№ 3(12)

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

УДК 519.865

Я.С. Бублик, К.И. Лившиц

ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ КАПИТАЛА НЕКОММЕРЧЕСКОГО ФОНДА ДЛЯ ПУАССОНОВСКОЙ МОДЕЛИ ПРИ ГИСТЕРЕЗИСНОМ УПРАВЛЕНИИ КАПИТАЛОМ $^{\mathrm{1}}$

Получены уравнения, определяющие плотность распределения капитала некоммерческого фонда, в предположениях, что поступающие денежные средства (премии) и выплаты из фонда образуют пуассоновские потоки, а управление капиталом фонда является гистерезисны. Найдено решение уравнений при экспоненциальных распределениях поступлений и выплат и в случае малой нагрузки премии.

Ключевые слова: некоммерческий фонд, гистерезисное управление, плотность распределения капитала, малая нагрузка премии.

Под некоммерческим фондом понимается организация, созданная для сбора и распределения денежных средств без получения прибыли. К некоммерческим фондам могут быть отнесены, в частности, все государственные внебюджетные фонды РФ. Построению и исследованию моделей некоммерческих фондов посвящены, например, работы [1-5], в которых исследуются характеристики математической модели деятельности фонда при различных предположениях о потоках поступающих в фонд платежей (премий) и выплат из фонда. В настоящей работе задача решается в предположении, что потоки поступающих в фонд премий и выплат из фонда являются пуассоновскими, а управление капиталом фонда является гистерезисным.

1. Математическая модель изменения капитала фонда

Основной характеристикой состояния фонда является его капитал S(t) в момент времени t. В работе предполагается, что с капиталом S(t) могут происходить следующие изменения:

- 1. В фонд поступают денежные средства. Будем считать, что моменты поступления денежных средств образуют пуассоновский поток с интенсивностью λ . Поступающие денежные суммы являются независимыми одинаково распределенными величинами с плотностью распределения $\phi(x)$, средним значением $M\left\{x\right\}=a$ и вторым моментом $M\left\{x^2\right\}=a_2$.
- 2. Фонд расходует поступившие денежные средства. Будем считать, что выплаты являются независимыми одинаково распределенными случайными величи-

¹ Работа выполнена в рамках аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы" (2009 – 2010 годы), проект № 4761.

нами с плотностью распределения $\psi(x)$, средним значением $M\{x\} = b$ и вторым моментом $M\left\{x^2\right\} = b_2$.

Моменты начисления выплат денежных средств также образуют пуассоновский поток, интенсивность которого $\mu(s)$ зависит от капитала фонда. Предполагается, что управление расходованием денежных средств определяется следующим образом, Устанавливаются два пороговых значения капитала S_1 и S_2 , причем $S_2 > S_1$. В области $S < S_1 \mu(s) = \mu_0$, в области $S > S_2 \mu(s) = \mu_1$. Так как фонд не имеет целью получение прибыли, то естественно считать, что

$$\mu_0 b < \lambda a < \mu_1 b . \tag{1}$$

Таким образом, при $S < S_1$ фонд расходует в среднем меньше средств, чем в него поступает, а при $S>S_2$ расходует в среднем больше средств, чем в него поступает.

В области же $S_1 \le S \le S_2$ устанавливается значение $\mu(s) = \mu_0$ или $\mu(s) = \mu_1$ в зависимости от того, как процесс S(t) вошел в эту область. Если он вошел в нее через порог S_1 снизу вверх, то остается $\mu(s) = \mu_0$, если же он вошел в эту область через порог S_2 сверху вниз, то остается $\mu(s) = \mu_1$. Таким образом, значение $\mu(s) = \mu_1$ устанавливается при достижении капиталом S(t) значения S_2 и оканчивается при уменьшении капитала до значения S_1 . Область $S_1 \leq S \leq S_2$ и представляет собой область гистерезиса в управлении капиталом.

Наконец, будем считать, что при S < 0 фонд не прекращает свою деятельность, но наступает период неплатежеспособности фонда, обязательства фонда выполняются по мере поступления денежных средств.

