ЦИТОЛОГИЯ И ГЕНЕТИКА

УДК 575.1:577.212

В.Н. Стегний, А.О. Сайджафарова, Г.Н. Артемов, Т.В. Карамышева, Н.Б. Рубцов

СРАВНИТЕЛЬНЫЙ АНАЛИЗ МОЛЕКУЛЯРНОГО СОСТАВА ПРИЦЕНТРОМЕРНОГО ГЕТЕРОХРОМАТИНА ПОЛИТЕННЫХ ХРОМОСОМ МАЛЯРИЙНЫХ КОМАРОВ РОДА ANOPHELES (CULICIDAE, DIPTERA)

При помощи метода микродиссекции политенных хромосом с последующей in situ гибридизацией изучены особенности хромосомной локализации районоспецифичных ЛНК-проб из прицентромерного участка гетерохроматина хромосомы 2L Anopheles beklemishevi Stegnii et Kabanova и из района прикрепления хромосомы XL An. messeae на политенных хромосомах Anopheles atroparvus van Thiel, Anopheles messeae Fall и An. beklemishevi. Установлено, что последовательности ДНК, гомологичные пробе прицентромерного участка гетерохроматина хромосомы 2L An. beklemishevi, присутствуют у всех видов на хромосомах 2 и 3 в прицентромерных участках и районах прикрепления, кроме участков прикрепления хромосомы XL An, beklemishevi и An, messeae и прицентромерной области 2R An. messeae. В а-гетерохроматине прицентромерных участков -2L An. messeae u-3R An. atroparvus также не содержатся гомологичные этой пробе ДНК-последовательности. ДНК-проба из района прикрепления хромосомы XL An. теsseae гибридизовалась в прицентромерных областях всех хромосом; гомология обнаружена с множеством интеркалярных районов хромосомы 2 и хромосомы 3 и в блоках а-гетерохроматина. Результаты были сопоставлены с полученными ранее данными по локализации видоспецифичной пробы из участка хромосомы 2R An. atroparvus на хромосомах видов An. atroparvus, An. messeae. и An. beklemishevi [1]. Выявленные межвидовые различия в местах локализации проб и интенсивности свечения указывают на наличие индивидуального сочетания последовательностей в районах прикрепления хромосом.

Исследования в области проблемы пространственной организации клеточного ядра проводятся уже более ста лет. В 60-х гг. прошлого столетия были сформулированы основные принципы организации хроматина в интерфазном ядре [2]. В настоящее время остается актуальным вопрос распределения генетического материала в пространстве ядра, особенно в период интерфазы, когда в клеточном ядре происходит ряд событий, в которых ориентация хромосом играет немаловажную роль. Неслучайное распределение хроматина в ядре связано с надхромосомными механизмами регуляции генетической экспрессии [3, 4].

Ранее было показано, что пространственная организация хромосом в ядрах слюнных желез и мальпигиевых сосудов малярийных комаров отличается от таковой в трофоцитах яичников, а также, что архитектура хромосом в ядрах клеток генеративной ткани двукрылых может различаться даже у филогенетически близких видов [5]. Это говорит об эволюционном значении организации хромосом в пространстве клеточного ядра.

Известно, что топологические особенности организации хроматина в ядре основаны на взаимодействии хроматина с белками внутриядерного матрикса и ядерной оболочки. Очевидно, что эти контакты обеспечиваются специфическими последовательностями ДНК, которые опосредованно через белки определяют архитектуру хромосом во внутриядерном пространстве. Поскольку в местах контактов хромосом с ядерной оболочкой были обнаружены гетерохроматиновые блоки, можно говорить о том, что связи гетерохроматина с ядерной оболочкой являются основой для пространственного упорядочения отдельных хромосом и интерфазного ядра в целом [6–10]. Гетерохроматин ассоциирует в себе ряд различных последовательностей ДНК и является источником их изменчивости, что предусматривает его важную роль в эволюции эукариот [11]. В настоящее время известно, что гетерохроматин является не менее важной частью генома, чем эухроматин. Изменения, относящиеся к его составу, количеству, структуре и распределению, характеризуют гетерохроматин как фактор, сопутствующий видообразованию [5, 11, 12].

