Из этого вектора, в свою очередь, последовательно переходим в $x_2 = (0, 1, 0, 0, 0, 0, 1)$ с $\mu(x_2) = 3$, $x_3 = (0, 1, 0, 0, 0, 1, 1)$ с $\mu(x_3) = 2$, $x_4 = (0, 1, 0, 1, 0, 0, 1)$ с $\mu(x_4) = 2$ и попадаем в тупиковую точку. Эта ветвь алгоритма потребовала проведения 25 вычислений невязок и так и не привела к успеху.

Предложенный модифицированный алгоритм уже на первом шаге устанавливает запрет на проставление единицы в первой и седьмой координатах вектора и присваивает шестой координате значение 1: $x_1 = 0$, $x_7 = 0$ и $x_6 = 1$. Отметим, что срабатывают первый и второй случаи стратегии запрета перехода в следующую вершину и блокируются возможности расстановки единиц соответственно по переменным x_7 и x_1 , при этом $\mu(0,0,0,0,0,0,1) = 8$ и является минимальной из всех посчитанных на первом шаге. В результате $x_1 = (\mathbf{0},0,0,0,\mathbf{0},\mathbf{1},\mathbf{0})$. На втором шаге запрещается присваивание единицы переменным x_3 и x_5 , переменной x_2 даётся значение 1 и получается вектор $x_2 = (\mathbf{0},\mathbf{1},\mathbf{0},0,\mathbf{0},\mathbf{1},\mathbf{0})$. Присваивание единицы четвёртой координате приводит к нахождению решения $x_3 = (0,1,0,1,0,1,0)$. При этом модифицированная версия алгоритма потребовала вычисления невязки всего 11 раз.

Экспериментальные исследования, которые проводились на случайных системах неравенств, показали, что эффективность применения как базового алгоритма Балаша, так и его модификации зависит от структуры системы неравенств. Основным достоинством предложенной модификации алгоритма Балаша является исключение попадания в целые классы тупиковых точек.

ЛИТЕРАТУРА

- 1. Балакин Г. В., Никонов В. Г. Методы сведения булевых уравнений к системам пороговых соотношений // Обозрение прикладной и промышленной математики. 1994. Т. 1. Вып. 3. С. 389–401.
- 2. *Рыбников К. К., Никонов Н. В.* Прикладные задачи, сводящиеся к анализу и решению систем линейных неравенств. Метод разделяющих плоскостей // Вестник Московского государственного университета леса Лесной вестник. 2002. № 2(22). С.191–195.
- 3. *Анашкина Н. В.* Использование алгоритма Балаша для нахождения решения системы линейных ограничений специального вида // Вестник Московского государственного университета леса Лесной вестник. 2004. № 4(35). С. 176–179.
- 4. Koфман A., Aнри-Лабордер A. Методы и модели исследования операций. М.: Мир, 1977. $432\,\mathrm{c}.$
- 5. Анашкина Н. В. Обзор методов решения систем линейных неравенств // Вестник Московского государственного университета леса Лесной вестник. 2004. № 1(32). С. 144–148.
- 6. *Гришухин В. П.* Среднее число итераций в алгоритме Балаша // Сб. статей. Численные методы в линейном программировании. М.: Наука, 1973. С. 31–38.

УДК 519.688

СРАВНИТЕЛЬНЫЙ АНАЛИЗ НЕКОТОРЫХ АЛГОРИТМОВ РАСПОЗНАВАНИЯ ГЛАДКИХ ЧИСЕЛ

Д. С. Арбузов, Л. И. Туктарова

Приводятся результаты экспериментальных исследований трёх алгоритмов нахождения чисел, разложимых в заданной факторной базе: просеивания (с делением и логарифмического) и Бернштейна.

Ключевые слова: гладкие числа, просеивание, алгоритм Бернштейна.

Пусть задана факторная база S- множество, состоящее из некоторых простых чисел.

Определение 1. Целое число будем называть S-гла $\partial \kappa u M$, если все его простые делители входят в S.

Задачу нахождения большого количества гладких чисел приходится решать в некоторых методах факторизации чисел (например, квадратичное решето, решето числового поля) и дискретного логарифмирования. Рассмотрим два метода её решения: просеивания (в двух вариантах) и Бернштейна.

