$f: U \times E \times C \to 2^R$, описывающая права доступа учетной записи $u \in U$ к сущности $e \in E$ при инициализации сессии с контейнера $c \in C$. Тогда вектором доступа учетной записи u к сущности e будем называть набор пар $(c_1, f(u, e, c_1)), \ldots, (c_n, f(u, e, c_n))$.

5. В соответствии с этим определением к правилам преобразования состояний добавляется правило $create_session_remote(s,u,c,e)$, описывающее создание сессии удаленного доступа субъектом $s \in S$ с правами доступа учетной записи $u \in U$ к сущности $e \in E$ и назначение субъекту s в рамках этой сессии прав доступа учетной записи u в зависимости от ребра (u,e,v) в графе доступа и контейнера c, с которого порождена сессия субъектом s.

С использованим этих расширений языка ДП-моделей базовая СУД ДП-модель может быть разработана по стандартной схеме построения ДП-моделей в [1].

ЛИТЕРАТУРА

1. *Девянин П. Н.* Модели безопасности компьютерных систем. Управление доступом и информационными потоками. Учеб. пособие для вузов. М.: Горячая линия-Телеком, 2011.

УДК 004.75

МОДЕЛЬ БЕЗОПАСНОСТИ КРОСС-ПЛАТФОРМЕННЫХ ВЕБ-СЕРВИСОВ ПОДДЕРЖКИ МУНИЦИПАЛЬНЫХ ЗАКУПОК

Д. Д. Кононов, С. В. Исаев

Целью работы является создание на основе RBAC [1] модели безопасности, учитывающей специфику веб-приложений. На базе этой модели разработаны программные средства для решения задач муниципального заказа администрации г. Красноярска, в том числе для проведения открытых электронных аукционов. Юридическая значимость действий пользователей обеспечивается использованием электронной цифровой подписи. Работа выполняется в рамках развития Автоматизированной системы проведения муниципальных заказов (АСП МЗ). Определяющими документами являются федеральные законы № 1, 94 и 149.

В результате анализа предметной области была выбрана модель RBAC. В модель были внесены изменения, учитывающие особенности веб-приложений. К существующим понятиям «субъект» (subject), «роль» (role), «разрешение» (permission), «сессия» (session) были добавлены «токен» (token) и «запрос» (request).

Определение 1. Токен — набор атрибутов субъекта, позволяющих осуществить его аутентификацию в системе. Токеном является пара (имя, пароль) либо пара (сертификат ЭЦП, закрытый ключ ЭЦП).

Определение 2. Запрос — набор информации, пересылаемой клиентом серверу по протоколу HTTP. Запрос содержит набор заголовков, уникальный идентификатор ресурса, набор параметров имя/значение и тело запроса.

Запрос принадлежит сессии, в рамках одной сессии может выполняться несколько запросов. Понятия «запрос» и «разрешение» связаны отношением «многие-ко-многим». На множестве запросов вводится отношение включения.

Определение 3. Запрос A *включает* запрос B, если путь уникального идентификатора ресурса запроса A содержит путь уникального идентификатора ресурса запроса B с начальной позиции строки.

Например, запрос «/library/book» включает запрос «/library». Полученная модель отражает предметную область и позволяет эффективно разграничивать доступ в вебсистемах.

В работе D. F. Ferraiolo et al. [2] рассматриваются вопросы применения модели RBAC для веб-приложений. В первом случае предлагается хранить идентифицирующую и служебную информацию (в том числе пароль), подписанную сервером, на стороне клиента в виде cookies. Данный метод не учитывает истечения срока действия и возможности компрометации сертификата сервера. Во втором случае используются атрибуты сертификата X.509 для хранения политик безопасности. Описанный подход имеет следующие недостатки. Во-первых, жестко указаны роли и разрешения, что не позволяет добавлять новые полномочия для субъекта без замены сертификата. Во-вторых, не учитывается ситуация, когда система работает с сертификатами разных удостоверяющих центров, имеющих собственные политики безопасности.

В настоящей работе предлагается комбинированный подход. Предварительная аутентификация производится с помощью имени пользователя и пароля, что дает субъекту доступ на чтение к закрытой части системы. Дальнейшие действия субъекта по добавлению, модификации и удалению информации подтверждаются электронной цифровой подписью, что обеспечивает юридическую значимость и аутентичность информации. На стороне клиента в cookies хранится только идентификатор сессии, который становится недействительным после ее завершения. Сертификат ЭЦП содержит только стандартные атрибуты X.509. Информация о политиках безопасности хранится на сервере системы и доступна для редактирования администратором. Данный подход позволяет использовать произвольный удостоверяющий центр для выдачи сертификатов пользователям и гибко настраивать права доступа.

