Найдены необходимые условия существования оптимального управления, а также условия, когда это управление включает в себя магистраль.

Ключевые слова: производственная функция Кобба — Дугласа, фондовооружённость труда, непроизводственное потребление, оптимальное управление, магистраль.

Рассмотрена классическая задача управления в односекторной экономике с использованием динамической модели при производственной функции Кобба – Дугласа [1–5]. Управление заключается в распределение произведённого продукта на накопление (инвестирование) и непроизводственное потребление. Задача состоит в выборе такого управления, при котором обеспечивается максимум суммарного потребления за планируемый конечный интервал времени. С помощью принципа максимума Понтрягина получено аналитическое решение задачи. Найдены необходимые условия существования оптимального управления, а также условия, когда имеет место магистраль – участок сбалансированного равновесного состояния экономики.

1. Постановка задачи

Рассматривается классическая задача управления в односекторной экономике с использованием динамической модели при производственной функции Кобба — Дугласа $Y(K,L) = AK^{\alpha} L^{\beta}$. Здесь K(t) — основной капитал, L(t) — трудовые ресурсы, A — масштаб темпа производства (A>0), α — коэффициент эластичности по основным фондам, β — коэффициент эластичности по трудовым ресурсам. Далее будем считать, что $\alpha+\beta=1$, α , $\beta>0$. Значение Y(K,L) есть валовой продукт, произведенный в единицу времени, т.е. $Y(K,L)\Delta t$ — валовой продукт, произведенный за время Δt . Часть этого продукта $I\Delta t = uY\Delta t$ идет на увеличение основного капитала (инвестирование), а часть $S\Delta t = (1-u)Y\Delta t$ — на увеличение непроизводственного потребления C(t). Управляющим параметром является коэффициент сбережения u, который определяет долю валового продукта, идущую на накопление. При этом всегла

$$0 \le u \le 1. \tag{1}$$

Изменение введенных величин во времени можно описать уравнениями [3]

$$\dot{K} = uY(K, L) - \lambda K(t), \quad K(0) = K_0 > 0,$$

$$\dot{C} = \rho C + (1 - u)Y(K, L), \quad C(0) = 0,$$

$$\dot{L} = \nu L, \quad L(0) = L_0,$$
(2)

где λ (>0) — коэффициент амортизации, ρ (>0) — норма дисконтирования, ν — темп изменения трудовых ресурсов.

Удобно ввести новые переменные: k = K/L — фондовооружённость труда (ФВ), c = C/L — непроизводственное потребление (НП), приходящиеся на одного работника, и функцию $F(k) = Y/L = Ak^{\alpha}$ — производительность труда. Для этих переменных согласно (2) можно получить уравнения

$$\dot{k} = uF(k) - \mu k, \quad k(0) = k_0 = K_0 / L_0 > 0;$$
 (3)

$$\dot{c} = \delta c + (1 - u)F(k), \quad c(0) = 0,$$
 (4)

где $\mu = \lambda + \nu$, $\delta = \rho - \nu$.

Предполагается, что планируемый интервал времени производства [0,T] задан и конечен. Решение уравнения (4) на этом интервале можно записать в виде

$$c(T) = J[u] = \int_{0}^{T} e^{\delta(T-t)} (1-u)F(k)dt,$$
 (5)

т.е. J[u] есть НП на интервале [0,T] при управлении u.

Задача: в течение интервала времени [0,T] найти такое управление u(t) с учетом (1), при котором функционал (5) максимален.

Заметим, что если на всем интервале [0,T] u(t)=1, то это означает, что весь валовой продукт идет на увеличение ΦB и поэтому J[1]=0. Если на всем интервале [0,T] u(t)=0, то это означает, что весь валовой продукт идет на увеличение НП. В этом случае J[0]>0 и такое решение всегда существует. Назовем его тривиальным. Поэтому под оптимальным решением будем подразумевать такое управление u(t), при котором функционал (5) максимален и J[u]>J[0]. Отсюда следует, что при оптимальном управлении, если оно существует, должен быть хотя бы один промежуток времени, когда u(t)>0, т.е. имеет место увеличение ΦB , за счет чего в результате происходит увеличение валового продукта.