Несмотря на успешное изучение различных механизмов работы гетерохроматина, таких как эффект положения или механизм его компактизации [13–15], остается еще ряд нерешенных вопросов. Например, вопрос о характере влияния изменений прицентромерного гетерохроматина ($\Pi\Gamma$) на пространственную структуру интерфазного ядра

Удобным объектом для решения подобных вопросов является ПГ политенных хромосом малярийных комаров рода *Anopheles* комплекса *maculipennis*. Род *Anopheles* включает большое разнообразие видов, которые имеют широкий ареал распространения, исключающий зоны пустынь и крайних широт. Изучение архитектоники политенных хромосом в ядрах трофоцитов яичников 8 видов комаров комплекса *«Anopheles maculipennis»* показало, что существуют межвидовые различия прикрепления хромосом к оболочке клеточного ядра. Хромосомы этих видов имеют четкие различия по наличию/отсутствию облигатного прикрепления к ядерной оболочке, по морфологии участков прикрепления и по расположению области прикрепления на оболочке ядра [5, 16–18]. В популяциях малярийного комара *Anopheles* наблюдаются изменения размеров α-гетерохроматиновых блоков [13, 15, 18–20], что, возможно, связано с его адаптивным значением, β-гетеро-хроматин участвует как в межхромосомных взаимодействиях (образование хромоцентров), так и в контактах с ядерной оболочкой [8].

Представляет интерес исследование структурных особенностей участков прикрепления хромосом к ядерной оболочке некоторых видов комплекса «Anopheles maculipennis»: An. atroparvus, An. messeae и An. beklemishevi. Архитектура политенных хромосом в трофоцитах яичников этих видов на цитогенетическом уровне к настоящему времени уже хорошо изучена. Ранее при помощи метода микродиссекции политенных хромосом трофоцитов яичников с последующей амплификацией и мечением был получен зонд Atr2R из ДНК ПГ хромосомы 2R, не имеющий жесткого прикрепления к оболочке ядра (рис. 1, a), для сравнительной in situ гибридизации проведенной на данных видах [1]. Было выявлено наличие консервативных и гомологичных последовательностей ДНК во всех районах ПГ исследуемых видов, кроме ПГ хромосомы

2L An. Beklemishevi (рис. 2, δ) [1]. Так как этот участок имеет жесткое прикрепление к оболочке ядра, интересным будет дальнейшее изучение структуры ДНК участков прикрепления к оболочке ядра политенных хромосом видов An. atroparvus, An. messeae и An. beklemishevi.

Материал и методика

В работе использовали взрослых самок малярийных комаров трех видов: *Ап. beklemishevi, Ап. messeae* и *Ап. atrораrvus*. Выделяли яичники и фиксировали в этанол-уксусной смеси (3:1). Для приготовления суховоздушных препаратов политенных хромосом трофоциты яичников давили в 50%-ной пропионовой кислоте, вымораживали в жидком азоте с последующим обезвоживанием в батарее спиртов (50–70–96%) и еще раз фиксировали в этанолуксусной смеси (3:1) [22, 23]. Фрагменты ДНК из района прикрепления хромосомы 2L *Ап. beklemishevi* и хромосомы XL *Ап. messeae* получали методом микродиссекции хромосом сухих препаратов с проведением DOP ПЦР в присутствии протеиназы К. Метод адаптировали для политенных хромосом [23]. Для получения ДНК-зонда проводили дигоксигенирование ДНК (Digocsygenin «Sigma», США), гибридизацию и детекцию (Anty-Digocsygenin-Rhodamin «Sigma», США) по рекомендованному протоколу [23]. Хромосомы окрашивали DAPI и заключали в DABCO antifade solution («Sigma», США).