1. Метод просеивания [1]

Задан многочлен $F(x) \in \mathbb{Z}[x]$, факторная база S и целые числа A, C, A < C. Требуется найти все такие $x, A \leqslant x \leqslant C$, что F(x) - S-гладкое. Строится таблица, ячейки которой занумерованы целыми числами от A до C. Метод заключается в заполнении таблицы, её изменении и последующем просмотре.

Алгоритм 1. Метод просеивания

Вход: S — факторная база; A, C — целые числа, A < C; многочлен $F(x) \in \mathbb{Z}[x]$; $M = \max_{A \le x \le C} |F(x)|$; первоначальное заполнение таблицы T:

x	A	A+1	 C	
F(x)	F(A)	F(A+1)	 F(C)	

Выход: множество чисел $x, A \le x \le C$, таких, что F(x) - S-гладкое.

- 1: Для всех $q \in S, l \in \{1, 2, ..., \ln M / \ln q\}$
- 2: найти все решения x_0 сравнения $F(x) = 0 \pmod{q^l}$.
- 3: Для всех решений x_0
- 4: содержимое ячеек T(x) с номерами $x=x_0+hq^l,\,(A-x_0)/q^l\leqslant h\leqslant (C-x_0)/q^l,$ поделить на q.
- 5: Просмотреть содержимое всех ячеек. Значение F(x) является S-гладким тогда и только тогда, когда $T(x)=\pm 1$.

В отличие от метода пробных делений, в данном алгоритме все деления выполняются точно, то есть нет «неудачных» делений.

Улучшение алгоритма 1 (логарифмический вариант) заключается в том, что вычисляется не F(x), а $\log |F(x)|$; на шаге 4 вместо деления на q вычитается $\log q$; на шаге 5 значения T(x) сравниваются с 0. В результате получаем выигрыш как по времени выполнения алгоритма, так и по требуемой памяти. Однако из-за погрешностей округления в вычислении логарифма даже для S-гладких значений F(x) можем получить $T(x) \neq 0$, и шаг 5 надо модифицировать следующим образом: значение F(x) является S-гладким тогда и только тогда, когда $|T(x)| \leq E$ для некоторого «малого» E. При этом возможны ошибки первого и второго рода: необнаружение гладкого числа (влияет на эффективность алгоритма) и принятие негладкого числа за гладкое (влияет на корректность алгоритма).

Для оценки величины E проведён следующий эксперимент: $F(x) = (x+m)^2 - N$, где $m = \sqrt{N}$, N- модуль RSA длиной |N| бит; логарифм берётся по основанию 2 и округляется до ближайшего целого снизу; факторная база S состоит из |S| первых простых чисел q, таких, что $\left(\frac{N}{q}\right) = 1$ (параметры соответствуют методу квадратичного решета для факторизации числа N). Результаты представлены в табл. 1. Здесь

 \min — минимальное значение T[x], полученное после просеивания и соответствующее негладкому числу; \max — максимальное значение T[x], которое соответствует гладкому числу. Видно, что во всех случаях можно выбрать такое E, что $\max < E < \min$. Это позволит избежать ошибок обоих родов.

 ${\rm T}\,{\rm a}\,{\rm f}\,{\rm л}\,{\rm и}\,{\rm ц}\,{\rm a}\,\,1$ Оценка параметра E

	S = 20		S = 30		S = 50		S = 100	
N	Min	Max	Min	Max	Min	Max	Min	Max
20	7,6	3,2	8	2,8	9	3,2	10,6	3,2
40	8,8	4,2	8,6	4,6	9,6	4,6	11	7
50	8,8	6	9	5,2	9,8	6,6	10,8	5,8
60	10,2	5,4	10	6,3	10	6,4	11,2	7,4

Эксперименты показали, что логарифмический вариант просеивания работает быстрее, чем вариант с делением; результаты приведены в табл. 2 (CPU Intel Pentium $P6100\ 2,00\ \Gamma\Gamma$ ц, память $1,7\ \Gamma$ байт, swap $1,9\ \Gamma$ байт).