Обычно в литературе [3,6] рассматриваются задачи, когда трудовые ресурсы увеличиваются (v>0). Однако возможен и обратный вариант. Здесь имеет место следующая особенность. При v>0 трудовые ресурсы увеличиваются, а относительные величины k, c и F уменьшаются. При v<0 происходит обратная картина, т.е. трудовые ресурсы уменьшаются, а относительные величины k, c и F увеличиваются. В частности, НП можно увеличивать за счет сокращения числа работников. Поэтому для определенности далее будем считать, что в (3) и (4) μ и $\delta>0$. Последнее возможно, если $-\lambda < v < \rho$. Будем считать, что это условие выполняется. Иначе возникают «экзотические» случаи, когда $\mu<0$ или $\delta<0$. Таким образом, числовыми параметрами задачи являются A, α , β , δ , μ . При решении задачи нужно найти необходимые условия, т.е. ограничения на k_0 , T и числовые параметры, когда оптимальное управление существует.

2. Применение принципа максимума Понтрягина

Применение известного метода – принципа максимума Понтрягина – состоит из выполнения следующих этапов. Сначала на основании (3) и (5) составляется функция Гамильтона

$$H(k, p, u) = p(uF(k) - \mu k) - e^{\delta(T-t)}(1-u)F(k) =$$

$$= uF(k)(p + e^{\delta(T-t)}) - \mu kp - F(k)e^{\delta(T-t)},$$
(6)

где p(t) – вспомогательная переменная, которая должна удовлетворять уравнению

$$\dot{p} = -\frac{\partial H}{\partial k} = \mu p + F_k'(k) [e^{\delta(T-t)} - up - ue^{\delta(T-t)}], \quad p(T) = 0.$$
 (7)

Здесь $F_k(k) = \alpha A k^{-\beta}$. Выражение (6) удобно преобразовать к виду

$$H(k, p, u) = e^{\delta(T-t)} \left(uF(k)(q+1) - \mu kq - F(k) \right),$$

где $q(t) = p(t)e^{\delta(t-T)}$. Эта функция согласно (7) должна удовлетворять уравнению

$$\dot{q} = (\mu + \delta)q + F_k'(k)(1 - uq - u), \ q(T) = 0.$$
 (8)

Минимум функции H по u с учетом (1) достигается при

$$u(t) = \begin{cases} 1, & \text{если} \quad q < -1, \\ u_{\text{oc}}, & \text{если} \quad q = -1, \\ 0, & \text{если} \quad q > -1. \end{cases} \tag{9}$$

Здесь u_{oc} — особое управление, которое будет определено ниже. Таким образом, выражение (9) задает структуру оптимального управления.

Основная проблема при решении задач оптимального управления — это нахождение начальных значений для вспомогательных переменных. В нашем случае нужно найти начальное значение q(0), из которого функция q(t) переходит в значение q(T)=0. Существование такого значения q(0) и такой функции q(t) означает существование решения задачи. Отметим, что если на всем интервале [0,T] q(t)>-1, то u(t)=0 и получается тривиальное решение, когда функционал равен J[0]. Поэтому при нетривиальном решении на интервале [0,T] должны быть моменты времени, когда $q(t) \le -1$ и u(t)>0. Кроме того, должен быть интервал времени [t,T], когда функция q(t) переходит из значения -1 в значение q(T)=0 и в течение которого u(t)=0, т.е. весь валовой продукт идет на увеличение потребления. Такой интервал времени [t,T] назовем заключительным этапом или этапом полного накопления. Если оптимальное управление существует, то оно должно содержать такой этап.

