которая берётся из множества $W_{w,r}$ всех таких нетривиальных систем и фиксирована. Максимальная группа подстановок, сохраняющая данную систему импримитивности $W \in W_{w,r}$, есть группа сплетения $IG_W = (S_w \wr S_r, W)$ в её импримитивном действии. Близость межу подстановками $g,h \in S_n$ измеряется расстоянием Хемминга $\chi(g,h)$.

В работе рассматриваются два параметра:

— порядок W-примитивности, то есть число

$$\chi_W(g) = \min \left\{ \chi(g, h) : h \in IG_W \right\};$$

— порядок (w, r)-примитивности, то есть число

$$\chi_{(w,r)}(g) = \min \{ \chi(g,h) : h \in IG_W, W \in W_{w,r} \}.$$

Если соответствующие параметры больше нуля, то подстановку g будем называть W-примитивной, (w,r)-примитивной; в противном случае — W-импримитивной, (w,r)-импримитивной. При рассмотрении W-примитивности каждой подстановке ставится в соответствие матрица, характеризующая удалённость данной подстановки от группы IG_W . Через коэффициенты данной матрицы получено выражение для $\chi_W(g)$. Описаны классы максимально W-примитивных подстановок, являющихся «бент-подстановками» относительно системы импримитивности. Приведены оценки числа таких подстановок.

Порядок (w,r)-примитивности подстановки $g\in S(X)$ определяется только её цикловой структурой, то есть является функцией на классах сопряжённых элементов в группе S(X). Перечислены цикловые структуры подстановок из множества $IG_{(w,r)}=\bigcup_{W\in W_{(w,r)}}IG_W$. Поскольку множество $IG_{(w,r)}$ является объединением классов

сопряжённых элементов группы S(X), то цикловая структура элемента g однозначно характеризует его принадлежность множеству $IG_{(w,r)}$. В целом задача нахождения порядка (w,r)-примитивности оказалась сложнее. Получены порядки (w,r)-примитивности при чётном n в крайних случаях w=2 и r=2.

Исходя из общего подхода, получены порядки (w, r)-примитивности для s-боксов криптосистем AES, ARIA, Whirlpool, MISTY1, Camellia, FOX .

УДК 519.14

О СОВЕРШЕННЫХ 2-РАСКРАСКАХ д-ЗНАЧНОГО ГИПЕРКУБА1

В. Н. Потапов

Обозначим через Z_q множество $\{0,\ldots,q-1\}$. Декартово произведение Z_q^n называется q-значным n-мерным кубом (гиперкубом). Функция $f:Z_q^n\to Z_q$ называется $\kappa oppe-$ ляционно-иммунной порядка n-m, если мощность пересечения грани размерности m с множеством $f^{-1}(a)$ зависит только от $a\in Z_q$. Через $\mathrm{cor}(f)$ будем обозначать максимальный порядок корреляционной иммунности. Плотностью булевозначной функции χ^S будем называть отношение $\rho(S)=|S|/q^n$. Если $\rho(S)=1/2$, то булевозначную корреляционно-иммунную функцию χ^S называют уравновешенной.

 $^{^1}$ Работа выполнена при поддержке РФФИ (проекты № 10-01-00424, 10-01-00616) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009—2013 гг. (гос. контракт № 02.740.11.0429).

Расстоянием Хэмминга d(x,y) между вершинами $x=(x_1,x_2,\ldots,x_n)$ и $y=(y_1,y_2,\ldots,y_n)$ называется число позиций, в которых наборы x и y различаются. Определим величину A(S) как среднее число вершин из $S\subseteq Z_q^n$, которые находятся на расстоянии 1 от вершины из дополнения $Z_q^n\setminus S$, т. е. $A(S)=\frac{1}{q^n-|S|}\sum_{x\not\in S}|\{y\in S:d(x,y)=1\}|.$

Отображение col : $Z_q^n \to \{0,\ldots,k\}$ называется совершенной раскраской с матрицей параметров $M=\{m_{ij}\}$, если для любых i и j, для каждой вершины цвета i число соседей цвета j равняется m_{ij} . В дальнейшем рассматриваются только раскраски в два цвета (2-раскраски). Будем считать, что $\{0,1\}$ — множество цветов. В этом случае булевозначная функция col является характеристической функцией множества вершин цвета 1.

Совершенный код (исправляющий одну ошибку) $C\subset Z_q^n$ можно рассматривать как множество единиц совершенной 2-раскраски с матрицей параметров $M=\begin{pmatrix} n(q-1)-1 & 1\\ n(q-1) & 0 \end{pmatrix}$. Если число q является степенью простого числа, то раскраска с такими параметрами существует только при $n=(q^j-1)/(q-1)$. При q=2 список известных параметров совершенных 2-раскрасок имеется в [1,2].

Известно (см., например, [3, 4]), что совершенная раскраска булева n-куба с матрицей параметров $\begin{pmatrix} n-b & b \\ c & n-c \end{pmatrix}$ является корреляционно-иммунной функцией порядка (b+c)/2-1, т. е. из регулярной распределённости вершин некоторого множества по шарам радиуса 1 следует равномерное распределение вершин этого множества по граням. Весьма интересным представляется выяснение возможности обратного следствия.

