которого асимптотически минимальна, а мощность решётки удовлетворяет неравенству

$$\mid \mathbb{N}_m^2 \mid > 2^{n-2\log_2 n(1+\varepsilon_n)},$$

где $\varepsilon_n \to 0$ при $n \to \infty$.

Рассмотренные свойства вложений обобщаются на произвольные метрические пространства, хотя выше для простоты сформулированы для графов с обычной метрикой.

Найдены также оптимальные кодирования решёток, определяемые их 2-интервальными вложениями, специальный случай которых для малых значений параметров рассмотрен в [3].

ЛИТЕРАТУРА

- 1. *Евдокимов А. А.* Метрические свойства вложений и коды, сохраняющие расстояния // Труды Института математики СО РАН. Новосибирск: Наука, 1988. Т. 10. С. 116–132.
- 2. *Евдокимов А. А.* Локально изометрические вложения графов и свойство продолжения метрики // Сиб. журн. исслед. операций. 1994. Т. 1. № 1. С. 5—12.
- 3. *Евдокимов А. А.* Вложения графов в *n*-мерный булев куб и интервальное кодирование табло // Вестник Томского госуниверситета. Приложение. 2006. № 17. С. 15–19.

УДК 519.7

КОЛИЧЕСТВО БЕНТ-ФУНКЦИЙ НА МИНИМАЛЬНОМ РАССТОЯНИИ ОТ КВАДРАТИЧНОЙ БЕНТ-ФУНКЦИИ¹

Н. А. Коломеец

Бент-функции — это булевы функции, максимально удаленные от класса аффинных функций. Впервые бент-функции были рассмотрены О. Ротхаусом [1]. Бент-функции имеют огромное число приложений: в криптографии, теории кодирования, теории информации. Тем не менее для них до сих пор существует много нерешенных проблем. Одна из наиболее важных проблем — описание всех бент-функций, в частности нахождение конструкций для бент-функций.

В работе рассматривается получение бент-функций на минимальном расстоянии от квадратичной бент-функции. В [2] показано, что две бент-функции от 2k переменных находятся на минимальном расстоянии тогда и только тогда, когда они отличаются на аффинном подпространстве размерности k и обе функции на нем аффинны. В данной работе описываются все бент-функции на минимальном расстоянии от квадратичной бент-функции $(x_1x_{k+1} \oplus x_2x_{k+2} \oplus \ldots \oplus x_kx_{2k})$, а также подсчитывается число бент-функций на минимальном расстоянии от произвольной квадратичной бент-функции.

Пусть A—произвольная матрица; через $a_{(i)}$ будем обозначать её i-й столбец. Будем описывать линейные подпространства с помощью базисов Гаусса — Жордана. Отметим, что в наших обозначениях базисные векторы являются cmonbuamu базисной матрицы.

Определение 1. Пусть G — матрица с k столбцами, образованная векторами $u_{(1)}, \ldots, u_{(k)}$ длины n. Через $l(u_{(i)})$ обозначим $\min\{j: u_{(i)_j} \neq 0\}$. Матрица G является базисом $\Gamma aycca - \mathcal{K}op\partial aha$ подпространства размерности k в пространстве размерности n, если выполняются следующие условия:

 $^{^1}$ Работа выполнена при финансовой поддержке РФФИ (проект № 11-01-00997) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. (гос. контракт № 02.740.11.0362).

- 1) если $i_1 < i_2$, то $l(u_{(i_1)}) < l(u_{(i_2)})$;
- $2^{'}$ если $i_1 \neq i_2$, то $u_{(i_1)}_{l(u_{(i_2)})} = 0$.

В этом случае через l(G) обозначим множество $\{l(u_{(1)}), \ldots, l(u_{(k)})\}$. Все строки матрицы G с номерами из множества l(G) будем называть ведущими строками. Все остальные строки будем называть неведущими. Через L_G обозначим подпространство с базисом $u_{(1)}, \ldots, u_{(k)}$. Заметим, что столбцы матрицы G действительно являются базисными векторами пространства L_G , а матрицу $G^{\rm T}$ называют также pedyцированной ступенчатой матрицей.

Известно, что любое линейное подпространство имеет ровно один базис Гаусса — Жордана.

Введем определение допустимого базиса Гаусса — Жордана. Пусть базис Гаусса — Жордана G для подпространства размерности k в пространстве размерности 2k имеет следующий вид:

$$\left(\begin{array}{c|c} A & 0 \\ \hline Z & Y \end{array}\right),$$

где матрица A размера $k \times t$ не содержит нулевых столбцов, а матрица Y имеет размер $k \times (k-t)$. Заметим, что матрицы A и Y являются базисами Гаусса — Жордана. Пусть $L_Y = L_A^\perp$. Удалим из матрицы A все строки с номерами из l(Y). Пусть все оставшиеся строки образуют матрицу A'. Аналогичные действия проделаем и с матрицей Z: удалим все строки с номерами из l(Y) и образуем из оставшихся строк матрицу Z'. Заметим, что все удаленные из матрицы Z строки являются нулевыми, так как G является базисом Гаусса — Жордана. Таким образом, получили матрицы A' и A' и A' размера A' и A' при A' и A' и A' и A' и A' и A' при A' при A' и A' при A' и A' при A' при A' при A' и A' при A' пр