3. Особое управление

Согласно общей теории [7, 8], особое управление $u_{\rm oc}$ (0 < $u_{\rm oc}$ < 1) существует на некотором интервале времени (t_1 , t_2), если на всем этом интервале функция q(t)=-1. Для этого необходимо, чтобы все производные этой функции равнялись нулю в какой-то точке интервала (t_1 , t_2). Однако, как следует из теории, достаточно равенства нулю первой и второй производных. Из (8) видно, что при q(t)=-1 первая производная равна нулю, если

$$F_k'(k) = A\alpha k^{-\beta} = \mu + \delta. \tag{10}$$

Далее, дифференцируя выражение (8), получаем

$$\ddot{q}(t) = (\delta + \mu)\dot{q} + F_{kk}''\dot{k}[1 - uq - u] - F_k'u\dot{q}.$$

Здесь $F_{kk}'' = -\alpha \beta A k^{-\beta} < 0$. При q = -1 и $\dot{q} = 0$ имеем $\ddot{q}(t) = F_{kk}' \dot{k}$. Эта производная равна нулю, если $\dot{k} = 0$ или $uF = \mu k$. Отсюда следует, что при особом управлении решение уравнения (3) постоянно и равно

$$k_{\rm oc}^{\beta} = \frac{\alpha A}{\mu + \delta} > 0, \tag{11}$$

а само управление также постоянно и равно

$$u_{\rm oc} = \frac{\mu k}{F} = \frac{\alpha \mu}{\mu + \delta} > 0. \tag{12}$$

Видно, что особое управление всегда удовлетворяет условию (1). Интервал времени (t_1, t_2) , в течение которого имеет место особое управление, соответствует участку сбалансированного равновесного состояния экономики, который называется магистралью.

4. Основное решение задачи

Согласно (9), выбор управления определяется поведением функции q(t). В Приложении проведен анализ поведения этой функции. Из полученных результатов следует следующее решение. Интервал [0,T] точками t_1 и t_2 ($0 < t_1 < t_2 < T$) разбивается так, что

$$u(t) = \begin{cases} u_1 & \text{при} & 0 < t < t_1, \\ u_{\text{oc}} & \text{при} & t_1 < t < t_2, \\ 0 & \text{при} & t_2 < t < T. \end{cases}$$
 (13)

Интервал времени $[0, t_1]$ соответствует выходу на магистраль, интервал $[t_1, t_2]$ – магистрали (если она существует), интервал $[t_2, T]$ – заключительному этапу (сходу с магистрали). В соответствии с таким разбиением функционал (5) можно представить в виде суммы

$$J = J_1[0, t_1] + J_{oc}[t_1, t_2] + J_2[t_2, T], \tag{14}$$

где $J_{\text{oc}}[t_1, t_2] = c(u_{\text{oc}}; t_1, t_2)$ (см. (П14)).

В основном решении предполагается, что магистраль существует. Поэтому момент времени t_1 определяется из условий: $k(0) = k_0$, $k(t_1) = k_{oc}$, $q(t_1) = -1$, а момент времени t_2 — из условий: $k(t_2) = k_{oc}$, $q(t_2) = -1$, q(T) = 0.

Согласно утверждению П.1, имеем

- а) если $k(0) = k_0 < k_{oc}$, то момент t_1 определяется из (Пб). При этом $u_1 = 1$ и $J_1[0, t_1] = 0$.
- б) если $k(0) = k_0 > k_{oc}$, то момент t_1 определяется из (П7). При этом $u_1 = 0$ и $J_1[0, t_1] = Ak_0^{\alpha} e^{\delta T} W(0, t_1)$.

Согласно (П11), момент времени

$$t_2 = T - R_{\rm oc}. ag{15}$$

Существенным здесь является то, что длина интервала $[t_2, T]$ равна R_{oc} и не зависит от начального условия k_0 , масштаба темпа производства A и от значения T, а зависит только от числовых параметров задачи α , μ , δ . Таким образом, при задан-

ном T момент t_2 определяется однозначно. Кроме того, согласно (П10), (П15) и (15) получается

$$J_2[t_2, T] = Ak_{oc}^{\alpha} e^{\delta(T-t_2)} W(t_2, T) = \frac{k_{oc}}{\alpha} e^{R_{oc}}.$$
 (16)

Это означает, что НП на интервале $[t_2, T]$ не зависит от начального условия k(0) и T, а зависит только от параметров задачи.

