член $\chi_g(x)$ неприводим. Кроме того, группа C(g) 2-транзитивна тогда и только тогда, когда многочлен $\chi_g(x)$ примитивен.

Утверждение 1. Для произвольных вектора $\gamma \in V_n^{\times}$, преобразования $g \in GL_n$ с характеристическим многочленом $\chi_g(x)$ граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ связен для всех векторов $\gamma \in V_n^{\times}$ тогда и только тогда, когда характеристический многочлен $\chi_g(x)$ неприводим.

Утверждение 2. Для вектора $\gamma \in V_n^{\times}$ граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ связен тогда и только тогда, когда $m_{\gamma,g}(x) = \chi_g(x)$. Если группа C(g) примитивна, то все её графы орбиталов изоморфны.

В алгебраической теории графов наибольший интерес представляют следующие классы графов: вершинно-транзитивные, рёберно-транзитивные, дистанционно-регулярные, дистанционно-транзитивные [1].

Утверждение 3. Пусть $n \geqslant 2$, $i \in \{1, \ldots, d-1\}$, $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ — нетривиальный связный граф диаметра $b \geqslant 2$. Тогда: а) $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ — рёберно-транзитивный граф; б) если $\gamma_i^{\langle g \rangle}$ является базисом V_n , то граф $\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g)$ является дистанционно-транзитивным и $\mathrm{Aut}\bar{\Gamma}_{(\mathbf{0}, \gamma_i)}(g) \approx S_2 \uparrow S_n$.

Графом Хемминга на V_n будем называть граф с множеством вершин V_n и множеством рёбер $\{(\alpha,\beta)\in V_n^2:\chi_n(\alpha,\beta)=1\}$. Очевидно, что если граф изоморфен графу Хемминга, то его метрика изоморфна метрике Хемминга. Отметим, если множество $\gamma_i^{\langle g \rangle}$ является базисом V_n , то граф $\bar{\Gamma}_{(\mathbf{0},\gamma_i)}(g)$ изоморфен графу Хемминга и является дистанционно-регулярным.

Теорема 1. Пусть $n \geqslant 2$, преобразование $g \in GL_n$ и вектор $\gamma \in V_n$ такие, что

$$m_{\gamma,g}(x) = x^{r(q-1)} \oplus x^{r(q-2)} \oplus \ldots \oplus x^r \oplus 1 = \frac{(x^r)^q - 1}{x^r - 1},$$

где $rq=m=\left|\gamma^{\langle g\rangle}\right|$. Граф $\bar{\Gamma}_{(\mathbf{0},\gamma)}(g)$ дистанционно-регулярный тогда и только тогда, когда выполняется одно из условий: а) r=1; б) $r\geqslant 2$ и q=3.

ЛИТЕРАТУРА

1. Godsil C. and Royle G. Algebraic Graph Theory. Springer Verlag, 2001.

УДК 519.14

О БУЛЕВЫХ ФУНКЦИЯХ, ПОЧТИ УРАВНОВЕШЕННЫХ В ГРАНЯХ1

В. Н. Потапов

Обозначим через E^n множество упорядоченных двоичных наборов (вершин) длины n. Введём операцию $[x,y]=(x_1y_1,\ldots,x_ny_n)$ для наборов $x,y\in E^n$. Количество единиц в наборе $y\in E^n$ называется весом набора и обозначается через $\mathrm{wt}(y)$. Множество вершин чётного веса будем обозначать через E^n_0 (нечётного — через E^n_1) . Гранью размерности $(n-\mathrm{wt}(y))$ называется множество $E^n_y(z)=\{x\in E^n: [x,y]=[z,y]\}$.

Пусть $S \subset E^n$; через χ^S будем обозначать характеристическую функцию множества S. Функция χ^S называется корреляционно-иммунной порядка (n-m), если для любой грани $E^n_y(z)$ размерности m пересечения $E^n_y(z) \cap S$ имеют одинаковую мощность.

