Далее рассмотрим матроиды в аффинном m-мерном пространстве M над $\mathrm{GF}(q)$. Как известно [9], $|M|=q^m$ и $|Z|=q^{m-1}$. В аффинном пространстве может быть два случая пересечения гиперпространств Z_i и Z_j : 1) либо пересекаются, т. е. $Z_i\cap Z_j\neq\varnothing$, тогда вторая аксиома матроида выполняется, как в проективном пространстве; 2) либо параллельны, т. е. $Z_i\cap Z_j=\varnothing$, тогда это тривиальный случай и вторая аксиома матроида также выполняется, так как объединение двух соответствующих гиперпространствам циклов образует всё пространство M. Первая аксиома матроида выполняется в обоих случаях, как и в проективном пространстве.

При реализации идеальной однородной совершенной СРС гиперпространства соответствуют линейным функциям. На основе обобщённых кодов Рида — Маллера получена

Теорема 1. Аффинное и проективное пространства над GF(q) являются однородными матроидами с гиперпространствами в качестве антициклов.

При этом возникает естественный и сложный вопрос полного описания класса однородных СРС над GF(q). Для решения этого вопроса рассмотрена возможность добавления участников СРС однородного матроида. Путём комбинаторных рассуждений доказано

Утверждение 1. Линейные однородные разделяющие СРС над GF(q) сводятся к подсхемам схемы некоторого проективного пространства над GF(q) с гиперпространствами в качестве антициклов.

ЛИТЕРАТУРА

- 1. *Гайдамакин Н. А.* Разграничение доступа к информации в компьютерных системах. Екатеринбург: Изд-во Урал. ун-та, 2003.
- 2. Shamir A. How to share a secret // Comm. ACM. NY, USA: ACM, 1979. V. 22. No. 11. P. 612–613.
- 3. *Черемушкин А. В.* Криптографические протоколы: основные свойства и уязвимости // Прикладная дискретная математика. Приложение. 2009. № 2. С. 115—150.
- 4. Введение в криптографию / под общ. ред. В. В. Ященко. СПб.: Питер, 2001.
- 5. Marti-Farre J. and Padro C. Secret sharing schemes on sparse homogeneous access structures with rank three // Electronic J. Combinatorics. 2004. No. 11(1). Research Paper 72. 16 p.
- 6. *Медведев Н. В.*, *Титов С. С.* Бинарные почти пороговые матроиды // Научно-технический вестник Поволжья. 2012. № 4. С. 136–142.
- 7. *Медведев Н. В.*, *Титов С. С.* Почти пороговые схемы разделения секрета на эллиптических кривых // Доклады ТУСУРа. 2011. № 1(23). Ч. 1. С. 91–96.
- 8. *Блейкли Г. Р., Кабатянский Г. А.* Обобщенные идеальные схемы, разделяющие секрет, и матроиды // Проблемы передачи информации. 1997. Т. 33. № 3. С. 102–110.
- 9. Холл М. Комбинаторика. М.: Мир, 1970. 424 с.

УДК 519.723

О НЕМИНИМАЛЬНЫХ СОВЕРШЕННЫХ ШИФРАХ

Н. В. Медведева, С. С. Титов

Рассмотрены свойства неминимальных совершенных шифров. Показано, что неминимальный совершенный шифр вкладывается в максимальный совершенный шифр. Доказан аналог теоремы К. Шеннона для неэндоморфных совершенных шифров.

Ключевые слова: совершенные шифры, неэндоморфные шифры, максимальные шифры, неминимальные шифры.

Цель современных криптографических методов защиты информации — создание шифров, не позволяющих раскрыть никаких сведений о соответствующих им открытых текстах. Систематически вопрос о теоретической стойкости шифров впервые исследовал К. Шеннон в своей фундаментальной работе [1], в которой рассмотрена вероятностная модель шифра.

Пусть X, Y— конечные множества открытых и закрытых текстов, с которыми оперирует некоторый шифр замены, K— множество ключей, $|X| = \lambda, |Y| = \mu, |K| = \pi, \lambda > 1$, $\mu > 1$. Согласно [2, 3], под $mu\phi pom \Sigma_B$ будем понимать совокупность множеств правил зашифрования и расшифрования с заданными распределениями вероятностей на множествах l-грамм открытых текстов, закрытых текстов и ключей.

Шифры, для которых апостериорные вероятности открытых текстов совпадают с их априорными вероятностями, называются совершенными. Такие шифры являются абсолютно стойкими к криптоатакам по шифртексту. Совершенным может быть лишь шифр с неограниченным ключом [3]. Шифры, для которых |X| = |Y|, называются эндоморфными [1]. К. Шеннон полностью описал эндоморфные совершенные шифры с минимальным возможным числом ключей (|K| = |Y|).

Согласно [3], шифр Σ_B называется *сильно совершенным*, если он остается совершенным для любого распределения P(X) вероятностей на множестве открытых текстов.