На рис. 1 приведены различные варианты решения основной задачи — переменные k(t) и q(t). Кривые l соответствуют решению при $k_0 = 2k_{\rm oc}$, кривые 2 — при $k_0 = 3k_{\rm oc}/4$.

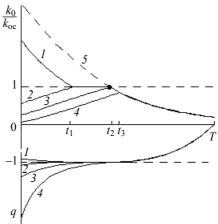


Рис. 1. Решение основной задачи

5. Необходимое условие существования магистрали

Для существования основного решения в виде (13) необходимо, чтобы $0 \le t_1 \le t_2 < T$. Но поскольку $t_1 \ge 0$ и $t_2 < T$, то необходимое условие сводится к неравенству $t_1 \le t_2$. При этом момент t_2 фиксирован, а момент t_1 зависит от начального условия k_0 . Поэтому из неравенства $t_1 \le t_2$ можно получить ограничения на k_0 , при которых решение (13) существует.

А) Пусть сначала $k_0 \le k_{\rm oc}$. Как указано выше, в этом случае на некотором интервале $[0, t_1]$ $u_1(t) = 1$. Согласно (Пб) и (11), время перехода процесса k(t) из значения $k_0 = 0$ в значение $k = k_{\rm oc}$ равно

$$t^* = \frac{1}{\mu \beta} \ln \left(\frac{\delta + \mu}{\delta + \mu \beta} \right) > 0. \tag{17}$$

Другими словами, t^* есть время выхода на магистраль из нулевого начального условия. Поэтому, если $t^* \le t_2 = T - R_{\rm oc}$, то магистраль существует для всех $k_0 \ge 0$. Отсюда получается граничное значение $T^* = t_2^* + R_{\rm oc}$ для T. Если $t^* > t_2 = T - R_{\rm oc}$ или $T < T^*$, то магистраль существует только для $k_0 \ge X_1(t_2) > 0$, где X_1 такое начальное значение, из которого процесс k(t) переходит в значение $k = k_{\rm oc}$ за время t_2 . В этом случае магистраль состоит из одной точки t_2 (см. кривые t_2 на рис.1). Из (13) получается, что

$$X_1^{\beta}(t_2) = \frac{A}{\mu} + \left(k_{oc}^{\beta} - \frac{A}{\mu}\right)e^{\beta\mu t_2} = \frac{A}{\mu}\left(1 - e^{\beta\mu(t_2 - t^*)}\right). \tag{18}$$

Утверждение 5.1.

- а) Если $T > T^*$ (или $t_2 > t_2^*$), то магистраль существует для всех k_0 из интервала $[0, k_{oc}]$.
- б) Если $T < T^*$ (или $t_2 < t_2^*$), то магистраль существует только для k_0 из интервала $[X_1(t_2), k_{oc}]$, причем $X_1 > 0$.

Смысл последнего в том, что если T мало, то магистраль может быть достигнута не из всех начальных условий. Следует отметить, что существование магистрали в данном случае определяется величинами t^* и $R_{\rm oc}$, которые зависят только δT^* от числовых параметров задачи α , μ , δ .

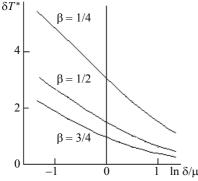


Рис. 2. Нижние границы для постоянной времени δT

Если значение T задано, то величины μT и δT можно рассматривать как постоянные времени в уравнениях (3) и (4). Значения μT^* и δT^* будут нижними границами для этих постоянных времени, когда магистраль существует для всех k_0 из интервала $[0, k_{\rm oc}]$. Зависимость δT^* от отношения δ/μ представлена на рис. 2. Эти графики построены согласно (П13) и (17). Видно, что величина δT^* убывает с увеличением отношения δ/μ и с увеличением коэффициента эластичности по трудовым ресурсам β , что соответствует смыслу поставленной задачи. Для границы μT^* получается аналогичная картина.