 $^{^1}$ Работа выполнена при поддержке РФФИ (проекты 11-01-997, 10-01-00616) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009−2013 гг. (гос. контракт № 02.740.11.0362).

Через ${\rm cor}(S)$ будем обозначать максимальный порядок корреляционной иммунности, ${\rm cor}(S)=\max\{n-m\}$. Корреляционно-иммунная функция χ^S называется уравновешенной, если $|S|=2^{n-1}$. Тогда множество S пересекается с гранями размерности m ровно по половине вершин, т. е. $|E_y^n(z)\cap S|=|E_y^n(z)|/2$. В [1] установлено, что неуравновешенная непостоянная булева функция χ^S удовлетворяет неравенству ${\rm cor}(S)\leqslant 2n/3-1$. Ясно, что непостоянная корреляционно-иммунная функция порядка n-1 является счётчиком чётности или нечётности ($\chi^{E_0^n}$ или $\chi^{E_1^n}=\chi^{E_0^n}\oplus 1$). Корреляционно-иммунные функции порядка n- const немногочисленны и описаны в [2]. Некоторые оценки числа корреляционно-иммунных функций меньших порядков имеются в [2-4].

Ниже рассматривается класс почти уравновешенных функций, содержащий значительное количество не эквивалентных булевых функций, максимально подобных корреляционно-иммунным функциям высокого порядка. Функцию χ^S будем называть *почти уравновешенной*, если для любой грани $E_y^n(z)$ любой размерности пересечение $E_y^n(z) \cap S$ отличается от половины мощности грани не более чем на 1, т.е. $-1 \leqslant |E_y^n(z) \cap S| - |E_y^n(z)|/2 \leqslant 1$.

В соответствии с определением класс почти уравновешенных функций является na-cnedcmeehhum, т. е. все ретракты почти уравновешенных функций, полученные произвольной фиксацией произвольного набора переменных, являются почти уравновешенными. Одним из способов задания наследственного класса булевых функций является перечисление минимальных запретов. Булева функция g размерности k называется munumanbhum g размерности g наследственного класса g но все её ретракты содержатся в g. Поскольку g наследственный класс, функции из класса g не имеют ретрактов, совпадающих с запретом g.

Теорема 1. Множество почти уравновешенных булевых функций является наследственным классом с бесконечным набором минимальных запретов.

Будем обозначать через P(n) множество функций от n аргументов из класса P. Пусть $f \in P(n)$, вершину $x \in E^n$ будем называть $c 6060 d h o \tilde{u}$ относительно f, если найдётся функция $f' \in P(n)$, отличающаяся от f только на аргументе x.

Утверждение 1. Пусть P — наследственный класс и для некоторого m любая функция $f \in P(m)$ не имеет свободных вершин. Тогда $|P(n)| \leqslant 2^{\sum\limits_{k=0}^{m-1} \binom{n}{k}}$.

Далее рассмотрим множество трёхзначных функций $f:E^n \to \{-1,0,1\}$, определённых на булевом кубе. Приведённые выше определения наследственного класса, минимального запрета и свободной вершины естественным образом распространяются на такие функции. Определим класс B трёхзначных уравновешенных функций следующим образом: $f \in B$, если для любой грани $\gamma = E_y^n(z)$ любой размерности сумма значений функции в ней не превышает по модулю единицы, т. е. $\sum_{x \in \gamma} f(x) \in \{-1,0,1\}$.

Через B_0 будем обозначать подкласс класса B, удовлетворяющий дополнительным условиям $f^{-1}(1) \subset E_0^n$ и $f^{-1}(-1) \subset E_1^n$. Ясно, что классы B и B_0 являются наследственными.

Утверждение 2. Булева функция f является почти уравновешенной тогда и только тогда, когда $f - \chi^{E_1^n} \in B_0$.