Для проведения указанных исследований использовали микроскоп AXIOVERT 10, оснащенный микроманипулятором IR (Zeiss) и механическим позиционером, и флуоресцентный микроскоп AXIOSCOP 2; регистрировали сигнал при помощи ССD-камеры (Германия).

Меченые районы хромосом идентифицировали по картам политенных хромосом слюнных желёз видов *An. atroparvus* [24], *An. messeae* [25] и *An. beklemishevi* [26, 27].

Результаты и обсуждение

На первом этапе исследования провели микродиссекцию прицентромерного участка 15d хромосомы 2L *An. beklemishevi* (см. рис. 1, δ) имеющего жесткое прикрепление к ядерной оболочке. Далее провели *in situ* гибридизацию полученной районоспецифичной ДНК-пробы (Abekl2L) на политенные хромосомы из трофоцитов яичников видов *An. atroparvus, An. messeae, An. beklemishevi*. Особенности хромосомной локализации районоспецифичной ДНК-пробы (Abekl2L) из ПГ хромосомы 2L *An. beklemishevi* на политенных хромосомах *An. atroparvus, An. messeae* и *An. beklemishevi* оценивали в сравнении с результатами гибридизации районоспецифичной пробы Atr2R.

In situ гибридизация районоспецифичной пробы прицентромерного района хромосомы 2L *An. beklemishevi* на хромосомы питающих клеток яичников *An. beklemishevi*, *An. messeae*, *An. atroparvus* показала следующие результаты.

У *An. beklemishevi* зонд гибридизовался в небольшом участке проксимальной области прицентромерного района 5ab хромосомы XL (рис. 3, *a*). В хромосоме 2L метка Abekl2L включилась в область прикрепления к оболочке ядра

(район 15d, из которого была взята проба), при этом видны ярко светящиеся тяжи (см. рис. 2, a; 3, a). В прицентромерном участке хромосомы 2R, район 14c, также можно наблюдать меченые тяжи ДНК прикрепления к ядерной оболочке, но менее яркие, чем у смежного участка хромосомы 2L. Хромосома 2L An. messeae пометилась в прицентромерном районе 15d, а также в районе 12b хромосомы 2R (рис. 3, δ). В хромосоме 3R гомологичные пробе последовательности локализованы в районе 32cd. В хромосоме 3L выявлено два участка мечения в районе расхождения гомологов 33c, разделенных участком, где сигнал отсутствует (см. рис. 3, a). В то же время, метка отсутствовала на прицентромерных участках с α -гетерохроматином хромосомы 3R An. beklemishevi.

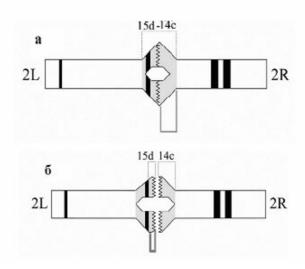


Рис. 1. Схема организации гетерохроматиновых районов хромосомы 2: a - An. atroparvus; б - An. beklemishevi; ■ - блоки <math>α-гетерохроматина; □ - β-гетерохроматин; ww -районы прикрепления к оболочке ядра; □ -район, подвергшийся микродиссекции

Ранее в работе с фрагментом ПГ 2R An. atroparvus [1] у An. beklemishevi покализация меченого зонда в районе 5ab хромосомы XL не была определена [1]. Не было обнаружено и локализации флуоресцентной метки на хромосоме 2L (см. рис 2, δ), но в участках прикрепления хромосомы 2R мечение имело место с характерными тяжами прикрепления к ядерной оболочке. Хромосома 3 была тоже помечена, но гомологичные последовательности были включены как в блочный α - и β -гетерохроматин [1].

У *An. messeae* проба обнаружена в ПГ хромосомы XL и в районе 5ab (рис. 3, δ). Хромосома 2L *An. messeae* пометилась в прицентромерном районе 15d (мечение наблюдается только в районе β -гетерохроматина), а также в районе 12b хромосомы 2R (см. рис. 3, δ). Хромосома 3R отмечена локальным сигналом в прицентромерной области, район 32cd, и более диффузно – в хро-

мосоме 3L, район 33c (рис. 3, δ). Отсутствие метки наблюдается на участках с α -гетерохроматином прицентромерого участка и в других районах хромосомы 3R.