2. Плотность распределения капитала фонда

Выпишем уравнения, определяющие плотность вероятностей P(s) величины капитала фонда *s* во всех областях изменения капитала в стационарном режиме. Так как суммы поступающих премий и расходуемых денежных средств представляют собой сложно-пуассоновские процессы [6] в каждой из областей, то плотность P(s) существует и может иметь разрывы лишь в точках S_1 и S_2 . Перенесем начало отсчета в точку $S = -S_1$ и обозначим $S_0 = S_2 - S_1$. При этом нижний порог $S_1 = 0$.

Начнем с области $S > S_0$. Обозначим через P(s,t) плотность распределения капитала фонда s в момент времени t. Рассмотрим два близких момента времени t и $t+\Delta t$. Значение капитала s в момент времени $t+\Delta t$ может быть получено в следующих случаях. В момент времени t капитал фонда равнялся s, и за время Δt он не изменился. Вероятность этого события $1-(\lambda+\mu_1)\Delta t+o(\Delta t)$. В момент времени t капитал фонда равнялся s-x, и за время Δt поступила случайная премия x. Вероятность этого события $\lambda \Delta t \varphi(x) dx + o(\Delta t)$. В момент времени tкапитал фонда равнялся s+x, и за время Δt произведена случайная выплата x. Вероятность этого события $\mu_1 \Delta t \psi(x) dx + o(\Delta t)$. По формуле полной вероятности будем иметь

$$P(s,t+\Delta t) = (1-(\lambda+\mu_1)\Delta t)P(s,t) + \lambda \Delta t \int_{0}^{\infty} P(s-x,t)\varphi(x)dx + \mu_1 \Delta t \int_{0}^{\infty} P(s+x,t)\psi(x)dx + o(\Delta t).$$

Переходя к пределу при $\,\Delta t \to 0\,$ и $\,t \to \infty$, получим, что при $\,S > S_0\,$

$$(\lambda + \mu_1) P(s) = \lambda \int_0^\infty P(s-x) \varphi(x) dx + \mu_1 \int_0^\infty P(s+x) \psi(x) dx.$$
 (2)

Решение уравнения (2) должно удовлетворять граничному условию $P(+\infty) = 0$.

Перейдем к рассмотрению области $0 \le S \le S_0$. Здесь возможны два варианта $\mu(s) = \mu_0$ и $\mu(s) = \mu_1$. Обозначим

$$g_0(s) = P\{s < s(t) \le s + ds, \mu(s) = \mu_0\} / ds$$

$$g_1(s) = P\{s < s(t) \le s + ds, \mu(s) = \mu_1\} / ds$$

в стационарном режиме. Очевидно, что

$$P(s) = g_0(s) + g_1(s)$$
.

Рассмотрим сначала траекторию, для которой $\mu(s)=\mu_0$. В этом случае значение капитала s в момент времени $t+\Delta t$ может быть получено в следующих ситуациях. В момент времени t капитал фонда равнялся s и за время Δt он не изменился. Вероятность этого события $1-(\lambda+\mu_0)\Delta t+o(\Delta t)$. В момент времени t капитал фонда равнялся s-x, и за время Δt поступила случайная премия x. Вероятность этого события $\lambda \Delta t \phi(x) dx + o(\Delta t)$. В момент времени t капитал фонда равнялся s+x, и за время Δt произведена случайная выплата x. Вероятность этого события $\mu_1 \Delta t \psi(x) dx + o(\Delta t)$. Причем $s+x \leq S_0$, так как в противном случае $\mu(s)$ равнялось бы μ_1 , а не μ_0 (траектория начиналась бы в области $s>S_0$). По формуле полной вероятности получим в стационарном режиме

$$(\lambda + \mu_0)g_0(s) = \lambda \int_0^s g_0(s - x)\phi(x)dx + \lambda \int_s^\infty P(s - x)\phi(x)dx + \mu_0 \int_0^{S_0 - s} g_0(s + x)\psi(x)dx.$$
 (3)