$$\begin{pmatrix} a'_{(2)}^{\mathrm{T}} & a'_{(1)}^{\mathrm{T}} & 0 & 0 & \dots & 0 \\ \dots & & & & & & \\ a'_{(t)}^{\mathrm{T}} & 0 & 0 & \dots & 0 & a'_{(1)}^{\mathrm{T}} \\ \dots & & & & & & \\ 0 & a'_{(3)}^{\mathrm{T}} & a'_{(2)}^{\mathrm{T}} & 0 & \dots & 0 \\ \dots & & & & & & \\ 0 & a'_{(t)}^{\mathrm{T}} & 0 & \dots & 0 & a'_{(2)}^{\mathrm{T}} \\ \dots & & & & & & \\ 0 & 0 & 0 & \dots & a'_{(t)}^{\mathrm{T}} & a'_{(t-1)}^{\mathrm{T}} \end{pmatrix} \cdot \begin{pmatrix} z'_{(1)} \\ z'_{(2)} \\ \vdots \\ \vdots \\ z'_{(t)} \end{pmatrix} = 0.$$

Следующая теорема описывает все бент-функции на минимальном расстоянии от квадратичной бент-функции.

Теорема 1. Для бент-функции $f(x) = x_1 x_{k+1} \oplus x_2 x_{k+2} \oplus \ldots \oplus x_k x_{2k}$ функция $f(x) \oplus \operatorname{Ind}_L(x)$ является бент-функцией на минимальном расстоянии от f(x) тогда и только тогда, когда множество L является линейным подпространством с допустимым базисом Гаусса — Жордана или сдвигом такого подпространства.

Теорема 2. Любая квадратичная бент-функция от 2k переменных имеет ровно $2^k(2^1+1)\cdot\ldots\cdot(2^k+1)$ бент-функций на минимальном расстоянии 2^k .

Заметим, что число бент-функций от 2k переменных на минимальном расстоянии от заданной бент-функции можно оценить сверху числом 2^{k^2+2k} (это оценка сверху числа всевозможных аффинных подпространств размерности k), а число бент-функций на минимальном расстоянии от квадратичной бент-функции асимптотически равно $C \cdot 2^{k(k+3)/2}$. Таким образом, число бент-функций на минимальном расстоянии от квадратичной бент-функции больше, чем корень из этой тривиальной верхней оценки.

ЛИТЕРАТУРА

- 1. Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. No. 20. P. 300–305.
- 2. Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. № 4. С. 5—21.

УДК 519.7

О СТАТИСТИЧЕСКОЙ НЕЗАВИСИМОСТИ СУПЕРПОЗИЦИИ БУЛЕВЫХ ФУНКЦИЙ $^{\scriptscriptstyle 1}$

О. Л. Колчева, И. А. Панкратова

Интерес к статистической независимости булевой функции от подмножества аргументов возникает в связи с построением статистических аналогов функции [1], которые, в свою очередь, используются в линейном криптоанализе [2, 3].

Будем говорить, что булева функция f статистически не зависит от подмножества U своих аргументов, если для любой её подфункции f', полученной фиксированием значений всех переменных в U, имеет место $\Pr[f'=1]=\Pr[f=1]$; или, что то же самое, $\mathrm{w}(f')=\mathrm{w}(f)/2^{|U|}$, где $\mathrm{w}(f)$ — вес функции f. В частности, для статистического аналога $\varphi(x,y,k)=0$ функции шифрования F(x,k), где x,k,y— переменные со значениями в множествах открытых текстов, ключей и шифртекстов соответственно, условие статистической независимости функции $\varphi_F(x,k)=\varphi(x,F(x,k),k)$ от переменных в x является необходимым для того, чтобы вероятность выполнения уравнения $\varphi_F=0$ сохранялась при подстановке в это уравнение любого значения x при равновероятном выборе k [1].

Требование статистической независимости функции от конкретного подмножества аргументов более слабое, чем условие корреляционной иммунности [4]: функция является корреляционно-иммунной порядка m, если и только если она статистически не зависит от *любого* m-элементного подмножества своих аргументов.

В [1] сформулирован тест статистической независимости: функция f(x,y), где x,y—переменные со значениями в $(\mathbb{Z}_2)^n$ и $(\mathbb{Z}_2)^m$ соответственно, статистически не зависит от булевых переменных в x, если и только если $\hat{f}(u,0^m)=0$ для любого ненулевого вектора $u\in(\mathbb{Z}_2)^n$. Здесь \hat{f} —преобразование Уолша— Адамара функции f; 0^m-m -компонентный нулевой вектор.

Сформулируем некоторые простейшие свойства статистической независимости.

- 1) Если функция имеет s линейных переменных, то она статистически не зависит от любого (s-1)-элементного подмножества своих аргументов.
- 2) Если функция статистически не зависит от U, то она статистически не зависит от любого подмножества U.

 $^{^{1}}$ Работа выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № П1010).