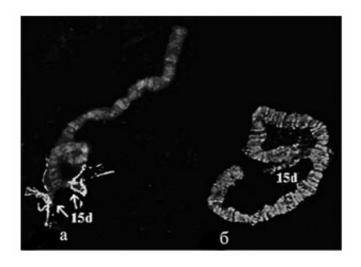


Рис. 2. Результаты *in situ* гибридизации: a — флуоресцентная гибридизация ДНК-пробы Abekl2L; δ — отсутствие гибридизации ДНК-пробы Atr2R с хрмосомой 2L An. beklemishevi [1]

Ранее при гибридизации ДНК-зонда Atr2R с политенными хромосомами An. messeae также наблюдалось мечение ПГ хромосомы XL. Хромосома 2 обнаруживала сигнал в районах и α - и β -гетерохроматин прицентромерного района обоих плеч, а уровень сигнала был высоким. Гомологичные последовательности были обнаружены в блочном α - и β -гетерохроматине хромосомы 3 [1].

У *Ап. аtгоратvus* также обнаружены последовательности, гомологичные ДНК-последовательностям ПГ XL-плеча половой хромосомы, локализованные в районе 5ab (см. рис. 3, ϵ), который у данного вида в трофоцитах яичников всегда прикреплён к ядерной оболочке. На хромосоме 2 сигнал расположен в прицентромерном районе обоих плеч — 15d плеча 2L (помечен только β -гетерохроматин) и 14c плеча 2R, но в правом плече наблюдается менее интенсивное свечение метки (рис. 3, ϵ). У *Ап. atrоратvus* помечен как и у двух предыдущих видов ПГ хромосомы 3: только районы 32a—с и 33cd (рис. 3, ϵ).

В работе с районспецифичной пробой Atr2R [1] наблюдалось мечение ПГ хромосомы района XL интеркалярного гетерохроматина 2b. У *An. atroparvus* был помечен и α - и β -гетерохроматин прицентромерного района обоих плеч второй хромосомы, как и у *An. messea*. Уровень сигнала на хромосоме 2 был высоким [1]. ПГ хромосмы 3 тоже включал в свой состав гомологичные пробе Atr2R последовательности, заключенные в блочном α - и β -гетерохроматине [1].

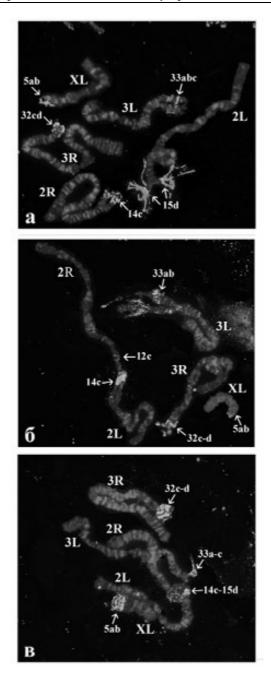
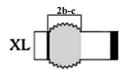


Рис. 3. Флуоресцентная *in situ* гибридизация районспецифичной ДНК-пробы Abekl2L на политенных хромосомах трофоцитов яичников малярийных комаров: a - An. beklemishevi; 6 - An. messeae; e - An. Atroparvus

Таким образом, в ранее проведенных исследованиях с ДНК-пробой Atr2R гомология обнаруживалась со всеми хромосомами независимо от их отношения к ядерной оболочке. Причем левое плечо хромосомы 2 *An. beklemishevi*, которое облигатно крепится к оболочке ядра, оказалось непомеченным. Не обнаружил сигнала также район прикрепления XL хромосомы *An. messeae*.