Б) Пусть $k_0 > k_{\rm oc}$. В этом случае момент t_1 определяется из (П7). Неравенство $t_1 \le t_2$ определяет верхнюю границу X_2 для значений k_0 :

$$k_0 \le X_2 = k_{\rm oc} e^{\mu t_2} = k_{\rm oc} e^{\mu (T - R_{\rm oc})}.$$
 (19)

Для $k_0 > X_2$ неравенство $t_1 \le t_2$ не выполняется, т.е. магистраль не достигается. Следовательно, в последнем случае оптимальное управление не существует, т.е. для $k_0 > X_2$ имеет место только тривиальное решение u=0.

Таким образом, получена область значений k(0) и T, для которой справедливо управление (13). Эта область значений отражена на рис. 3. Видно, что магистраль существует только для $T > R_{\rm oc}$.

Рис. 3. Области значений k_0 и T для вариантов решения основной задачи

6. Вырожденное решение задачи

Сюда отнесем случай, когда магистраль не существует, т.е. когда имеет место $T < T^*$ и $k_0 < X_1$. Однако и в этом случае для существования оптимального управления все равно требуется существование функции q(t), которая переходит из значения -1 в значение 0, т.е. должен существовать момент времени t_3 ($0 < t_3 < T$) такой, что $q(t_3) = -1$, q(T) = 0. Поэтому управление выбирается в виде

$$u(t) = \begin{cases} 1 & \text{при} \quad 0 < t < t_3, \\ 0 & \text{при} \quad t_3 < t < T, \end{cases}$$
 (20)

где t_3 — момент переключения управления. Величина T— t_3 есть время прохожде-

ния функции q(t) из значения -1 в значение 0 при u(t)=0. Поэтому согласно (П10) получаем

$$\alpha AW(t_3, T) = k^{\beta}(t_3) = \frac{A}{\mu} (1 - e^{-\beta \mu t_3}) + k_0^{1 - \alpha} e^{-\beta \mu t_3}.$$
 (21)

Таким образом, момент t_3 есть корень этого уравнения. Заметим, что этот же результат можно получить по-другому. При управлении (20) функционал (5) согласно (П15) равен

$$J = Ak_3^{\alpha} e^{\delta(T - t_3)} W(t_3, T), \tag{22}$$

где $k_3 = k(t_3)$. Вычисляя производную от правой части этого выражения по t_3 и приравнивая ее к нулю, снова получаем (21).

Поскольку в рассматриваем случае магистраль не достигается, то должно выполняться неравенство $k(t_2)=k_2 < k_3 < k_{\rm oc}$. Отсюда, согласно утверждению П.3, должно выполняться еще неравенство $t_2 < t_3 = T - R(k_3) < T - R(k_2)$. В результате получается некоторая область значений переменных t_3 и k_3 . Анализ показал, что в этой области левая часть уравнения (21) хорошо аппроксимируется функцией $k_{\rm oc}^{\beta}e^{-\beta\mu(t_3-t_2)}$. В результате из (21) получаем

$$t_3 = \frac{1}{\mu \beta} \ln \left(1 + \frac{\mu}{A} (k_{\text{oc}}^{\beta} e^{\beta \mu t_2} - k_0^{\beta}) \right) \ge 0.$$
 (23)

На рис. 1 вырожденному случаю соответствуют кривые 4.

Таким образом, в вырожденном случае интервал [0,T] разделяется на два этапа: на первом весь произведённый продукт идет на увеличение ΦB , на втором — на НП. Условием существования вырожденного решения является неравенство $R(k_0) \le T$, где $R(k_0)$ — время прохождения функции q(t) из значения q(0) = -1 в значение q(T) = 0 при условии, что q(0) = 10 при условии, что q(0) = 11 в значение q(T) = 12 при условии, что q(T) = 13 получаем

$$k_0^{\beta} \le X_3(T) = \frac{\alpha A}{\delta + \mu \alpha} (1 - e^{-(\delta + \alpha \mu)T}).$$
 (24)

Это неравенство задает область значений k(0) и T, для которой справедливо управление (20). Для значений k(0) и T, для которых справедливо обратное неравенство, имеет место тривиальное решение u(t)=0. Это отражено на рис. 3.