Рассмотрим теперь случай, когда $\mu(s)=\mu_1$ (траектория изменения капитала начиналась в области $s>S_0$). В этом случае значение капитала s в момент времени $t+\Delta t$ может быть получено в следующих ситуациях. В момент времени t капитал фонда равнялся s , и за время Δt он не изменился. Вероятность этого события $1-(\lambda+\mu_1)\Delta t+o(\Delta t)$. В момент времени t капитал фонда равнялся s-x , и за время Δt поступила случайная премия x. Вероятность этого события $\lambda \Delta t \phi(x) dx + o(\Delta t)$. При этом s-x>0, так как в противном случае $\mu(s)=\mu_0$, а не μ_1 (траектория начиналась бы в области s<0).В момент времени t капитал фонда равнялся s+x, и за время Δt произведена случайная выплата x. Вероятность этого события $\mu_1 \Delta t \psi(x) dx + o(\Delta t)$. В стационарном режиме получим

$$(\lambda + \mu_1)g_1(s) = \lambda \int_0^s g_1(s-x)\varphi(x)dx + \mu_1 \int_0^{S_0-s} g_1(s+x)\psi(x)dx + \mu_1 \int_{S_0-s}^{\infty} P(s+x)\psi(x)dx.$$
 (4)

Наконец, в области s<0, учитывая, что переход в эту область возможен из области $s>S_0$, а из области $0\le s\le S_0$ как с траектории с $\mu(s)=\mu_0$, так и с траектории с $\mu(s)=\mu_1$, получим в стационарном режиме

$$(\lambda + \mu_0) P(s) = \lambda \int_0^\infty P(s-x) \varphi(x) dx + \mu_0 \int_0^{-s} P(s+x) \varphi(x) dx + \mu_0 \int_0^{-s} g_0(s+x) \psi(x) dx + \mu_1 \int_{-s}^{-s} g_1(s+x) \psi(x) dx + \mu_1 \int_{-s}^\infty P(s+x) \psi(x) dx.$$
 (5)

Решение уравнения (5) должно удовлетворять граничному условию $P(-\infty) = 0$.

3. Экспоненциальные распределения премий и выплат

Пусть распределения поступающих премий и выплат из фонда являются экспоненциальными:

$$\varphi(s) = \frac{1}{a} \exp\left(-\frac{s}{a}\right), \qquad \psi(s) = \frac{1}{b} \exp\left(-\frac{s}{b}\right). \tag{6}$$

В этом случае может быть найдено точное решение системы уравнений (2) – (5). Рассмотрим, например, решение уравнения (5) как самого громоздкого. Подставляя в уравнение (5) плотности распределения $\varphi(s)$ и $\psi(s)$ (6), получим

$$(\lambda + \mu_0) P(s) = \frac{\lambda}{a} e^{-\frac{s}{a}} \int_{-\infty}^{s} P(y) e^{\frac{y}{a}} dy + \frac{\mu_0}{b} e^{\frac{s}{b}} \int_{s}^{0} P(y) e^{-\frac{y}{b}} dy + Q e^{\frac{s}{b}}, \tag{7}$$

где

$$Q = \frac{\mu_0}{b} \int_0^{S_0} g_0(y) e^{-\frac{y}{b}} dy + \frac{\mu_1}{b} \int_0^{S_0} g_1(y) e^{-\frac{y}{b}} dy + \frac{\mu_1}{b} \int_{S_0}^{\infty} P(y) e^{-\frac{y}{b}} dy.$$

Дважды дифференцируя (7), приходим к уравнению

$$\ddot{P}(s) - k_0 \dot{P}(s) = 0, \tag{8}$$

где

$$k_0 = \frac{\lambda a - \mu_0 b}{ab(\lambda + \mu_0)}. (9)$$

Откуда, учитывая условие $P(-\infty) = 0$, будем иметь, что при s < 0

$$P(s) = De^{k_0 s} . (10)$$

Постоянная D должна быть теперь определена так, чтобы решение (10) дифференциального уравнения (8) удовлетворяло исходному уравнению (7).