Особое внимание уделялось возможности кросс-платформенного функционирования системы. В настоящий момент система может функционировать на платформах Windows, Linux, FreeBSD. В работе используется криптопровайдер КриптоПро СSP, который обеспечивает работу стандартов ГОСТ Р 34.10-94, ГОСТ Р 34.11-94, ГОСТ Р 34.10-2001, ГОСТ 28147-89.

Реализованные веб-сервисы обеспечивают защиту публикуемых данных, простоту и удобство работы специалистов муниципального заказа, оперативность размещения информации на сайте, а также защиту от несанкционированного использования. Система успешно эксплуатируется более четырех лет. За период 2009—2010 гг. с использованием системы было проведено 354 электронных аукциона на общую сумму 238 660 934 руб., экономия бюджета составила 42 443 682 руб. Имеются свидетельства о регистрации программного обеспечения [3, 4].

ЛИТЕРАТУРА

- 1. Sandhu R., Coyne E. J., Feinstein H. L., and Youman C. E. Role-Based Access Control Models // IEEE Computer (IEEE Press). 1996. V. 29. No. 2. P. 38–47.
- 2. Ferraiolo D. F., Kuhn D. R., and Chandramouli R. Role-Based Access Control. Norwood, USA: Artech House, 2003.
- 3. *Ноэксенкова Л. Ф., Исаев С. В., Кононов Д. Д. и др.* Система проведения электронных интернет-аукционов // Свидетельство об официальной регистрации в Реестре программ для ЭВМ № 2009612095 от 24.04.2009. (Федеральная служба по интеллектуальной собственности, патентам и товарным знакам). 2009.
- 4. *Ноженкова Л. Ф.*, *Исаев С. В.*, *Кононов Д. Д.*, *Исаева О. С.* Интернет-система поддержки муниципального заказа // Свидетельство об официальной регистрации в Реестре про-

грамм для ЭВМ № 2009612093 от 24.04.2009. (Федеральная служба по интеллектуальной собственности, патентам и товарным знакам). 2009.

УДК 004.056

РАЗРАБОТКА КОМПЛЕКСНОЙ ОБУЧАЕМОЙ СИСТЕМЫ ЗАЩИТЫ ИНФОРМАЦИОННЫХ РЕСУРСОВ ОТ ФИШИНГОВЫХ АТАК 1

А. В. Милошенко, Т. М. Соловьёв, Р. И. Черняк, М. В. Шумская

В настоящее время многие услуги стали доступны через Интернет. Финансовый сектор также не стал исключением. Появились различные платежные системы, интернет-кошельки и терминалы оплаты. Безопасность платежей внутри данных систем обеспечивается множеством высокотехнологичных решений, таких, как сертификаты безопасности, криптографические протоколы и др. Однако все эти решения оказываются неэффективными при применении злоумышленниками методов социальной инженерии, использующих слабости человеческого фактора.

Одним из наиболее распространенных видов такого рода атак сегодня является фишинг [1]. Фишинг (от англ. phishing, password fishing—выуживание паролей)—это вид сетевого мошенничества, целью которого является получение доступа к конфиденциальным данным пользователей обманным путём. Популярной методикой фишинга является создание поддельных веб-сайтов, внешне неотличимых от подлинных. Ущерб от преступлений, связанных с фишингом, только за 2010 г. исчисляется миллиардами долларов США. При этом, согласно статистике, количество фишинговых атак с каждым годом увеличивается примерно в полтора раза.

Остановить бурное развитие такого рода преступлений можно посредством создания комплексных систем защиты от фишинговых атак. Поскольку арсенал фишеров растёт стремительными темпами, необходимо обеспечивать обучаемость таких систем. В настоящее время не существует подобного рода решений, о чем красноречиво повествует статистика, поэтому создание комплексной обучаемой высокоэффективной системы защиты от фишинговых атак является интересным и актуальным направлением. Создание такой системы предполагает предварительное изучение характерных признаков фишинговых ресурсов и разработку на их основе методов оценивания степени опасности информационного ресурса и определения потенциально опасных ресурсов. Этому, в основном, и посвящена данная работа. На основе полученных результатов предложена схема функционирования системы защиты от фишинговых атак.

Характерные признаки фишинговых ресурсов

Анализ существующих фишинговых ресурсов позволил составить перечень их характерных признаков.

1. Сходство графического контента

Основная задача злоумышленников при проведении фишинговой атаки—заставить пользователя поверить в аутентичность фишингового ресурса. Наиболее простым способом сделать это является заимствование графического оформления у атакуемого сайта.

Несмотря на большое количество исследований, задача определения степени сходства изображений в настоящее время не имеет универсального и эффективного решения. Объясняется это в первую очередь тем, что понятие похожести двух изображе-

¹Работа выполнена в рамках реализации Φ ЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № $\Pi1010$).