Из рассмотрения рис. 1 видно, при оптимальном управлении все траектории k(t), начинающиеся из допустимых начальных условий, точно или достаточно точно выходят на кривую

$$k(t) = k_{oc}e^{\mu(t_2 - t)}$$
 (25)

(кривая 5 на рис.1). Эта кривая проходит через точку ($t_2 = T - R_{\rm oc}, k_{\rm oc}$). Кривую (25) можно назвать линией переключения, поскольку при достижении ее включается управление u(t) = 0.

На рис. 4 приведена зависимость от начального k_0 отношения J при оптимальном управлении к J[0]. Значение J[0] определяется из (П16). Значение J на интервале $0 \le k_0 \le X_1$ равно (22) с учетом (23) и (П1); на интервале $X_1 \le k_0 \le k_{oc}$ равно (14), где $J_1[0, t_1] = 0$, $J_{oc}[t_1, t_2]$

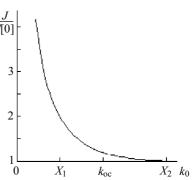


Рис. 4. Зависимость НП от начального k_0

определяется из (П14), $J_2[t_2, T]$ из (16); на интервале $k_{oc} \le k_0 \le X_2$ равно (14), где $J_1[0, t_1] = Ak_0^{\alpha} e^{\delta T} W(0, t_1)$, $J_{oc}[t_1, t_2]$ определяется из (П14), $J_2[t_2, T]$ из (16). Видно, что выигрыш от введения оптимального управления существен при малых k_0 .

ПРИЛОЖЕНИЕ

П.1. Решение уравнения (3) при постоянном и

Решение этого уравнения на интервале времени $[t_0, t)$ с начальным условием $k(t_0) = k_0$ имеет вид

$$k^{\beta}(t) = \frac{uA}{\mu} (1 - e^{-\beta\mu(t - t_0)}) + k_0^{\beta} e^{-\beta\mu(t - t_0)}. \tag{\Pi1}$$

Это решение получается в результате подстановки $k(t) = \exp[y(t) + z(t)]$, где y(t) и z(t) – произвольные функции. Если u(t) = 0, то

$$k(t) = k(t_0)e^{-\mu(t-t_0)}$$
 (Π 2)

Π .2. Поведение функции q(t)

$\Pi.2.1.$ Поведение функции q(t) при u(t) = 1

Пусть в некоторый момент времени t q(t) < -1. Тогда, согласно (9), u(t) = 1 и уравнение (8) принимает вид

$$\dot{q} = (\mu + \delta - F_{\nu}^{'}(k))q. \tag{\Pi3}$$

Его решение на интервале $[t_0, t)$ с начальными условиями $q(t_0) = q_0$ и $k(t_0) = k_0$ равно

$$q(t) = q_0 \left(\frac{k_0}{k(t)}\right)^{\alpha} e^{(\delta + \beta \mu)(t - t_0)}. \tag{\Pi4}$$

Учитывая (8) и (11), уравнение (П3) можно переписать в виде

$$\dot{q} = (\mu + \delta) \left(1 - \left(\frac{k_{\text{oc}}}{k} \right)^{\beta} \right) q. \tag{\Pi5}$$

Здесь k=k(t). Отсюда следует, что если $1-\left(\frac{k_{\rm oc}}{k}\right)^{\beta}>0$ или $k>k_{\rm oc}$, то $\dot{q}<0$ и

функция q(t) убывает, т.е. она не может достичь значения q(t)=-1 и далее значения q(T)=0. Поэтому при условии $k>k_{\rm oc}$ обязательно должно быть q(t)>-1 и

$$u(t) = 0$$
. Если $1 - \left(\frac{k_{\rm oc}}{k}\right)^{\beta} < 0$ или $k < k_{\rm oc}$, то $\dot{q} > 0$ и функция $q(t)$ возрастает, т.е.

она может достичь значения q(t) = -1, когда происходит переключение управления. Отсюда получается следующий результат.

