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paBuia B 00IIEM cJiydae JOCTATOYHO IPOMO3JKO. JIJjisi 4aCTUYHO OIPEIEICHHBIX JIAHHBIX
MOZKHO JIaTh 60J1ee IIPOCTOE MPIMOE JIOKA3aTeIbCTBO, UCIOJIb3Ysl IPUBE/IEHHBIE BBIIIE SIBHBIE
[PEJICTAB/ICHHUSL.

Kommvecreo nndopmannu Z(X,Y) B X o Y naxoaures u3 coornommenus Z(X,Y) =
= H(Y) — H(Y|X) u mig 9acTUIHO ONPEJEJICHHBIX JIAHHBIX BBIPDA3UMO B $IBHOM BHJIE.
Pacemorpum npumep. Ilycrb BBIXOJ| IIOJHOCTBIO OIPEJEJIEHHOIO UCTOUYHUKA X , OPOXK Iat0-
mero cuMBoJibl 0 1 1 ¢ BEPOSATHOCTSIMU Py U Pp, HOJAETCsl HA BXOJ, KaHAJA, [JIe CHMBOJIbI
cTUparoTCs (3aMEHSIOTCS Ha *) ¢ BepOATHOCTHIO €. Tpebyercs BbIYUCIUTD WHMOPMAIUIO
Z(Y, X) B BoIxOsie Y Kanasia o ero Bxoje X u uuadopmanuio Z(X,Y) Bo Bxojge X o Bbixoze Y.
Ucnonb3yst npuBeieHHbIE BbIe (GOPMYIIbI, TTOJTYIaeM

Z(Y,X) = H(po,p1) — poH (ep1,1 — ep1) — p1 H (epo, 1 — €py),
I(X7 Y) - (1 - Z':)-E[(p()vpl)7

rie H(xg,x1) = —xglogze — 21 log 1.
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VIIK 519.7
ON QUATERNARY AND BINARY BENT FUNCTIONS!
P. Solé, N.N. Tokareva

In this paper direct links between Boolean bent functions (Rothaus, [1], 1976), gener-
alized Boolean bent functions (Schmidt, [2], 2006) and quaternary bent functions (Kumar,
Scholtz, Welch, [3], 1985) are explored. We also study Gray images of bent functions and
notions of generalized nonlinearity for Boolean functions.

Let n, q be integers, ¢ > 2. We consider the following mappings:

1) f : ZY — Z; — Boolean function in n variables. Its sign function is F :=
= (=1)/. The Walsh Hadamard transform (WHT) of f is F(x) := Zyezg(—l)ﬂy)*“’“y =
= Zyezg F,(—1)*¥Y. Here x.y is a usual inner product of vectors. A Boolean function f is

said to be bent, iff |F(z)| = 272 for all x € Z2. Tt is near bent iff F(z) € {0, £20+D/2},
Note that Boolean bent (resp. near bent) functions exist only if the number of variables,
n, is even (resp. odd).

2) f:Z% — Z, — generalized Boolean function in n variables. Its sign function is
F := o/, with w a primitive complex root of unity of order ¢, i. e. w = e?™/9 When q = 4,
we write w = 4. Its WHT is given as F(z) := > czn wfW (—1)7v = >oyeny Fy(=1)".
As above, a generalized Boolean function f is bent, iff |F(z)| = 22 for all z € Z§. In

comparison to the previous case it not follows that n should be even if f is bent. Such
functions for ¢ = 4 were studied in [2]. Here we consider ¢ = 4 only.

!The first author was partially supported by ANR grant NUGET. The second author was supported
by the Russian Science Support Foundation and by the Russian Foundation for Basic Research (grants
07-01-00248, 08-01-00671, 09-01-00528).



TeopeTndeckue OCHOBbI MPUKAAZHON AUCKPETHON MaTeMaTuKu 17

3) [ :Zy — Z, — g-ary function in n variables. Its sign function is given by F := w!
as in the previous case. Its WHT is defined by F(z) := ZyeZg wfWrey — ZyeZg Fyw*y.
Note that the matrix of this transform is no longer a Sylvester type Hadamard matrix as
in the previous case, but a generalized (complex) Hadamard matrix. A g-ary function f
is called bent, iff |F(z)| = ¢¥/2 for all z € Zy. Notice that again it not follows from the
definition that g-ary bent functions do not exist if n is odd. Kumar, Scholtz and Welch [3]
have studied g-ary bent functions in 1985. They proved that such functions exist for any
even n and ¢ # 2(mod4). Later Ambrosimov described all quadratic g-ary bent functions
over an arbitrary finite field and Agievich proposed an approach to describe regular g-ary
bent functions in terms of bent rectangles. If ¢ = 4 we call f a quaternary function.
Here we study such functions only.

Let f : Z3" — Z4 be any generalized Boolean function. Represent it as f(z,y) =
= a(z,y) + 2b(z,y), for any z,y € ZY, where a,b : Z3" — Z, are Boolean functions.

Theorem 1. The following statements are equivalent:
(i) the generalized Boolean function f is bent in 2n variables;
(ii) the Boolean functions of 2n variables b and a + b are both bent.

Define a quaternary function g : Z} — Z4 as g(z + 2y) = f(z,y).

We say that two Boolean functions ¢ and d in 2n variables are bent correlated (with
respect to dividing variables into two halves) if for any x,y € Z3, the conditions hold

1) C%(x,y) + C*(x +y,y) + D*(x,y) + D*(x + y,y) = 4",

2) C(x,y) = D(x+y,y) = +2" < C(z +y,y) = D(w,y) = £2".
It is easy to construct examples of such functions.

Theorem 2. The following statements are equivalent:

(i) the quaternary function g is bent in n variables;
(ii) the Boolean functions b and a + b are bent correlated.

Now let f be a generalized Boolean function from Z% to Z4. The Gray map o(f) of f is
the Boolean function in variables (z,w) with z € Z} and w € Z, defined as a(z)w + b(z).
Using results from [2] we prove

Proposition 3. If f is bent then o(f) is either bent (n odd) or near bent (n even).

Proposition 4. Let n be odd. If ¢(f) is a Boolean bent function in n + 1 variables
then f is a generalized Boolean bent function in n variables.

It is well-known that bent binary Boolean functions are characterized by their distance
to the first order Reed Muller code. This fact can be generalized to their quaternary
analogues. Here we present it for a generalized Boolean bent functions.

Define, for 0 < r < m the quaternary code ZRM (r,m) = ¢ '(RM (r,m~+1)). This code
is spanned by vectors of values for functions of degree at most r — 1 together with twice
functions of degree at most r, see [4]. Let f be a generalized Boolean function in n variables.
We introduce the nonlinearity N(f) of f as N(f) :=2""1—-1/2- max %(z‘”ﬁ(u))

u€Zy ,vEla
Proposition 5. N(f) =d.(f, ZRM(1,n)) = dg(®(f), RM(1,n+1)) < 2" —2=1/2,

Here d;, and dy are respectively Lee and Hamming metrics.
Now propositions 3 and 4 can be reformulated like this.

Proposition 6. Let n be odd. A function f is bent <= N(f) = 2" — 2(=1/2,
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Proposition 7. Let n be even. If a function f is bent then N(f) = 2" — 27/2,

Actually, it is not clear what is the maximum possible value of N(f) if n is even. To
know it one should find the value of covering radius of the code RM(1,n + 1) when n + 1
is odd. But it is a hard old problem without analogy to the easy case of even n + 1.

Authors wish to thank Sihem Mesnager for helpful discussions.
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