Аналогично, решение уравнения (2) имеет в области $s > S_0$ вид

$$P(s) = Ae^{-k_1 s}, (11)$$

где

$$k_1 = \frac{\mu_1 b - \lambda a}{ab(\lambda + \mu_1)},\tag{12}$$

решение уравнения (3) в области $0 \le s \le S_0$

$$g_0(s) = B_1 + B_2 e^{k_0 s}, (13)$$

решение уравнеия (4)

$$g_1(s) = C_1 + C_2 e^{-k_1 s} . (14)$$

Постоянные A, B_1, B_2, C_1, C_2, D должны быть теперь выбраны так, чтобы функции (10), (11), (13), (14) удовлетворяли системе исходных уравнений (2) – (5) и условию нормировки

$$\int_{-\infty}^{0} P(s)ds + \int_{0}^{S_{0}} (g_{0}(s) + g_{1}(s))ds + \int_{0}^{+\infty} P(s)ds = 1.$$
 (15)

Подстановка решений (10), (11), (13), (14) в систему уравнений (2) – (5) приводит к соотношениям на постоянные

$$B_1 + B_2 \frac{1}{1 + k_0 a} = D \frac{1}{1 + k_0 a}; \tag{16}$$

$$B_1 + B_2 \frac{e^{k_0 S_0}}{1 - k_0 b} = 0; (17)$$

$$C_1 + C_2 \frac{1}{1 - k_1 a} = 0; (18)$$

$$C_1 + C_2 \frac{e^{-k_1 S_0}}{1 + k_1 b} = A \frac{e^{-k_1 S_0}}{1 + k_1 b}; \tag{19}$$

$$A\frac{k_1 e^{-k_1 S_0}}{(1 - k_1 a) \left((1 + k_1 b) - (1 - k_1 a) e^{-k_1 S_0} \right)} = D\frac{k_0 e^{k_0 S_0}}{(1 + k_0 a) \left((1 + k_0 a) e^{k_0 S_0} - (1 - k_0 b) \right)}.$$
 (20)

Решая систему уравнений 16) – (20) и учитывая условие нормировки (15), окончательно получим, что

$$P(s) = \begin{cases} W_0 \left((1 + k_0 a) - (1 - k_0 b) e^{-k_0 S_0} \right) e^{k_0 s}, & s < 0, \\ W_0 \left(1 - (1 - k_0 b) e^{k_0 (s - S_0)} \right) + W_1 \left(1 - (1 - k_1 a) e^{-k_1 s} \right), & 0 \le s \le S_0, \\ W_1 \left((1 + k_1 b) e^{k_1 S_0} - (1 - k_1 a) \right) e^{-k_1 s}, & s > S_0, \end{cases}$$
(21)

где

$$W_0 = \frac{k_1 (1 + k_0 a)}{(S_0 + a + b)(k_0 + k_1)}, \quad W_1 = \frac{k_0 (1 - k_1 a)}{(S_0 + a + b)(k_0 + k_1)}.$$
 (22)

4. Плотность распределения капитала фонда при малой нагрузке премии

При произвольных распределениях поступающих премий $\varphi(s)$ и выплат $\psi(s)$ получить точное решение системы уравнений (2)-(5) не удается. Однако в этом случае можно построить приближенное решение уравнений при некоторых дополнительных предположениях. Введем параметр θ , где $0 < \theta < 1$, и будем считать, что

$$\mu_0 b = (1 - \theta) \lambda a, \qquad \mu_1 b = (1 + \theta) \lambda a. \tag{23}$$