Преобразованием Мёбиуса функции $h: E^n \to \mathbb{R}$ называется функция

$$M[h]: E^n \to \mathbb{R},$$
 где $M[h](y) = (-1)^{\operatorname{wt}(y)} \sum_{\substack{x \in E^n, \ [x,y] = x}} h(x).$

Из формулы включения-исключения и определения классов B и B_0 получаем

Утверждение 3.

- а) M[M[h]] = h для любой функции $h: E^n \to \mathbb{R}$.
- 6) M[B] = B.
- в) $M[f] \in B_0 \cup (-B_0)$, если и только если $f \in B$ и $\overline{0}$ свободная вершина функции f.

Справедливость п. *в* следует из того, что вершина является свободной, только если во всех гранях, содержащих вершину, сумма значений функции имеет одинаковый знак.

В следующих утверждениях приведены несколько способов построения функций из классов B и B_0 .

Утверждение 4.

- а) Пусть $f \in B$ (или $f \in B_0$), тогда $f \cdot \chi^{\gamma} \in B$ (или $f \cdot \chi^{\gamma} \in B_0$) для любой грани γ .
- б) Пусть $f \in B_0(n)$, тогда $(-1)^{\chi E_1^n} f \in B_0(n)$.
- в) Пусть γ_1, γ_2 грани в E^n и $\gamma_1 \cap \gamma_2 \neq \emptyset$. Определим функцию f равенством $f(x_1, \ldots, x_n, x_{n+1}) = x_{n+1} \chi^{\gamma_1} (-1)^{\chi E_1^n} + (x_{n+1} \oplus 1) \chi^{\gamma_2} (-1)^{\chi E_0^n}$. Тогда $f \in B_0(n+1)$.

Утверждение 5.

- а) Пусть $f \in B(n)$, $g \in B(m)$ и F(x,y) = f(x)g(y). Тогда $F \in B(n+m)$.
- б) Пусть $f \in B_0(n), g \in B_0(m)$ и F(x,y) = f(x)g(y). Тогда $F \in B_0(n+m)$.

Доказательства утверждений 4 и 5 легко получить непосредственной проверкой.

Булев n-мерный куб E^n естественным образом наделяется структурой векторного пространства над полем GF(2). Будем называть *носителем* вектора $x \in E^n$ множество позиций, на которых в векторе x находятся единицы. Рассмотрим набор векторов z^1, \ldots, z^k с попарно не пересекающимися носителями. Пусть $V \subset E^n$ подпространство, натянутое на векторы $z^1, \ldots, z^k, V = \{\bigoplus \alpha_i z^i : \alpha \in E^k\}$. Пусть $f: E^k \to \{-1,0,1\}$. Определим функцию $G_V[f]: E^n \to \{-1,0,1\}$ равенствами $G_V[f](x) = f(\alpha)$, если $x = \bigoplus \alpha_i z^i$, и $G_V[f](x) = 0$, если $x \notin V$.

Теорема 2.

- а) Если $f \in B(k)$, то $G_V[f] \in B(n)$.
- б) Класс B(n) содержит не менее $e^{c\sqrt{n}}$, c>0, неэквивалентных функций.

ЛИТЕРАТУРА

- 1. Fon-Der-Flaass D. G. A bound of correlation immunity // Siberian Electronic Mathematical Reports. 2007. V. 4. P. 133–135.
- 2. Таранников Ю. В. О корреляционно-иммунных и устойчивых булевых функциях // Математические вопросы кибернетики. Вып. 11. М.: Физматлит, 2002. С. 91–148.
- 3. Воробьёв К. В., Фон-Дер-Флаасс Д. Г. О совершенных 2-раскрасках гиперкуба // Сибирские электронные математические известия. 2010. Т. 7. С. 65–75.
- 4. Потапов В. Н. О совершенных раскрасках булева n-куба и корреляционно-иммунных функциях малой плотности // Сибирские электронные математические известия. 2010. Т. 7. С. 372–382.