Таблица 2 Выигрыш логарифмического просеивания (по времени)

S	N	C-A	Выигрыш, %
30	50	2^{17}	41,16
50	50	2^{15}	55,2
50	60	2^{18}	48,72
100	50	2^{13}	45
100	60	2^{17}	45,24
150	50	2^{13}	56
150	60	2^{16}	43
150	70	2^{17}	49

Кроме того, хранение логарифмов чисел вместо самих чисел позволяет экономить используемую память. Так, при размере числа |N|=64 бита, длине отрезка $C-A=2^{18}$ и факторной базе из 50 элементов во время работы программы, реализующей просеивание с делением, используется память файла подкачки на $50\,\%$ (972 Мбайт), в то время как программа с вычислением логарифмов использует лишь $27\,\%$ (525 Мбайт). Это сильно влияет на время выполнения программы; в первом случае оно составляет $129\,\mathrm{c}$, во втором — $42\,\mathrm{c}$.

2. Метод Бернштейна [2]

Метод Бернштейна позволяет сократить объём вычислений при помощи использования деревьев. Задача формулируется так: заданы факторная база S и множество целых чисел P. Требуется найти все S-гладкие $p \in P$.

Отличие в постановке задачи от метода просеивания состоит в том, что множество чисел произвольно.

Обозначим $Q = \prod_{s \in S} s$ и найдём остатки от деления Q на числа $p \in P$. Пусть $Q \bmod p = r$. Тогда r = ab, где a = (Q, p) — произведение тех простых, которые присутствуют в базе S и в исследуемом числе. Пусть наибольший показатель в каноническом разложении числа p на простые множители не превосходит z. Тогда в каноническом

разложении r^z все простые присутствуют в степени, не меньшей, чем в p. Таким образом, $(r^z \mod p, p)$ есть часть числа p, разложимая в базе S; и число p является S-гладким, если $(r^z \mod p, p) = p$, т. е. $r^z \mod p = 0$.

Определение 2. Деревом произведений для множества чисел называется двоичное дерево, листья которого соответствуют элементам этого множества и каждому узлу сопоставлено число, равное произведению чисел, соответствующих его потомкам.

Алгоритм 2. Метод Бернштейна

Вход: S — факторная база; множество чисел P; $|P| \ge |S|$.

Выход: все S-гладкие числа $p \in P$.

- 1: Построить дерево произведений для факторной базы S. В корне этого дерева получим Q.
- 2: Построить дерево произведений T для множества P (при этом вычисляются только значения, не большие Q, остальные помечаются *).
- 3: Вычислить дерево остатков $Q \mod T$ следующим образом: сначала число R, приписанное корню дерева T, заменяется на $Q \mod R$, а затем происходит спуск по ветвям, во время которого каждое число заменяется на его остаток от деления на новое значение, приписанное его родителю.
- 4: Найти наименьшее натуральное число k, для которого $\max P \leqslant 2^{2^k}$.
- 5: Для всех $p \in P$: найти $r = Q \mod p$ в дереве остатков $Q \mod T$; вычислить $s_p := r^{2^k} \mod p$.
- 6: Ответ: все числа p, для которых $s_p = 0$.

Замечание. Значение z выбирается в виде 2^k для того, чтобы возведение в степень z выполнить за k возведений в квадрат.

В табл. 3 приведены результаты сравнения метода просеивания (с логарифмированием) и метода Бернштейна.

 ${\rm T}\, a\, б\, \pi\, u\, u\, a\ \ \, 3$ Сравнение методов просеивания и Бернштейна

	S = 50				S = 100			
	N = 50		N = 60		N = 50		N = 60	
Метод	Время,	Память,	Время,	Память,	Время,	Память,	Время,	Память,
	c	Мбайт	c	Мбайт	c	Мбайт	c	Мбайт
Просеивание	4	200	19	880	3	155	23	990
Метод Бернштейна	3	5	13	5	3	29	25	30

Таким образом, метод Бернштейна существенно выигрывает по памяти и времени при небольшой мощности факторной базы, однако при увеличении размеров факторной базы и просеиваемых чисел метод просеивания с логарифмированием догоняет и обгоняет метод Бернштейна по времени, хотя и существенно проигрывает по памяти.

ЛИТЕРАТУРА

- 1. Глухов М. М., Круглов И. А., Пикчур А. Б., Черемушкин А. В. Введение в теоретикочисловые методы криптографии: учебник для вузов. М.: Лань, 2011.
- 2. *Крендалл Р., Померанс К.* Простые числа: криптографические и вычислительные аспекты. М.: УРСС, Либроком, 2011.