В наших исследованиях с ДНК-зондом у Abekl2L *An. beklemishevi* и *An. atroparvus* зонд гибридизовался во все прицентромерные районы, у *An. messeae* – в прицентромерные участки всех хромосом, а также в интеркалярный район хромосомы 2. Но сигнал отсутствовал в блоках прицентромерного α-гетерохроматина хромосом 2 и 3. Район прикрепления XL снова не обнаружил гомологии с изучаемым зондом Abekl2L (см. рис. 3б).

Слабая гомология ДНК районспецифичной пробы из прицентромерного участка хромосомы 2 *An. atroparvus* и пробы из ПГ левого плеча хромосомы 2 *An. beklemishevi* с районом прикрепления XL хромосомы к оболочке ядра *An. messeae* говорит о наличии в этом районе состава ДНК ПГ отличного от такового в исследуемых зондах Atr2R и Abekl2L.

Вторым этапом с помощью метода микродиссекции выделили ДНК района прикрепления хромосомы XL (рис. 4). Провели сравнительную *in situ* гибридизацию на хромосомы этого же вида и получили следующие результаты: оказались помеченными прицентромерные области всех хромосом, кроме того, гомология была обнаружена с множеством интеркалярных районов хромосомы 2 и хромосомы 3. Блоки α-гетерохроматина также обнаруживали метку.

Выявлены следующие различия прикрепления хромосомы 2 у трех изучаемых видов: у *An. beklemishevi* хромосома 2 в области прицентромерного гетерохроматина образует облигатный контакт с оболочкой ядра, у *An. messeae* она вообще не образует контактов с ядерной оболочкой, а у *An. atroparvus* обнаруживается внутривидовая изменчивость морфологии данного района с образованием факультативных связей хромосома – ядерная оболочка, расположение хромосом в ядре и их взаимоотношение с ядерной оболочкой не определяется универсальными последовательностями, так как не все области прикрепления имеют одинаковую элементарную структуру

При анализе состава ДНК в исследованиях с ДНК-пробой Atr2R была обнаружена гомология последовательностей двух фрагментов с участками некоторых генов (Atr2R-6, Atr2R-71a и Atr2R-107), мобильными элементами типа gypsy (Atr2R-50a и Atr2R-53) An. gambiae и D. melanogaster. Но основную часть прицентромерного района хромосомы 2 An. atroparvus составляют AT-богатые повторы, различающиеся как по последовательности, так и по копийности в геноме этого вида. Причем коротких тандемных повторов почти не было обнаружено; единственный тандемный повтор длиной 45 пн. был найден только в одном из фрагментов. С помощью Саузерн-блот гибридизации такие повторы были обнаружены и у An. messeae. Большинство повторов изучаемых фрагментов, как показал анализ, проявляют гомологию с первичной последовательностью An. messeae, хотя разница в интенсивности сигналов свидетельствует о количественном различии этих повторов.

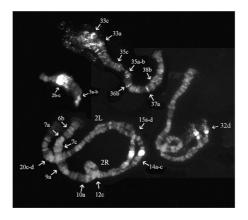


Рис. 4. Схема организации гетерохроматинового района хромосомы XL *An. messeae* (■ – блоки α-гетерохроматина; □ – β гетерохроматин; ww – районы прикрепления к оболочке ядра; □ – район, подвергшийся микродиссекции) и флуоресцентная *in situ* гибридизация районспецифичной ДНК-пробы из участка прикрепления хромосомы XL *An. messeae* на политенных хромосомах трофоцитов яичников того же вида

Исследование ДНК-зонда Abekl2L содержит AT-богатую ДНК низкой сложности, только в одном фрагменте обнаружены тандемные повторы, найдено несколько фрагментов гомологичных LINE-элементам, характерным для млекопитающих, что говорит о консервативности данного района. Анализ обеих проб Abekl2L и Atr2R на гомологию состава первичных последовательностей ДНК выявил всего одну пару гомологчных клонов — Abekl2L-135 и Atr2R-133 соответственно [E-valu:1.6e-64; Smiht-Waterman score: 929; 93,868% identity (94,313% ungapped) in 212 nt overlap (217-7:158-369)]. Такие результаты говорят, что данная проба является более специфичной, нежели проба Atr2R из ПГ хромосомы 2R An. atroparvus.