Шифры, для которых |Y| < |K|, называются неминимальными. Шифры, для которых $|K| = \mu \cdot (\mu - 1) \cdot \ldots \cdot (\mu - \lambda + 1)$, то есть шифры, содержащие все инъекции $X \to Y$, называются максимальными. Доказано

Утверждение 1. Неминимальный совершенный шифр вкладывается в максимальный совершенный шифр.

В утверждении 1 имеется в виду не только теоретико-множественное включение, но и теоретико-вероятностное включение в рамках рассматриваемой модели шифра.

Кроме эндоморфных, существуют также неэндоморфные (|X| < |Y|) шифры с неравновероятными ключами, являющиеся сильно совершенными. Такие шифры обладают дополнительными свойствами, важнейшие из которых — имитостойкость и помехоустойчивость. Изучение неэндоморфных совершенных шифров в общем виде предполагает знание распределения вероятностей $P(X^l)$ на множестве l-грамм алфавита открытых текстов. В работе [4] рассматриваются комбинаторные аспекты проблематики совершенных шифров. В качестве стандартного аппарата исследования распределения вероятностей на l-граммах используются стохастические матрицы и однородные цепи Маркова. При этом проблематика описания совершенных шифров связана с классическими задачами описания статистически неопределённых систем [5]. Справедлива

Теорема 1. Неэндоморфный совершенный шифр является сильно совершенным.

Эквивалентность понятий совершенности и сильной совершенности для неэндоморфных шифров даёт большие возможности для их изучения.

В работе показано, что распределение вероятностей на множествах l-грамм закрытых текстов и ключей, при котором максимальный шифр будет совершенным, можно найти с помощью системы линейных уравнений. Данная система совместна, при этом её неизвестные принадлежат отрезку [0;1]. Поэтому искомое распределение вероятностей в пространстве вероятностей представляет собой некоторое выпуклое тело P^{ℓ}

(многогранник) в многомерном евклидовом пространстве. Многогранник P^{ℓ} описан как выпуклая оболочка вершин. Справедливо

Утверждение 2. Если $\ell_1 < \ell_2$, то для соответствующих многогранников P^{ℓ_1} и P^{ℓ_2} выполняется условие $P^{\ell_1} \subset P^{\ell_2}$, то есть многогранники P^{ℓ} для ℓ -грамм при разных ℓ вложены в друг друга.

Итак, показано, что изучение неэндоморфных шифров сводится к изучению максимальных неэндоморфных шифров. При этом распределения вероятностей на l-граммах могут рассматриваться и как независимые, что характерно для блочных шифров, и как порождённые режимом гаммирования. Справедлива

Теорема 2. Совершенными максимальными шифрами являются шифры с вероятностями ключей $P(K^{\ell})$ из многогранника P^{ℓ} , и только они.

Данная теорема является аналогом теоремы К. Шеннона, доказанным для общего класса неэндоморфных неминимальных шифров.

ЛИТЕРАТУРА

- 1. Шеннон K. Терия связи в секретных системах // Работы по теории информации и кибернетике. М.: Наука, 1963. С. 333–402.
- 2. Алферов А. П., Зубов А. Ю., Кузъмин А. С., Черемушкин А. В. Основы криптографии. М.: Гелиос АРВ, 2001.
- 3. Зубов А. Ю. Совершенные шифры. М.: Гелиос АРВ, 2003.
- 4. *Титов С. С., Гутарин Д. С., Коновалова С. С. и др.* Комбинаторные проблемы существования совершенных шифров // Труды ИММ УрО РАН. 2008. Т. 13. № 4. С. 61–73.
- 5. *Медведева Н. В.*, *Тимофеева Г. А.* Сравнение линейных и нелинейных методов доверительного оценивания для статистически неопределенных систем // Автоматика и телемеханика. 2007. № 4. С. 51–60.

УДК 519.7

О СВЯЗЯХ МЕЖДУ ОСНОВНЫМИ ПОНЯТИЯМИ РАЗНОСТНОГО АНАЛИЗА ИТЕРАТИВНЫХ БЛОЧНЫХ ШИФРОВ

А. И. Пестунов

Обозначаются некоторые из проблем и несоответствий в существующей терминологии разностного анализа итеративных блочных шифров. Предлагается один из возможных наборов определений, позволяющий сформировать единообразную систему понятий, которая согласована с существующими терминами. Формализованы соответствия между основными понятиями, в частности показано, что в рамках предлагаемого набора определений дифференциал, характеристика и усечённый дифференциал являются усечёнными характеристиками. Формализовано и обобщено понятие объединения дифференциалов и характеристик.

Ключевые слова: терминология, дифференциальный криптоанализ, разностный анализ, блочный шифр, дифференциал, характеристика.

Разностный (дифференциальный) анализ [1] — это распространённый подход к анализу стойкости итеративных блочных шифров, однако несмотря на его популярность и наличие ряда разновидностей [2-5] к настоящему времени не выработана строгая единообразная терминология, его описывающая: основные понятия вводятся либо не строго, либо с использованием авторских определений. Такая ситуация не мешает разраба-