Утверждение П.1:

а) Если $k(0) = k_0 < k_{\rm oc}$, то можно выбрать q(0) < -1, и тогда на некотором интервале $[0, t_1]$ получается u(t) = 1. При этом функции k(t) и q(t) растут. Момент t_1 определяется из условия $k(t_1) = k_{\rm oc}$. Полагая в $(\Pi 1)$ $t = t_1$, $t_0 = 0$ и $k(t_1) = k_{\rm oc}$, получаем

$$t_1 = \frac{1}{\mu\beta} \ln\left(\frac{A - \mu k_0^{\beta}}{A - \mu k_{\alpha\alpha}^{\beta}}\right) \ge 0. \tag{II6}$$

Значение q(0) определяется из условия $q(t_1)=-1$. Полагая в (П4) $t=t_1$, $t_0=0$ и $k(t_1)=k_{\rm oc}$, получаем

$$q_0 = -\left(\frac{k_{\text{oc}}}{k_0}\right)^{\alpha} e^{-(\delta + \beta \mu)t_1}$$

и, следовательно, на интервале $[0, t_1]$

$$q(t) = -\left(\frac{k_{\text{oc}}}{k(t)}\right)^{\alpha} e^{-(\delta + \beta \mu)(t_1 - t)}.$$

При этом функция q(t) растет. В частности, если $k_0 = k_{oc}$, то $t_1 = 0$ и q(0) = -1.

б) Если $k(0) = k_0 > k_{oc}$, то значение q(0) должно быть больше -1. Поэтому в этом случае в течение некоторого интервала $[0, t_1]$ управление u(t) = 1 не допускается, т.е. должно быть u(t) = 0. В этом случае процесс k(t) убывает согласно (П2) и достигает значение k_{oc} в момент времени

$$t_1 = \frac{1}{\mu} \ln \left(\frac{k_0}{k_{\text{oc}}} \right) > 0.$$
 (II7)

 $\Pi 2.2.$ Поведение функции q(t) при u(t) = 0

Пусть в некоторый момент времени t выполняется -1 < q(t) < 0. Тогда согласно (9) u(t) = 0, и уравнение (8) принимает вид

$$\dot{q} = (\mu + \delta)q + F_k'(k). \tag{\Pi8}$$

Его решение на интервале $[t_0, t)$ с начальными условиями $q(t_0) = q_0$ и $k(t_0) = k_0$ равно

$$q(t) = e^{(\mu + \delta)(t - t_0)} \left(q_0 + \frac{\alpha A}{k_0^{\beta}} W(t_0, t) \right),$$
 (II9)

где

$$W(t_1, t_2) = \frac{1 - e^{-(\delta + \alpha \mu)(t_2 - t_1)}}{\delta + \alpha \mu}.$$

Учитывая (11), можно получить, что $F_k'(k) = \alpha A k^{-\beta} = (\mu + \delta) \left(\frac{k_{\rm oc}}{k}\right)^{\beta}$. Поэтому уравнение (П8) можно переписать в виде

$$\dot{q} = (\mu + \delta) \left(q + \left(\frac{k_{\rm oc}}{k} \right)^{\beta} \right).$$

Из рассмотрения этого уравнения следует

Утверждение П.2. Если в какой-то момент времени t выполняются условия: -1 < q(t) < 0 и $k(t) ≤ k_{oc}$, то функция q(t) растет (поскольку $\dot{q} > 0$) и может достичь значения q(T) = 0.

П.З. Длительность заключительного этапа

Как отмечалось выше, для существования оптимального управления необходимо, чтобы в течение некоторого интервала времени [t, T] $(t \ge 0)$ функция q(t) перешла из значения -1 в значение 0, т.е. q(t) = -1 и q(T) = 0. При этом на интервале [t, T] u(t) = 0. Полагая в $(\Pi 9)$ t = T, $t_0 = t$, $k(t_0) = k$, $q(t) = q_0 = -1$, q(T) = 0, получаем

$$\alpha AW(t,T) = k^{\beta}. \tag{\Pi10}$$

Отсюда

$$T-t = R(k), \tag{\Pi11}$$

где

$$R(k) = -\frac{1}{\delta + \mu \alpha} \ln \left(1 - \frac{\delta + \alpha \mu}{\alpha A} k^{\beta} \right). \tag{\Pi12}$$