Параметр θ имеет тот же смысл, что и нагрузка страховой премии в задачах страхования [7]. Рассмотрим, далее, асимптотический случай, когда нагрузка премии $\theta \ll 1$. Практически это означает, что при любом значении капитала s фонд расходует почти столько же денежных средств, сколько в него поступает. При этом естественно считать, что пороги S_1 и S_2 , определяющие гистерезисное управление капиталом, зависят от нагрузки премии θ . Более точно будем считать, что при $\theta \to 0$ разность порогов $S_0\left(\theta\right) = S_2\left(\theta\right) - S_1\left(\theta\right) \to \infty$, но существует конечный предел

$$z_0 = \lim_{\theta \to 0} \theta S_0(\theta).$$

Опять перенесем начало отсчета в точку $s = -S_1$. Решение системы уравнений (2) - (5) будем искать в виде

$$g_0(s) = \theta f_0(\theta s, \theta), \quad g_1(s) = \theta f_1(\theta s, \theta), \quad P(s) = \theta f(\theta s, \theta),$$
 (24)

где $f(z,\theta), f_i(z,\theta)$ — некоторые функции, которые считаются дважды дифференцируемыми по z и равномерно непрерывными по θ . Подставляя (24) в уравнение (3) и делая замену переменной $\theta s = z$, получим уравнение относительно функции $f_0(z,\theta)$:

$$(\lambda + \mu_0) f_0(z, \theta) = \lambda \int_0^\infty f_0(z - \theta x, \theta) \varphi(x) dx + \mu_0 \int_0^\infty f_0(z + \theta x, \theta) \psi(x) dx + \lambda \int_0^\infty f(z - \theta x, \theta) \varphi(x) dx - \lambda \int_0^\infty f_0(z - \theta x, \theta) \psi(x) dx - \mu_0 \int_0^\infty f_0(z + \theta x, \theta) \psi(x) dx.$$

$$(25)$$

Раскладывая в первых двух интегралах подынтегральные выражения в ряд Тейлора по первому аргументу и ограничиваясь первыми тремя членами разложения, получим, учитывая (23),

$$\frac{\lambda a_2 + \mu_0 b_2}{2} \ddot{f}_0(z,\theta) - \lambda a \dot{f}_0(z,\theta) + \frac{1}{\theta^2} \left[\lambda \int_{z}^{\infty} f(z - \theta x, \theta) \varphi(x) dx - \lambda \int_{z}^{\infty} f_0(z - \theta x, \theta) \varphi(x) dx - \mu_0 \int_{z_0 - z}^{\infty} f_0(z + \theta x, \theta) \psi(x) dx \right] + \frac{o(\theta^2)}{\theta^2} = 0.$$
(26)

Функции $f(z,\theta), f_0(z,\theta)$ предполагаются дифференцируемыми и, следовательно, ограниченными. Поэтому, например:

$$\frac{1}{\theta^2} \int_{\frac{z_0 - z}{\theta}}^{\infty} f_0(z + \theta x, \theta) \psi(x) dx \le \max_{y} f_0(y, \theta) \frac{1}{(z_0 - z)^2} \int_{\frac{z_0 - z}{\theta}}^{\infty} x^2 \psi(x) dx \xrightarrow{\theta \to 0},$$

так как второй момент $M\left\{x^2\right\} = b_2$ по условию существует. Аналогично могут быть оценены и другие интегралы.

Обозначим

$$f_0(z) = \lim_{\theta \to 0} f_0(z, \theta). \tag{27}$$

Переходя в (26) к пределу при $\theta \to 0$, получим уравнение относительно функции $f_0(z)$:

$$\ddot{f}_0(z) - \omega_0 \dot{f}_0(z) = 0,$$

где

$$\omega_0 = \frac{2\lambda a}{\lambda a_2 + \mu_0 b_2} \,. \tag{28}$$

Откуда

$$f_0(z) = B_1 + B_2 e^{\omega_0 z}$$

и, следовательно,

$$g_0(s) = \theta \left(B_1 + B_2 e^{\omega_0 \theta s} \right) + o(\theta). \tag{29}$$

Аналогичные рассуждения позволяют показать, что функция

$$f_1(z) = \lim_{\theta \to 0} f_1(z, \theta) \tag{30}$$

определяется выражением

$$f_1(z) = C_1 + C_2 e^{-\omega_1 z}$$
, (31)

