Сформулируем задачу о вершинном k-расширении как задачу распознавания свойств, то есть задачу, ответом на которую может быть «да» или «нет»:

ВЕРШИННОЕ к-РАСШИРЕНИЕ

УСЛОВИЕ. Даны графы $G = (V, \alpha)$ и $H = (U, \beta)$.

ВОПРОС. Верно ли, что граф G является вершинным k-расширением графа H?

Теорема 1. Задача ВЕРШИННОЕ k-РАСШИРЕНИЕ является NP-полной.

Аналогично формулируется задача о реберном k-расширении:

РЕБЕРНОЕ к-РАСШИРЕНИЕ

УСЛОВИЕ. Даны графы $G = (V, \alpha)$ и $H = (U, \beta)$.

ВОПРОС. Верно ли, что граф G является реберным k-расширением графа H?

Теорема 2. Задача РЕБЕРНОЕ *k*-РАСШИРЕНИЕ является NP-полной.

ЛИТЕРАТУРА

- 1. Hayes J. P. A graph model for fault-tolerant computing system // IEEE Trans. Comput. 1976. V. C.-25. No. 9. P. 875–884.
- 2. Harary F., Hayes J. P. Edge fault tolerance in graphs // Networks. 1993. V. 23. P. 135–142.
- 3. Harary F., Hayes J. P. Node fault tolerance in graphs // Networks. 1996. V. 27. P. 19–23.
- 4. Абросимов М. Б. Минимальные расширения графов // Новые информационные технологии в исследовании дискретных структур. Томск, 2008. С. 59–64.

УДК 519.171

ПОСТРОЕНИЕ ПОКРЫТИЙ РЁБЕР ГРАФА КЛИКАМИ

И. А. Бадеха, П. В. Ролдугин

Реберным покрытием кликами (РПК) графа G называется такой набор клик (полных подграфов) $K_1, ..., K_r$, что любое ребро графа G лежит хотя бы в одной из этих клик. Задача построения РПК, минимального по числу входящих в него клик, как известно, является NP-полной (см., например, [1]). Поскольку каждую из клик в наборе можно дополнить произвольным образом до максимальной клики и получить также РПК, то будем считать, что в определении РПК и далее речь идет о максимальных кликах.

Легко выделить клики, которые обязаны содержаться в каждом РПК для данного графа. Назовем ребро e графа G собственным ребром клики K, если оно лежит в этой клике и не лежит ни в какой другой клике графа G. Соответственно клику K, имеющую хотя бы одно собственное ребро, назовем зафиксированной.

Как известно, вершина графа называется *доминирующей*, если она соединена ребром с каждой из остальных вершин графа.

Определение 1. Конструкцией C в графе G будем называть порожденный подграф графа G, обладающий ненулевым количеством доминирующих вершин, и такой, что граф, получающийся из графа C удалением всех доминирующих вершин и инцидентных им рёбер, является непустым и связным.

В работе доказывается, что в связном графе без собственных рёбер существует конструкция.

Конструкция C может быть пригодной или непригодной для разбиения графа, что определяется свойствами рёбер, входящих в неё. Данные свойства подробно исследованы в работе. Все рёбра пригодной конструкции разбиваются на две категории: те,

которые в минимальном покрытии должны покрываться кликой, содержащейся внутри конструкции (категория 1), и те, которые могут покрываться вне клики без потери свойства минимальности (категория 2).

Основным содержанием работы можно считать следующее утверждение:

Теорема 1. Пусть $R_1, ..., R_s$ — минимальное РПК конструкции C, пригодной для разбиения графа, с вычеркнутыми рёбрами категории 2. Пусть также $L_1, ..., L_r$ — минимальное РПК оставшейся части графа G. Тогда $R_1, ..., R_s, L_1, ..., L_r$ — минимальное РПК графа G.

В работе приводится эвристический алгоритм поиска рёберных покрытий в графе, основанный на использовании данной теоремы и состоящий из следующих основных шагов:

- 1. Поиск собственных рёбер в графе. Фиксирование соответствующих клик.
- 2. Поиск конструкции, пригодной для разбиения графа. В случае, если пригодных конструкций в графе не существует, выбирается конструкция, наиболее приближенная к пригодной для разбиения. В случае, если ни одной конструкции не было найдено, для процедуры разбиения в качестве аналога разбивающей конструкции выбирается наименьшее по мощности окружение ребра.
- 3. Разбиение исходного графа на два графа: в первый из графов входят те рёбра, которые относятся к конструкции, а во второй граф все остальные рёбра.
- 4. Рекурсивное применение данного алгоритма к обоим графам.
- 5. Объединение полученных покрытий.

Для некоторых классов графов данный алгоритм является точным. В работе представлены такие графы.

ЛИТЕРАТУРА

1. Orlin J. Contentment in graph theory: Covering graphs with cliques. // Indagationes Math. 1977. V. 39. P. 406–424.

УДК 519.5

РАСПОЗНАВАНИЕ ГРАФА ПРИ ПОМОЩИ БЛУЖДАЮЩЕГО ПО НЕМУ АГЕНТА

И. С. Грунский, Е. А. Татаринов

Основной проблемой компьютерной науки является проблема взаимодействия управляющей и управляемой систем (управляющего автомата, агента и его операционной среды) [1]. Взаимодействие этих систем зачастую представляется как процесс перемещения агента по помеченному графу (лабиринту) среды [2]. Определился ряд подходов к моделированию операционных сред, одним из которых является топологический [3]. В этом случае агенту недоступна метрическая или алгоритмическая информация о среде и доступна только информация о связях между различными областями среды.

Постановка задачи. Рассматривается конечный граф G — неориентированный, связный, без петель и кратных ребер, где V — множество его вершин и E — множество ребер. Вершины и инциденторы графа G можно метить специальными красками и/или камнями, где инцидентор — «точка прикосновения» вершины v и ребра (v,u). Изначально предполагается, что все вершины и инциденторы не помечены.