Таким образом, R(k) есть длительность заключительного этапа. Для справедливости этого результата необходимо выполнение следующих условий: $0 \le t < T$, аргумент логарифма в (П12) положителен и R(k) > 0. Требование $t \ge 0$ приводит к неравенству $T \ge R(k)$, т.е. интервал [0, T] должен быть достаточно большим. Для выполнения требования R(k) > 0 необходимо, чтобы аргумент логарифма в (П3.3) лежал в интервале (0,1). Это приводит к неравенству

$$k^{\beta} < \frac{\alpha A}{\delta + \alpha \mu} = \frac{\delta + \mu}{\delta + \alpha \mu} k_{\text{oc}}^{\beta}.$$

Если в (П12) положить $k = k_{oc}$, то

$$R(k_{\rm oc}) = R_{\rm oc} = \frac{1}{\delta + \mu \alpha} \ln \left(\frac{\delta + \mu}{\beta \mu} \right) > 0. \tag{\Pi13}$$

Таким образом, $R_{\rm oc}$ есть длительность заключительного этапа, когда он начинается на магистрали.

Можно проверить, что функция R(k) монотонно убывает при уменьшении k. В частности, имеем

Утверждение П.3. Если $k < k_{oc}$, то $R(k) < R_{oc}$.

П.4. Количество НП на интервале времени (t_1, t_2) при различных u(t)

Согласно (5), количество НП на интервале времени (t_1 , t_2) равно

$$c(u;t_1, t_2) = \int_{t_1}^{t_2} e^{\delta(T-t)} (1-u)F(k)dt.$$

Отсюда получаем $c(1; t_1, t_2) = 0$,

$$c(u_{\text{oc}}; t_1, t_2) = Ak_{\text{oc}}^{\alpha} (1 - u_{\text{oc}}) \frac{e^{\delta(T - t_1)} - e^{\delta(T - t_2)}}{\delta}.$$
 (II14)

$$c(0;t_1, t_2) = Ak^{\alpha}(t_1)e^{\delta(T-t_1)}W(t_1, t_2).$$
 (II15)

В частности,

$$J[0] = c(0; 0, T) = Ak_0^{\alpha} e^{\delta T} W(0, T) > 0.$$
 (\Pi16)

Заключение

Получено аналитическое решение классической задачи управления в односекторной экономике с использованием динамической модели при производственной функции Кобба — Дугласа на конечном интервале времени. Получены необходимые условия существования оптимального управления, а также условия, когда это управление включает в себя магистраль.

ЛИТЕРАТУРА

- 1. *Интрилигатор М*. Математические методы оптимизации и экономическая теория. М.: Прогресс, 1975.
- 2. Колемаев В.А. Математическая экономика. М.: ЮНИТИ, 1998.
- 3. *Лобанов С.Г.* К теории оптимального экономического роста // Экономический журнал ВШЭ. 1999. № 1. С. 28–41.
- 4. *Минюк С.А.*, *Ровба Е.А.*, *Кузьмич К.К.* Математические методы и модели в экономике. Минск: Тетра-Системс, 2002.
- 5. *Эрроу К.* Применение теории управления к экономическому росту. Математическая экономика. М.: Мир, 1974.
- 6. Демин Н.С., Кулешова Е.В. Управление односекторной экономикой на конечном интервале времени с учетом налоговых отчислений // Известия РАН. Теория и системы управления. 2008. № 6. С. 87–98.
- 7. *Параев Ю.И*. Об особом управлении в оптимальных процессах, линейных относительно управляющих воздействий // Автоматика и телемеханика. 1962. № 9. С. 1202–1209.
- 8. Габасов Р., Кириллова Ф.М. Особые оптимальные управления. М., 1973.

Параев Юрий Иванович
Грекова Татьяна Ивановна
Данилюк Елена Юрьевна
Томский государственный университет
E-mail: paraev@mail.ru; gti@fpmk.tsu.ru;
daniluc elena@sibmail.com

Поступила в редакцию 20 июня 2011 г.