По данным ранее проведенных исследований, ДНК 80% района ПГ хромосомы 2R *An. atroparvus* составляют последовательности обладающими характеристиками различных классов ДНК ядерного матрикса. Наиболее представлен класс ДНК синаптонемного комплекса, однако выявляются и ДНК ядерной ламины. Несмотря на отсутствие прочного крепления изучаемого района прицентромерного гетерохроматина к оболочке ядра в трофоцитах яичников у *An. atroparvus*, в его составе присутствуют ДНК с необходимыми свойствами. Следовательно, одного наличия подобных последовательностей

ДНК ещё недостаточно для формирования прочной связи хромосомы с ядерной оболочкой.

Таким образом, расположение хромосом в ядре и их взаимоотношения с ядерной оболочкой не определяются универсальными последовательностями, т.к. не все области прикрепления имеют одинаковую элементарную структуру. В то же время нельзя утверждать, что свойство прикрепления хромосом к оболочке может зависеть от специфических повторов характерных для отдельно взятой хромосомы. Вероятно, пространственную организацию хромосом в ядре определяют композиции повторенных последовательностей, специфичных для каждого участка прикрепления.

Работа выполнена при финансовой поддержке: РФФИ (проект № 06-0496965, № 07-04-01484, № 07-04-12185), целевой программы «Развитие научного потенциала высшей школы (2006—2008 гг.)» (проект РНП.2.2.1.1.2038) и проекта ФЦП № 2007-2-1.2-06-03-019.

Литература

- 1. *Грушко О.Г., Шарахова М.В., Шевченко А.И. и др.* Характеристика и сравнительный анализ ДНК из прицентромерного гетерохроматина хромосомы 2 *Anopheles atroparvus* V. Tiel (Culicidae, Diptera) // Генетика. 2004. Т. 40, № 8. С. 1–10.
- 2. *Coomings D.E.* The rationale and ordered arrangement of chromatin in the interphese nucleus // Am. J. Hum. Genet. 1968. Vol. 20, № 5. P. 440–460.
- 3. Benedict M.Q., McNitt L.M., Cornel A.J., Collins F.H. Mosaic: a position-effect variegation eye-color mutant in the mosquito Anopheles gambiae // J. Hered. 2000. Vol. 91, № 2. P. 128–133.
- 4. *Elgin S.C., Workman J.L.* Chromosome and expression mechanisms: Ayear dominated by histone modifications, transitory and remembere // D. Curr. Opin. Genet. Dev. 2002. Vol. 12. P. 127–129.
- 5. *Стегний В.Н.* Популяционная генетика и эволюция малярийных комаров. Томск: Изд-во Том. ун-та, 1991. 136 с.
- 6. Paddy M.R., Belmont A.S., Saumweber H., Agard D.A., Sedat J.W. Interphase nuclear envelope lamins form a discontinuous network that interacts with only a fraction of the chromatin in the nuclear periphery // Cell. 1990. Vol. 62, № 1. P. 89–106.
- 7. Belmont A.S., Zhai Y., Thilenius A. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography // J. Cell Biol. 1993. Vol. 123, № 6. P. 1671–1685.
- 8. *Стегний В.Н.* Архитектоника генома, системные мутации и эволюция. Новосибирск: Изд-во Новосиб. ун-та, 1993. 111 с.
- 9. Marshall W.F., Dernburg A.F., Harmon B., Agard D.A., Sedat J.W. Specific interactions of chromatin with the nuclear envelope: positional determination within the nucleus in *Drosophila melanogaster* // Mol. Biol. Cell. 1996. Vol. 7, № 5. P. 825–842.
- 10. Sage B.T., Csink A.K. Heterochromatic self-association, a determinant of nuclear organization, does not require sequence homology in Drosophila // Genetics. 2003. Vol. 165, № 3. P. 1183–1193.
 - 11. Hennig W. Heterochromatin // Chromosoma. 1999. Vol. 108, № 1. P. 1–9.
- 12. Корочкин Л.И. Эволюционное значение генетических подвижных элементов. Гипотеза // Цитология и генетика. 1983. Т. 17. С. 67–78.
- 13. *Кикнадзе И.И., Сиирин М.Т.* Полиморфизм прицентромерного гетерохроматина у комара-хирономуса *Chironomus plumosus* // Цитология. 1991. Т. 33, № 3. С. 60–67.

