
62 Прикладная дискретная математика. Приложение

Шаг 2. Открыть процесс на отладку, используя системный вызов ptrace.
Шаг 3. Изменить код библиотеки ld-linux.so, находящийся в адресном простран-

стве процесса, так, чтобы можно было загрузить произвольную библиотеку в адресное
пространство процесса.

Шаг 4. Записать код, подгружающий библиотеку из шага 1, в любую область па-
мяти, имеющую право на выполнение кода процессом.

Шаг 5. Изменить указатель следующей выполняемой команды на адрес кода, под-
гружающего библиотеку.

Шаг 6. Закрыть процесс, используя системный вызов ptrace. При этом процесс
начинает выполнять код, подгружающий библиотеку.

Эти методы реализованы и опробованы в дистрибутиве Gentoo.

ЛИТЕРАТУРА
1. Using Process Infection to Bypass Windows Software Firewalls [Электронный ресурс]. —

Режим доступа : http://www.phrack.org/issues.php?issue=62&id=13
2. http://www.phrack.com/issues.html?issue=65&id=10 phook — The PEB Hooker [Элек-

тронный ресурс].
3. http://www.phrack.com/issues.html?issue=59&id=12 Building ptrace injecting shellcodes

[Электронный ресурс].

УДК 004.42

РАЗРАБОТКА И РЕАЛИЗАЦИЯ СЕРВЕРА ИГРЫ CTF1

Н.О. Ткаченко, Д.В. Чернов

Соревнования по защите информации Capture the Flag (CTF) [1] традиционно про-
водятся по следующим правилам. Каждой команде перед началом игры выдается оди-
наковый образ виртуальной машины с какой-либо операционной системой, на которой
установлен определенный набор сервисов, содержащих уязвимости. На эти сервисы
в процессе игры жюри высылает некоторую информацию, называемую флагами. Цель
игры— захватить флаги противника, используя найденные в сервисах уязвимости, и
при этом защитить свои флаги, устраняя уязвимости в собственных сервисах. Ко-
мандам начисляются баллы как за защиту собственного флага, так и за успешное
обнаружение чужого. Лучшая и самая простая защита флагов — их удаление, но, по
очевидным причинам, такая защита запрещена правилами. Жюри постоянно прове-
ряет сервисы на наличие флагов и снимает очки с команды, если не может получить
к ним доступ. В процессе игры командам предоставляется возможность решать до-
полнительные задания, называемые квестами, или давать советы другим командам
по увеличению надежности их сервисов, называемые эдвайзори. За это командам так-
же начисляются очки.

В классических правилах первый час игры команды изолированы друг от друга
межсетевым экраном. Данное время отводится для настройки оборудования и про-
грамм, а также для начального ознакомления с сервисами. Затем жюри предоставляет
доступ командам к подсетям друг друга и начинает отправлять на сервисы флаги. Во
время игры каждая команда имеет доступ к любому сервису противника.

1Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры иннова-
ционной России» на 2009–2013 гг. (гос. контракт № П1010).



Математические основы компьютерной безопасности 63

Команда Томского государственного университета SiBears [2] предложила внести
изменения в правила, при которых осуществляется бо́льшая связь между всеми аспек-
тами игры, чем в классических правилах CTF.

Целью работы является создание игрового сервера CTF, функционирующего по
измененным правилам: команды большую часть времени изолированы друг от друга
межсетевым экраном, которым управляет жюри. Для атаки на сервис X команды B
команда A должна отправить соответствующий запрос игровому серверу. Запрос мо-
жет быть либо удовлетворен, либо отклонен. Разрешение на атаку производится в сле-
дующих случаях: атакуемая команда B разрешает атаку; у команды A есть в наличии
решенный квест или опубликованный эдвайзори; команда B отказала в атаке на сер-
вис X больше определенного числа раз. Во всех остальных случаях запрос на атаку
не удовлетворяется. После проведения атаки жюри начисляет очки за атаку и защиту.

В качестве архитектуры игрового сервера был использован шаблон Model—View—
Controller (MVC, «модель — представление — контроллер») [3]. Приложение разделе-
но на три компоненты—модель данных приложения, пользовательский интерфейс и
управляющая логика:
— модель (model) предоставляет данные (обычно для представления), а также реа-

гирует на запросы (обычно от контроллера), изменяя свое состояние;
— представление (view) отвечает за отображение информации, то есть это пользова-

тельский интерфейс;
— контроллер (controller) интерпретирует данные, введенные пользователем, и ин-

формирует модель и представление о необходимости соответствующей реакции.
Модификация одной из компонент оказывает минимальное воздействие на другие.

Взаимосвязь компонент представлена на рис. 1.

Рис. 1. Компоненты архитектуры Model—View—Controller

Модель реализована в виде реляционной базы данных, методом работы с которой
является Object Relational Mapping (ORM) [4]. Суть проблемы, которая решается с по-
мощью ORM-слоя, заключается в необходимости преобразования объектных структур
в памяти приложения в форму, удобную для сохранения в реляционных базах данных,
а также для решения обратной задачи— представления реляционной модели в объ-
ектной с сохранением свойств объектов и отношений между ними. В данной работе
построена база данных для хранения и обработки результатов игры; для данной ба-
зы данных реализован ORM-слой. Для каждой её таблицы реализован свой класс,
член-данными которого являются поля этой таблицы. Член-функциями класса явля-
ются функции, необходимые для связи класса с соответствующей таблицей. На рис. 2



64 Прикладная дискретная математика. Приложение

представлен пример соответствия классов в объектно-ориентированной программе и
таблиц в реляционной базе данных.

Рис. 2. Пример соответствия классов и таблиц в ORM

Для представления пользователю информации о текущем состоянии игрового сер-
вера, а также для приема его запросов используется клиент-серверная архитектура
веб-приложения. Пользователи (жюри и команды) с помощью веб-браузера отправля-
ют запросы веб-серверу, который, в свою очередь, передаёт их обработчикам, возвра-
щающим результат в формате XHTML.

Обработчики запросов реализуют контроллер игрового сервера. Они написаны
с использованием стандарта CGI (Common Gateway Interface — «общий интерфейс
шлюза»), что позволяет избавиться от необходимости делать игровой сервер многопо-
точным— задача по одновременной обработке запросов от пользователей возлагается
на веб-сервер. Так как CGI-скрипт в основном работает только с вводом/выводом, он
осуществляет достаточно быструю работу.

Представление реализовано преобразованием XML-данных, получаемых на вы-
ходе CGI-скриптов, в XHTML—формат данных для отображения с помощью веб-
браузеров.

Для реализации игрового сервера был выбран язык программирования C++. Это
обусловлено тем, что С++ является компилируемым объектно-ориентированным язы-
ком программирования с поддержкой множества дополнительных библиотек.

ЛИТЕРАТУРА
1. Колегов Д.Н., Чернушенко Ю.Н.О соревнованиях CTF по компьютерной безопасности //

Прикладная дискретная математика. 2008. №2(2). С. 81–83.
2. Команда SiBears / Томский государственный университет. Электрон. дан., 2010. Режим

доступа: http://sibears.ru, свободный.
3. The Model-View-Controller (MVC) in past and present / Reenskaug T., University of

Oslo. Электрон. дан., 2003. Режим доступа: http://heim.ifi.uio.no/~trygver/2003/
javazone-jaoo/MVC_pattern.pdf, свободный.

4. Ambler S. Agile database techniques: effective strategies for the agile software developer. Wiley,
2003. 480 p.