где

$$\omega_1 = \frac{2\lambda a}{\lambda a_2 + \mu_1 b_2} \,, \tag{32}$$

и, следовательно,

$$g_1(s) = \theta \left(C_1 + C_2 e^{-\omega_1 \theta s} \right) + o(\theta). \tag{33}$$

Наконец, функция

$$f(z) = \lim_{\theta \to 0} f(z, \theta) \tag{34}$$

будет равна

$$f(z) = \begin{cases} Ae^{-\omega_1 z}, & z > z_0, \\ De^{\omega_0 z}, & z < 0, \end{cases}$$
(35)

где учтено, что $f(z,\theta) \to 0$ при $z \to \pm \infty$, и, следовательно,

$$P(s) = \begin{cases} A\theta e^{-\omega_1 \theta s} + o(\theta), & s > S_0, \\ D\theta e^{\omega_0 \theta s} + o(\theta), & s < 0. \end{cases}$$
(36)

При выводе соотношений (29), (33) и (36) неявно предполагалоь, что $s \neq 0$ и $s \neq S_0$. Рассмотрим теперь уравнения системы (2) — (5) при s=0 и $s=S_0$. При s=0 уравнение (3) имеет вид

$$(\lambda + \mu_0) g_0(0) = \mu_0 \int_0^{S_0} g_0(x) \psi(x) dx + \lambda \int_0^{\infty} P(-x) \varphi(x) dx.$$

Откуда, учитывая (29) и (36), получим

$$(\lambda + \mu_0)(B_1 + B_2) = \mu_0 \int_0^{S_0} (B_1 + B_2 e^{\omega_0 \theta x}) \psi(x) dx + \lambda D \int_0^{\infty} e^{-\omega_0 \theta x} \varphi(x) dx + o(\theta).$$

Переходя к пределу при $\theta \to 0$, будем иметь

$$B_1 + B_2 = D. (37)$$

Рассматривая теперь уравнение (3) при $s = S_0$, аналогично получим

$$B_1 + B_2 e^{\omega_0 z_0} = 0. ag{38}$$

Уравнение (4) при s = 0 и $s = S_0$ приводит к соотношениям

$$C_1 + C_2 = 0; (39)$$

$$C_1 + C_2 e^{-\omega_1 z_0} = A e^{-\omega_1 z_0}. (40)$$

Наконец, уравнение (2) при $s = S_0$ дает

$$(\lambda + \mu_1) A e^{-\omega_1 \theta S_0} = \mu_1 A e^{-\omega_1 \theta S_0} \int_0^\infty e^{-\omega_1 \theta x} \psi(x) dx + \lambda D e^{\omega_0 \theta S_0} \int_{S_0}^\infty e^{-\omega_0 \theta x} + \lambda \int_0^{S_0} \left(B_1 + B_2 e^{\omega_0 \theta S_0 - \omega_0 \theta x} \right) \varphi(x) dx + \lambda \int_0^{S_0} \left(C_1 + C_2 e^{-\omega_1 \theta S_0 + \omega_1 \theta x} \right) \varphi(x) dx + o(\theta).$$

Откуда с учетом (37) – (40)

$$\frac{\lambda a \omega_0}{1 - e^{-\omega_0 z_0}} D - (\mu_1 b \omega_1 + \frac{\lambda a \omega_1}{e^{\omega_1 z_0} - 1}) A e^{-\omega_1 z_0} + \frac{o(\theta)}{\theta} = 0.$$

Так как $\mu_1 b = (1+\theta)\lambda a$, то, переходя к пределу при $\theta \to 0$, получим

$$A\frac{\omega_1}{e^{\omega_1 z_0} - 1} = D\frac{\omega_0}{1 - e^{-\omega_0 z_0}}. (41)$$