- 14. *Elgin S.C., Grewal S.I.* Heterochromatin: silence is golden // Curr Biol. 2003. Vol. 13, N_2 23. P. 895–898.
- 15. Жимулев И.Ф., Беляева Е.С. Гетерохроматин, эффект положения гена и генетический сайленсинг // Генетика. 2003. Т. 39, № 2. С. 187–201.
- 16. *Стегний В.Н.* Реорганизация структуры интерфазных ядер в онто- и филогенезе малярийных комаров // ДАН СССР. 1979. Т. 249, № 5. С. 1231.
- 17. Стегний В.Н. Системная реорганизация архитектоники политенных хромосом в онто- и филогенезе малярийных комаров. II. Видоспецифичность в характере взаимоотношений хромосом с ядерной оболочкой в питательных клетках яичников // Генетика. 1987. T. 23. C. 1194.
- 18. *Прокофьева-Бельговская А.А.* Гетерохроматизация как изменение цикла хромосомы // Журн, общей биол. 1945. Т. 6, № 2. С. 93–123.
- 19. Baimai V. Heterochromatin accomulation and kariotypic evolution in some dipterian insects // Zoological studies. 1998. Vol. 37, № 2. P. 75–88.
- 20. *Русакова А.М.* Популяционно-цитогенетический анализ комаров комплекса *Anopheles maculipennis* (Diptera; Culicidae,): Дис. ... канд. биол. наук. Томск: НИИ биологии и биофизики Том. гос. ун-та, 2007. 142 с.
- 21. Peacock W.J., Lohe A.R., Gerlach W. et. al. Fine structure and evolution of DNA of heterochromatin // Cold. Spring. Harb. Symp. Quant. Biol. 1978. Vol. 42, pt 2. P. 1121–1135.
- 22. Шарахова М.В., Шарахов И.В. и др. Прицентромерный и интеркалярный α гетерохроматин политенных хромосом малярийных комаров // Генетика. 2000. Т. 36, № 2. С. 175–181.
- 23. *Рубцов Н.Б., Алексеенко А.А., Беляева Е.С. и др.* Микроклонирование и характеристика ДНК из районов прицентромерного гетерохроматина политенных хромосом *Drosophila melanogaster* // Генетика. 1999. Т. 35, № 1. С. 55–61.
- 24. Стегний В.Н., Кабанова В.М. Хромосомный анализ малярийных комаров ANOPHELES ATROPARVUS и А. MACULIPENNIS (DIPTERA, CULICIDAE) // Зоол. журн. 1978. № 4. С. 613–619.
- 25. Стегний В.Н., Кабанова В.М., Новиков Ю.М. Кариотипическое исследование малярийного комара // Цитология. 1976. Т. 18, № 6. С. 760–766.
- 26. Стегний В.Н., Кабанова В.М. Цито-экологическое изучение природных популяций малярийного комара на территории СССР. І. Выделение нового вида в комплексе maculipennis цитогенетическим методом // Мед. паразитал. и паразит. болезни. 1976. № 2. С 192–198
- 27. Stegniy V.N., Kabanova V.M. Cytoecological Study of Indigenous Populations of the Malaria Mosquito in the Territory of the USSR. I. Idetification New Species of *Anopheles* in the *maculipennis* Complex by the Cytodiagnostic Method // Mosquito Systematics. 1978. Vol. 10, № 1. P. 1–12.