В [5] доказано, что если для некоторого множества $S \subset Z_2^n$ величины $\operatorname{cor}(\chi^S)$ и $\rho(S)$ совпадают с соответствующими параметрами для совершенного кода, то множество S является совершенным кодом. В [3] установлено, что неуравновешенная булева функция $f = \chi^S$ ($S \subset Z_2^n$) удовлетворяет неравенству $\operatorname{cor}(f) \leqslant 2n/3 - 1$. Кроме того, в случае равенства $\operatorname{cor}(f) = 2n/3 - 1$ функция f является совершенной раскраской. Подобным образом, если для множества $S \subset Z_2^n$ неравенство Биербрауэра — Фридмана (см. [6, 7]) превращается в равенство $\rho(S) = 1 - \frac{n}{2(\operatorname{cor}(f) + 1)}$, то функция χ^S является совершенной 2-раскраской [8].

Оказывается, имеет место следующий критерий.

Теорема 1.

- а) Для каждой булевозначной функции $f=\chi^S$, где $S\subset Z_q^n$, справедливо неравенство $\rho(S)q(\mathrm{cor}(f)+1)\leqslant A(S)$.
- б) Булевозначная функция $f = \chi^S$ является совершенной 2-раскраской тогда и только тогда, когда $\rho(S)q(\operatorname{cor}(f)+1) = A(S)$.

Таким образом, равномерное распределение вершин множества по граням гиперкуба при экстремальных условиях на плотность множества влечёт регулярное распределение вершин множества по шарам. Более того, любая совершенная 2-раскраска получается как максимально равномерно распределённая по граням булевозначная функция при некоторых дополнительных односторонних ограничениях на размещение её единиц. При доказательстве теоремы использовались методы, развитые в [7].

ЛИТЕРАТУРА

- 1. Fon-Der-Flaass D. G. Perfect 2-colorings of a hypercube // Siber. Math. J. 2007. V. 48. No. 4. P. 740–745.
- 2. Φ он-Дер- Φ лаасс Д. Г. Совершенные 2-раскраски 12-мерного куба, достигающие границы корреляционной иммунности // Сибирские электронные математические известия. 2007. Т. 4. С. 292–295.
- 3. Fon-Der-Flaass D. G. A bound of correlation immunity // Siber. Electron. Math. Rep. 2007. V. 4. P. 133–135.
- 4. *Таранников Ю. В.* О корреляционно-иммунных и устойчивых булевых функциях // Математические вопросы кибернетики. Вып. 11. М.: Физматлит, 2002. С. 91–148.
- 5. Ostergard P. R. J., Pottonen O., and Phelps K. T. The perfect binary one-error-correcting codes of length 15: Part II-Properties // IEEE Trans. Inform. Theory. 2010. V. 56. P. 2571–2582.
- 6. Friedman J. On the bit extraction problem // Proc. 33rd IEEE Symposium on Foundations of Computer Science. 1992. P. 314–319.
- 7. Bierbrauer J. Bounds on orthogonal arrays and resilient functions // J. Combinat. Designs. 1995. V. 3. P. 179–183.
- 8. Потапов В. Н. О совершенных раскрасках булева n-куба и корреляционно-иммунных функциях малой плотности // Сибирские электронные математические известия. 2010. Т. 7. С. 372–382.

УДК 519.6

АЛГЕБРЫ ЯЗЫКОВ, АССОЦИИРОВАННЫЕ С ОТМЕЧЕННЫМИ ГРАФАМИ

Е. А. Пряничникова

В теории конечных автоматов одним из важнейших результатов является теорема Клини, в которой утверждается, что класс языков, распознаваемых конечными автоматами, совпадает с классом рациональных языков, представимых регулярными выражениями алгебры Клини [1].

В данной работе определяется понятие языка, допустимого в отмеченном графе, вводится система операций на формальных языках, которая, в частности, может использоваться в биологии, генетике, а также ДНК-вычислениях [2], и понятие регулярных выражений для этой системы операций.

Исследованы основные свойства семейства алгебр языков, допустимых в отмеченных графах; доказано, что язык допустим в отмеченном графе тогда и только тогда, когда он описывается регулярным выражением во введенной системе операций; разработаны методы анализа и синтеза языков, ассоциированных с отмеченными графами.

Пусть X — конечный алфавит; X^* — множество всех слов конечной длины в алфавите X; X^n — множество всех слов длины n в алфавите X; $X^{\geqslant n}$ — множество всех слов конечной длины в алфавите X, длина которых больше или равна n.

Определим на множестве X^* частичную бинарную операцию $\overset{n}{\circ}$ склеивания двух слов с параметром n следующим образом: для всех $w_1, w_2 \in X^*$

$$w_1 \circ w_2 = \begin{cases} xyz, & \text{если } w_1 = xy, \ w_2 = yz, \ y \in X^n; \\ \text{не определено} & \text{в противном случае.} \end{cases}$$

Введем на языках $L, R \subseteq X^*$ следующие операции:

1) $L \cup R = \{w : w \in L \text{ или } w \in R\};$