Решая систему уравнений (38) – (40) и используя условие нормировки (15), окончательно получим, что при $\theta \ll 1$ плотность распределения капитала фонда P(s) имеет вид

$$P(s) = \begin{cases} \frac{\left(1 - e^{-\omega_0 \theta S_0}\right) \omega_1}{S_0 \left(\omega_0 + \omega_1\right)} e^{\omega_0 \theta s} + o(\theta), & s < 0, \\ \frac{\omega_1 \left(1 - e^{\omega_0 \theta (s - S_0)}\right)}{S_0 \left(\omega_0 + \omega_1\right)} + \frac{\omega_0 \left(1 - e^{-\omega_1 \theta s}\right)}{S_0 \left(\omega_0 + \omega_1\right)} + o(\theta), & 0 \le s \le S_0, \\ \frac{\omega_0 \left(e^{\omega_1 \theta S_0} - 1\right)}{S_0 \left(\omega_0 + \omega_1\right)} e^{-\omega_1 \theta s} + o(\theta), & s > S_0. \end{cases}$$
(42)

Зная плотность распределения капитала фонда, можно найти такие его характеристики, как вероятности неплатежеспособности и повышенных выплат.

Неплатежеспособность фонда наступает тогда, когда его капитал становится меньше $-S_1$ (при выбранном начале отсчета). Поэтому вероятность неплатежеспособности фонда

$$P_{H} = \int_{-\infty}^{-S_{1}} P(s) ds = \frac{\omega_{1} \left(e^{-\omega_{0}\theta S_{1}} - e^{-\omega_{0}\theta S_{2}} \right)}{\theta \left(S_{2} - S_{1} \right) \omega_{0} \left(\omega_{0} + \omega_{1} \right)}.$$
 (43)

Повышенные выплаты фонд производит в двух случаях: когда капитал фонда $S>S_0$ либо при $0\leq s\leq S_0$, когда траектория изменения капитала, начавшись при $s=S_0$, еще не достигла значения 0. Поэтому вероятность повышенных выплат

$$P_{n} = \int_{S_{0}}^{\infty} P(s)ds + \int_{0}^{S_{0}} g_{2}(s)ds = \frac{\omega_{0}}{\omega_{0} + \omega_{1}}.$$
 (44)

Как следует из соотношения (44), вероятность P_n не зависит от порогов алгоритма.

Заключение

В работе найдена плотность распределения капитала некоммерческого фонда при пуассоновских потоках премий и выплат и гистерезисном управлении капиталом. Предложенная методика может быть использована для анализа других моделей некоммерческих фондов при условии, что нагрузка премии считается малой.

ЛИТЕРАТУРА

- Змеев О.А. Математическая модель фонда социального страхования с детерминированными расходами на социальные программы (диффузионное приближение) // Изв. вузов. Физика. 2003. № 3. С. 83 – 87.
- Лившиц К.И., Шифердекер И.Ю. Математическая модель деятельности некоммерческого фонда при релейном управлении капиталом // Вестник ТГУ. Приложение. 2006. № 18. С. 302 – 308.
- Лившиц К.И., Шифердекер И.Ю. Диффузионная аппроксимация математической модели деятельности некоммерческого фонда при релейном управлении капиталом // Вестник ТГУ. 2006. № 293. С. 38 – 44.
- 4. *Лившиц К.И.*, *Сухотина Л.Ю.*, *Шифердекер И.Ю.* Пуассоновская модель деятельности некоммерческого фонда при релейном управлением капиталом // Вестник ТГУ. Приложение. 2006. № 19. С. 302 312.
- Лившиц К.И., Бублик Я.С. Плотность распределения капитала некоммерческого фонда при гистерезисном управлении капиталом // Известия Томского политехнического университета. 2009. Т. 315. С. 174 – 178.
- Феллер В. Введение в теорию вероятностей и ее приложения: в 2 т. М.: Мир, 1967. Т. 1. 498 с.
- 7. *Глухова Е.В.*, *Змеев О.А.*, *Лившиц К.И*. Математические модели страхования. Томск: Изд-во ТГУ, 2004. 180 с.

Бублик Яна Сергеевна

Филиал Кемеровского государственного университета в г. Анжеро-Судженске

Лившии Климентий Исаакович

Томский государственный университет

E-mail: kim47@mail.ru

Поступила в редакцию 6 мая 2010 г.